GStreamer Application Development
Manual (0.10.9)

Wim Taymans
Steve Baker
Andy Wingo

Ronald S. Bultje
Stefan Kost



GStreamer Application Development Manual (0.10.9)
by Wim Taymans, Steve Baker, Andy Wingo, Ronald S. Bultjel Stefan Kost

This material may be distributed only subject to the ternts @nditions set forth in the Open Publication License, \dt.later (the latest version
is presently available at http://www.opencontent.org&pml ( http://www.opencontent.org/opl.shtml)).



Table of Contents

[T [ oo 11 od 1T o ISP UPPPPPUPRRPRPRPRRS V4 |
O 1= - T PP PPN 1.
IO I Y P S 1] 11T 10 = oSO SPR P 1
1.2. Who Should Read This Manual2............cooiiiiiiiiiiiiieeiie e 1.
1.3. Preliminary REAGING ... ....uuuuiiiiieeiiiiiiiie et e e e e s s ieeee e e s s eee e e e e e s st aeeeaeeeennnnee 1
1.4. Structure of this ManUAL.............cceiiiiiiiiiii e 2.
2. MOEIVALION & GOAIS.....cei ittt ettt et e ettt e st esnne e nne e e s 3
2% I O U [ =T o1 o] o] ] [T 1 U= 3
2.2. The deSIGN QOAIS.......cce it er et e e e e s ee e e e e e s et e e e eneenns 5
I o 10 Lo T 1SRRI 8.
0 I 1= T | (PP 8
3.2. BiNS and PIPEIINES........uuuiiiiieie et 8
B3 PaAdS. . 8.
1T =101 (o [TqTo = Ta 10N o] o] {ox= 11T ] o KPP UUTRTRRPP 10
4. INItTALIZING GSIIEAMEL. ....ceiiii ittt e e ettt e e e e e e e e st e e e e e e e e e e nenbeeaaeaeenees 11
4.1, Simple iNtAlIZAtION ... 11
4.2. The GOPLON INEITACE. ... ..eeiiiieaii et e e e 12.
LT = 1= 41T o £ PP PPUPPPPPPRPPPRt 14
B.1.What are €lementS2......ccooooiiiiii i 14
5.2. Creating @35t Bl EITBNT ...eeiiiiiiiiiiiiiiiie ettt ee e e e e e e e nnbee e e e e e e e e e nnneees 16.
5.3. Using an element aSGD0j ©Ct ......uvviiiiiriiiiiiieie sttt 18
5.4. More about element factories...........cccc i 19
5.5, LINKING @IEMENTS ..ottt e e e e e e 20
B5.6. ElemMent StateS......ccoooeiiii i 21
LT =1 LT PSP 23
B.1. WHAL @re DINS........eiiiiiiiiiiei ettt st sanee e 23
I O == 1] o - T 1 R 23
6.3, CUSLOM DINS.....itiiiiiiii ettt e et e e st e e e s st e e e enseeeeean 24
7 BUS . e e e et e e e e e e es 26
7.1 HOW O USE @ US ...t 26
A Lo ETST= Vo oI 1Y o= 28
8. Pads and Capabilitie®s..........uuuiiiieeeiiiiiiiee et 30
S I To [P PR PPRPRTPP 30
8.2. CapabilitiesS Of @ Pad........cccii i 33
8.3. What capabilities are used fOr..........ccvvviviiie e 35
S ] 0TS A = Lo £ SRS 38
9. BUffers @and EVENTS..........oocieiiiiiiiiie i sieneee s siinee e nnnnne e snneesnennee e nne s 40
9. L. BUF IS ettt 40
LS B =T o | £ T PRSPPI 40
10. YOUr first @pPlICALION. ...ttt 42
O I o 1= | (o I 1LY o [ PSPPI 42
10.2. Compiling and Running helloworld.C.............ccooiiiiiiiiiie e 45
3O RS T @ Tor 1113 o o 1SR 45



[l ADVANCEd G StrEaMEI CONCEPLS. .. uuuetiiiiiieee e ettt ee e e e e e et e e e e e s iesee e e e e e e e e aaabebbeeeaaaaessaannnnn 47

11. Position tracking and SEEKING ...........uuuiiiiiiieae it 48.
11.1. Querying: getting the position or length of a stream.............cccccoeiiiiiiis 48

11.2. Events: seeking (AN MOIE).......coo it 49

2 Y 1= 7 To - | - TSR POPPPPPPPPRR 51
12.1. Metadata reading.........uuveeeiiiee ettt e e e e e 51

2 - To T 111 o To PO PP UPPRR PP 51

RS 10 (=] 1 7= o L S PPER P 52
13.1. TRE URIINTEITACE. .. ..tiiiiiee ettt e e e e eee s 52

13.2. The MiXer INTEITACE.....ceeiiiie i 52

13.3. The TUNEE INTEITACE. ... . ettt eee e e e 52

13.4. The Color Balance interface.......... ... 53

13.5. The Property Probe interface ... 53

13.6. The X Overlay INTErfaCe.........ccuuviiiiieie et e e 53

O O fo o LT 1 == 0 L PRSPPI 55
I 0 O (o Tl o] 0 Vo [= = PO 55

I @ 0T od =] - 1Y R 55

15. Dynamic Controllable ParametersS..........ueeciiiiiieiiiiiiee e ececiee e e es s e e e e e eanane e 56
ST I €T = 1 1] o RS ] = 1 (=0 S SUSUR 56

15.2. Setting up parameter CONIOL..........ccieriiiiiiiieir e ee e e e e e e 56

TR I T =T Vo SRS 58
16.1. When would you want to force athread?..........ccccceeeeee i 58

16.2. SCheduling iN GSrEAMEL.......uuuiiiiie ettt e s e e e e e annees 59

R U 7o o118 e o |1 o HO TP PPRPTP 60
17.1. MIME-types as a way to identity Streams..........cccoevvvvviieireees e e e e e 60

17.2. Media stream type deteCtiON...........uuuiiiieee it ee e e e e e e e 61

17.3. Plugging together dynamic pipelines..........cevvvveeeiiiiiiiiiiie e 63

18. Pipeling ManipUIBLION. ..........oouuiiiiieee et e e et e e e e 69
SRR DT- 1= U o] o] o] oo R PR UURUPUPN 69

18.2. Manually adding or removing data from/to a pipeline.............ccccccoriniiiiiiiennnenn. 71

18.3. Embedding static elements in your application............cccccoviiiiiiiiie e 73

IV. Higher-level interfaces for GStreamer applicationS...........ccuuuiiiiiiieiiiiiiie e 75
19, COMPONENTS. ...ttt e e e e £ e e e e e e e e e e e e e e e e eeeee e e e e as 76
L TR o = 1Y o PSSR 76
19.2. DECOAEDIN. ...ttt e e e e nnne e e 77

L TR A €111 =T 1 oY TSP 80

20. XML IN G StrBAIME . ...ttt e e e ettt e e e ettt e e e e e e e s s e s bbb e e e ee e e e e s sannnneaaeaeas 81
20.1. Turning GStEIemMents iNt0 XIML........ooiiiiiiiiiiiie e 81
20.2. Loading a GstElement from an XML file..........ooooiii e 82
20.3. Adding custom XML tags into the core XML data..........ccccceeeeeiiiiiniiiieeneee e 83

RV Y o] 0 1= Lo [0t PRSP 86
21. Things to check when writing an appliCation..............ccocciiiiiii e 87
21.1. Good programming NabitS..........cooiuiiiiiiie e 87
P2 B = o TW o o 1 o PP PPPPRTRPPPRR 87
21.3. CONVErSION PIUGINS ....eoiiiiiiiiie it bbee e 88
21.4. Utility applications provided with GStreamer..........cccccvveevieiciviiieiee e ereeeeee e 88

22. Porting 0.8 applicationS t0 0.10.........cccuuiiiiiiiee s e e e e e e s er e e e s 90



22.1. LISt Of CRANGES . ...ttt eee s 90

AT 1 (=10 = 11T o USRS 92
23.1. Linux and UNIX-like operating SYStEMS.........ccouiiiiiiiiiiieieaaieeiiiee e 92
23.2. GNOME dESKEOP. ...ceieiiii ittt ettt e e e e e e e e e e eaeens 92
23.3. KDE AESKEOM. .. ettieee ettt ettt e e e ettt e e e e e e e e b e e e aeenreee 94
2314, OS Xttt ettt h et et e b st e e neaete e s bt e e aneeean 94
235, WINAOWS. ...ttt st et e b e e skt e e st e e e e s ameeenasbe e e e e 94

R (ot =T K] g To Jr=To V7L Y PP UPPPRTRRPP 95
24.1. How to license the applications you build with GStream...............c.ccceeeiiiieeeens a5

25. WINOOWS SUPPOIL ....eieieeii ittt ettt ettt e et e e e e e e e e e babbe e e e e e e e e e e annnaeseeeeaannnreneeees 97
25.1. Building GStreamer under WIN32...........uuuiiiiiiiiiiiiiiie e 97
25.2. Installation 0N the SYSEEIML.........coiiiiiii e a7

26. QUOLES fromM the DEVEIOPELS......coi it Q9



List of Figures

5-1. Visualisation of a SOUICE EIEMENL...........oiiii it e e e e e e e e e e e 14
5-2. Visualisation of a filter @I8MENL...........oviiii i 15
5-3. Visualisation of a filter element with more than one @ifpad................ccccvvvvevieeee e 15
5-4. Visualisation of a SiNK €I8MENT...........ccuiiiiiiii e e e eee e 15
5-5. Visualisation of three [inked elemMentS...........ccciiiiiiiie e 20
6-1. Visualisation of a bin with some elements iN.it............occoiiiiieie e 23
8-1. Visualisation of a&st Bi n (../../gstreamer/html/GstBin.html) element without ghpads............ 38
8-2. Visualisation of a&st Bi n (../../gstreamer/html/GstBin.html) element with a ghoesl................ 38
10-1. The "hello WOrld" PIPEIINE .........eeeie et seeeee s 45
16-1. a two-threaded decoder With @& QUELE. ...........eiii it 58
17-1. The Hello world pipeline With MIME tYPES.....cc.uuiiiiiiiiiiiiieiiie et 60

Vi



|. Introduction

GStreamer is an exremely powerful and versatile frameworilcfeating streaming media applications.
Many of the virtues of the GStreamer framework come from itgloarity: GStreamer can seamlessly
incorporate new plugin modules. But because modularitymoveer often come at a cost of greater
complexity, writing new applications is not always easy.

This guide is intended to help you understand the GStrearaerdiwork (version 0.10.9) so you can
develop applications based on it. The first chapters wilufoon development of a simple audio player,
with much effort going into helping you understand GStreacumcepts. Later chapters will go into
more advanced topics related to media playback, but alsthat tbrms of media processing (capture,
editing, etc.).



Chapter 1. Preface

This chapter gives you an overview of the technologies desdiin this book.

1.1. What is GStreamer?

GStreamer is a framework for creating streaming media agptins. The fundamental design comes
from the video pipeline at Oregon Graduate Institute, as$ agesome ideas from DirectShow.

GStreamer’s development framework makes it possible ttevany type of streaming multimedia
application. The GStreamer framework is designed to madasy to write applications that handle audio
or video or both. It isn’t restricted to audio and video, aad process any kind of data flow. The pipeline
design is made to have little overhead above what the apifilles induce. This makes GStreamer a
good framework for designing even high-end audio applicegtiwhich put high demands on latency.

One of the the most obvious uses of GStreamer is using it td bunedia player. GStreamer already
includes components for building a media player that capstia very wide variety of formats,
including MP3, Ogg/Vorbis, MPEG-1/2, AVI, Quicktime, maahd more. GStreamer, however, is much
more than just another media player. Its main advantagebat¢he pluggable components can be
mixed and matched into arbitrary pipelines so that it's gmedo write a full-fledged video or audio
editing application.

The framework is based on plugins that will provide the vasicodec and other functionality. The
plugins can be linked and arranged in a pipeline. This pigstiefines the flow of the data. Pipelines can
also be edited with a GUI editor and saved as XML so that pigdlbraries can be made with a
minimum of effort.

The GStreamer core function is to provide a framework fogpis, data flow and media type
handling/negotiation. It also provides an API to write aggiions using the various plugins.

1.2. Who Should Read This Manual?

This book is about GStreamer from a developer’s point of yiedescribes how to write a GStreamer
application using the GStreamer libraries and tools. Fagianation about writing plugins, we suggest
the Plugin Writers Guide
(http://gstreamer.freedesktop.org/data/doc/gstredmmad/pwg/html/index.html).



Chapter 1. Preface

1.3. Preliminary Reading

In order to understand this manual, you will need to have &haglerstanding of the C language. Since
GStreamer adheres to the GObject programming model, thdg@lso assumes that you understand the
basics of GObject (http://developer.gnome.org/doc/2BIgobject/index.html) programming. You may
also want to have a look at Eric Harlow's boBleveloping Linux Applications with GTK+ and GDK

In addition you might want to read tf@Streamer Plugin Writer's Guidafter this manual. Also check
out the other documentation available on the GStreamer iteb s
(http://gstreamer.freedesktop.org/documentation/).

1.4. Structure of this Manual

To help you navigate through this guide, it is divided inteesal large parts. Each part addresses a
particular broad topic concerning GStreamer applictioneltigoment. The parts of this guide are laid out
in the following order:

Part | inGStreamer Application Development Manual (0.1@i9%s you an overview of GStreamer’s
motivation design goals.

Part Il in GStreamer Application Development Manual (0.10a9)jdly covers the basics of GStreamer
application programming. At the end of that chapter, youssthbe able to build your own audio player
using GStreamer

In Part lll in GStreamer Application Development Manual (0.10v8) will move on to complicated
subjects which make GStreamer stand out of its competideswill discuss application-pipeline
interaction using dynamic parameters and interfaces, Wealiscuss threading and threaded pipelines,
scheduling and clocks (and synchronization). Most of tHop&s are not just there to introduce you to
their API, but primarily to give a deeper insight in solvingication programming problems with
GStreamer and understanding their concepts.

Next, inPart IV in GStreamer Application Development Manual (0.10:8) will go into higher-level
programming APIs for GStreamer. You don’t exactly need towll the details from the previous parts
to understand this, but you will need to understand basicgaSter concepts nevertheless. We will,
amongst others, discuss XML, playbin and autopluggers.

In Part V inGStreamer Application Development Manual (0.10y&u will find some random
information on integrating with GNOME, KDE, OS X or Windowsyme debugging help and general
tips to improve and simplify GStreamer programming.



Chapter 2. Motivation & Goals

Linux has historically lagged behind other operating systén the multimedia arena. Microsoft’s
Windows™ and Apple’s MacOS™ both have strong support fortimealdia devices, multimedia content
creation, playback, and realtime processing. Linux, orother hand, has a poorly integrated collection
of multimedia utilities and applications available, whicdn hardly compete with the professional level
of software available for MS Windows and MacOS.

GStreamer was designed to provide a solution to the curiientkimedia problems.

2.1. Current problems

We describe the typical problems in today’s media handlimdtioux.

2.1.1. Multitude of duplicate code

The Linux user who wishes to hear a sound file must hunt thrélugjh collection of sound file players in
order to play the tens of sound file formats in wide use todayst\vf these players basically
reimplement the same code over and over again.

The Linux developer who wishes to embed a video clip in thepligation must use crude hacks to run
an external video player. There is no library available thdeveloper can use to create a custom media
player.

2.1.2. '0One goal’ media players/libraries

Your typical MPEG player was designed to play MPEG video anti@ Most of these players have
implemented a complete infrastructure focused on achigViair only goal: playback. No provisions
were made to add filters or special effects to the video oradadia.

If you want to convert an MPEG-2 video stream into an AVI filepy best option would be to take all of
the MPEG-2 decoding algorithms out of the player and dufditaem into your own AVI encoder.
These algorithms cannot easily be shared across applisatio

Attempts have been made to create libraries for handlingvamedia types. Because they focus on a
very specific media type (avifile, libmpeg2, ...), significaork is needed to integrate them due to a lack
of a common API. GStreamer allows you to wrap these librakigis a common API, which significantly
simplifies integration and reuse.



Chapter 2. Motivation & Goals

2.1.3. Non unified plugin mechanisms

Your typical media player might have a plugin for differen¢dia types. Two media players will
typically implement their own plugin mechanism so that tbdecs cannot be easily exchanged. The
plugin system of the typical media player is also very ta&itbto the specific needs of the application.

The lack of a unified plugin mechanism also seriously hintlereation of binary only codecs. No
company is willing to port their code to all the different gin mechanisms.

While GStreamer also uses it own plugin system it offers & vieh framework for the plugin developer
and ensures the plugin can be used in a wide range of apphsatransparently interacting with other
plugins. The framework that GStreamer provides for the jpisiis flexible enough to host even the most
demanding plugins.

2.1.4. Poor user experience

Because of the problems mentioned above, application eultawe so far often been urged to spend a
considerable amount of time in writing their own backendisgim mechanisms and so on. The result has
often been, unfortunately, that both the backend as weliasiser interface were only half-finished.
Demotivated, the application authors would start rewgitine whole thing and complete the circle. This
leads to gpoor end user experience

2.1.5. Provision for network transparency

No infrastructure is present to allow network transpareatim handling. A distributed MPEG encoder
will typically duplicate the same encoder algorithms foumd non-distributed encoder.

No provisions have been made for use by and use of technslegah as the GNOME
(http://gnome.org/) desktop platform. Because the whert-invented all the time, it's hard to properly
integrate multimedia into the bigger whole of user’s enmir@nt.

The GStreamer core does not use network transparent texieslat the lowest level as it only adds
overhead for the local case. That said, it shouldn’t be harte¢ate a wrapper around the core
components. There are tcp plugins now that implement a @iee Data Protocol that allows pipelines
to be split over TCP. These are located in the gst-pluginsuteadirectory gst/tcp.

2.1.6. Catch up with the Windows™ world

We need solid media handling if we want to see Linux succeedti®@desktop.



Chapter 2. Motivation & Goals

We must clear the road for commercially backed codecs antimedia applications so that Linux can
become an option for doing multimedia.

2.2. The design goals

We describe what we try to achieve with GStreamer.

2.2.1. Clean and powerful
GStreamer wants to provide a clean interface to:
- The application programmer who wants to build a media pi@elirhe programmer can use an

extensive set of powerful tools to create media pipelingbauit writing a single line of code.
Performing complex media manipulations becomes very easy.

« The plugin programmer. Plugin programmers are provide@archnd simple API to create
self-contained plugins. An extensive debugging and taoiechanism has been integrated.
GStreamer also comes with an extensive set of real-lifeiptutihat serve as examples too.

2.2.2. Object oriented

GStreamer adheres to the GLib 2.0 object model. A progranfeneitiar with GLib 2.0 or older versions
of GTK+ will be comfortable with GStreamer.

GStreamer uses the mechanism of signals and object pregerti
All objects can be queried at runtime for their various pmtips and capabilities.

GStreamer intends to be similar in programming methodotody TK+. This applies to the object
model, ownership of objects, reference counting, ...

2.2.3. Extensible

All GStreamer Objects can be extended using the GObjectitahee methods.

All plugins are loaded dynamically and can be extended agdaged independently.



Chapter 2. Motivation & Goals

2.2.4. Allow binary only plugins

Plugins are shared libraries that are loaded at runtimeeSati the properties of the plugin can be set
using the GObject properties, there is no need (and in fastay) to have any header files installed for
the plugins.

Special care has been taken to make plugins completelgsatiined. All relevant aspects of plugins
can be queried at run-time.

2.2.5. High performance

High performance is obtained by:

using GLib’sg_nmem chunk and fast non-blocking allocation algorithms where possiblminimize
dynamic memory allocation.

extremely light-weight links between plugins. Data canétdahe pipeline with minimal overhead.
Data passing between plugins only involves a pointer dezate in a typical pipeline.

providing a mechanism to directly work on the target memarplugin can for example directly write
to the X server’s shared memory space. Buffers can also pmarbitrary memory, such as a sound
card’s internal hardware buffer.

refcounting and copy on write minimize usage of memcpy. Bufbers efficiently split buffers into
manageable pieces.

the use of cothreads to minimize the threading overheadr€ads are a simple and fast user-space
method for switching between subtasks. Cothreads wereureghd consume as little as 600 cpu
cycles.

allowing hardware acceleration by using specialized plsgi

using a plugin registry with the specifications of the pliegsio that the plugin loading can be delayed
until the plugin is actually used.

all critical data passing is free of locks and mutexes.

2.2.6. Clean core/plugins separation

The core of GStreamer is essentially media-agnostic. it knbws about bytes and blocks, and only
contains basic elements. The core of GStreamer is fundtimmagh to even implement low-level
system tools, like cp.

All of the media handling functionality is provided by plugi external to the core. These tell the core
how to handle specific types of media.



Chapter 2. Motivation & Goals

2.2.7. Provide a framework for codec experimentation

GStreamer also wants to be an easy framework where codelbgev@can experiment with different
algorithms, speeding up the development of open and freémadia codecs like Theora and Vorbis
(http://www.xiph.org/ogg/index.html).



Chapter 3. Foundations

This chapter of the guide introduces the basic concepts tie@®er. Understanding these concepts will
be important in reading any of the rest of this guide, all @thassume understanding of these basic
concepts.

