GStreamer Plugin Writer's Guide
(0.10.9)

Richard John Boulton
Erik Walthinsen
Steve Baker
Leif Johnson
Ronald S. Bultje
Stefan Kost

GStreamer Plugin Writer’s Guide (0.10.9)
by Richard John Boulton, Erik Walthinsen, Steve Baker, Uetfinson, Ronald S. Bultje, and Stefan Kost

This material may be distributed only subject to the ternts @nditions set forth in the Open Publication License, \dt.later (the latest version
is presently available at http://www.opencontent.orgfgmib/).

Table of Contents

I 1 g1 oo [0 Tox o TSRS Vi
O 1= - T PP PPN 1.
IO I Y P S 1] 11T 10 = oSO SPR P 1

1.2. Who Should Read ThiS GUIE?..........eeiiiiiiiiee ettt 1.
1.3. Preliminary REAGINGuviiiiiiiiieiiiiiie ettt ettt e st e et ee e e snbeeeeene 2

1.4. Structure Of ThiS GUIAE........oiuiiiiiiiiiee e 2.
P2 o 10 Lo T 1 PP PPPPR 5.
2.1, Elements and PIUGINS.ccoiiiiiiiiiiiiie ettt e 5.
2.2, PAUS. .. 5.

2.3. Data, Buffers and EVENTS.........cccviiiiiiiiiiciiiiec e 6...

2.4. MIimetypes and PrOPEIIES.uii ittt 8..
(I SN[Lo [T g Yo Jr= W o 1U T 1 o I OSSR 12
3. Constructing the BOIlEIPIALE.coiii it eeee 13
3.1. Getting the GStreamer Plugin Templates..........ccuueieiiiiiiiiiiiiieceeiee e 13
3.2.USING the Project Stam.........oo it 13
3.3. Examining the BasiC COUR.........uuuiiiiiiaiiiiiiiei ettt 14
3.4, GStEIEMENIDELAIIS.ceiiiiiiei it 15

3.5. GstStaticPadTEMPIALE.coiiiiiiiie e 16.

3.6. CONSLIUCION FUNCHONS....ciiiiiiiiiiiiieii et e e e 18.
3.7. The plugin_init FUNCHION.ooiii e 18
4. SPECITYING the PAASttt e et e e e e e snnneee e e e e 20
4.1. The SetCapS-FUNCLIQN.coiiiii et aeee 21
5. The chain fUNCHIOM........ceeie e 23
B. WAL Are SLALES....i ittt e e e e e s ettt e e e e e e e e et et be e e e e nbnbeeeeeaas 25
6.1. Managing filter STALE.........cccuuuiiiiii e 25
AN (o T pTo AN o U031 o | O SRR 28
LSS [0 £ =1L TP 31
9. Building @ TeSt APPHCALIONL.cooiiiiiiie e 32
1. Advanced Filter CONCEPLS.........coiiiriieeee e 35
O OF=T o 3 g =T o] 11 1T] o PP PRPTPPRR 36
10.1. Caps NEYOLIAtION USE CASES...uuuurieeeeesiirirririreeeeeeasssssttraeeeesssssrrerreeeesssesnnsenneeeees 36
10,2, FIXEU CAPS. .. uveeeee ittt ettt et e e st e e sttt e e e sttt e e s abe e e e e s abbeee e e sbeeeeenseeeeeaan 37
10.3. Downstream caps NEQOLIAtION.ccvvviiiiiee e 38
10.4. Upstream caps (re)NEQOLIation.uuviieeeeriiiiiiiieireeeee s s eremreeeeesssnnnnneeeeeeeesesnnnd 40
10.5. Implementing a getcaps fUNCHON.oviiiiiiiiei e e ee e 41
11. Different scheduling MOAES..........cuuuiiiiiie e e e aeeeeeen 42
11.1. The pad activation StAQE...........uueeiiiiieii it 42
11.2. Pads driving the pipeline............ooo it 43
11.3. Providing randOM GCCESS.uuurtrtiaaaaaaiaittieeeeee e e s e e emrneeas s e aniebbeeeeaaeaeaaasnnnreeeeas 45
12. TYPES AN PrOPEITIES. ...t eieee ettt ettt e e e e e e e s et bt e e e e e e eennneeeas 48
12.1. Building a Simple Format for TESHNG.........ceueiiiiaaiiiiiieeie e 48
12.2. Typefind Functions and AUtOPIUGQING......ccooeiiiiiiiiiiiiie e 48
12.3. List Of DEFINEA TYPES. ...eeeeieiieeeiiiiiie e e e e e e e 50.
13. Request and SOMEtIMES PAAS.cciiiiiuiiiiiie et e e e 60.
13.1. SOMELIMES PAASveeeeiteeeee ittt e et e e e et e e e e e e e e nbbeeeeeae e e s e s snnnneeesd 60