3.1. Elements

An elements the most important class of objects in GStreamer. Youwsllally create a chain of
elements linked together and let data flow through this chb@lements. An element has one specific
function, which can be the reading of data from a file, decgaifthis data or outputting this data to
your sound card (or anything else). By chaining togetheesshsuch elements, you creatpipelinethat
can do a specific task, for example media playback or capBB&reamer ships with a large collection of
elements by default, making the development of a large tyapiemedia applications possible. If needed,

you can also write new elements. That topic is explainedéagdeal in th&sStreamer Plugin Writer's
Guide

3.2. Bins and pipelines

A binis a container for a collection of elements. A pipeline is acgal subtype of a bin that allows
execution of all of its contained child elements. Since liresssubclasses of elements themselves, you
can mostly control a bin as if it where an element, therebyrabsng away a lot of complexity for your
application. You can, for example change state on all elésiara bin by changing the state of that bin
itself. Bins also forward bus messages from their contagteldren (such as error messages, tag
messages or EOS messages).

A pipeline is a top-level bin. As you set it to PAUSED or PLAYB\state, data flow will start and media

processing will take place. Once started, pipelines williua separate thread until you stop them or the
end of the data stream is reached.

3.3. Pads

Padsare used to negotiate links and data flow between elementStre@mer. A pad can be viewed as a
“plug” or “port” on an element where links may be made withatklements, and through which data
can flow to or from those elements. Pads have specific datdihgrapabilities: A pad can restrict the
type of data that flows through it. Links are only allowed begéw two pads when the allowed data types
of the two pads are compatible. Data types are negotiatetleetpads using a process calteghs
negotiation Data types are described a&st Caps.



Chapter 3. Foundations

An analogy may be helpful here. A pad is similar to a plug okjan a physical device. Consider, for
example, a home theater system consisting of an amplifiey;[a [@ayer, and a (silent) video projector.
Linking the DVD player to the amplifier is allowed becausetbdévices have audio jacks, and linking
the projector to the DVD player is allowed because both d=s/iave compatible video jacks. Links
between the projector and the amplifier may not be made bec¢hagprojector and amplifier have
different types of jacks. Pads in GStreamer serve the sampope as the jacks in the home theater
system.

For the most part, all data in GStreamer flows one way througtkdetween elements. Data flows out
of one element through one or maseurce padsand elements accept incoming data through one or
moresink padsSource and sink elements have only source and sink paggctasely. Data usually
means buffers (described by tBet Buf f er
(http://gstreamer.freedesktop.org/data/doc/gstrettadle/gstreamer/html//gstreamer-GstBuffer.html)
object) and events (described by thest Event
(http://gstreamer.freedesktop.org/data/doc/gstretmtadle/gstreamer/html//gstreamer-GstEvent.html)
object).



ll. Building an Application

In these chapters, we will discuss the basic concepts ofe@®ier and the most-used objects, such as
elements, pads and buffers. We will use a visual representat these objects so that we can visualize
the more complex pipelines you will learn to build later owuXvill get a first glance at the GStreamer
API, which should be enough for building elementary appiaes. Later on in this part, you will also
learn to build a basic command-line application.

Note that this part will give a look into the low-level API ardncepts of GStreamer. Once you're going
to build applications, you might want to use higher-level&A\Fhose will be discussed later on in this
manual.



Chapter 4. Initializing GStreamer

When writing a GStreamer application, you can simply inelgdt / gst . h to get access to the library
functions. Besides that, you will also need to intialize @®&treamer library.

4.1. Simple initialization

Before the GStreamer libraries can be uggd, i ni t has to be called from the main application. This
call will perform the necessary initialization of the lilbyeas well as parse the GStreamer-specific
command line options.

A typical program' would have code to initialize GStreamer that looks like:this

Example 4-1. Initializing GStreamer

#i ncl ude <gst/gst.h>

int
main (int argc,

{

char xargv[])

const gchar *nano_str;
guint nmajor, minor, mcro, nano;

gst_init (&argc, &argv);

gst _version (&mjor, &mnor, &mcro, &nano);

if (nano == 1)

nano_str = "(CVS)";
else if (nano == 2)

nano_str = "(Prerel ease)";
el se

nano_str = ""

printf ("This programis |inked agai nst GStreaner %l. %d. %d %\ n",
maj or, mnor, mcro, nano_str);

return O;

Use the GST_VERSION_MAJOR, GST_VERSION_MINOR and GST_8ER\_MICRO macros to
get the GStreamer version you are building against, or uséutictiongst _ver si on to get the version

11



Chapter 4. Initializing GStreamer

your application is linked against. GStreamer currentlysua scheme where versions with the same
major and minor versions are API-/ and ABI-compatible.

It is also possible to call thgst _i ni t function with two NULL arguments, in which case ho command
line options will be parsed by GStreamer.

4.2. The GOption interface

You can also use a GOption table to initialize your own patanseas shown in the next example:

Example 4-2. Initialisation using the GOption interface

#i ncl ude <gst/gst.h>

int
main (int argc,

{

char xargv[])

gbool ean silent = FALSE;
gchar xsavefile = NULL;
GOpt i onCont ext *ct Xx;
GError *err = NULL;
GOptionEntry entries[] = {
{ "silent", "s’, 0, G_OPTION_ARG NONE, &silent,
"do not output status information", NULL },
{ "output", "o, 0, G OPTION ARG STRING &savefile,
"save xm representation of pipeline to FILE and exit", "FILE" },
{ NULL }
1

ctx = g_option_context_new ("- Your application");
g_option_context_add_main_entries (ctx, entries, NULL);
g_option_context_add_group (ctx, gst_init_get_option_group ());
if (!g_option_context_parse (ctx, &argc, &argv, &err)) {

g print ("Failed to initialize: %\n", err->nessage);

g_error_free (err);

return 1;

}
printf ("Run me with --help to see the Application options appended.\n");

return O;

12



Chapter 4. Initializing GStreamer

As shown in this fragment, you can use a GOption
(http://developer.gnome.org/doc/API/2.0/glib/glim@mandline-option-parser.html) table to define your
application-specific command line options, and pass thie & the GLib initialization function along
with the option group returned from the functigst _i ni t _get _opti on_gr oup. Your application
options will be parsed in addition to the standard GStreaspé&ons.

Notes

1. The code for this example is automatically extracted ftbendocumentation and built under
exanpl es/ manual in the GStreamer tarball.

13



Chapter 5. Elements

The most important object in GStreamer for the applicatimgpmmer is th&st El ement
(../..Igstreamer/html/GstElement.html) object. An edarnis the basic building block for a media
pipeline. All the different high-level components you wike are derived frorgst El ement . Every
decoder, encoder, demuxer, video or audio output is in fast & enent

5.1. What are elements?

For the application programmer, elements are best visedbs black boxes. On the one end, you might
put something in, the element does something with it and #unteelse comes out at the other side. For
a decoder element, ifor example, you'd put in encoded dathttze element would output decoded data.
In the next chapter (sé@ads and capabilitigsyou will learn more about data input and output in
elements, and how you can set that up in your application.

5.1.1. Source elements

Source elements generate data for use by a pipeline, forgrasading from disk or from a sound card.
Figure 5-1shows how we will visualise a source element. We always draauace pad to the right of
the element.

Figure 5-1. Visualisation of a source element

source_element

Src

Source elements do not accept data, they only generateYdataan see this in the figure because it only
has a source pad (on the right). A source pad can only gercatde

5.1.2. Filters, convertors, demuxers, muxers and codecs

Filters and filter-like elements have both input and outjpaids. They operate on data that they receive
on their input (sink) pads, and will provide data on theirputt(source) pads. Examples of such elements
are a volume element (filter), a video scaler (convertorQag demuxer or a Vorbis decoder.

14



Chapter 5. Elements

Filter-like elements can have any number of source or sispA video demuxer, for example, would
have one sink pad and several (1-N) source pads, one for &amkmary stream contained in the
container format. Decoders, on the other hand, will onlyehawe source and sink pads.

Figure 5-2. Visualisation of a filter element

filter

sink Src

Figure 5-2shows how we will visualise a filter-like element. This sffiecélement has one source and
one sink element. Sink pads, receiving input data, are tlpat the left of the element; source pads are
still on the right.

Figure 5-3. Visualisation of a filter element with more than me output pad

demuxer

video

sink

audio

Figure 5-3shows another filter-like element, this one having more thramoutput (source) pad. An
example of one such element could, for example, be an Oggxkarfar an Ogg stream containing both
audio and video. One source pad will contain the elementagovstream, another will contain the
elementary audio stream. Demuxers will generally fire digmndoen a new pad is created. The
application programmer can then handle the new elementiaars in the signal handler.

5.1.3. Sink elements

Sink elements are end points in a media pipeline. They actaptbut do not produce anything. Disk
writing, soundcard playback, and video output would allioglemented by sink element&igure 5-4
shows a sink element.

15



Chapter 5. Elements

Figure 5-4. Visualisation of a sink element

sink_element

sink

5.2. Creating a Gst El enent

The simplest way to create an elementis togisie el enent _fact ory_make ()
(http://gstreamer.freedesktop.org/data/doc/gstretadle/gstreamer/html/GstElementFactory.html#gst-
element-factory-make). This function takes a factory namean element name for the newly created
element. The name of the element is something you can usefate look up the element in a bin, for
example. The name will also be used in debug output. You cas gBILL as the name argumentto get a
unique, default name.

When you don’t need the element anymore, you need to unrsiritigst _obj ect _unref ()
(http://gstreamer.freedesktop.org/data/doc/gstretadle/gstreamer/html/GstObject.html#gst-object-
unref). This decreases the reference count for the elenyehtAn element has a refcount of 1 when it
gets created. An element gets destroyed completely wheett@unt is decreased to 0.

The following examplé shows how to create an element narsedrcefrom the element factory named
fakesrc It checks if the creation succeeded. After checking, iefsithe element.

#i ncl ude <gst/gst.h>

i nt
main (int argc,
char xargv[])

{

Gst El enent xel enent;

[+ init GStreamer =*/
gst_init (&rgc, &argv);

[+ create el ement =*/
el ement = gst_el enent _factory_make ("fakesrc", "source");
if (lelement) {
g_print ("Failed to create el enent of type 'fakesrc'\n");
return -1;

}

16



Chapter 5. Elements

gst _obj ect _unref (GST_OBJECT (el enent));

return O;

}

gst _el enent _f act ory_make is actually a shorthand for a combination of two functions. A

Gst El enent
(http://gstreamer.freedesktop.org/data/doc/gstreamtadle/gstreamer/html/GstElement.html) object is
created from a factory. To create the element, you have tagpss to &st El enent Fact ory
(http://gstreamer.freedesktop.org/data/doc/gstrettadle/gstreamer/html/GstElementFactory.html)
object using a unique factory name. This is done wih_el enent _factory_find ()
(http://gstreamer.freedesktop.org/data/doc/gstretadle/gstreamer/html/GstElementFactory.html#gst-
element-factory-find).

The following code fragment is used to get a factory that canded to create tHfakesrcelement, a fake
data source. The functiarst _el enent _factory create ()
(http://gstreamer.freedesktop.org/data/doc/gstreatadle/gstreamer/html/GstElementFactory.html#gst-
element-factory-create) will use the element factory &ate an element with the given

name.

#i ncl ude <gst/gst.h>

i nt
main (int ar gc,
char xargv[])
{
Gst El enent Factory *factory;
Gst El ement = el enent;

/* init GStreaner =*/
gst_init (&rgc, &argv);

/* create el ement, nethod #2 */
factory = gst_element_factory_find ("fakesrc");
if (!factory) {
g print ("Failed to find factory of type ’'fakesrc’'\n");
return -1;
}
el ement = gst_el enent _factory_create (factory, "source");
if ('element) {
g_print ("Failed to create el enent, even though its factory exists!\n");
return -1,

}
gst _obj ect _unref (GST_OBJECT (el ement));

return O;

17



Chapter 5. Elements

5.3. Using an element as a Gbj ect

A Gst El enent
(http://gstreamer.freedesktop.org/data/doc/gstreamtadle/gstreamer/html/GstElement.html) can have
several properties which are implemented using stan@dasflect properties. The usu&bj ect
methods to query, set and get property values@ut anSpecs are therefore supported.

EveryGst El enent inherits at least one property from its par@st Obj ect : the "name" property. This
is the name you provide to the functiogst _el enent _f act ory_make () or

gst_el enent _factory_create (). Youcan getand set this property using the functions

gst _obj ect _set _name andgst _obj ect _get _nane or use theSbj ect property mechanism as
shown below.

#i ncl ude <gst/gst.h>

int
main (int argc,
char xargv[])

{

Gst El enent xel enent;
gchar =*nane;

[+ init GCStreamer x/
gst_init (&rgc, &argv);

/* create elenment =*/
el ement = gst_el enent _factory_nmake ("fakesrc", "source");

/* get name */

g_obj ect _get (G OBJECT (el enment), "nane", &niane, NULL);
g_print ("The nane of the elenent is "%’ .\n", nane);
g_free (nane);

gst _obj ect _unref (GST_OBJECT (el enent));

return O;

Most plugins provide additional properties to provide mimf@ermation about their configuration or to
configure the elemengst-inspectis a useful tool to query the properties of a particular eletnié will
also use property introspection to give a short explanattwout the function of the property and about
the parameter types and ranges it supports. See the apgendetails abougst-inspect

18



Chapter 5. Elements

For more information abou®bj ect properties we recommend you read the GObject manual
(http://developer.gnome.org/doc/API/2.0/gobjectérditml) and an introduction to The Glib Object
system (http://developer.gnome.org/doc/API1/2.0/gotfpe01.html).

A Gst El enent
(http://gstreamer.freedesktop.org/data/doc/gstremtadle/gstreamer/html/gstreamer/html/GstElemectttg. html)
also provides variouebj ect signals that can be used as a flexible callback mechanism, tber, you

can usegyst-inspectto see which signals a specific elements supports. Togsigeals and properties

are the most basic way in which elements and applicatioesant.

5.4. More about element factories

In the previous section, we briefly introduced tBst El enent Fact ory
(http://gstreamer.freedesktop.org/data/doc/gstremtadle/gstreamer/html/GstElement.html) object
already as a way to create instances of an element. Elenwtotiés, however, are much more than just
that. Element factories are the basic types retrieved ftmr@Streamer registry, they describe all plugins
and elements that GStreamer can create. This means thatrel&otories are useful for automated
element instancing, such as what autopluggers do, anddating lists of available elements, such as
what pipeline editing applications (e.g. GStreamer Editor
(http://gstreamer.freedesktop.org/modules/gst-editml)) do.

5.4.1. Getting information about an element using a factory

Tools likegst-inspectwill provide some generic information about an elementhsasthe person that
wrote the plugin, a descriptive name (and a shorthame),lkaaad a category. The category can be used
to get the type of the element that can be created using tmisesit factory. Examples of categories
includeCodec/ Decoder / Vi deo (video decoder)codec/ Encoder / Vi deo (video encoder),

Sour ce/ Vi deo (a video generatori nk/ Vi deo (a video output), and all these exist for audio as well,
of course. Then, there’s alsvdec/ Denuxer andCodec/ Muxer and a whole lot moregst-inspectwill
give a list of all factories, angst-inspect <factory-name>will list all of the above information, and a

lot more.

#i ncl ude <gst/gst.h>

int
main (int argc,
char xargv[])

{
Gst El enent Factory *factory;

/* init GStreaner =*/
gst_init (&rgc, &argv);

/* get factory */
factory = gst_elenment_factory_find ("audi otestsrc");

19



Chapter 5. Elements

if (!factory) {
g_print ("You don’t have the ’audiotestsrc’ elenment installed!'\n");
return -1;

}

/* display information */

g_print ("The "%’ elenent is a nenber of the category %.\n"
"Description: %\n",
gst _plugi n_feature_get_nanme (GST_PLUG N_FEATURE (factory)),
gst _elenment _factory_get_klass (factory),
gst _el ement _factory_get _description (factory));

return O;

You can useyst _regi stry_pool _feature_list (GST_TYPE_ELEMENT_FACTORY) to get a list of
all the element factories that GStreamer knows about.

5.4.2. Finding out what pads an element can contain

Perhaps the most powerful feature of element factoriesaisttiey contain a full description of the pads
that the element can generate, and the capabilities of fhed® (in layman words: what types of media
can stream over those pads), without actually having to tbase plugins into memory. This can be used
to provide a codec selection list for encoders, or it can legldisr autoplugging purposes for media
players. All current GStreamer-based media players armptuggers work this way. We'll look closer at
these features as we learn abasit Pad andGst Caps in the next chapteiPads and capabilities

5.5. Linking elements

By linking a source element with zero or more filter-like elembs and finally a sink element, you set up a
media pipeline. Data will flow through the elements. Thisis basic concept of media handling in
GStreamer.

Figure 5-5. Visualisation of three linked elements

source_element filter sink_element

src sink src sink

20



Chapter 5. Elements

By linking these three elements, we have created a very sigfin of elements. The effect of this will
be that the output of the source element (“elementl1”) wilubed as input for the filter-like element
(“element2”). The filter-like element will do something Withe data and send the result to the final sink
element (“element3”).

Imagine the above graph as a simple Ogg/Vorbis audio decdhersource is a disk source which reads
the file from disc. The second element is a Ogg/Vorbis audomder. The sink element is your
soundcard, playing back the decoded audio data. We willhisesimple graph to construct an
Ogg/Vorbis player later in this manual.

In code, the above graph is written like this:

#i ncl ude <gst/gst.h>

i nt
main (int argc,
char xargv[])

{

Gst El enent xsource, *filter, =sink;

[+ init */
gst_init (&rgc, &argv);

/* create elenments */

source = gst_el enent _factory_make ("fakesrc", "source");
filter = gst_elenent_factory_nake ("identity", "filter");
sink = gst_el ement _factory_nake ("fakesink", "sink");

[+ link */

gst _el ement _l i nk_nany (source, filter, sink, NULL);

[--]

For more specific behaviour, there are also the functigns el ement _| i nk () and
gst _el enent _I i nk_pads (). You can also obtain references to individual pads and lials¢ using
variousgst _pad_I| i nk_* () functions. See the API references for more details.

5.6. Element States

After being created, an element will not actually perforny aations yet. You need to change elements
state to make it do something. GStreamer knows four elentatetss each with a very specific meaning.
Those four states are:

« GST_STATE_NULL: this is the default state. This state will deallocate adbrrces held by the element.

21



Notes

Chapter 5. Elements

« GST_STATE_READY: in the ready state, an element has allocated all of its ¢l@saurces, that is,
resources that can be kept within streams. You can thinktadgmning devices, allocating buffers and
so on. However, the stream is not opened in this state, sdréens positions is automatically zero. If
a stream was previously opened, it should be closed in this,sind position, properties and such
should be reset.

« GST_STATE_PAUSED: in this state, an element has opened the stream, but is tivglggrocessing it.
An element is allowed to modify a stream’s position, read prutess data and such to prepare for
playback as soon as state is changed to PLAYING, butibtsllowed to play the data which would
make the clock run. In summary, PAUSED is the same as PLAYINGwithout a running clock.

Elements going into the PAUSED state should prepare theesér moving over to the PLAYING
state as soon as possible. Video or audio outputs wouldxtomple, wait for data to arrive and queue
it so they can play it right after the state change. Also, oigieks can already play the first frame
(since this does not affect the clock yet). Autopluggerdatose this same state transition to already
plug together a pipeline. Most other elements, such as saaledters, do not need to explicitely do
anything in this state, however.

« GST_STATE_PLAYI NG in the PLAYING state, an element does exactly the same dwiPAUSED
state, except that the clock now runs.

You can change the state of an element using the fungtionel enent _set _state (). If you setan
element to another state, GStreamer will internally trageall intermediate states. So if you set an
element from NULL to PLAYING, GStreamer will internally stite element to READY and PAUSED
in between.

When moved t@ST_STATE_PLAYI NG, pipelines will process data automatically. They do notdiee
be iterated in any form. Internally, GStreamer will startethds that take this task on to them. GStreamer
will also take care of switching messages from the pipeditieread into the application’s own thread, by
using aGst Bus
(http://gstreamer.freedesktop.org/data/doc/gstretadle/gstreamer/html/GstBus.html). Seleapter 7
for details.

1. The code for this example is automatically extracted ftbendocumentation and built under
exanpl es/ manual in the GStreamer tarball.

22



Chapter 6. Bins

A bin is a container element. You can add elements to a birteSarbin is an element itself, a bin can be
handled in the same way as any other element. Therefore ltbke\previous chapteE{ement$ applies

to bins as well.

6.1. What are bins

Bins allow you to combine a group of linked elements into agidal element. You do not deal with the
individual elements anymore but with just one element, the\We will see that this is extremely
powerful when you are going to construct complex pipelinesesit allows you to break up the pipeline

in smaller chunks.

The bin will also manage the elements contained in it. It figlire out how the data will flow in the bin
and generate an optimal plan for that data flow. Plan gemeratione of the most complicated
procedures in GStreamer. You will learn more about this pss¢called scheduling, Bection 16.2

Figure 6-1. Visualisation of a bin with some elements in it

bin

elementl

Src

element2

sink

Src

element3

sink

There is one specialized type of bin available to the GStezgrogrammer:

- A pipeline: a generic container that allows scheduling ef¢bntaining elements. The toplevel bin has
to be a pipeline, every application thus needs at least otiees€. Pipelines will automatically run
themselves in a background thread when started.

23



Chapter 6. Bins

6.2. Creating a bin

Bins are created in the same way that other elements aredréat using an element factory. There are
also convenience functions availabds{_bi n_new () andgst _pi pel i ne_new () ). To add

elements to a bin or remove elements from a bin, you camysisebi n_add () andgst _bi n_r enove

() . Note that the bin that you add an element to will take owriprshthat element. If you destroy the
bin, the element will be dereferenced with it. If you remowesdement from a bin, it will be
dereferenced automatically.

#i ncl ude <gst/gst.h>

i nt
main (int ar gc,
char xargv[])

{

Gst El enent =hbin, *pipeline, *source, *sink;

[+ init */
gst_init (&rgc, &argv);

/* create */

pi peline = gst_pipeline_new ("ny_pipeline");

bin = gst_pipeline_new ("ny_bin");

source = gst_el enent _factory_make ("fakesrc", "source");
sink = gst_elenent_factory_nake ("fakesink", "sink");

/* set up pipeline */

gst _bin_add_many (GST_BIN (bin), source, sink, NULL);
gst _bin_add (GST_BIN (pipeline), bin);

gst _element _link (source, sink);

[--]

There are various functions to lookup elements in a bin. Moualso get a list of all elements that a bin
contains using the functiagst _bi n_get _l i st (). See the API references Gt Bi n
(http://gstreamer.freedesktop.org/data/doc/gstretadle/gstreamer/html/GstBin.html) for details.

6.3. Custom bins

The application programmer can create custom bins packibdaléments to perform a specific task.
This allows you, for example, to write an Ogg/Vorbis decodih just the following lines of code:
int
main (int argc,

char xargv[])

24



Chapter 6. Bins

Gst El enent =pl ayer;

[* init =/
gst_init (&rgc, &argv);

[+ create player =/
pl ayer = gst_elenment_factory_nake ("oggvorbisplayer", "player");

/+ set the source audio file =/
g_object_set (player, "location", "helloworld.ogg", NULL);

/* start playback */
gst _el ement _set_state (GST_ELEMENT (pl ayer), GST_STATE _PLAYI NG ;

[--]
}

Custom bins can be created with a plugin or an XML descriptiu will find more information about
creating custom bin in the Plugin Writers Guide
(http://gstreamer.freedesktop.org/data/doc/gstredmmad/pwg/html/index.html).

Examples of such custom bins are the playbin and decodedrimegits from gst-plugins-base
(http://gstreamer.freedesktop.org/data/doc/gstredmad/gst-plugins-base-plugins/html/index.html).

25



Chapter 7. Bus

A bus is a simple system that takes care of forwarding mesdage the pipeline threads to an
application in its own thread context. The advantage of adtisgat an application does not need to be
thread-aware in order to use GStreamer, even though GStratsalf is heavily threaded.

Every pipeline contains a bus by default, so applicationsat;meed to create a bus or anything. The
only thing applications should do is set a message handlartws, which is similar to a signal handler
to an object. When the mainloop is running, the bus will pgidally be checked for new messages, and
the callback will be called when any message is available.

7.1. How to use a bus

There are two different ways to use a bus:

« Run a GLib/Gtk+ main loop (or iterate the defauly GLib maimtaxt yourself regularly) and attach
some kind of watch to the bus. This way the GLib main loop whikck the bus for new messages and
notify you whenever there are messages.

Typically you would useyst _bus_add_wat ch () orgst_bus_add_si gnal _wat ch () in this
case.

To use a bus, attach a message handler to the bus of a pipgiigget _bus_add_wat ch (). This
handler will be called whenever the pipeline emits a messagee bus. In this handler, check the
signal type (see next section) and do something accordifgly/return value of the handler should be
TRUE to remove the message from the bus.

« Check for messages on the bus yourself. This can be donewssingpus_peek () and/or
gst _bus_poll ().

#i ncl ude <gst/gst.h>
static Gvai nLoop *I| oop;

static gbool ean

my_bus_cal | back (GstBus *bus,
Cst Message *nessage,
gpoi nter dat a)

{

switch (GST_MESSAGE TYPE (nessage)) {
case GST_MESSAGE ERROR {
GError *err;

26



}

gchar xdebug;

gst_message_parse_error (nessage, &err,
g_print ("Error: 9%\n", err->nessage);
g_error_free (err);

g_free (debug);

g_mai n_l oop_quit (loop);
br eak;

}

case GST_MESSAGE ECS:
/ » end-of -stream */
g_mai n_l oop_quit (loop);
br eak;

def aul t:
[ * unhandl ed nessage */
br eak;

}

/* renove nmessage fromthe queue */
return TRUE;

gi nt
mai n (gint argc,

{

gchar xargv[])
Gwvai nLoop *I oop;
Gst El enent =*pi pel i ne;
Gst Bus *bus;

[* init =/
gst_init (&rgc, &argv);

/* create pipeline, add handl er =/

pi peline = gst_pipeline_new ("ny_pipeline");
bus = gst_pi peline_get _bus (GST_PI PELI NE (pipeline));

&debug) ;

gst _bus_add_wat ch (bus, mny_bus_cal | back, NULL);

gst _obj ect _unref (bus);

-]

Chapter 7. Bus

/* in the mainloop, all nessages posted to the bus by the pipeline
* W ll automatically be sent to our callback. */

|l oop = g_mai n_l oop_new (NULL, FALSE);
g_mai n_| oop_run (1 oop);

return O;

27



Chapter 7. Bus

It is important to know that the handler will be called in tiedad context of the mainloop. This means
that the interaction between the pipeline and applicatigr the bus isisynchronousand thus not

suited for some real-time purposes, such as cross-fadimgelee audio tracks, doing (theoretically)
gapless playback or video effects. All such things shoulddiee in the pipeline context, which is easiest
by writing a GStreamer plug-in. It is very useful for its pimy purpose, though: passing messages from
pipeline to application. The advantage of this approachasall the threading that GStreamer does
internally is hidden from the application and the applicatdeveloper does not have to worry about
thread issues at all.

Note that if you're using the default GLib mainloop intedoat, you can, instead of attaching a watch,
connect to the “message” signal on the bus. This way you dhawvé toswi t ch() on all possible
message types; just connect to the interesting signalsiim é6 “message::<type>", where <type>is a
specific message type (see the next section for an explaraitinessage types).

The above snippet could then also be written as:

Gst Bus *bus;

[--]

bus = gst_pi peline_get_bus (GST_PI PELI NE (pi peline);

gst _bus_add_si gnal _wat ch (bus);

g_signal _connect (bus, "nessage::error", G CALLBACK (ch_nessage_error), NULL);
g_si gnal _connect (bus, "message::eos", G CALLBACK (cb_message_eos), NULL);

[--]

If you aren’t using GLib mainloop, the message signals wba'available by default. You can however
use a small helper exported by to provide integration withrtiainloop you're using, and enable
generation of bus signals (see documentation
(http://gstreamer.freedesktop.org/data/doc/gstremtadle/gstreamer/html/GstBus.html) for details)

7.2. Message types

GStreamer has a few pre-defined message types that can led pass the bus. The messages are
extensible, however. Plug-ins can define additional messamd applications can decide to either have
specific code for those or ignore them. All applications arersyly recommended to at least handle error
messages by providing visual feedback to the user.

All messages have a message source, type and timestamp.€6sage source can be used to see which
element emitted the message. For some messages, for examiplthe ones emitted by the top-level
pipeline will be interesting to most applications (e.g. $tate-change notifications). Below is a list of all
messages and a short explanation of what they do and howse pessage-specific content.

28



Chapter 7. Bus

Error, warning and information notifications: those aredisg elements if a message should be shown
to the user about the state of the pipeline. Error messagdaiat and terminate the data-passing. The
error should be repaired to resume pipeline activity. Waggiare not fatal, but imply a problem
nevertheless. Information messages are for non-probléifications. All those messages contain a
GEr r or with the main error type and message, and optionally a detoingysBoth can be extracted
usinggst _nessage_parse_error (),_parse_warning () and_parse_info ().Botherror

and debug string should be free’ed after use.

End-of-stream natification: this is emitted when the strée® ended. The state of the pipeline will
not change, but further media handling will stall. Applicais can use this to skip to the next song in
their playlist. After end-of-stream, it is also possiblestek back in the stream. Playback will then
continue automatically. This message has no specific angtane

Tags: emitted when metadata was found in the stream. Thibeamitted multiple times for a
pipeline (e.g. once for descriptive metadata such as adiste or song title, and another one for
stream-information, such as samplerate and bitrate).iégidns should cache metadata internally.
gst _nessage_parse_tag () should be used to parse the taglist, which should be
gst_tag_list_free ()’edwhennolongerneeded.

State-changes: emitted after a successful state chgsigenessage_par se_st at e_changed ()
can be used to parse the old and new state of this transition.

Buffering: emitted during caching of network-streams. @aa manually extract the progress (in
percent) from the message by extracting the “buffer-pdtfqaoperty from the structure returned by
gst _nessage_get _structure ().

Element messages: these are special messages that are torgguain elements and usually represent
additional features. The element’'s documentation shoddtion in detail which element messages a
particular element may send. As an example, the 'qtdemuickJime demuxer element may send a
‘redirect’ element message on certain occasions if thastreontains a redirect instruction.

Application-specific messages: any information on thosebeaextracted by getting the message
structure (see above) and reading its fields. Usually thesssages can safely be ignored.

Application messages are primarily meant for internal msagplications in case the application needs
to marshal information from some thread into the main thr&#us is particularly useful when the
application is making use of element signals (as those sigvih be emitted in the context of the
streaming thread).

29



Chapter 8. Pads and capabilities

As we have seen iRlementsthe pads are the element’s interface to the outside wowdth Bireams

from one element’s source pad to another element’s sink @l specific type of media that the element
can handle will be exposed by the pad’s capabilities. Wetalil more on capabilities later in this
chapter (se&ection 8.2

8.1. Pads

A pad type is defined by two properties: its direction andviailability. As we've mentioned before,
GStreamer defines two pad directions: source pads and sitsk phis terminology is defined from the
view of within the element: elements receive data on thek piads and generate data on their source
pads. Schematically, sink pads are drawn on the left side efement, whereas source pads are drawn
on the right side of an element. In such graphs, data flows fefto right.*

Pad directions are very simple compared to pad availabflifyad can have any of three availabilities:
always, sometimes and on request. The meaning of thosetjfpreeis exactly as it says: always pads
always exist, sometimes pad exist only in certain casescandlisappear randomly), and on-request
pads appear only if explicitely requested by applications.

8.1.1. Dynamic (or sometimes) pads

Some elements might not have all of their pads when the eleimereated. This can happen, for
example, with an Ogg demuxer element. The element will readXgg stream and create dynamic pads
for each contained elementary stream (vorbis, theora) ithdatects such a stream in the Ogg stream.
Likewise, it will delete the pad when the stream ends. Thisqgiple is very useful for demuxer elements,
for example.

Running gst-inspect oggdemux will show that the elemenoinésone pad: a sink pad called 'sink’. The
other pads are “dormant”. You can see this in the pad tempktause there is an “Exists: Sometimes”
property. Depending on the type of Ogg file you play, the pailide created. We will see that this is
very important when you are going to create dynamic pipslitveu can attach a signal handler to an
element to inform you when the element has created a new paddne of its “sometimes” pad
templates. The following piece of code is an example of hodatthis:

#i ncl ude <gst/gst.h>

static void

cb_new pad (GstEl enent =*el ement,
Gst Pad *pad,
gpoi nt er dat a)

{

gchar *nane;

30



Chapter 8. Pads and capabilities

name = gst_pad_get _nane (pad);
g_print ("A new pad % was created\n", nane);
g_free (nane);

/* here, you would setup a new pad link for the newy created pad */

[--]
}

i nt
main (int argc,
char xargv[])

{
Gst El enent =*pi pel i ne, *source, =*denux;
Gwvai nLoop *I oop;
[* init */
gst_init (&rgc, &argv);
/+ create el ements */
pi peline = gst_pipeline_new ("ny_pipeline");
source = gst_elenent _factory_nake ("filesrc", "source");
g_obj ect_set (source, "location", argv[1], NULL);
denux = gst_el ement _factory_nake ("oggdenux", "denuxer");
/* you would nornmally check that the elenments were created properly =/
/* put together a pipeline x/
gst _bin_add_many (GST_BIN (pipeline), source, dermux, NULL);
gst _el ement _| i nk_pads (source, "src", demux, "sink");
/+* listen for newy created pads */
g_si gnal _connect (dernux, "pad-added", G CALLBACK (cbh_new pad), NULL);
/* start the pipeline */
gst _el ement _set_state (GST_ELEVMENT (pi peline), GST_STATE_PLAYI NG ;
|l oop = g_mmi n_l oop_new (NULL, FALSE);
g_mai n_|l oop_run (1 oop);
[-.]
}

8.1.2. Request pads

An element can also have request pads. These pads are rtetdcaetomatically but are only created on
demand. This is very useful for multiplexers, aggregatostee elements. Aggregators are elements
that merge the content of several input streams togeth@pimé output stream. Tee elements are the

31



Chapter 8. Pads and capabilities

reverse: they are elements that have one input stream agdltusistream to each of their output pads,
which are created on request. Whenever an application regexdker copy of the stream, it can simply
request a new output pad from the tee element.

The following piece of code shows how you can request a nepubyiad from a “tee” element:

static void
sonme_function (GstEl ement *tee)

{
Gst Pad * pad;
gchar *nane;
pad = gst_el enent _get _request _pad (tee, "src%d");
name = gst_pad_get _nane (pad);
g_print ("A new pad % was created\n", nane);
g_free (nane);
/* here, you would link the pad =*/

[-.]
/* and, after doing that, free our reference */
gst _obj ect _unref (GST_OBJECT (pad));

}

Thegst _el ement _get _request _pad () method can be used to get a pad from the element based on

the name of the pad template. It is also possible to requesd &hat is compatible with another pad
template. This is very useful if you want to link an elemenatmultiplexer element and you need to
request a pad that is compatible. The methsd_el enent _get _conpati bl e_pad () can be used to
request a compatible pad, as shown in the next example.lltegiiest a compatible pad from an Ogg
multiplexer from any input.

static void
link _to_multiplexer (GstPad +xt ol i nk_pad,
Gst El enent  *nmux)
{
Gst Pad *pad;
gchar *srcnane, =*sinknaneg;

srcnane = gst_pad_get _nane (tolink_pad);

pad = gst_el enent _get _conpati bl e_pad (nmux, tolink_pad);
gst _pad_link (tolinkpad, pad);

si nkname = gst_pad_get _nanme (pad);

gst _obj ect _unref (GST_OBJECT (pad));

g_print ("A new pad % was created and |linked to %\n", srcnanme, sinknane);

g_free (sinknane);
g_free (srcnane);

32



Chapter 8. Pads and capabilities

8.2. Capabilities of a pad

Since the pads play a very important role in how the elemevieised by the outside world, a
mechanism is implemented to describe the data that can flowrcently flows through the pad by using
capabilities. Here, we will briefly describe what capat@itare and how to use them, enough to get an
understanding of the concept. For an in-depth look into béifias and a list of all capabilities defined in
GStreamer, see the Plugin Writers Guide
(http://gstreamer.freedesktop.org/data/doc/gstredmmad/pwg/html/index.html).

Capabilities are attached to pad templates and to pads aeademplates, it will describe the types of
media that may stream over a pad created from this templatgdels, it can either be a list of possible
caps (usually a copy of the pad template’s capabilities)Hith case the pad is not yet negotiated, or it is
the type of media that currently streams over this pad, irctvisse the pad has been negotiated already.

8.2.1. Dissecting capabilities

A pads capabilities are described ii&st Caps object. Internally, &st Caps
(../..Igstreamer/html/gstreamer-GstCaps.html) wititzdn one or mor&st St ruct ur e
(../..Igstreamer/html/gstreamer-GstStructure.hthdj will describe one media type. A negotiated pad
will have capabilities set that contain exaabiyestructure. Also, this structure will contain orfixed
values. These constraints are not true for unnegotiatesl gaplad templates.

As an example, below is a dump of the capabilities of the “isatec” element, which you will get by
runninggst-inspect vorbisdec You will see two pads: a source and a sink pad. Both of theds g
always available, and both have capabilities attachedetimtfhe sink pad will accept vorbis-encoded
audio data, with the mime-type “audio/x-vorbis”. The saipad will be used to send raw (decoded)
audio samples to the next element, with a raw audio mime-tyyphis case, “audio/x-raw-int") The
source pad will also contain properties for the audio samapdeand the amount of channels, plus some
more that you don’t need to worry about for now.

Pad Tenpl at es:
SRC tenpl ate: 'src’
Avai l ability: Al ways
Capabilities:
audi o/ x-raw f | oat
rate: [ 8000, 50000 ]
channels: [ 1, 2]
endi anness: 1234
wi dt h: 32
buffer-frames: 0

SINK tenpl ate: ’sink’
Avai l ability: Al ways
Capabi lities:

audi o/ x-vorbi s

33



Chapter 8. Pads and capabilities

8.2.2. Properties and values

Properties are used to describe extra information for ciif@b. A property consists of a key (a string)
and a value. There are different possible value types thabeaised:

- Basic types, this can be pretty much a&y pe registered with Glib. Those properties indicate a
specific, non-dynamic value for this property. Exampledude:

- Aninteger valueG_TYPE_I NT): the property has this exact value.

- Aboolean value@ TYPE_BOOLEAN): the property is either TRUE or FALSE.

. Afloat value G_TYPE_FLOAT): the property has this exact floating point value.
- Astring value G_TYPE_STRI NG): the property contains a UTF-8 string.

- Afraction value GST_TYPE_FRACTI ON): contains a fraction expressed by an integer numerator
and denominator.

- Range types ar@Types registered by GStreamer to indicate a range of possibleesalThey are used
for indicating allowed audio samplerate values or suppbvtdeo sizes. The two types defined in
GStreamer are:

- Aninteger range valuedST_TYPE_| NT_RANGE): the property denotes a range of possible integers,
with a lower and an upper boundary. The “vorbisdec” elemfemtexample, has a rate property that
can be between 8000 and 50000.

. Afloat range value@ST_TYPE_FLOAT_RANGE): the property denotes a range of possible floating
point values, with a lower and an upper boundary.

- A fraction range value@ST_TYPE_FRACTI ON_RANGE): the property denotes a range of possible
fraction values, with a lower and an upper boundary.

- Alist value (GST_TYPE_LI ST): the property can take any value from a list of basic valuesrgin
this list.

Example: caps that express that either a sample rate of 442@0d a sample rate of 48000 Hz is
supported would use a list of integer values, with one vakiad44100 and one value being 48000.

- An array value GST_TYPE_ARRAY): the property is an array of values. Each value in the asayfull
value on its own, too. All values in the array should be of tame elementary type. This means that
an array can contain any combination of integers, lists @fgars, integer ranges together, and the
same for floats or strings, but it can not contain both floatsiats at the same time.

Example: for audio where there are more than two channetdvad the channel layout needs to be
specified (for one and two channel audio the channel layanipficit unless stated otherwise in the
caps). So the channel layout would be an array of integer aralues where each enum value
represents a loudspeaker position. Unlikesa_TYPE_LI ST, the values in an array will be interpreted
as awhole.

34



Chapter 8. Pads and capabilities

8.3. What capabilities are used for

Capabilities (short: caps) describe the type of data thettémmed between two pads, or that one pad
(template) supports. This makes them very useful for varmurposes:

« Autoplugging: automatically finding elements to link to algzased on its capabilities. All
autopluggers use this method.

- Compatibility detection: when two pads are linked, GStreaoan verify if the two pads are talking
about the same media type. The process of linking two padslaacking if they are compatible is
called “caps negotiation”.

- Metadata: by reading the capabilities from a pad, appbcatcan provide information about the type
of media that is being streamed over the pad, which is inftionabout the stream that is currently
being played back.

- Filtering: an application can use capabilities to limit fiessible media types that can stream between
two pads to a specific subset of their supported stream typeapplication can, for example, use
“filtered caps” to set a specific (fixed or non-fixed) video gizat should stream between two pads.
You will see an example of filtered caps later in this manue$ection 18.2You can do caps filtering
by inserting a capsfilter element into your pipeline andisgtits “caps” property. Caps filters are often
placed after converter elements like audioconvert, aedmmple, ffmpegcolorspace or videoscale to
force those converters to convert data to a specific outpoidbat a certain point in a stream.

8.3.1. Using capabilities for metadata

A pad can have a set (i.e. one or more) of capabilities atththi. CapabilitiesGst Caps) are
represented as an array of one or m@se St r uct ur es, and eacl®st St r uct ur e is an array of fields
where each field consists of a field name string (e.g. "widdin't) a typed value (e.G TYPE_I NT or
GST_TYPE_I NT_RANGE).

Note that there is a distinct difference betweengbssiblecapabilities of a pad (ie. usually what you
find as caps of pad templates as they are shown in gst-inspiezd)lowedcaps of a pad (can be the
same as the pad’s template caps or a subset of them, depemding possible caps of the peer pad) and
lastly negotiatedcaps (these describe the exact format of a stream or buftecamntain exactly one
structure and have no variable bits like ranges or listdhiey are fixed caps).