13.2. REQUEST PAAS ...ceiieiiiii ittt e ettt e e e e e ettt et e e e e e e e et b e e aaeenee 63

I @4 (o o3 (] o N TSR POUPPPPPPPRR 65
141, TYPES OF LM .ttt e e e e e ermnneeeas 65

I O 0T o) PP PPRRTT 65

14.3. Flow of data between elements and time..............c.eveeiiiiiiiiiiiiiieeeeeeeeeen 65

14.4. Obligations of each element.. ... 66

15. Supporting DyNamic Parameters...........oooiiiiiiiiiiieee e ciiiee e et e e eeae e 67
15.1. GettiNg STAMEA....ceeii ittt e e e e e e s eeeaaans 67

15.2. The Data Processing LOQR.........uuuuiiiiiaaiiiiiiiiiie et 67

L6, IMID ettt ettt e e b e e eneeeabe e e sneeennreeesneeenneees 69
A 1) (=] 1 7= o L PP PPER P 70
17.1. How to Implement INterfaces..........ooo i 70
17.2. URINEITACE. ...ttt e a e 71
17.3. MIXEI INEITACE. ... o e e e 72
17.4. TUNEN INEIACE ... it seeeee s] D

17.5. Color Balance INtErface.........cuvviiiiiiiie et 77

17.6. Property Probe INterfaCe.........c.uviviiiiieii et 77

17.7. X OVErlay INTEITACE........coiiiiiiie e 80

17.8. NavIigation INTEIACE.coiieiiii e 82.

18. Tagging (Metadata and Streaminf0)...........ccvveeriiiiiiiiiiiee e 83
18.1. Reading Tags from StrEAMS.......c.coiiiiiriiiiiee e e e e eeeee e e e e e e s e eeneeeeas 83

18.2. Writing TagsS 10 StrEaAMS. ..o cviieeiieeee e ettt e e e s e e e e e e e enenenes 85

19. Events: Seeking, Navigation and MOcc.uuveiieieeiiiiiiiiee e e e eaeeee e 38
19.1. DOWNSLIEAIM BVENLSuuiiiiiiiiieeeeie ittt e e e e e s smeeee e et e e e e e s e s eeeeeeeeean 88
19,2, UPSITBAIM BVENLS ... ii ittt ee e e et e e e e e e e e e e e e e e e e e aeeeaeeanaeend 89
19.3. Al EVENLS TOGEINEL......ueiiieiiiiiie ettt e a0

V. Creating SPECial @lEMENT TYPES.....c.eiiiieiieerete et es 95
20. Pre-made DASE ClaSSES.....ccoei ittt e et e e e e e ae e e e e e 96
20. 1. WIALING @ SINK. ettt e e e e e st be e e e e e e e rmnneeeeas 96
20.2. WILING @ SOUICEteieiieeeee ettt e ettt e e e e e sa bbbttt e e e e e e e annbb e e e e eaeaeaaeannrnaeeas 98
20.3. Writing a transformation element.............oocuuiiiii e Q9

21, Writing @ DEMUXET OF PASEE.ceiiiiiaiiiiiiiieiee ettt e ettt e e e e e eeea e e e e e aans 100
22. Writing @ N-t0-1 ElemMent OF MUXEL.........c..uuiiiiiiiieei ettt a e 101
ATV T To T WAV F= T T= o = PRSPPI 102
RV Y o] o 1= o o0 TSRS PN 103
24. Things to check when writing an €lement...........ooooiiiiiii e 104
24. 1. ADOUL STALES. ...ttt e e e e e s 104