You can get values of properties in a set of capabilities Brgjag individual properties of one structure.
You can get a structure from a caps usysy _caps_get _structure () and the number of structures
in aGst Caps usinggst _caps_get _si ze ().

35



Chapter 8. Pads and capabilities

Caps are calledimple capsvhen they contain only one structure, diad capsvhen they contain only
one structure and have no variable field types (like rangéisterof possible values). Two other special
types of caps arANY capsandempty caps

Here is an example of how to extract the width and height frasataf fixed video caps:

static void
read_vi deo_props (GstCaps *caps)
{

gint width, height;

const GstStructure *str;

g return_if_fail (gst_caps_is_fixed (caps));

str = gst_caps_get_structure (caps, 0);
if ('gst_structure_get_int (str, "width", & dth) ||
lgst_structure_get_int (str, "height", &height)) {
g_print ("No w dth/height avail able\n");
return;

}

g_print ("The video size of this set of capabilities is %x%\ n",
wi dt h, height);

8.3.2. Creating capabilities for filtering

While capabilities are mainly used inside a plugin to désxthe media type of the pads, the application
programmer often also has to have basic understanding abddjes in order to interface with the
plugins, especially when using filtered caps. When you'iegiiltered caps or fixation, you're limiting
the allowed types of media that can stream between two paasubset of their supported media types.
You do this using @apsfi | t er elementin your pipeline. In order to do this, you also neecréate

your ownGst Caps. The easiest way to do this is by using the convenience foamcti

gst _caps_new sinple ():

static gbool ean
link _elements_with filter (GstEl enent *el enentl, GstEl enent *el ement?2)
{

gbool ean |i nk_ok;

Gst Caps *caps;

caps = gst_caps_new sinple ("video/x-raw yuv",
"format", GST_TYPE_FOURCC, GST_MAKE FOURCC ('I1', "4, '2', '0"),
"width", G TYPE_INT, 384,
"hei ght", G_TYPE_INT, 288,

36



Chapter 8. Pads and capabilities

"franmerate", GST TYPE FRACTION, 25, 1,
NULL) ;

link_ok = gst_elenent_link filtered (elenentl, element2, caps);
gst _caps_unref (caps);

if ('link_ok) {
g warning ("Failed to link elenentl and el ement2!");

}

return |ink_ok;

This will force the data flow between those two elements to ertam video format, width, height and
framerate (or the linking will fail if that cannot be achial/m the context of the elments involved). Keep
in mind that when you usegst _el ement _li nk_filtered () it willautomatically create a

capsfil ter elementfor you and insert it into your bin or pipeline betwelee two elements you want
to connect (this is important if you ever want to disconnbose elements).

In some cases, you will want to create a more elaborate setpattlities to filter a link between two
pads. Then, this function is too simplistic and you’'ll wamtise the methogst _caps_new ful | ():

static gbool ean
link_elements_with filter (GstEl enent xel enentl, GstEl enment *el ement?2)

{
gbool ean |i nk_ok;
Gst Caps *caps;
caps = gst_caps_new full (
gst _structure_new ("video/ x-raw yuv",
"wi dth", G TYPE_INT, 384,
"height", G TYPE_INT, 288,
"franerate", GST_TYPE_FRACTION, 25, 1,
NULL) ,
gst _structure_new ("video/ x-rawrgbh",
"wi dth", G TYPE_INT, 384,
"height", G TYPE_INT, 288,
"franerate", GST_TYPE_FRACTION, 25, 1,
NULL) ,
NULL) ;
link_ok = gst_elenent_link filtered (elenentl, elenment2, caps);
gst _caps_unref (caps);
if ('link_ok) {
g warning ("Failed to link elenentl and el enent2!");
}
return |ink_ok;
}

37



Chapter 8. Pads and capabilities

See the API references for the full API Gt St r uct ur e andGst Caps.

8.4. Ghost pads

You can see fronfrigure 8-1how a bin has no pads of its own. This is where "ghost pads" dotoglay.

Figure 8-1. Visualisation of aGst Bi n (../../gstreamer/html/GstBin.html) element without ghcst

pads

bin

elementl

sink

Src

element2

sink

Src

element3

sink

A ghost pad is a pad from some element in the bin that can besedairectly from the bin as well.
Compare it to a symbolic link in UNIX filesystems. Using ghpats on bins, the bin also has a pad and

can transparently be used as an element in other parts otpader

Figure 8-2. Visualisation of aGst Bi n (../../gstreamer/html/GstBin.html) element with a ghospad

bin

elementl

| sink

Src

element2

sink

Src

element3

sink

sink

38



Chapter 8. Pads and capabilities

Figure 8-2is a representation of a ghost pad. The sink pad of elemerisorev also a pad of the bin.
Because ghost pads look and work like any other pads, thepeadded to any type of elements, not
just to aGst Bi n, just like ordinary pads.

A ghostpad is created using the functigst _ghost _pad_new ():

#i ncl ude <gst/gst.h>

int
main (int argc,
char xargv[])

{
Gst El enent *bin, =*sink;
Gst Pad *pad;

[+ init */
gst_init (&rgc, &argv);

/* create elenent, add to bin =/

sink = gst_elenent_factory_nake ("fakesink", "sink");
bin = gst_bin_new ("mybin");

gst _bin_add (GST_BIN (bin), sink);

/* add ghostpad */

pad = gst_el enent _get _pad (sink, "sink");

gst _el ement _add_pad (bin, gst_ghost_pad_new ("sink", pad));
gst _obj ect _unref (GST_OBJECT (pad));

[--]

In the above example, the bin now also has a pad: the pad ¢aligd of the given element. The bin
can, from here on, be used as a substitute for the sink eleMantould, for example, link another
element to the bin.

Notes

1. Inreality, there is no objection to data flowing from a smupad to the sink pad of an element
upstream (to the left of this element in drawings). Data,widwever, always flow from a source pad
of one element to the sink pad of another.

39



Chapter 9. Buffers and Events

The data flowing through a pipeline consists of a combinatidsuffers and events. Buffers contain the
actual pipeline data. Events contain control informatguch as seeking information and end-of-stream
notifiers. All this will flow through the pipeline automatitawhen it's running. This chapter is mostly
meant to explain the concept to you; you don’t need to do amgtior this.

9.1. Buffers

Buffers contain the data that will flow through the pipelirmiyhave created. A source element will
typically create a new buffer and pass it through a pad to &x¢ @lement in the chain. When using the
GStreamer infrastructure to create a media pipeline younsil have to deal with buffers yourself; the
elements will do that for you.

A buffer consists, amongst others, of:

- A pointer to a piece of memory.
« The size of the memory.
- A timestamp for the buffer.

- Arefcount that indicates how many elements are using thfeb his refcount will be used to
destroy the buffer when no element has a reference to it.

The simple case is that a buffer is created, memory allocdegd put in it, and passed to the next
element. That element reads the data, does something (@kérmy a new buffer and decoding into it),
and unreferences the buffer. This causes the data to bedraad the buffer to be destroyed. A typical
video or audio decoder works like this.

There are more complex scenarios, though. Elements carfyrimdfers in-place, i.e. without allocating
a new one. Elements can also write to hardware memory (suithrasrideo-capture sources) or
memory allocated from the X-server using XShm). Buffers bamead-only, and so on.

9.2. Events

Events are control particles that are sent both up- and dogars in a pipeline along with buffers.
Downstream events notify fellow elements of stream std&essible events include discontinuities,
flushes, end-of-stream notifications and so on. Upstreamt&waee used both in application-element
interaction as well as event-event interaction to requieahges in stream state, such as seeks. For
applications, only upstream events are important. Dowastrevents are just explained to get a more
complete picture of the data concept.

40



Chapter 9. Buffers and Events

Since most applications seek in time units, our examplevbdlmes so too:

static void
seek_to_time (GstEl enent xel enent,

gui nt 64 ti me_ns)
{
Gst Event *event;
event = gst_event _new seek (GST_SEEK METHOD_SET |
GST_FORMAT_TI ME,
time_ns);
gst _el ement _send_event (el enent, event);
}

The functiongst _el ement _seek () is a shortcut for this. This is mostly just to show how it allnks.

41



Chapter 10. Your first application

This chapter will summarize everything you've learned ia fitevious chapters. It describes all aspects
of a simple GStreamer application, including initializiigraries, creating elements, packing elements
together in a pipeline and playing this pipeline. By doinglaik, you will be able to build a simple
Ogg/Vorbis audio player.

10.1. Hello world

We're going to create a simple first application, a simple @gthis command-line audio player. For
this, we will use only standard GStreamer components. Tégeplwill read a file specified on the
command-line. Let’s get started!

We've learned, irChapter 4that the first thing to do in your application is to initisdiZsStreamer by
callinggst _init (). Also, make sure that the application inclu@gs/ gst . h so all function names
and objects are properly defined. Usencl ude <gst/ gst. h>to do that.

Next, you'll want to create the different elements usysg _el enent _factory_make (). Foran
Ogg/Vorbis audio player, we’'ll need a source element thadisdiles from a disk. GStreamer includes
this element under the name “filesrc”. Next, we’'ll need sdnmgf to parse the file and decoder it into
raw audio. GStreamer has two elements for this: the firstgsagg streams into elementary streams
(video, audio) and is called “oggdemux”. The second is a ioalndio decoder, it's conveniently called
“vorbisdec”. Since “oggdemux” creates dynamic pads foheslementary stream, you'll need to set a
“pad-added” event handler on the “oggdemux” element, lig@'ye learned irSection 8.1.1to link the
Ogg parser and the Vorbis decoder elements together. Atadt also need an audio output element,
we will use “alsasink”, which outputs sound to an ALSA audavite.

The last thing left to do is to add all elements into a conta@ement, &Gst Pi pel i ne, and iterate this
pipeline until we've played the whole song. We've previgusirned how to add elements to a container
bin in Chapter 6and we've learned about element stateSéation 5.6\We will also attach a message
handler to the pipeline bus so we can retrieve errors andtite end-of-stream.

Let's now add all the code together to get our very first audtyer:

#i ncl ude <gst/gst.h>

| *

* @ obal objects are usually a bad thing. For the purpose of this
* exanple, we will use them however.

*/

Gst El enent =pi peline, *source, =*parser, *decoder, *conv, xsink;

42



Chapter 10. Your first application

static gbool ean

bus_call (GstBus *bus,
Cst Message *nsg,
gpoi nter dat a)

{

Gwvai nLoop *l oop = dat a;

switch (GST_MESSAGE TYPE (nsg)) {
case GST_MESSAGE_ECs:
g_print ("End-of-streamn");
g_mai n_l cop_quit (loop);
br eak;
case GST_MESSAGE ERROR: {
gchar *debug;
GError *err;

gst _nmessage_parse_error (nsg, &err, &debug);
g_free (debug);

g_print ("Error: 9%\n", err->nessage);
g_error_free (err);

g_main_l oop_quit (loop);
br eak;

}

defaul t:
br eak;

}

return TRUE;
}

static void
new_pad (GstEl enment =*el enent,

Gst Pad *pad,
gpoi nter dat a)
{
Gst Pad =*si nkpad;
/+ We can now link this pad with the audi o decoder */
g_print ("Dynanmi c pad created, |inking parser/decoder\n");
si nkpad = gst_el enent _get _pad (decoder, "sink");
gst _pad_link (pad, sinkpad);
gst _obj ect _unref (sinkpad);
}
int

main (int argc,
char xargv[])

{
Gwvai nLoop x| oop;

43



Chapter 10. Your first application
Gst Bus *bus;

/+ initialize GStreamer */
gst_init (&rgc, &argv);
|l oop = g_main_loop_new (NULL, FALSE);

/* check input argunents =/

if (argc !'= 2) {
g_print ("Usage: % <Ogg/ Vorbis filename>\n", argv[O0]);
return -1;

}

/* create elenents */
pi pel i ne = gst_pi peline_new ("audi o-pl ayer");

source = gst_elenent_factory_make ("filesrc", "file-source");
parser = gst_elenment_factory_make ("oggdenux", "ogg-parser");
decoder = gst_el enent _factory_nmke ("vorbisdec", "vorbis-decoder");
conv = gst_el enent _factory_make ("audi oconvert", "converter");
sink = gst_elenment _factory_nake ("al sasi nk", "al sa-output");
if (!pipeline || !source || !parser || !'decoder || !'conv || !sink) {
g_print ("One elenent could not be created\n");
return -1;
}

/* set filename property on the file source. Also add a nessage
* handler. */
g_obj ect _set (G OBJECT (source), "location", argv[1l], NULL);

bus = gst_pi peline_get_bus (GST_PI PELI NE (pipeline));
gst _bus_add_watch (bus, bus_call, |oop);
gst _obj ect _unref (bus);

/+* put all elements in a bin */
gst _bin_add_many (GST_BIN (pipeline),
source, parser, decoder, conv, sink, NULL);

/* link together - note that we cannot |ink the parser and
* decoder yet, becuse the parser uses dynamic pads. For that,
* we set a pad-added signal handler. =/
gst _elenment _link (source, parser);
gst _el ement _| i nk_nmany (decoder, conv, sink, NULL);
g_si gnal _connect (parser, "pad-added", G CALLBACK (new_pad), NULL);

/+ Now set to playing and iterate. */

g_print ("Setting to PLAYING n");

gst _el ement _set_state (pipeline, GST_STATE_PLAYI NG ;
g_print ("Running\n");

g_mai n_|l oop_run (1 oop);

/* clean up nicely */

g_print ("Returned, stopping playback\n");

gst _el ement _set_state (pipeline, GST_STATE NULL);
g_print ("Deleting pipeline\n");

44



Chapter 10. Your first application
gst _obj ect _unref (GST_OBJECT (pipeline));

return O;

}

We now have created a complete pipeline. We can visualisgipledine as follows:

Figure 10-1. The "hello world" pipeline

pipeline

disk_source decoder play_audio

Src sink Src sink

10.2. Compiling and Running helloworld.c

To compile the helloworld example, usgcc -Wall $(pkg-config --cflags --libs gstreamer-0.10)
helloworld.c -o helloworld. GStreamer makes use jgkg-configto get compiler and linker flags needed
to compile this application. If you're running a non-stardimstallation, make sure the

PKG_CONFI G_PATHenvironment variable is set to the correct locati$hi(bdi r / pkgconfi g).
application against the uninstalled location.

You can run this example application wittnelloworld file.ogg Substituté i | e. ogg with your
favourite Ogg/Vorbis file.

10.3. Conclusion

This concludes our first example. As you see, setting up dipgis very low-level but powerful. You
will see later in this manual how you can create a more powearédia player with even less effort using
higher-level interfaces. We will discuss all that in

45



Chapter 10. Your first application

Part IV in GStreamer Application Development Manual (0.10v8@ will first, however, go more
in-depth into more advanced GStreamer internals.

It should be clear from the example that we can very easillacepthe “filesrc” element with some other
element that reads data from a network, or some other dataeselement that is better integrated with
your desktop environment. Also, you can use other decoderparsers to support other media types.
You can use another audio sink if you're not running Linux, lklac OS X, Windows or FreeBSD, or
you can instead use a filesink to write audio files to disk mdtef playing them back. By using an audio
card source, you can even do audio capture instead of playA#dchis shows the reusability of
GStreamer elements, which is its greatest advantage.

46



Ill. Advanced GStreamer concepts

In this part we will cover the more advanced features of GBtrer. With the basics you learned in the
previous part you should be able to creatmapleapplication. However, GStreamer provides much
more candy than just the basics of playing back audio filethitnchapter, you will learn more of the
low-level features and internals of GStreamer.

Some parts of this part will serve mostly as an explanatiomoed GStreamer works internally; they are
not actually needed for actual application developmernis Tritludes chapter such as the ones covering
scheduling, autoplugging and synchronization. Other tdraphowever, discuss more advanced ways of
pipeline-application interaction, and can turn out to beyweseful for certain applications. This includes
the chapters on metadata, querying and events, interfdygeaimic parameters and pipeline data
manipulation.



Chapter 11. Position tracking and seeking

So far, we've looked at how to create a pipeline to do mediagssing and how to make it run. Most
application developers will be interested in providingdback to the user on media progress. Media
players, for example, will want to show a slider showing thegsess in the song, and usually also a label
indicating stream length. Transcoding applications wiinsto show a progress bar on how much
percent of the task is done. GStreamer has built-in suppodding all this using a concept known as
querying Since seeking is very similar, it will be discussed here aB.\8eeking is done using the
concept ofevents

11.1. Querying: getting the position or length of a stream

Querying is defined as requesting a specific stream-propalgtied to progress tracking. This includes
getting the length of a stream (if available) or getting therent position. Those stream properties can be
retrieved in various formats such as time, audio samplégo/frames or bytes. The function most
commonly used for this igst _el ement _query (), although some convenience wrappers are
provided as well (such agst _el ement _query_posi tion () andgst_el enent _query_durati on
()). You can generally query the pipeline directly, and it'jdire out the internal details for you, like
which element to query.

Internally, queries will be sent to the sinks, and “dispatthbackwards until one element can handle it;
that result will be sent back to the function caller. Usugliat is the demuxer, although with live sources
(from a webcam)), it is the source itself.

#i ncl ude <gst/gst.h>

static gbool ean
cb_print_position (GstEl enent =*pipeline)

{
Gst Format fnt = GST_FORMAT_TI ME;
gi nt 64 pos, |en;
if (gst_elenment_query_position (pipeline, & nt, &pos)
& & gst_elenment _query_duration (pipeline, &nt, & en)) {
g_print ("Time: % GST_TIME_FORVAT " / 9% GST_TI ME_FORMAT "\r",
GST_TI ME_ARGS (pos), GST_TIME_ARGS (len));
}
/+ call me again */
return TRUE;
}

48



Chapter 11. Position tracking and seeking

gi nt
mai n (gint argc,
gchar =xargv[])

{
Gst El enent =*pi pel i ne;

[--]

/* run pipeline =/
g_tinmeout _add (200, (GSourceFunc) cb_print_position, pipeline);
g_mai n_|l oop_run (1 oop);

[--]

11.2. Events: seeking (and more)

Events work in a very similar way as queries. Dispatchingefample, works exactly the same for
events (and also has the same limitations), and they catagiyrie sent to the toplevel pipeline and it
will figure out everything for you. Although there are moreysan which applications and elements can
interact using events, we will only focus on seeking heras ihdone using the seek-event. A seek-event
contains a playback rate, a seek offset format (which is thieafi the offsets to follow, e.g. time, audio
samples, video frames or bytes), optionally a set of seetetajed flags (e.g. whether internal buffers
should be flushed), a seek method (which indicates relaiivehiat the offset was given), and seek
offsets. The first offset (cur) is the new position to seekitbile the second offset (stop) is optional and
specifies a position where streaming is supposed to stollystis fine to just specify
GST_SEEK_TYPE_NONE and -1 as end_method and end offsebdltaviour of a seek is also
wrapped in theyst _el enent _seek ().

static void
seek_to_time (GstEl enent =*pipeline,

gi nt 64 ti me_nanoseconds)
{
if (!gst_elenment_seek (pipeline, 1.0, GST_FORVAT_TI Mg, GST_SEEK FLAG FLUSH,
GST_SEEK_TYPE_SET, tine_nanoseconds,
GST_SEEK _TYPE_NONE, GST_CLOCK TI ME_NONE)) {
g_print ("Seek failed!'\n");
}
}

Seeks should usually be done when the pipeline is in PAUSHELAIY ING state (whenitis in
PLAYING state the pipeline will pause itself, issue the seeid then set itself back to PLAYING again
itself). returns.

49



Chapter 11. Position tracking and seeking

It is important to realise that seeks will not happen indtaintthe sense that they are finished when the
functiongst _el ement _seek () returns. Depending on the specific elements involved, theabc
seeking might be done later in another thread (the streathiegd), and it might take a short time until
buffers from the new seek position will reach downstreammelits such as sinks (if the seek was
non-flushing then it might take a bit longer).

Itis possible to do multiple seeks in short time-intervals;h as a direct response to slider movement.
After a seek, internally, the pipeline will be paused (if @svwplaying), the position will be re-set
internally, the demuxers and decoders will decode from #wve position onwards and this will continue
until all sinks have data again. If it was playing originaltywill be set to playing again, too. Since the
new position is immediately available in a video output, ydgll see the new frame, even if your pipeline
is not in the playing state.

50



Chapter 12. Metadata

GStreamer makes a clear distinction between two types adaatd, and has support for both types. The
first is stream tags, which describe the content of a streaamion-technical way. Examples include the
author of a song, the title of that very same song or the altiusrei part of. The other type of metadata is
stream-info, which is a somewhat technical descriptiorhefgroperties of a stream. This can include
video size, audio samplerate, codecs used and so on. Tagaratked using the GStreamer tagging
system. Stream-info can be retrieved fror@sa Pad.

12.1. Metadata reading

Stream information can most easily be read by reading them &Gst Pad. This has already been
discussed before iBection 8.3.1Therefore, we will skip it here. Note that this requiresesxto all
pads of which you want stream information.