24.2. DEDUQGGING ... ettt ettt e e e e e e e e e e 104
24.3. Querying, events and the lKe..........coouiiiiiiiii e 105
24.4. Testing YOUr €IEMENT.........uuiiiiiiii et 105

25. Porting 0.8 PIUG-iNS 10 0.9....cciiiiiiiieiiiiie et 107
25.1. LISt Of ChANQES....cii it 107

26. GSreamer ICENSING.ueii ettt e e e e e s s e e e s seeeenareas 109
26.1. How to license the code you write for GStreamer...........ccoevccvvvvivieeee e 109

List of Tables

2-1. Table Of EXAMPIE TYPES. ... iiiiiiiieiee e i e ettt e e e e e e st ee e e e s s et eeeaeessennnnentareeaeeeessamnnneeeensaans 8
D I =T o] [N o) AW Lo [o T Y] = TS 50
-] (=N oY Y o [=To T Y/ o 1= = 54
12-3. Table Of CONtAINET TYPES .. iiiiiiei e i ittt et e e e ee st e e e e eest e e e e e e e s e s e nbaaaeraeeeaeasssnssraeeennnnrnnes 58
12-4. Table Of SUDLIIE TYPES...uuiiiii ettt e e e e e e e e e s e e e e e e e e e aeeeensssnneees 59
12-5. Table Of OthEr TYPES . uuuiiiiieee e ittt e e e e e e e e e s e et e e e e e e e e snesaeea e e nreneeees 59

|. Introduction

GStreamer is an exremely powerful and versatile frameworilcfeating streaming media applications.
Many of the virtues of the GStreamer framework come from itgloiarity: GStreamer can seamlessly
incorporate new plugin modules. But because modularitymoveer often come at a cost of greater
complexity (consider, for example, CORBA (http://www.org/)), writing new plugins is not always
easy.

This guide is intended to help you understand the GStrearaerdwork (version 0.10.9) so you can
develop new plugins to extend the existing functionalitye Quide addresses most issues by following
the development of an example plugin - an audio filter plugimitten in C. However, the later parts of
the guide also present some issues involved in writing dthpes of plugins, and the end of the guide
describes some of the Python bindings for GStreamer.

Chapter 1. Preface

1.1. What is GStreamer?

GStreamer is a framework for creating streaming media agpitins. The fundamental design comes
from the video pipeline at Oregon Graduate Institute, as$ agesome ideas from DirectShow.

GStreamer’s development framework makes it possible ttevany type of streaming multimedia
application. The GStreamer framework is designed to madasy to write applications that handle audio
or video or both. It isn’t restricted to audio and video, aad process any kind of data flow. The pipeline
design is made to have little overhead above what the apifilles induce. This makes GStreamer a
good framework for designing even high-end audio applicegtiwhich put high demands on latency.

One of the the most obvious uses of GStreamer is using it td bunedia player. GStreamer already
includes components for building a media player that capstia very wide variety of formats,
including MP3, Ogg/Vorbis, MPEG-1/2, AVI, Quicktime, maahd more. GStreamer, however, is much
more than just another media player. Its main advantagebat¢he pluggable components can be
mixed and matched into arbitrary pipelines so that it's gmedo write a full-fledged video or audio
editing application.

The framework is based on plugins that will provide the vasicodec and other functionality. The
plugins can be linked and arranged in a pipeline. This pigstiefines the flow of the data. Pipelines can
also be edited with a GUI editor and saved as XML so that pigdlbraries can be made with a
minimum of effort.

The GStreamer core function is to provide a framework fogpis, data flow and media type
handling/negotiation. It also provides an API to write aggiions using the various plugins.

1.2. Who Should Read This Guide?

This guide explains how to write new modules for GStreambe guide is relevant to several groups of
people:

« Anyone who wants to add support for new ways of processing ide® Streamer. For example, a
person in this group might want to create a new data formatexer, a new visualization tool, or a
new decoder or encoder.

- Anyone who wants to add support for new input and output ésviEor example, people in this group
might want to add the ability to write to a new video outputteys or read data from a digital camera
or special microphone.