Tag reading is done through a bus in GStreamer, which hasdisemssed previously i@hapter 7 You
can listen foIGST_MESSAGE_TAGmessages and handle them as you wish.

Note, however, that théST_MESSAGE_TAG message may be fired multiple times in the pipeline. It is the
application’s responsibility to put all those tags togetined display them to the user in a nice, coherent
way. Usually, usinggst _tag_|i st_merge () is a good enough way of doing this; make sure to empty
the cache when loading a new song, or after every few minuteswstening to internet radio. Also,
make sure you useST_TAG_MERGE_PREPEND as merging mode, so that a new title (which came in
later) has a preference over the old one for display.

12.2. Tag writing

Tag writing is done using thést TagSet t er interface. All that's required is a tag-set-supporting
element in your pipeline. In order to see if any of the elermémt/our pipeline supports tag writing, you
can use the functiogst _bin_iterate_all_by interface (pipeline,

GST_TYPE_TAG_SETTER) . On the resulting element, usually an encoder or muxer, powse
gst_tag_setter_nerge () (with ataglist) orgst _tag_setter_add () (with individual tags) to
set tags on it.

A nice extra feature in GStreamer tag support is that tagpr@gerved in pipelines. This means that if
you transcode one file containing tags into another medie, typd that new media type supports tags
too, then the tags will be handled as part of the data streahb@amnerged into the newly written media
file, too.

51



Chapter 13. Interfaces

In Section 5.3you have learned how to ugebj ect properties as a simple way to do interaction
between applications and elements. This method sufficabémimple’n’straight settings, but fails for
anything more complicated than a getter and setter. For thre somplicated use cases, GStreamer uses
interfaces based on the Gl nt er f ace type.

Most of the interfaces handled here will not contain any eplencode. See the API references for
details. Here, we will just describe the scope and purposaci interface.

13.1. The URI interface

In all examples so far, we have only supported local filesuptothe “filesrc” element. GStreamer,
obviously, supports many more location sources. Howeveidan't want applications to need to know
any particular element implementation details, such asefe names for particular network source types
and so on. Therefore, there is a URI interface, which can bd tesget the source element that supports a
particular URI type. There is no strict rule for URI namingtlin general we follow naming conventions
that others use, too. For example, assuming you have theat@iugins installed, GStreamer supports
“file:/l/<path>/<file>", “http://<host>/<path>/<file>";mms://<host>/<path>/<file>", and so on.

In order to get the source or sink element supporting a paaidJRI, use
gst _el enent _make_fromuri (), with the URI type being eithesST_URI _SRCfor a source
element, 0oiGST_URI _SI NK for a sink element.

13.2. The Mixer interface

The mixer interface provides a uniform way to control thewok on a hardware (or software) mixer.
The interface is primarily intended to be implemented byredats for audio inputs and outputs that talk
directly to the hardware (e.g. OSS or ALSA plugins).

Using this interface, it is possible to control a list of tkkagsuch as Line-in, Microphone, etc.) from a
mixer element. They can be muted, their volume can be chaagedor input tracks, their record flag
can be set as well.

Example plugins implementing this interface include theS@%ments (osssrc, osssink, ossmixer) and
the ALSA plugins (alsasrc, alsasink and alsamixer).

52



Chapter 13. Interfaces

13.3. The Tuner interface

The tuner interface is a uniform way to control inputs andpoté on a multi-input selection device. This
is primarily used for input selection on elements for TV- aagbture-cards.

Using this interface, it is possible to select one track fienhst of tracks supported by that tuner-element.
The tuner will than select that track for media-processirigrnally. This can, for example, be used to
switch inputs on a TV-card (e.g. from Composite to S-video).

This interface is currently only implemented by the Vidéndk and Video4linux2 elements.

13.4. The Color Balance interface

The colorbalance interface is a way to control video-relgperties on an element, such as brightness,
contrast and so on. It's sole reason for existance is thdaras its authors know, there’s no way to
dynamically register properties usi@bj ect .

The colorbalance interface is implemented by several pkjgncluding xvimagesink and the
Video4linux and Video4linux2 elements.

13.5. The Property Probe interface

The property probe is a way to autodetect allowed values @ig ect property. It's primary use (and
the only thing that we currently use it for) is to autodetestides in several elements. For example, the
OSS elements use this interface to detect all OSS devicesystem. Applications can then “probe”
this property and get a list of detected devices. Given tteglag between HAL and the practical
implementations of this interface, this might in time be @eated in favour of HAL.

This interface is currently implemented by many elememispiding the ALSA, OSS, Video4linux and
Video4linux2 elements.

13.6. The X Overlay interface

The X Overlay interface was created to solve the problem dfemtding video streams in an application
window. The application provides an X-window to the elemierglementing this interface to draw on,
and the element will then use this X-window to draw on rathantcreating a new toplevel window. This
is useful to embed video in video players.

53



Chapter 13. Interfaces

This interface is implemented by, amongst others, the tirox and Video4linux2 elements and by
ximagesink, xvimagesink and sdlvideosink.

54



Chapter 14. Clocks in GStreamer

To maintain sync in pipeline playback (which is the only cadeere this really matters), GStreamer uses
clocks Clocks are exposed by some elements, whereas other elearemherely clock slaves. The
primary task of a clock is to represent the time progressaieg to the element exposing the clock,
based on its own playback rate. If no clock provider is avdéan a pipeline, the system clock is used
instead.

14.1. Clock providers

Clock providers exist because they play back media at sotegaad this rate is not necessarily the same
as the system clock rate. For example, a soundcard may mlegbd4,1 kHz, but that doesn’t mean that
afterexactlyl secondaccording to the system clodke soundcard has played back 44.100 samples.
This is only true by approximation. Therefore, generallpgtines with an audio output use the
audiosink as clock provider. This ensures that one secowdied will be played back at the same rate as
that the soundcard plays back 1 second of audio.

Whenever some part of the pipeline requires to know the aticleck time, it will be requested from the
clock throughgst _cl ock_get _tine (). The clock-time does not need to start at 0. The pipeline,
which contains the global clock that all elements in the lngewill use, in addition has a “base time”,
which is the clock time at the the point where media time igtistg from zero. This timestamp is
subctracted from the clock time, and that value is returneddet _time ().

The clock provider is responsible for making sure that tleektitime always represents the current media
time as closely as possible; it has to take care of things asgltayback latencies, buffering in
audio-kernel modules, and so on, since all those couldtadfgsync and thus decrease the user
experience.

14.2. Clock slaves

Clock slaves get assigned a clock by their containing pigell heir task is to make sure that media
playback follows the time progress as represented by thiskas closely as possible. For most
elements, that will simply mean to wait until a certain timeéached before playing back their current
sample; this can be done with the functigst _cl ock_i d_wait (). Some elements may need to
support dropping samples too, however.

For more information on how to write elements that conforrthie required behaviour, see the Plugin
Writer's Guide.

55



Chapter 15. Dynamic Controllable Parameters

15.1. Getting Started

The controller subsystem offers a lightweight way to adgetject properties over stream-time. It works
by using time-stamped value pairs that are queued for elepreperties. At run-time the elements
continously pull values changes for the current streangtim

This subsystem is contained within thst cont r ol | er library. You need to include the header in your
application’s source file:

#i ncl ude <gst/gst.h>
#i ncl ude <gst/controller/gstcontroller.h>

Your application should link to the shared libraygt r eaner - control | er.

Thegst reaner-control | er library needs to be initialized when your application is.rlihis can be
done after the the GStreamer library has been initialized.

gst_init (&rgc, &argv);
gst_controller_init (&rgc, &argv);

15.2. Setting up parameter control

The first step is to select the parameters that should beddtautr This returns a controller object that is
needed to further adjust the behaviour.

controller = g_object_control _properties(object, "propl", "prop2",...);

Next we can select an interpolation mode. This mode contimsinbetween values are determined. The
controller subsystem can e.qg. fill gaps by smoothing paranobianges. Each controllable GObject
property can be interpolated differently.

gst _controller_set_interpol ati on_node(controller,"propl", node);

56



Chapter 15. Dynamic Controllable Parameters

Finally one needs to set control points. These are timefsan®Values. The values become active when
the timestamp is reached. They still stay in the list. If éhg.pipeline runs a loop (using a segmented
seek), the control-curve gets repeated as well.

gst_controller_set (controller, "propl" ,0  GST_SECOND, val uel);
gst_controller_set (controller, "propl" ,1  GST_SECOND, val ue2);

The controller subsystem has a builtin live-mode. Even ¢ftoaparameter has timestamped
control-values assigned one can change the GObject pydpesughg_obj ect _set () . This is highly
useful when binding the GObject properties to GUI widgetsieWthe user adjusts the value with the
widget, one can set the GOBject property and this remaimgeaghtil the next timestamped value
overrides. This also works with smoothed parameters.

57



Chapter 16. Threads

GStreamer is inherently multi-threaded, and is fully tliksafe. Most threading internals are hidden
from the application, which should make application depeient easier. However, in some cases,
applications may want to have influence on some parts of ttt@Saeamer allows applications to force
the use of multiple threads over some parts of a pipeline.

16.1. When would you want to force a thread?

There are several reasons to force the use of threads. Hovi@vperformance reasons, you never want
to use one thread for every element out there, since thatweiite some overhead. Let's now list some
situations where threads can be particularly useful:

- Data buffering, for example when dealing with network stnsaor when recording data from a live
stream such as a video or audio card. Short hickups elsewh#re pipeline will not cause data loss.
SeeFigure 16-1for a visualization of this idea.

- Synchronizing output devices, e.g. when playing a streamagoing both video and audio data. By
using threads for both outputs, they will run independeatig their synchronization will be better.

Figure 16-1. a two-threaded decoder with a queue

thread
disk_source parse decoder
queue
> " >
src sink src sink

Above, we've mentioned the “queue” element several tim&g Aoqueue is the thread boundary
element through which you can force the use of threads. & dody using a classic provider/receiver
model as learned in threading classes at universitiesalirat the world. By doing this, it acts both as a
means to make data throughput between threads threadsdfi can also act as a buffer. Queues have
severalGObj ect properties to be configured for specific uses. For examplecgn set lower and upper
tresholds for the element. If there’s less data than thedow@shold (default: disabled), it will block
output. If there’s more data than the upper treshold, it blidick input or (if configured to do so) drop
data.

58



Chapter 16. Threads

To use a queues (and therefore force the use of two distiredds in the pipeline), one can simply
create a “queue” element and put this in as part of the pipe@Streamer will take care of all threading
details internally.

16.2. Scheduling in GStreamer

Scheduling of pipelines in GStreamer is done by using a thieaeach “group”, where a group is a set
of elements separated by “queue” elements. Within suchapgscheduling is either push-based or
pull-based, depending on which mode is supported by thé&péat element. If elements support random
access to data, such as file sources, then elements downgtréee pipeline become the entry point of
this group (i.e. the element controlling the schedulingtbieo elements). The entry point pulls data from
upstream and pushes data downstream, thereby calling aiatkifg functions on either type of element.

In practice, most elements in GStreamer, such as decodeers, etc. only support push-based
scheduling, which means that in practice, GStreamer usastaipased scheduling model.

59



Chapter 17. Autoplugging

In Chapter 10you've learned to build a simple media player for Ogg/Vertiles. By using alternative
elements, you are able to build media players for other miygies, such as Ogg/Speex, MP3 or even
video formats. However, you would rather want to build anlaapion that can automatically detect the
media type of a stream and automatically generate the besifjpe pipeline by looking at all available
elements in a system. This process is called autopluggmbGstreamer contains high-quality
autopluggers. If you're looking for an autoplugger, doe'ad any further and go ©hapter 19This
chapter will explain theonceptof autoplugging and typefinding. It will explain what system
GStreamer includes to dynamically detect the type of a m&tdéam, and how to generate a pipeline of
decoder elements to playback this media. The same prisaiple also be used for transcoding. Because
of the full dynamicity of this concept, GStreamer can be madtcally extended to support new media
types without needing any adaptations to its autopluggers.

We will first introduce the concept of MIME types as a dynanid @xtendible way of identifying media
streams. After that, we will introduce the concept of typéifing to find the type of a media stream.
Lastly, we will explain how autoplugging and the GStreansgjistry can be used to setup a pipeline that
will convert media from one mimetype to another, for exanfptanedia decoding.

17.1. MIME-types as a way to identity streams

We have previously introduced the concept of capabilitiea way for elements (or, rather, pads) to
agree on a media type when streaming data from one elemédrd t@ekt (seSection 8.2 We have
explained that a capability is a combination of a mimetypa @set of properties. For most container
formats (those are the files that you will find on your hard g8gg, for example, is a container format),
no properties are needed to describe the stream. Only a MiME&is needed. A full list of MIME-types
and accompanying properties can be found in the Plugin Y&i&uide
(http://gstreamer.freedesktop.org/data/doc/gstredmmad/pwg/html/section-types-definitions.html).

An element must associate a MIME-type to its source and saals pvhen it is loaded into the system.
GStreamer knows about the different elements and what ti/gata they expect and emit through the
GStreamer registry. This allows for very dynamic and extaeslement creation as we will see.

In Chapter 10we've learned to build a music player for Ogg/Vorbis filegt’s look at the MIME-types
associated with each pad in this pipelifggure 17-1shows what MIME-type belongs to each pad in this
pipeline.

60



Figure 17-1. The Hello world pipeline with MIME types

Chapter 17. Autoplugging

pipeline
file source 0gg demuxer vorbis decoder
src »| Sink src »| Sink src |,
: : ; : ;
} } | } |
! ! : ! :
| | | | |
| | |
»  application/ogg audio/x-vorbis | e
1 |
audio/x-vorbis audio/x-raw

Now that we have an idea how GStreamer identifies known médiarss, we can look at methods
GStreamer uses to setup pipelines for media handling andédia type detection.

17.2. Media stream type detection

Usually, when loading a media stream, the type of the streamtiknown. This means that before we
can choose a pipeline to decode the stream, we first needdotdie¢ stream type. GStreamer uses the
concept of typefinding for this. Typefinding is a normal pdragipeline, it will read data for as long as
the type of a stream is unknown. During this period, it wilbpide data to all plugins that implement a
typefinder. when one of the typefinders recognizes the strimntypefind element will emit a signal and
act as a passthrough module from that point on. If no type wasd, it will emit an error and further
media processing will stop.

Once the typefind element has found a type, the applicatiomsa this to plug together a pipeline to
decode the media stream. This will be discussed in the netibse

Plugins in GStreamer can, as mentioned before, implemeefityder functionality. A plugin

implementing this functionality will submit a mimetype,tamally a set of file extensions commonly
used for this media type, and a typefind function. Once thpefind function inside the plugin is called,
the plugin will see if the data in this media stream matchgsegific pattern that marks the media type
identified by that mimetype. If it does, it will notify the tgfind element of this fact, telling which
mediatype was recognized and how certain we are that tieiarstis indeed that mediatype. Once this

61



Chapter 17. Autoplugging

run has been completed for all plugins implementing a tyjpfimctionality, the typefind element will
tell the application what kind of media stream it thinks tedaecognized.

The following code should explain how to use the typefind it will print the detected media type,
or tell that the media type was not found. The next sectiohimtioduce more useful behaviours, such as
plugging together a decoding pipeline.

#i ncl ude <gst/gst.h>
[.. ny_bus_call back goes here ..]

static gbool ean
idle_exit_loop (gpointer data)

{
g_main_|l oop_quit ((GwvainLoop *) data);
/* once */
return FALSE;

}

static void
cb_typefound (GstEl ement *typefind,

gui nt probability,
Gst Caps *caps,
gpoi nt er dat a)
{
Gwvai nLoop *l oop = dat a;
gchar =*type;
type = gst_caps_to_string (caps);
g_print ("Media type % found, probability %%An", type, probability);
g_free (type);
/* since we connect to a signal in the pipeline thread context, we need
* to set an idle handler to exit the main |loop in the nainloop context.
* Normal |y, your app should not need to worry about such things. =*/
g_idle_add (idle_exit_loop, |oop);
}
gi nt

mai n (gint argc,
gchar xargv[])
{
Gwvai nLoop *I oop;
Gst El enent =pipeline, *xfilesrc, xtypefind;
Gst Bus *bus;

/* init GStreanmer */
gst_init (&rgc, &argv);
|l oop = g_mmin_l oop_new (NULL, FALSE);

/* check args */

62



Chapter 17. Autoplugging

if (argc !'= 2) {
g_print ("Usage: % <filename>\n", argv[0]);
return -1;

}

/* create a new pipeline to hold the el enents */
pi peline = gst_pi peline_new ("pipe");

bus = gst_pi peline_get_bus (GST_PI PELI NE (pipeline));
gst _bus_add_watch (bus, my_bus_cal |l back, NULL);
gst _obj ect _unref (bus);

/* create file source and typefind el ement x/

filesrc = gst_elenment_factory_nake ("filesrc", "source");

g_object_set (G OBJECT (filesrc), "location", argv[1], NULL);

typefind = gst_el ement _factory_nake ("typefind", "typefinder");

g_signal _connect (typefind, "have-type", G CALLBACK (cb_typefound), |oop);

[+ setup =*/

gst _bin_add_many (GST_BIN (pipeline), filesrc, typefind, NULL);
gst_element _link (filesrc, typefind);

gst _el ement _set_state (GST_ELEMENT (pipeline), GST_STATE_PLAYI NG ;
g_mai n_|l oop_run (1l oop);

/* unset =/
gst _el ement _set_state (GST_ELEVENT (pi peline), GST_STATE NULL);
gst _obj ect _unref (GST_OBJECT (pipeline));

return O;

Once a media type has been detected, you can plug an elentgrat emuxer or decoder) to the source
pad of the typefind element, and decoding of the media streiflrstart right after.

17.3. Plugging together dynamic pipelines

In this chapter we will see how you can create a dynamic pipel dynamic pipeline is a pipeline that
is updated or created while data is flowing through it. We wiidlate a partial pipeline first and add more
elements while the pipeline is playing. The basis of thiygtavill be the application that we wrote in
the previous sectiorSection 17.2to identify unknown media streams.

Once the type of the media has been found, we will find elemipritee registry that can decode this
streamtype. For this, we will get all element factories (@¥hive've seen before iBection 5.2 and find
the ones with the given MIME-type and capabilities on theikpad. Note that we will only use parsers,
demuxers and decoders. We will not use factories for anyra@leenent types, or we might get into a
loop of encoders and decoders. For this, we will want to bailidt of “allowed” factories right after
initializing GStreamer.

63



Chapter 17. Autoplugging
static GList *factories;

| *

* This function is called by the registry |loader. Its return val ue

* (TRUE or FALSE) deci des whether the given feature will be included
* inthe list that we're generating further down.

*/

static gbool ean
cb_feature_filter (GstPluginFeature *feature,
gpoi nt er dat a)
{
const gchar =*kl ass;
gui nt rank;

/+* we only care about elenment factories */
if (!GST_I S _ELEMENT_FACTORY (feature))
return FALSE;

/* only parsers, denuxers and decoders x/
kl ass = gst_el enent _factory_get _kl ass (GST_ELEMENT_FACTORY (feature));
if (g_strrstr (klass, "Denmux") == NULL &&
g_strrstr (klass, "Decoder") == NULL &&
g_strrstr (klass, "Parse") == NULL)
return FALSE;

/* only select elenments wi th autopl ugging rank =/
rank = gst_plugin_feature_get_rank (feature);
if (rank < GST_RANK_MARG NAL)

return FALSE;

return TRUE;
}

| *
* This function is called to sort features by rank.
*/

static gint
cb_conpare_ranks (GstPlugi nFeature *f1,
Gst Pl ugi nFeature *f 2)
{
return gst_plugin_feature_get_rank (f2) - gst_plugin_feature_get_rank (f1);
}

static void
init_factories (void)
{
/+ first filter out the interesting elenent factories */
factories = gst_registry_pool _feature_filter (
(Gst Pl ugi nFeatureFilter) cb_feature_ filter, FALSE, NULL);

/* sort themaccording to their ranks x/

64



Chapter 17. Autoplugging

factories = g list_sort (factories, (GConpareFunc) cb_conpare_ranks);

From this list of element factories, we will select the onattmost likely will help us decoding a media
stream to a given output type. For each newly created elemenwill again try to autoplug new
elements to its source pad(s). Also, if the element has dimpads (which we've seen before in
Section 8.1.}, we will listen for newly created source pads and handlsghtoo. The following code
replaces theb_t ype_f ound from the previous section with a function to initiate auteging, which
will continue with the above approach.

static void try_to_plug (GstPad *pad, const GstCaps *caps);
static GstEl enent xaudi osink;

static void

cb_newpad (GstEl enent xel enent,
Gst Pad *pad,
gpoi nt er dat a)

Gst Caps *caps;

caps = gst_pad_get _caps (pad);
try_to_plug (pad, caps);
gst _caps_unref (caps);

}

static void

cl ose_l i nk (GstPad *srcpad,
Gst El ement  *si nkel enent,
const gchar *padnane,
const GList *tenpllist)

Gst Pad *pad;
gbool ean has_dynami c_pads = FALSE;

g_print ("Plugging pad %:% to newWy created %: %\n",
gst _obj ect _get _nane (GST_OBJECT (gst_pad_get_parent (srcpad))),
gst _pad_get _nane (srcpad),
gst _obj ect _get _nane (GST_OBJECT (sinkel ement)), padnane);

/+ add the elenent to the pipeline and set correct state =*/
if (sinkelement != audiosink) {
gst _bin_add (GST_BIN (pipeline), sinkelenent);
gst _el ement _set_state (sinkel ement, GST_STATE_READY);
}
pad = gst_el enent _get _pad (sinkel ement, padnane);
gst _pad_link (srcpad, pad);
if (sinkelement != audiosink) {
gst _el ement _set_state (sinkel enent, GST_STATE_PAUSED) ;

}
gst _obj ect _unref (GST_OBJECT (pad));

65



Chapter 17. Autoplugging

/+* if we have static source pads, link those. If we have dynanic
* source pads, listen for pad-added signals on the el enent */
for ( ; tenpllist !'= NULL; tenpllist = tenpllist->next) {

Gst Stati cPadTenpl ate *tenpl = tenpllist->data;

/* only sourcepads, no request pads */
if (tenpl->direction !'= GST_PAD SRC ||
tenpl - >presence == GST_PAD_REQUEST) ({
conti nue;

}

switch (tenpl->presence) {
case GST_PAD _ALVAYS: {
Gst Pad *pad = gst_el enent _get _pad (sinkel ement, tenpl->nanme_tenplate);
Gst Caps *caps = gst_pad_get_caps (pad);

[+ link =/
try_to_plug (pad, caps);
gst _obj ect _unref (GST_OBJECT (pad));
gst _caps_unref (caps);
br eak;

}

case GST_PAD_SOVETI MES:
has_dynani c_pads = TRUE;
br eak;

defaul t:
br eak;

}
}

/* listen for newly created pads if this el enent supports that x/
i f (has_dynam c_pads) {
g_si gnal _connect (sinkel enent, "pad-added", G CALLBACK (cb_newpad), NULL);
}
}

static void
try_to_plug (GstPad *pad,
const Gst Caps *caps)
{
Gst Obj ect *parent = GST_OBJECT (GST_OBJECT_PARENT (pad));
const gchar *m ne;
const GList *item
Gst Caps *res, xaudiocaps;

/+* don't plug if we're already plugged - FIXVME: nenml eak for pad */
if (GST_PAD IS LINKED (gst_el ement _get _pad (audi osi nk, "sink"))) {
g print ("Ormtting link for pad %:% because we're already |inked\n",
GST_OBJECT_NAME (parent), GST_OBJECT_NAME (pad));
return;

66



Chapter 17. Autoplugging

/* as said above, we only try to plug audio... Orit video */
mme = gst_structure_get_name (gst_caps_get_structure (caps, 0));
if (g_strrstr (mne, "video")) {
g_print ("Oritting link for pad %: % because m netype % is non-audio\n"
GST_OBJECT_NAME (parent), GST_OBJECT_NAME (pad), nine);
return;

}

/* can it link to the audi opad? =*/
audi ocaps = gst_pad_get _caps (gst_el enent _get _pad (audi osink, "sink"));
res = gst_caps_intersect (caps, audiocaps);
if (res &% 'gst_caps_is_enpty (res)) {
g_print ("Found pad to link to audiosink - plugging is now done\n");
close_link (pad, audiosink, "sink", NULL);
gst _caps_unref (audi ocaps);
gst _caps_unref (res);
return;
}
gst _caps_unref (audiocaps);
gst _caps_unref (res);

/* try to plug fromour list */

for (item= factories; item!= NULL; item= item >next) {
Gst El enent Factory *factory = GST_ELEMENT_FACTORY (item >data);
const GList =*pads;

for (pads = gst_elenent_factory_get_static_pad_tenplates (factory);
pads !'= NULL; pads = pads->next) {
Gst Stati cPadTenpl ate *tenpl = pads->dat a;

[+ find the sink tenplate - need an al ways pad*/
if (tenpl->direction != GST_PAD SINK ||
tenpl - >presence ! = GST_PAD_ALWAYS) {
conti nue;

}

[+ can it link? */
res = gst_caps_intersect (caps,
gst_static_caps_get (& enpl->static_caps));
if (res &% !gst_caps_is_enpty (res)) {
Gst El enent el enent ;
gchar *nane_tenplate = g_strdup (tenpl->nane_tenplate);

[+ close link and return =/
gst _caps_unref (res);
el ement = gst_el enent _factory_create (factory, NULL);
close_|link (pad, elenent, nane_tenplate,

gst _element _factory_get_static_pad_tenplates (factory));
g_free (nane_tenpl ate)
return;

}

gst _caps_unref (res);

67



Chapter 17. Autoplugging

/+ we only check one sink tenplate per factory, so nove on to the
* next factory now */
br eak;
}
}

/+ if we get here, no itemwas found =*/
g_print ("No compatible pad found to decode % on %: %\n",
m me, GST_OBJECT_NAME (parent), GST_OBJECT_NAME (pad));
}

static void
cb_typefound (GstEl ement *typefind,

gui nt probability,
Gst Caps *caps,
gpoi nt er dat a)
{
gchar =xs;
Gst Pad *pad;

s = gst_caps_to_string (caps);
g_print ("Detected nedia type %\n", s);
g free (s);

/* actually plug now */

pad = gst_el enent _get _pad (typefind, "src");
try_to_plug (pad, caps);

gst _obj ect _unref (GST_OBJECT (pad));

By doing all this, we will be able to make a simple autoplughat can automatically setup a pipeline
for any media type. In the example below, we will do this fodauonly. However, we can also do this
for video to create a player that plays both audio and video.

The example above is a good first try for an autoplugger. Neextsswould be to listen for
“pad-removed” signals, so we can dynamically change thgged pipeline if the stream changes (this
happens for DVB or Ogg radio). Also, you might want speciaée code for input with known content
(such as a DVD or an audio-CD), and much, much more. Moregwef|l want many checks to prevent
infinite loops during autoplugging, maybe you’ll want to itlement shortest-path-finding to make sure
the most optimal pipeline is chosen, and so on. Basicakyféhatures that you implementin an
autoplugger depend on what you want to use it for. For fubll implementations, see the “playbin”
and “decodebin” elements.

68



Chapter 18. Pipeline manipulation

This chapter will discuss how you can manipulate your pigelh several ways from your application
on. Parts of this chapter are downright hackish, so be adshat you'll need some programming
knowledge before you start reading this.

Topics that will be discussed here include how you can irdad into a pipeline from your application,
how to read data from a pipeline, how to manipulate the pigsispeed, length, starting point and how
to listen to a pipeline’s data processing.

18.1. Data probing

Probing is best envisioned as a pad listener. Technicafiyobe is nothing more than a signal callback
that can be attached to a pad. Those signals are by defadiitetbat all (since that may have a negative
impact on performance), but can be enabled by attachinglzeprsinggst _pad_add_dat a_probe ()

or one of the similar functions. Those functions attach tgea handler and enable the actual signal
emission. Similarly, one can use thst _pad_r enove_dat a_probe () or related functions to remove
the signal handlers again. It is also possible to only listegvents or only to buffers (and ignore the
other).

Probes run in pipeline threading context, so callbacks lshioyito not block and generally not do any
weird stuff, since this could have a negative impact on fiyggberformance or, in case of bugs, cause
deadlocks or crashes. However, most common buffer opesatiat elements can doimhai n ()
functions, can be done in probe callbacks as well. The exabglbw gives a short impression on how to
use them.

#i ncl ude <gst/gst.h>

static gbool ean

cb_have_data (Gst Pad *pad,
Gst Buf fer xbuffer,
gpoi nter u_data)

gint x, vy,
guintl1l6 data = (guintl1l6 *) GST_BUFFER DATA (buffer), t;

/* invert data x/
for (y = 0; y < 288; y++) {
for (x = 0; x <384/ 2; x++) {
t = data[384 - 1 - x];
data[384 - 1 - x] = data[x];
data[x] =t;
}
data += 384;

69



Chapter 18. Pipeline manipulation

return TRUE;
}

gi nt
mai n (gint argc,
gchar xargv[])
{
Gwvai nLoop *I oop;
Gst El enent =*pi peline, *src, *sink, *filter, *csp;
Gst Caps *filtercaps;
Gst Pad *pad;

[+ init GStreamer =*/
gst_init (&rgc, &argv);
|l oop = g_mai n_l oop_new (NULL, FALSE);

[+ build */
pi pel i ne = gst_pipeline_new ("ny-pipeline");
src = gst_elenent _factory_nake ("videotestsrc", "src");

if (src == NULL)
g_error ("Could not create ’'videotestsrc’ elenent");

filter = gst_elenent_factory_nake ("capsfilter", "filter");
g_assert (filter !'= NULL); /* should always exist =/
csp = gst_elenent _factory_make ("ffnpegcol orspace”, "csp");

if (csp == NULL)
g_error ("Could not create 'ffnpegcol orspace’ elenent");

sink = gst_el enent_factory_nake ("xvimagesi nk", "sink");
if (sink == NULL) {
sink = gst_element _factory_nake ("xi magesi nk", "sink");

if (sink == NULL)
g_error ("Could not create neither ’'xvinmagesink’ nor 'xinmagesink’ elenment");

}

gst _bin_add_many (GST_BIN (pipeline), src, filter, csp, sink, NULL);
gst _el ement _link_many (src, filter, csp, sink, NULL);
filtercaps = gst_caps_new sinple ("videol/ x-rawrgb",

"wi dth", G TYPE_INT, 384,

"height", G TYPE_INT, 288,

"framerate", GST_TYPE_FRACTION, 25, 1,

"bpp", G_TYPE_INT, 16,

"depth", G.TYPE_INT, 16,

"endi anness", G TYPE | NT, G BYTE ORDER,

NULL) ;
g_object_set (G OBJECT (filter), "caps", filtercaps, NULL);
gst _caps_unref (filtercaps);

pad = gst_el enent _get _pad (src, "src");

gst _pad_add_buffer_probe (pad, G CALLBACK (cb_have_data), NULL);
gst _obj ect _unref (pad);

70



Chapter 18. Pipeline manipulation

[* run x/
gst _el ement _set_state (pipeline, GST_STATE_PLAYI NG ;

/+* wait until it’s up and running or failed */

if (gst_element_get_state (pipeline, NULL, NULL, -1) == GST_STATE_CHANGE FAI LURE) {
g error ("Failed to go into PLAYING state");

}

g print ("Running ...\n");
g_mai n_|l oop_run (1 oop);

[+ exit =/
gst _el ement _set_state (pipeline, GST_STATE NULL);
gst _obj ect _unref (pipeline);

return O;

Compare that output with the output of “gst-launch-0.1G@waikstsrc ! xvimagesink”, just so you know
what you're looking for.

18.2. Manually adding or removing data from/to a pipeline

Many people have expressed the wish to use their own sowaejett data into a pipeline. Some people
have also expressed the wish to grab the output in a pipetidéske care of the actual output inside
their application. While either of these methods are stpdigcouraged, GStreamer offers hacks to do
this. However, there is no support for those methdtis.doesn’t work, you're on your own. Also,
synchronization, thread-safety and other things thatyebeen able to take for granted so far are no
longer guanranteed if you use any of those methods. It'syalwatter to simply write a plugin and have
the pipeline schedule and manage it. See the Plugin WriBaride for more information on this topic.
Also see the next section, which will explain how to embedypis statically in your application.

After all those disclaimers, let’s start. There’s threegible elements that you can use for the
above-mentioned purposes. Those are called “fakesrc’hfaginary source), “fakesink” (an imaginary
sink) and “identity” (an imaginary filter). The same methqupbes to each of those elements. Here, we
will discuss how to use those elements to insert (using fakes grab (using fakesink or identity) data
from a pipeline, and how to set negotiation.

Those who're paying close attention, will notice that thegmse of identity is almost identical to that of
probes. Indeed, this is true. Probes allow for the same mer@nd a bunch more, and with less overhead
plus dynamic removing/adding of handlers, but apart froos#) probes and identity have the same
purpose, just in a completely different implementationgtyp

71



Chapter 18. Pipeline manipulation

18.2.1. Inserting or grabbing data

The three before-mentioned elements (fakesrc, fakesidlkdantity) each have a “handoff” signal that
will be called in the get () - (fakesrc) or_chai n () -function (identity, fakesink). In the signal
handler, you can set (fakesrc) or get (identity, fakesird¢ado/from the provided buffer. Note that in the
case of fakesrc, you have to set the size of the providedhusiag the “sizemax” property. For both
fakesrc and fakesink, you also have to set the “signal-hifsidaroperty for this method to work.

Note that your handoff function shoutet block, since this will block pipeline iteration. Also, do trtoy
to use all sort of weird hacks in such functions to accompistmething that looks like synchronization
or so; it's not the right way and will lead to issues elsewh#rgou’re doing any of this, you're basically
misunderstanding the GStreamer design.

18.2.2. Forcing a format

Sometimes, when using fakesrc as a source in your pipelméll yant to set a specific format, for
example a video size and format or an audio bitsize and nupflidrannels. You can do this by forcing a
specificGst Caps on the pipeline, which is possible by usifitlered caps You can set a filtered caps on
a link by using the “capsfilter” element in between the twoyeats, and specifying@st Caps as

“caps” property on this element. It will then only allow typmatching that specified capability set for
negotiation.

18.2.3. Example application

This example application will generate black/white (it &hies every second) video to an X-window
output by using fakesrc as a source and using filtered capsde & format. Since the depth of the image
depends on your X-server settings, we use a colorspace ionelement to make sure that the output
to your X server will have the correct bitdepth. You can alsbteBnestamps on the provided buffers to
override the fixed framerate.

#include <string.h> /* for nenset () =*/
#i ncl ude <gst/gst.h>

static void

cb_handof f (GstEl enent =*fakesrc,
GstBuffer =+buffer,
Gst Pad *pad,
gpoi nt er user _dat a)

static gbool ean white = FALSE;
/+* this nakes the inmage bl ack/white */
nmenset ( GST_BUFFER_DATA (buffer), white ? Oxff : 0xO,

GST_BUFFER_SI ZE (buffer));
white = Iwhite;

72



}

Chapter 18. Pipeline manipulation

gi nt
mai n (gint argc,

{

gchar xargv[])

Gst El enent =pi peline, *fakesrc, *flt, *conv, *videosink;
Gwvai nLoop x| oop;

[+ init GStreaner x/
gst_init (&rgc, &argv);
|l oop = g_main_loop_new (NULL, FALSE);

/* setup pipeline */
pi peline = gst_pipeline_new ("pipeline");

fakesrc = gst_el ement _factory_nake ("fakesrc", "source");

flt = gst_elenent_factory_nake ("capsfilter”, "flt");

conv = gst_el enent _factory_nake ("ffnpegcol orspace", "conv");

vi deosi nk = gst_el enent _factory_nake ("xvi magesi nk", "videosi nk");

[+ setup =*/
g_obj ect_set (G OBJECT (flt), "caps",
gst _caps_new_si npl e ("video/ x-raw-rgh",
"wi dth", G TYPE_INT, 384,
"height", G TYPE_INT, 288,
"franerate", GST_TYPE_FRACTION, 1, 1,
"bpp", G_TYPE_INT, 16,
"depth", G_TYPE_INT, 16,
"endi anness", G TYPE INT, G BYTE ORDER,
NULL), NULL);
gst _bin_add_many (GST_BIN (pipeline), fakesrc, flt, conv, videosink, NULL);
gst _el ement _l i nk_many (fakesrc, flt, conv, videosink, NULL);

/* setup fake source =*/

g_obj ect _set (G OBJECT (fakesrc),

"signal - handof fs", TRUE,

"sizemax", 384 x 288 x 2,

"sizetype", 2, NULL);

g_si gnal _connect (fakesrc, "handoff", G CALLBACK (cb_handoff), NULL);

[+ play =/

gst _el ement _set_state (pipeline, GST_STATE _PLAYI NG ;
g_mai n_| oop_run (1 oop);

/* clean up =/

gst _el ement _set_state (pipeline, GST_STATE NULL);
gst _obj ect _unref (GST_OBJECT (pipeline));

return O;

73



Chapter 18. Pipeline manipulation

18.3. Embedding static elements in your application

The Plugin Writer's Guide
(http://gstreamer.freedesktop.org/data/doc/gstredmmad/pwg/html/index.html) describes in great detail
how to write elements for the GStreamer framework. In thigise, we will solely discuss how to embed
such elements statically in your application. This can efuldor application-specific elements that
have no use elsewhere in GStreamer.

Dynamically loaded plugins contain a structure that’s definsingGST_PLUG N_DEFI NE () . This
structure is loaded when the plugin is loaded by the GStreaore. The structure contains an
initialization function (usually calledl ugi n_i ni t ) that will be called right after that. It's purpose is to
register the elements provided by the plugin with the G®teraframework. If you want to embed
elements directly in your application, the only thing yowedéo do is to replace€ST_PLUG N_DEFI NE

() with GST_PLUG N_DEFI NE_STATI C () . This will cause the elements to be registered when your
application loads, and the elements will from then on belakit like any other element, without them
having to be dynamically loadable libraries. In the exanig@w, you would be able to call

gst _elenent _factory_make ("ny-el enent-nanme", "sone-nane") to create an instance of the
element.
| *

* Here, you would wite the actual plugin code.

*/

[--]

static gbool ean
regi ster_el ements (GstPlugin *plugin)
{
return gst_el enent _register (plugin, "ny-el enent-nane",
GST_RANK_NONE, MY_PLUGQ N_TYPE) ;
}

GST_PLUG N_DEFI NE_STATI C (
GST_VERSI ON_MAJOR,
GST_VERSI ON_M NOR,
"my-private-plugins",
"Private el enments of ny application”,
regi ster_el enents,
VERSI ON,
"LGPL",
"ny-application",
"http://ww.ny-application. net/"

74



I\VV. Higher-level interfaces for
GStreamer applications

In the previous two parts, you have learned many of the iadsrand their corresponding low-level
interfaces into GStreamer application programming. Ma@gpe will, however, not need so much
control (and as much code), but will prefer to use a standiyback interface that does most of the
difficult internals for them. In this chapter, we will intrade you into the concept of autopluggers,
playback managing elements, XML-based pipelines and sthdr things. Those higher-level interfaces
are intended to simplify GStreamer-based application ranogning. They do, however, also reduce the
flexibility. It is up to the application developer to chooskigh interface he will want to use.



Chapter 19. Components

GStreamer includes several higher-level components tplginyour applications life. All of the
components discussed here (for now) are targetted at migibgek. The idea of each of these
components is to integrate as closely as possible with ae@®r pipeline, but to hide the complexity of
media type detection and several other rather complexddpat have been discussed in

Part 11l in GStreamer Application Development Manual (0.10.9)

We currently recommend people to use either playbin Gastion 19.1or decodebin (seBection 19.2,
depending on their needs. Playbin is the recommendedsolidr everything related to simple playback
of media that should just work. Decodebin is a more flexibl®plugger that could be used to add more
advanced featuers, such as playlist support, crossfadiagadio tracks and so on. Its programming
interface is more low-level than that of playbin, though.

19.1. Playbin

Playbin is an element that can be created using the stand&ré&@ner API (e.g.

gst_el enent _factory_make ()). The factory is conveniently called “playbin”. By being a

Gst Pi pel i ne (and thus &st El enent ), playbin automatically supports all of the features o$ttiass,
including error handling, tag support, state handlingtiggtstream positions, seeking, and so on.

Setting up a playbin pipeline is as simple as creating amit of the playbin element, setting a file
location (this has to be a valid URI, so “<protocol>://<|tioa>", e.g. file:///tmp/my.ogg or
http://www.example.org/stream.ogg) using the “uri” peoty on playbin, and then setting the element to
the GST_STATE_PLAYI NGstate. Internally, playbin will set up a pipeline to playkdlce media location.

#i ncl ude <gst/gst.h>
[.. ny_bus_call back goes here ..]

gi nt
mai n (gint argc,
gchar =xargv[])
{
Gwvai nLoop *I oop;
Gst El enent +*pl ay;
Gst Bus *bus;

[+ init GStreaner x/
gst_init (&rgc, &argv);
|l oop = g_main_loop_new (NULL, FALSE);

/* nmake sure we have a URl «/

if (argc !'= 2) {
g_print ("Usage: % <URI >\n", argv[O0]);

76



Chapter 19. Components

return -1;

}

/* set up */
play = gst_el enent _factory_nake ("playbin", "play");
g_obj ect _set (G OBJECT (play), "uri", argv[1], NULL);

bus = gst_pi peline_get_bus (GST_PI PELINE (play));
gst _bus_add_wat ch (bus, ny_bus_cal | back, | oop);
gst _obj ect __unref (bus);

gst _el ement _set_state (play, GST_STATE_PLAYING ;

/* now run */
g_mai n_|l oop_run (1 oop);

/+ also clean up */
gst _el ement _set_state (play, GST_STATE_NULL);
gst _object _unref (GST_OBJECT (play));

return O;

Playbin has several features that have been discussedpséui

Settable video and audio output (using the “video-sink” @ndlio-sink” properties).

Mostly controllable and trackable aszat EI enent , including error handling, eos handling, tag
handling, state handling (through thst Bus), media position handling and seeking.

Buffers network-sources, with buffer fullness notificatsobeing passed through tet Bus.
Supports visualizations for audio-only media.