Chapter 1. Preface

« Anyone who wants to extend GStreamer in any way. You needve & understanding of how the
plugin system works before you can understand the congtriiat the plugin system places on the
rest of the code. Also, you might be surprised after readiigydt how much can be done with plugins.

This guide is not relevant to you if you only want to use thesgérg functionality of GStreamer, or if you
just want to use an application that uses GStreamer. If yewaly interested in using existing plugins to
write a new application - and there are quite a lot of pluginsaly - you might want to check the
GStreamer Application Development Manuélou are just trying to get help with a GStreamer
application, then you should check with the user manualfat particular application.

1.3. Preliminary Reading

This guide assumes that you are somewhat familiar with ts&lveorkings of GStreamer. For a gentle
introduction to programming concepts in GStreamer, you i to read thé&sStreamer Application
Development Manudirst. Also check out the other documentation available @GiStreamer web site
(http://gstreamer.freedesktop.org/documentation/).

In order to understand this manual, you will need to have a&haslerstanding of the C language. Since
GStreamer adheres to the GObject programming model, thie glso assumes that you understand the
basics of GObject (http://developer.gnome.org/doc/2BIgobject/index.html) programming. You may
also want to have a look at Eric Harlow’s boBleveloping Linux Applications with GTK+ and GDK

1.4. Structure of This Guide

To help you navigate through this guide, it is divided inteesal large parts. Each part addresses a
particular broad topic concerning GStreamer plugin dgwedent. The parts of this guide are laid out in
the following order:

- Building a Plugin- Introduction to the structure of a plugin, using an exanguldio filter for
illustration.

This part covers all the basic steps you generally need foymeto build a plugin, such as registering
the element with GStreamer and setting up the basics so iecaive data from and send data to
neighbour elements. The discussion begins by giving exasmgflgenerating the basic structures and
registering an element i@onstructing the Boilerplatdhen, you will learn how to write the code to
get a basic filter plugin working i€hapter 4 Chapter 5andChapter 6

After that, we will show some of the GObject concepts on homske an element configurable for
applications and how to do application-element interacititAdding ArgumentandChapter 8 Next,
you will learn to build a quick test application to test alatlyou've just learned iChapter 9We will
just touch upon basics here. For full-blown applicationelegment, you should look at the

Chapter 1. Preface

Application Development Manual
(http://gstreamer.freedesktop.org/data/doc/gstredmead/manual/html/index.html).

- Advanced Filter Conceptsinformation on advanced features of GStreamer plugin ldgveent.

After learning about the basic steps, you should be ablegatera functional audio or video filter
plugin with some nice features. However, GStreamer offesgenfor plugin writers. This part of the
guide includes chapters on more advanced topics, such adwdaiy, media type definitions in
GStreamer, clocks, interfaces and tagging. Since thegsaréssare purpose-specific, you can read
them in any order, most of them don’t require knowledge fraheo sections.

The first chapter, namdifferent scheduling modesvill explain some of the basics of element
scheduling. It is not very in-depth, but is mostly some ségrointroduction on why other things work
as they do. Read this chapter if you're interested in GStezamternals. Next, we will apply this
knowledge and discuss another type of data transmissionthat you learned ihapter 5

Different scheduling modesoop-based elements will give you more control over in@aér This is
useful when writing, for example, muxers or demuxers.

Next, we will discuss media identification in GStreameCinapter 12 You will learn how to define
new media types and get to know a list of standard media tygfsed] in GStreamer.

In the next chapter, you will learn the concept of requestt smmetimes-pads, which are pads that are
created dynamically, either because the application afgkatl(request) or because the media stream
requires it (sometimes). This will be @hapter 13

The next chapteChapter 14will explain the concept of clocks in GStreamer. You need th
information when you want to know how elements should a@h@wdio/video synchronization.

The next few chapters will discuss advanced ways of doingj@djon-element interaction.
Previously, we learned on the GObject-ways of doing thi&dding ArgumentsandChapter 8 We

will discuss dynamic parameters, which are a way of definlaghent behaviour over time in advance,
in Chapter 15Next, you will learn about interfaces hapter 17Interfaces are very target- specific
ways of application-element interaction, based on GOlsj&interface. Lastly, you will learn about
how metadata is handled in GStreameCimapter 18

The last chapteChapter 19will discuss the concept of events in GStreamer. Eventsoaréhe one
hand, another way of doing application-element interactibtakes care of seeking, for example. On
the other hand, it is also a way in which elements interadt wétch other, such as letting each other
know about media stream discontinuities, forwarding taggdie a pipeline and so on.