Supports subtitles, both in the media as well as from sepéitas. For separate subtitle files, use the
“suburi” property.

Supports stream selection and disabling. If your media hasipte audio or subtitle tracks, you can
dynamically choose which one to play back, or decide to tuoffialltogther (which is especially
useful to turn off subtitles). For each of those, use ther&ntrtext” and other related properties.

For convenience, it is possible to test “playbin” on the caantiine, using the command
“gst-launch-0.10 playbin uri=file:///path/to/file”.

19.2. Decodebin

Decodebin is the actual autoplugger backend of playbinclvhias discussed in the previous section.
Decodebin will, in short, accept input from a source thairikdd to its sinkpad and will try to detect the
media type contained in the stream, and set up decoder estftin each of those. It will automatically

77



Chapter 19. Components

select decoders. For each decoded stream, it will emit te-decoded-pad” signal, to let the client
know about the newly found decoded stream. For unknownresgavhich might be the whole stream),
it will emit the “unknown-type” signal. The application isén responsible for reporting the error to the
user.

#i ncl ude <gst/gst.h>
[.. ny_bus_call back goes here ..]
Gst El enent +pi pel i ne, *audio;

static void

cb_newpad (GstEl enent *decodebi n,
Gst Pad *pad,
gbool ean | ast,
gpoi nt er dat a)

Gst Caps *caps;
Gst Structure *str;
Gst Pad *audi opad;

/+* only link once */
audi opad = gst_el enent _get _pad (audi o, "sink");
if (GST_PAD_I S LI NKED (audiopad)) {

g_obj ect _unref (audi opad);

return;

}

/+* check nedia type */

caps = gst_pad_get _caps (pad);

str = gst_caps_get_structure (caps, 0);

if ('g_strrstr (gst_structure_get_nane (str), "audio")) {
gst _caps_unref (caps);
gst _obj ect _unref (audi opad);
return;

}

gst _caps_unref (caps);

[+ link’n play */
gst _pad_link (pad, audiopad);
}

gi nt
mai n (gint argc,
gchar =argv[])
{
Gwvai nLoop *I oop;
Gst El enent *src, xdec, =*conv, =*sSink;
Gst Pad *audi opad;
Gst Bus *bus;

[+ init GStreamer =*/
gst_init (&rgc, &argv);

78



Chapter 19. Components
|l oop = g_mmai n_l oop_new (NULL, FALSE);

/+* make sure we have input */

if (argc !'= 2) {
g_print ("Usage: % <filename>\n", argv[O0]);
return -1;

}

/* setup */
pi peline = gst_pipeline_new ("pipeline");

bus = gst_pi peline_get_bus (GST_PI PELI NE (pi peline));
gst _bus_add_wat ch (bus, mny_bus_cal | back, | oop);
gst _obj ect _unref (bus);

src = gst_elenent _factory_nake ("filesrc", "source");
g_obj ect_set (G OBJECT (src), "location", argv[1], NULL);
dec = gst_el enent _factory_make ("decodebin", "decoder");

g_si gnal _connect (dec, "new decoded-pad", G CALLBACK (cb_newpad), NULL);
gst _bin_add_many (GST_BIN (pipeline), src, dec, NULL);
gst _elenment _link (src, dec);

/* create audi o output =*/
audi o = gst_bi n_new ("audi obin");

conv = gst_el enent _factory_nake ("audi oconvert", "aconv");
audi opad = gst_el enent _get _pad (conv, "sink");
sink = gst_el ement _factory_nake ("al sasink", "sink");

gst _bin_add_many (GST_BIN (audi o), conv, sink, NULL);
gst _element _link (conv, sink);
gst _el ement _add_pad (audi o,
gst _ghost _pad_new ("si nk", audi opad));
gst _obj ect _unref (audi opad);
gst _bin_add (GST_BIN (pipeline), audio);

[* run */

gst _el ement _set_state (pipeline, GST_STATE_PLAYI NG ;
g_mai n_|l oop_run (1l oop);

/* cl eanup */

gst _el ement _set_state (pipeline, GST_STATE NULL);
gst _obj ect _unref (GST_OBJECT (pipeline));

return O;

Decodebin, similar to playbin, supports the following faais:

- Can decode an unlimited number of contained streams to édamatput pads.

- Is handled as &st El emrent in all ways, including tag or error forwarding and state hliargl

79



Chapter 19. Components

Although decodebin is a good autoplugger, there’s a whdleflthings that it does not do and is not
intended to do:

- Taking care of input streams with a known media type (e.g. ®Pah audio-CD or such).
« Selection of streams (e.g. which audio track to play in cdseuiti-language media streams).

- Overlaying subtitles over a decoded video stream.

Decodebin can be easily tested on the commandline, e.g.ihy te commandst-launch-0.8 filesrc
location=file.ogg ! decodebin ! audioconvert ! alsasink

19.3. GstEditor

GstEditor is a set of widgets to display a graphical represg@m of a pipeline.

80



Chapter 20. XML in GStreamer

GStreamer uses XML to store and load its pipeline definitioddL is also used internally to manage
the plugin registry. The plugin registry is a file that contathe definition of all the plugins GStreamer
knows about to have quick access to the specifics of the Eugin

We will show you how you can save a pipeline to XML and how yon rgload that XML file again for
later use.

20.1. Turning GstElements into XML

We create a simple pipeline and write it to stdout with gstl xmmite_file (). The following code
constructs an MP3 player pipeline with two threads and thetesvout the XML both to stdout and to a
file. Use this program with one argument: the MP3 file on disk.

#i ncl ude <stdlib. h>
#i ncl ude <gst/gst.h>

gbool ean pl ayi ng;

int

main (int argc, char »argv[])

{
Gst El enent =filesrc, *osssink, *queue, *queue2, *decode;
Gst El enent xbin;
Gst El enent *t hread, =*thread?2;

gst_init (&argc, &ragv);

if (argc '= 2) {
g_print ("usage: % <nmp3 filename>\n", argv[O0]);

exit (-1);
}
/* create a new thread to hold the el ements =*/
thread = gst_el enent _factory_neke ("thread", "thread");
g_assert (thread != NULL);
thread2 = gst_el enent _factory_meke ("thread", "thread2");

g_assert (thread2 != NULL);
/* create a new bin to hold the el enents */
bin = gst_bin_new ("bin");

g_assert (bin !'= NULL);

/* create a disk reader =*/
filesrc = gst_elenent_factory_nake ("filesrc", "disk_source");

81



Chapter 20. XML in GStreamer

g_assert (filesrc !'= NULL);
g_obj ect_set (G OBJECT (filesrc), "location", argv[1], NULL);

queue = gst_el ement _factory_nake ("queue", "queue");
queue2 = gst_elenent_factory_nake ("queue", "queue2");

/* and an audi o sink */
osssink = gst_el enent _factory_make ("osssink", "play_audio");

g_assert (osssink !'= NULL);

decode = gst_elenent_factory_make ("mad", "decode");
g_assert (decode != NULL);

/+* add objects to the main bin */
gst _bin_add_many (GST_BIN (bin), filesrc, queue, NULL);

gst _bin_add_many (GST_BIN (thread), decode, queue2, NULL);

gst _bin_add (GST_BIN (thread2), osssink);

gst _element _|ink_many (filesrc, queue, decode, queue2, osssink, NULL);
gst _bin_add_many (GST_BIN (bin), thread, thread2, NULL);

/* wite the bin to stdout =/
gst_xm _wite_ file (GST_ELEMENT (bin), stdout);

/+~ wite the binto a file */
gst_xm _wite file (GST_ELEMENT (bin), fopen ("xm Test.gst", "w'));

exit (0);

The most important line is:

gst_xm _wite_file (GST_ELEMENT (bin), stdout);

gst_xml_write_file () will turn the given element into an XdcPtr that is then formatted and saved to a
file. To save to disk, pass the result of a fopen(2) as the seamument.

The complete element hierarchy will be saved along with titerielement pad links and the element
parameters. Future GStreamer versions will also allow patdre the signals in the XML file.

82



Chapter 20. XML in GStreamer

20.2. Loading a GstElement from an XML file

Before an XML file can be loaded, you must create a GstXML dbjgsaved XML file can then be
loaded with the gst_xml_parse_file (xml, filename, rootedathmethod. The root element can
optionally left NULL. The following code example loads theepiously created XML file and runs it.

#i ncl ude <stdlib. h>
#i ncl ude <gst/gst.h>

int
mai n(int argc, char *argv[])

{
Gst XML *xni ;

Gst El enent *bi n;

gbool ean ret;

gst_init (&rgc, &argv);
xm = gst_xm _new ();

ret = gst_xm _parse_file(xm, "xm Test.gst", NULL);
g_assert (ret == TRUE);

bin = gst_xm _get_elenent (xm, "bin");
g_assert (bin !'= NULL);

gst _el ement _set_state (bin, GST_STATE_PLAYI NG ;
while (gst_bin_iterate(GST_BIN(bin)));
gst _el ement _set_state (bin, GST_STATE NULL);

exit (0);

gst_xml_get_element (xml, "name") can be used to get afspet@ment from the XML file.
gst_xml_get_topelements (xml) can be used to get a list tdplevel elements in the XML file.

In addition to loading a file, you can also load a from a xmIDimefad an in memory buffer using
gst_xml_parse_doc and gst_xml_parse_memory respactideth of these methods return a gboolean
indicating success or failure of the requested action.

83



Chapter 20. XML in GStreamer

20.3. Adding custom XML tags into the core XML data

It is possible to add custom XML tags to the core XML createthwgist_xml_write. This feature can be
used by an application to add more information to the savgiptu The editor will for example insert the
position of the elements on the screen using the custom XMd&. ta

It is strongly suggested to save and load the custom XML taggja namespace. This will solve the
problem of having your XML tags interfere with the core XMlg&g

To insert a hook into the element saving procedure you c&relisignal to the GstElement using the
following piece of code:

xm NsPtr ns;

ns = xm NewNs (NULL, "http://gstreaner.net/gst-test/1.0/", "test");
thread = gst_el enent _factory_neke ("thread", "thread");

g_si gnal _connect (G OBJECT (thread), "object_saved",
G _CALLBACK (object_saved), g_strdup ("decoder thread"));

When the thread is saved, the object_save method will beccallur example will insert a comment tag:

static void
obj ect _saved (Gst Obj ect *object, xnl NodePtr parent, gpointer data)

{
xm NodePtr chil d;
child = xm NewChild (parent, ns, "coment", NULL);
xm NewChi | d (child, ns, "text", (gchar *)data);

}

Adding the custom tag code to the above example you will getMh file with the custom tags in it.
Here’s an excerpt:

<gst: el enent >
<gst: name>t hr ead</ gst : nanme>
<gst:type>t hread</ gst:type>
<gst:version>0. 1. 0</gst:version>

</ gst:children>
<t est:coment >
<t est:text>decoder thread</test:text>
</test:coment >
</ gst: el enent >

84



Chapter 20. XML in GStreamer

To retrieve the custom XML again, you need to attach a signtié GstXML object used to load the
XML data. You can then parse your custom XML from the XML trebemever an object is loaded.

We can extend our previous example with the following piefceoale.
xm = gst_xm _new ();

g_si gnal _connect (G _OBJECT (xm), "object_| oaded",
G _CALLBACK (xnl _I oaded), xm);

ret = gst_xm _parse_file (xm, "xm Test.gst", NULL);
g_assert (ret == TRUE);

Whenever a new object has been loaded, the xml_loaded dunetil be called. This function looks like:

static void
xm _| oaded (Gst XML *xml, GstObject *object, xml NodePtr self, gpointer data)

{
xm NodePtr children = sel f->xmnl Chil drenNode;

while (children) {
if (!'strcmp (children->nane, "comment")) {
xm NodePtr nodes = chil dren->xn Chil dr enNode;

whil e (nodes) {
if (!strcnp (nodes->nane, "text")) {
gchar *nane = g_strdup (xm NodeGet Content (nodes));
g_print ("object % |oaded with comment ' %’ \n",
gst _obj ect _get _nane (object), nane);

}
nodes = nodes- >next;
}
}
children = chil dren->next;

}
}

As you can see, you'll get a handle to the GstXML object, thelnéoaded GstObject and the
xmINodePtr that was used to create this object. In the abxammple we look for our special tag inside
the XML tree that was used to load the object and we print oorroent to the console.

85



V. Appendices

By now, you've learned all about the internals of GStreanmer application programming using the
GStreamer framework. This part will go into some random tiieg are useful to know if you're going to
use GStreamer for serious application programming. Itwwilich upon things related to integration with
popular desktop environments that we run on (GNOME, KDE, Q®/idows), it will shortly explain
how applications included with GStreamer can help making yie easier, and some information on
debugging.

In addition, we also provide a porting guide which will exipl@asily how to port GStreamer-0.8
applications to GStreamer-0.10.



Chapter 21. Things to check when writing an
application

This chapter contains a fairly random selection of things tan be useful to keep in mind when writing
GStreamer-based applications. It's up to you how much yogiing to use the information provided
here. We will shortly discuss how to debug pipeline probleisiag GStreamer applications. Also, we
will touch upon how to acquire knowledge about plugins amarednts and how to test simple pipelines
before building applications around them.

21.1. Good programming habits

- Always add &Gst Bus handler to your pipeline. Always report errors in your apption, and try to do
something with warnings and information messages, too.

- Always check return values of GStreamer functions. Esjlgc@eck return values of
gst _elenment _|ink () andgst el ement _set_state ().

- Dereference return values of all functions returning a base type, such ast _el ement _get _pad
() . Also, always free non-const string returns, suclysis obj ect _get _nane ().

+ Always use your pipeline object to keep track of the curréaitesof your pipeline. Don't keep private
variables in your application. Also, don’t update your usgerface if a user presses the “play” button.
Instead, listen for the “state-changed” message o&h®&us and only update the user interface
whenever this message is received.

« Report all bugs that you find in GStreamer bugzilla at hthpigzilla.gnome.org/
(http://bugzilla.gnome.org).

21.2. Debugging

Applications can make use of the extensive GStreamer détgiggstem to debug pipeline problems.
Elements will write output to this system to log what theyd@ng. It's not used for error reporting, but it
is very useful for tracking what an element is doing exaetllgich can come in handy when debugging
application issues (such as failing seeks, out-of-syndanett.).

Most GStreamer-based applications accept the commaraiitnen- - gst - debug=LI ST and related
family members. The list consists of a comma-separatedflisategory/level pairs, which can set the
debugging level for a specific debugging category. For exampgst - debug=oggdenux: 5 would

turn on debugging for the Ogg demuxer element. You can uskaitls as well. A debugging level of O
will turn off all debugging, and a level of 5 will turn on all Bagging. Intermediate values only turn on
some debugging (based on message severity; 2, for examplenly display errors and warnings).
Here’s a list of all available options:

87



Chapter 21. Things to check when writing an application

« --gst-debug- hel p will print available debug categories and exit.

« --gst-debug- I evel =LEVEL will set the default debug level (which can range from O (ntpat) to
5 (everything)).

- - gst - debug=LI ST takes a comma-separated list of category _name:leveltoases specific levels
for the individual categories. ExampleST_AUTOPLUG 5, avi dermux: 3. Alternatively, you can also
set theGST_DEBUG environment variable, which has the same effect.

- - gst - debug- no- col or will disable color debugging (you can also set the
GST_DEBUG_NO_COLOR environment variable to 1 if you wandligable colored debug output
permanently)

. --gst-debug-di sabl e disables debugging altogether.

« --gst-plugi n- spewenables printout of errors while loading GStreamer plugins

21.3. Conversion plugins

GStreamer contains a bunch of conversion plugins that npgditcations will find useful. Specifically,
those are videoscalers (videoscale), colorspace comsgftmpegcolorspace), audio format convertors
and channel resamplers (audioconvert) and audio samplesatertors (audioresample). Those
convertors don’t do anything when not required, they williagpassthrough mode. They will activate
when the hardware doesn’t support a specific request, thdlbdpplications are recommended to use
those elements.

21.4. Utility applications provided with GStreamer

GStreamer comes with a default set of command-line uslitieat can help in application development.
We will discuss onlygst-launchandgst-inspecthere.

21.4.1. gst-launch

gst-launchis a simple script-like commandline application that carubed to test pipelines. For
example, the commargst-launch audiotestsrc ! audioconvert ! audio/x-raw-intchannels=2!
alsasinkwill run a pipeline which generates a sine-wave audio straathplays it to your ALSA audio
card.gst-launchalso allows the use of threads (will be used automaticallggsired or as queue
elements are inserted in the pipeline) and bins (using letacko “(" and “)”). You can use dots to imply
padnames on elements, or even omit the padname to autoliyaalact a pad. Using all this, the
pipelinegst-launch filesrc location=file.ogg ! oggdemux name=d d. uwegue ! theoradec !
ffmpegcolorspace ! xvimagesink d. ! queue ! vorbisdec ! audconvert ! audioresample ! alsasink
will play an Ogg file containing a Theora video-stream and eboaudio-stream. You can also use
autopluggers such as decodebin on the commandline. Seathehpage ofst-launchfor more
information.

88



Chapter 21. Things to check when writing an application

21.4.2. gst-inspect

gst-inspectcan be used to inspect all properties, signals, dynamiapetexrs and the object hierarchy of
an element. This can be very useful to see witichj ect properties or which signals (and using what
arguments) an element supports. Rystrinspect fakesrdo get an idea of what it does. See the manual
page ofgst-inspectfor more information.

89



Chapter 22. Porting 0.8 applications to 0.10

This section of the appendix will discuss shortly what ctesgp applications will be needed to quickly
and conveniently port most applications from GStream8rt® GStreamer-0.10, with references to the
relevant sections in this Application Development Manuléve needed. With this list, it should be
possible to port simple applications to GStreamer-0.1@$s than a day.

22.1. List of changes

- Most functions returning an object or an object propertyehlbgen changed to return its own reference
rather than a constant reference of the one owned by thetatgielf. The reason for this change is
primarily thread safety. This means, effectively, thatiratvalues of functions such as
gst _el enment _get _pad (), gst _pad_get _nanme () and many more like these have to be free’ed
or unreferenced after use. Check the API references of esxtidn to know for sure whether return
values should be free’ed or not. It is important that all ckgederived from GstObject are
ref’ed/unref’ed using gst_object_ref() and gst_objeated() respectively (instead of
g_object_ref/unref).

- Applications should no longer use signal handlers to bdirdtof errors, end-of-stream and other
similar pipeline events. Instead, they should useGheBus, which has been discussed@hapter 7
The bus will take care that the messages will be deliveredercontext of a main loop, which is
almost certainly the application’s main thread. The bigadage of this is that applications no longer
need to be thread-aware; they don’t need togusedl e_add () in the signal handler and do the
actual real work in the idle-callback. GStreamer now dokthat internally.

- Related to thisgst _bin_iterate () has beenremoved. Pipelines will iterate in their own thread
and applications can simply runGai nLoop (or call the mainloop of their Ul toolkit, such as
gtk_main ()).

« State changes can be delayed (ASYNC). Due to the new fukatted nature of GStreamer-0.10,
state changes are not always immediate, in particular @gingluding the transition from READY to
PAUSED state. This means two things in the context of powimglications: first of all, it is no longer
always possible to dgst _el ement _set _state () and check for a return value of
GST_STATE_CHANGE_SUCCESS, as the state change might bgett(ASYNC) and the result
will not be known until later. You should still check for GSFTATE _ CHANGE_FAILURE right
away, itis just no longer possible to assume that everytthiagis not SUCCESS means failure.
Secondly, state changes might not be immediate, so yourreeatis to take that into account. You can
wait for a state change to complete if you use GST_CLOCK_TIMENE as timeout interval with
gst _el enent _get_state ().

- In 0.8, events and queries had to manually be sent to sinkpdtipes (unless you were using
playbin). This is no longer the case in 0.10. In 0.10, quaiesevents can be sent to toplevel
pipelines, and the pipeline will do the dispatching intdlgnfor you. This means less bookkeeping in
your application. For a short code example, €&apter 11Related, seeking is now threadsafe, and
your video output will show the new video position’s frameilglseeking, providing a better user
experience.

90



Chapter 22. Porting 0.8 applications to 0.10

TheGst Thr ead object has been removed. Applications can now simply pumeigs in a pipeline
with optionally some “queue” elements in between for buffgr and GStreamer will take care of
creating threads internally. It is still possible to havetpaf a pipeline run in different threads than
others, by using the “queue” element. SHeapter 16or detalils.

Filtered caps -> capsfilter element (the pipeline syntaxg&irlaunch has not changed though).

libgstgconf-0.10.la does not exist. Use the “gconfvideksand “gconfaudiosink” elements instead,
which will do live-updates and require no library linking.

The “new-pad” and “state-change” signals@t El ement were renamed to “pad-added” and
“state-changed”.

gst_init_get_popt_table () hasbeenremoved in favour of the new GOption command line
option API that was added to GLib 2@st _i nit _get _opti on_group () isthe new
GOption-based equivalent it _i nit _get _ptop_table ().

91



Chapter 23. Integration

GStreamer tries to integrate closely with operating systéuch as Linux and UNIX-like operating
systems, OS X or Windows) and desktop environments (suci\eBMEE or KDE). In this chapter, we'll
mention some specific techniques to integrate your apmicatith your operating system or desktop
environment of choice.

23.1. Linux and UNIX-like operating systems

GStreamer provides a basic set of elements that are useéul imkegrating with Linux or a UNIX-like
operating system.

- For audio input and output, GStreamer provides input angudwglements for several audio
subsystems. Amongst others, GStreamer includes elenmis SA (alsasrc, alsamixer, alsasink),
OSS (osssrc, ossmixer, osssink) and Sun audio (sunaudosi@udiomixer, sunaudiosink).

- Forvideo input, GStreamer contains source elements fagdAdnux (v4lsrc, v4imjpegsrc,
vdlelement and v4imjpegisnk) and Video4linux2 (v412srl2element).

- Forvideo output, GStreamer provides elements for outpMdttandows (ximagesink), Xv-windows
(xvimagesink; for hardware-accelerated video), direatrfebuffer (dfbimagesink) and openGL image
contexts (glsink).

23.2. GNOME desktop

GStreamer has been the media backend of the GNOME (httpa/grveme.org/) desktop since
GNOME-2.2 onwards. Nowadays, a whole bunch of GNOME apfitinoa make use of GStreamer for
media-processing, including (but not limited to) Rhythmiflttp://www.rhythmbox.org/), Totem
(http:/lwww.hadess.net/totem.php3) and Sound Juicer
(http://www.burtonini.com/blog/computers/sound-giix

Most of these GNOME applications make use of some specifimtgues to integrate as closely as
possible with the GNOME desktop:

« GNOME applications caljnome_program.init () to parse command-line options and initialize
the necessary gnome modules. GStreamer applications wouddally callgst _init () to do the
same for GStreamer. This would mean that only one of the twigease command-line options. To
work around this issue, GStreamer can provide a Gddpt i onGr oup which can be passed to
gnone_programinit (). The following example requires Gnome-2.14 or newer ([mesi
libgnome versions do not support command line parsing vipt&n yet but use the now deprecated
popt)

#i ncl ude <gnone. h>
#incl ude <gst/gst.h>

92



Chapter 23. Integration

static gchar x*+xcnd_fil enames = NULL;

static GOptionEntries cnmd_options[] = {

I

/+* here you can add conmand |ine options for your application. Check
* the GOption section in the GLib APl reference for a nore el aborate
* exanpl e of how to add your own conmand |ine options here */

/+ at the end we have a special option that collects all renaining

* command |ine argunents (like filenames) for us. If you don’

* need this, you can safely remove it =/

{ G_OPTION_REMAI NING 0, 0, G OPTI ON_ARG FI LENAME_ARRAY, &cnd_fil enanes,
"Special option that collects any remaining argunents for us" },

[+ mark the end of the options array with a NULL option =/
{ NULL, }

[+ this should usually be defined in your config.h */
#define VERSION "0.0. 1"

gi

nt

mai n (gint argc, gchar =**argv)

{

GOpt i onCont ext =*cont ext ;
GOpti onGroup *gstreaner_group;
GnonePr ogr am = progr am

context = g_option_context_new ("gnone-deno-app");

/+* get command |ine options fromGStreaner and add themto the group */
gstreaner_group = gst_init_get_option_group ();
g_option_context_add_group (context, gstreamer_group);

/+* add our own options. If you are using gettext for translation of your
* strings, use GETTEXT_PACKAGE here instead of NULL */
g_option_context_add_main_entries (context, cnd_options, NULL);

program = gnonme_programinit ("gnone-deno-app", VERSI ON
LI BGNOVEUI _MODULE, argc, argv,
GNOVE_PARAM _HUVAN_READABLE _NAME, " Gnone Denp",
GNOVE_PARAM GOPTI ON_CONTEXT, cont ext,
NULL) ;

[+ any fil enames we got passed on the conmand |ine? parse them =/
if (cmd_filenanes !'= NULL) {
guint i, num

num = g_strv_length (cnd_fil enanmes);
for (i =0; i < num ++i) {

/+* do sonething with the filenane ... */

g_print ("Adding to play queue: %\n", cnd_filenanes[i]);
}

93



Chapter 23. Integration

g_strfreev (cnd_fil enanes);
cnd_fil enames = NULL;

}

- GNOME stores the default video and audio sources and sinkE€ionf. GStreamer provides a number
of elements that create audio and video sources and sirgetlglibased on those GConf settings.
Those elements are: gconfaudiosink, gconfvideosink, fgemtiosrc and gconfvideosrc. You can
create them witlyst _el ement _fact ory_nake () and use them directly just like you would use
any other source or sink element. All GNOME applicationsrammmended to use those elements.

- GStreamer provides data input/output elements for usetvélfGNOME-VFS system. These
elements are called “gnomevfssrc” and “gnomevfssink”.

23.3. KDE desktop

GStreamer has been proposed for inclusion in KDE-4.0. @tlyreGStreamer is included as an optional
component, and it's used by several KDE applications, otialgt AmaroK (http://amarok.kde.org/), JuK
(http://developer.kde.org/~wheeler/juk.html), KMPéayhttp://www.xs4all.nl/~jjvrieze/kmplayer.html)
and Kaffeine (http://kaffeine.sourceforge.net/).

Although not yet as complete as the GNOME integration Hitste are already some KDE integration

specifics available. This list will probably grow as GStrearstarts to be used in KDE-4.0:

« AmaroK contains a kiosrc element, which is a source elentattihtegrates with the KDE VFS
subsystem KIO.

23.4. OS X

GStreamer provides native video and audio output element3$ X. It builds using the standard
development tools for OS X.

23.5. Windows

GStreamer builds using Microsoft Visual C .NET 2003 and gsdygwin.

94



Chapter 24. Licensing advisory

24.1. How to license the applications you build with
GStreamer

The licensing of GStreamer is no different from a lot of othieraries out there like GTK+ or glibc: we
use the LGPL. What complicates things with regards to G8tezas its plugin-based design and the
heavily patented and proprietary nature of many multimedidecs. While patents on software are
currently only allowed in a small minority of world counts¢the US and Australia being the most
important of those), the problem is that due to the centi@tgthe US hold in the world economy and
the computing industry, software patents are hard to igndrerever you are. Due to this situation, many
companies, including major GNU/Linux distributions, getgped in a situation where they either get
bad reviews due to lacking out-of-the-box media playbagabdities (and attempts to educate the
reviewers have met with little success so far), or go agaireit own - and the free software movement's
- wish to avoid proprietary software. Due to competitivegsgre, most choose to add some support.
Doing that through pure free software solutions would héneart risk heavy litigation and punishment
from patent owners. So when the decision is made to inclugpatfor patented codecs, it leaves them
the choice of either using special proprietary applicajan try to integrate the support for these codecs
through proprietary plugins into the multimedia infrastiwre provided by GStreamer. Faced with one of
these two evils the GStreamer community of course prefesé¢icend option.

The problem which arises is that most free software and operce applications developed use the GPL
as their license. While this is generally a good thing, ites a dilemma for people who want to put
together a distribution. The dilemma they face is that if/thelude proprietary plugins in GStreamer to
support patented formats in a way that is legal for them, tteexisk running afoul of the GPL license of
the applications. We have gotten some conflicting repoots fiawyers on whether this is actually a
problem, but the official stance of the FSF is that it is a peablWe view the FSF as an authority on this
matter, so we are inclined to follow their interpretatiortioé GPL license.

So what does this mean for you as an application developelt?itveeans you have to make an active
decision on whether you want your application to be usedttmgeavith proprietary plugins or not. What
you decide here will also influence the chances of commed@@éiibutions and Unix vendors shipping
your application. The GStreamer community suggest youniegyour software using a license that will
allow proprietary plugins to be bundled with GStreamer aadnapplications, in order to make sure that
as many vendors as possible go with GStreamer instead dféessolutions. This in turn we hope and
think will let GStreamer be a vehicle for wider use of freerfats like the Xiph.org formats.

If you do decide that you want to allow for non-free plugindbtused with your application you have a
variety of choices. One of the simplest is using licensesliPL, MPL or BSD for your application
instead of the GPL. Or you can add a exceptions clause to yBurliGense stating that you except
GStreamer plugins from the obligations of the GPL.

95



Chapter 24. Licensing advisory

A good example of such a GPL exception clause would be, usm@atem video player project as an
example: The authors of the Totem video player project hegeants permission for
non-GPL-compatible GStreamer plugins to be used and loligéril together with GStreamer and Totem.
This permission goes above and beyond the permissionsegrhgtthe GPL license Totem is covered by.

Our suggestion among these choices is to use the LGPL licaa$es what resembles the GPL most
and it makes it a good licensing fit with the major GNU/Linuxsktop projects like GNOME and KDE.

It also allows you to share code more openly with projectsliiaae compatible licenses. Obviously, pure
GPL code without the above-mentioned clause is not usalyleinapplication as such. By choosing the
LGPL, there is no need for an exception clause and thus cadbecahared more freely.

| have above outlined the practical reasons for why the @&tsx community suggest you allow
non-free plugins to be used with your applications. We feat tn the multimedia arena, the free
software community is still not strong enough to set the dgeand that blocking non-free plugins to be
used in our infrastructure hurts us more than it hurts themadwners and their ilk.

This view is not shared by everyone. The Free Software Fdiordarges you to use an unmodified GPL
for your applications, so as to push back against the teiopttd use non-free plug-ins. They say that
since not everyone else has the strength to reject them sedaey are unethical, they ask your help to
give them a legal reason to do so.

This advisory is part of a bigger advisory with a FAQ which yaan find on the GStreamer website
(http://gstreamer.freedesktop.org/documentatioerfiging.html)

96



Chapter 25. Windows support

25.1. Building GStreamer under Win32

There are different makefiles that can be used to build GReesvith the usual Microsoft compiling
tools.

The Makefile is meant to be used with the GNU make program amétéle version of the Microsoft
compiler (http://msdn.microsoft.com/visualc/vctoeB#303/). You also have to modify your system
environment variables to use it from the command-line. Ydlualso need a working Platform SDK for
Windows that is available for free from Microsoft.

The projects/makefiles will generate automatically somec®files needed to compile GStreamer. That
requires that you have installed on your system some GNU$ tardl that they are available in your
system PATH.

The GStreamer project depends on other libraries, namely :
. GLib

* popt

« libxml2

- libintl

« libiconv

There is now an existing package that has all these depeieddnilt with MSVC7.1. It exists either as
precompiled librairies and headers in both Release and @elude, or as the source package to build it
yourself. You can find it on http://mukoli.free.fr/gstreandeps/.

Notes: GNU tools needed that you can find on http://gnuwin32.sourceforge.net/

+ GNU flex (tested with 2.5.4)
» GNU bison (tested with 1.35)

and http://www.mingw.org/

« GNU make (tested with 3.80)

the generated files from the -auto makefiles will be available soon separately on the net for
convenience (people who don’'t want to install GNU tools).

97



Chapter 25. Windows support

25.2. Installation on the system

By default, GSTreamer needs a registry. You have to genenaséeng "gst-register.exe". It will create the
file in c:\gstreamer\registry.xml that will hold all the gins you can use.

You should install the GSTreamer core in c:\gstreamer\hihthe plugins in c:\gstreamer\plugins. Both
directories should be added to your system PATH. The libd@gendencies should be installed in c:\usr

For example, my current setup is :

e c:\gstreanmer\registry.xm

Cc

c

C:

:\ gstreamer\bi n\ gst-inspect.exe

:\ gstreaner\bi n\gst-Ilaunch. exe

\ gstreaner\bi n\gst-register. exe

:\ gstreamer\bi n\ gst bytestreamdl |
:\gstreamer\bin\gstel enents. dll

:\ gstreaner\bi n\ gstoptinmal schedul er. dl|
:\ gstreamner\bi n\ gstspider.dll
:\gstreanmer\bin\libgtreaner-0.8.dll
:\gstreamer\plugins\gst-libs.dll

s\ gstreaner\ pl ugi ns\ gst mat r oska. dl |
:\usr\bin\iconv.dll
:\usr\bintintl.dll
:\usr\bin\libglib-2.0-0.dlI
:\usr\bin\libgnodul e-2.0-0.dlI
:\usr\bin\libgobject-2.0-0.dlI
:\usr\bin\libgthread-2.0-0.dlI
:\usr\bin\libxnl2. dll
:\usr\bin\popt.dll

98



Chapter 26. Quotes from the Developers

As well as being a cool piece of software, GStreamer is aylipebject, with developers from around the
globe very actively contributing. We often hang out on theté&gamer IRC channel on irc.freenode.net:
the following are a selection of amusinguotes from our conversations.

6 Mar 2006

When | opened my eyes | was in a court room. There were masteltsdyland Thompson sitting

in the jury and master Kernighan too. There were the GStredeelopers standing in the
defendant’s place, accused of violating several laws oklphilosophy and customer lock-down
via running on a proprietary pipeline, different from thdtloe Unix systems. | heard Eric Raymond
whispering "got to add this case to my book.

behdad’s blog

12 Sep 2005

<wingo> we just need to get rid of that mmap stuff
<wingo> i think gnomevfssrc is faster for files even
<BBB> wingo, no

<BBB> and no

<wingo> good points ronald

23 Jun 2005

* wingo back

* thomasvdack

--- You are now known as everybody
* everybodyback back
<everybody>now break it down

--- You are now known as thomasvs

99



Chapter 26. Quotes from the Developers

* bilboed back

--- bilboed is now known as john-sebastian

* john-sebastiarbach

--- john-sebastian is now known as bilboed

--- You are now known as scratch_my

* scratch_myback

--- bilboed is now known as lllbe

--- You are now known as thomasvs

* |llbe back

--- llIbe is now known as bilboed

20 Apr 2005

thomasjrb, somehow his screenshotsrc grabs whatever X is shoandgnakes it available as a
stream of frames

jrb: thomas: so, is the point that the screenshooter takes a¥io& won't the dialog be in the
video? oh, nevermind. I'll just send mail...

thomasijrb, well, it would shoot first and ask questions later

2 Nov 2004

zaheermwtay: unfair u fixed the bug i was using as a feature!

14 Oct 2004

* zaheermwonders how he can break gstreamer today :)

ensonic zaheerm, spider is always a good starting point

100



Chapter 26. Quotes from the Developers

14 Jun 2004

teuf: ok, things work much better when | don’t write incrediblyiptd and buggy code

thaytan | find that too

23 Nov 2003

Uraeus ah yes, the sleeping part, my mind is not multitasking so4 atél thinking about exercise

dolphy: Uraeus: your mind is multitasking

dolphy: Uraeus: you just miss low latency patches

14 Sep 2002

--- wingo-partyis now known asvingo

* wingoholds head

4 Jun 2001

taaz:you witchdoctors and your voodoo mpeg2 black magic...

omega_um. | count three, no four different cults there <g>

ajmitch: hehe

omega_witchdoctors, voodoo, black magic,

omega_and mpeg

16 Feb 2001

wtay: | shipped a few commerical products to >40000 people now I8tt&amer is way more
exciting...

16 Feb 2001

* tool-manis a gstreamer groupie

14 Jan 2001

Omega:did you run Idconfig? maybe it talks to init?

101



Chapter 26. Quotes from the Developers

wtay: not sure, don'’t think so... | did run gstreamer-registeuifio:-)

Omega:ah, that did it then ;-)

wtay: right

Omegaprobably not, but in case GStreamer starts turning into ans0®@eone please let me know?

9 Jan 2001

wtay: me tar, you rpm?

wtay: hehe, forgot "zan"

Omega:?

wtay: me tar"zan", you ...

7 Jan 2001
Omegathat means probably building an agreggating, cache-mamsggeue to shove N buffers
across all at once, forcing cache transfer.
wtay: never done that before...

Omega:nope, but it's easy to do in gstreamer <g>

wtay: sure, | need to rewrite cp with gstreamer too, someday :-)

7 Jan 2001

wtay: GStreamer; always at least one developer is awake...

5/6 Jan 2001

wtay: we need to cut down the time to create an mp3 player down tasisco

richardb: :)

Omega:I’m wanting to something more interesting soon, | did theadian mp3 player in 15sec”
back in October '99.

102



Chapter 26. Quotes from the Developers
wtay: by the time Omega gets his hands on the editor, you'll see plEienaudio mixer in the
editor :-)

richardb: Well, it clearly has the potential...

Omega:Working on it... ;-)

28 Dec 2000

MPAA: We will sue you now, you have violated our IP rights!

wtay: hehehe

MPAA: How dare you laugh at us? We have lawyers! We have CongressiieehaveLARS
wtay: I'm so sorry your honor

MPAA: Hrumph.

* wtaybows before thy

Notes

1. No guarantee of sense of humour compatibility is given.

103



	GStreamer Application Development Manual (0.10.9)
	Table of Contents
	List of Figures
	I. Introduction
	Chapter 1. Preface
	1.1. What is GStreamer?
	1.2. Who Should Read This Manual?
	1.3. Preliminary Reading
	1.4. Structure of this Manual

	Chapter 2. Motivation & Goals
	2.1. Current problems
	2.1.1. Multitude of duplicate code
	2.1.2. 'One goal' media players/libraries
	2.1.3. Non unified plugin mechanisms
	2.1.4. Poor user experience
	2.1.5. Provision for network transparency
	2.1.6. Catch up with the Windows world

	2.2. The design goals
	2.2.1. Clean and powerful
	2.2.2. Object oriented
	2.2.3. Extensible
	2.2.4. Allow binary only plugins
	2.2.5. High performance
	2.2.6. Clean core/plugins separation
	2.2.7. Provide a framework for codec experimentation


	Chapter 3. Foundations
	3.1. Elements
	3.2. Bins and pipelines
	3.3. Pads

	II. Building an Application
	Chapter 4. Initializing GStreamer
	4.1. Simple initialization
	4.2. The GOption interface

	Chapter 5. Elements
	5.1. What are elements?
	5.1.1. Source elements
	5.1.2. Filters, convertors, demuxers, muxers and codecs
	5.1.3. Sink elements

	5.2. Creating a GstElement
	5.3. Using an element as a GObject
	5.4. More about element factories
	5.4.1. Getting information about an element using a factory
	5.4.2. Finding out what pads an element can contain

	5.5. Linking elements
	5.6. Element States

	Chapter 6. Bins
	6.1. What are bins
	6.2. Creating a bin
	6.3. Custom bins

	Chapter 7. Bus
	7.1. How to use a bus
	7.2. Message types

	Chapter 8. Pads and capabilities
	8.1. Pads
	8.1.1. Dynamic (or sometimes) pads
	8.1.2. Request pads

	8.2. Capabilities of a pad
	8.2.1. Dissecting capabilities
	8.2.2. Properties and values

	8.3. What capabilities are used for
	8.3.1. Using capabilities for metadata
	8.3.2. Creating capabilities for filtering

	8.4. Ghost pads

	Chapter 9. Buffers and Events
	9.1. Buffers
	9.2. Events

	Chapter 10. Your first application
	10.1. Hello world
	10.2. Compiling and Running helloworld.c
	10.3. Conclusion

	III. Advanced GStreamer concepts
	Chapter 11. Position tracking and seeking
	11.1. Querying: getting the position or length of a stream
	11.2. Events: seeking (and more)

	Chapter 12. Metadata
	12.1. Metadata reading
	12.2. Tag writing

	Chapter 13. Interfaces
	13.1. The URI interface
	13.2. The Mixer interface
	13.3. The Tuner interface
	13.4. The Color Balance interface
	13.5. The Property Probe interface
	13.6. The X Overlay interface

	Chapter 14. Clocks in GStreamer
	14.1. Clock providers
	14.2. Clock slaves

	Chapter 15. Dynamic Controllable Parameters
	15.1. Getting Started
	15.2. Setting up parameter control

	Chapter 16. Threads
	16.1. When would you want to force a thread?
	16.2. Scheduling in GStreamer

	Chapter 17. Autoplugging
	17.1. MIMEtypes as a way to identity streams
	17.2. Media stream type detection
	17.3. Plugging together dynamic pipelines

	Chapter 18. Pipeline manipulation
	18.1. Data probing
	18.2. Manually adding or removing data from/to a pipeline
	18.2.1. Inserting or grabbing data
	18.2.2. Forcing a format
	18.2.3. Example application

	18.3. Embedding static elements in your application

	IV. Higherlevel interfaces for GStreamer applications
	Chapter 19. Components
	19.1. Playbin
	19.2. Decodebin
	19.3. GstEditor

	Chapter 20. XML in GStreamer
	20.1. Turning GstElements into XML
	20.2. Loading a GstElement from an XML file
	20.3. Adding custom XML tags into the core XML data

	V. Appendices
	Chapter 21. Things to check when writing an application
	21.1. Good programming habits
	21.2. Debugging
	21.3. Conversion plugins
	21.4. Utility applications provided with GStreamer
	21.4.1. gstlaunch
	21.4.2. gstinspect


	Chapter 22. Porting 0.8 applications to 0.10
	22.1. List of changes

	Chapter 23. Integration
	23.1. Linux and UNIXlike operating systems
	23.2. GNOME desktop
	23.3. KDE desktop
	23.4. OS X
	23.5. Windows

	Chapter 24. Licensing advisory
	24.1. How to license the applications you build with GStreamer

	Chapter 25. Windows support
	25.1. Building GStreamer under Win32
	25.2. Installation on the system

	Chapter 26. Quotes from the Developers