- Creating special element typeExplanation of writing other plugin types.

Chapter 1. Preface

Because the first two parts of the guide use an audio filter axample, the concepts introduced
apply to filter plugins. But many of the concepts apply equtlother plugin types, including

sources, sinks, and autopluggers. This part of the guideepte the issues that arise when working on
these more specialized plugin types. The chapter startsaxgpecial focus on elements that can be
written using a base-clasBie-made base clas3esnd later also goes into writing special types of
elements inWriting a Demuxer or Parsewriting a N-to-1 Element or MuxeandWriting a Manager

- Appendices Further information for plugin developers.

The appendices contain some information that stubborifilises to fit cleanly in other sections of the
guide. Most of this section is not yet finished.

The remainder of this introductory part of the guide pres@nshort overview of the basic concepts
involved in GStreamer plugin development. Topics covenetlideElements and Plugin®ads

Data, Buffers and EventndTypes and Propertief you are already familiar with this information, you
can use this short overview to refresh your memory, or youst@mto Building a Plugin

As you can see, there a lot to learn, so let’s get started!

- Creating compound and complex elements by extending frorstBi This will allow you to create
plugins that have other plugins embedded in them.

- Adding new mime-types to the registry along with typedetenttions. This will allow your plugin to
operate on a completely new media type.

Chapter 2. Foundations

This chapter of the guide introduces the basic concepts tie@®er. Understanding these concepts will
help you grok the issues involved in extending GStreamenyMd these concepts are explained in
greater detail in th&Streamer Application Development Manuhk basic concepts presented here
serve mainly to refresh your memory.

2.1. Elements and Plugins

Elements are at the core of GStreamer. In the context of pldgvelopment, aalemenis an object
derived from the Gst El ement (../../gstreamer/html/GstElement.html) class. Elerag@mnovide some

sort of functionality when linked with other elements: Faaeple, a source element provides data to a
stream, and a filter element acts on the data in a stream. Wigdements, GStreamer is just a bunch of
conceptual pipe fittings with nothing to link. A large numloéelements ship with GStreamer, but extra
elements can also be written.

Just writing a new element is not entirely enough, howeveu Will need to encapsulate your element in
apluginto enable GStreamer to use it. A plugin is essentially a Ibkedialock of code, usually called a
shared object file or a dynamically linked library. A singleg@in may contain the implementation of
several elements, or just a single one. For simplicity, ghisle concentrates primarily on plugins
containing one element.

A filter is an important type of element that processes a stream af Bedducers and consumers of data
are calledsourceandsink elements, respectivelgin elements contain other elements. One type of bin is
responsible for scheduling the elements that they contathat data flows smoothly. Another type of

bin, calledautopluggerelements, automatically add other elements to the bin akd them together so
that they act as a filter between two arbitary stream types.

The plugin mechanism is used everywhere in GStreamer, ¢oetyithe standard packages are being
used. A few very basic functions reside in the core librang all others are implemented in plugins. A
plugin registry is used to store the details of the pluginannXML file. This way, a program using
GStreamer does not have to load all plugins to determinelwdunie needed. Plugins are only loaded
when their provided elements are requested.

See theGStreamer Library Referender the current implementation details Gt El ement
(../..Igstreamer/html/GstElement.html) a@st Pl ugi n (../../gstreamer/html/gstreamer-GstPlugin.html).

2.2. Pads

Padsare used to negotiate links and data flow between elementStre@mer. A pad can be viewed as a

Chapter 2. Foundations

“place” or “port” on an element where links may be made withestelements, and through which data
can flow to or from those elements. Pads have specific datdihgrapabilities: A pad can restrict the
type of data that flows through it. Links are only allowed begw two pads when the allowed data types
of the two pads are compatible.

An analogy may be helpful here. A pad is similar to a plug okjan a physical device. Consider, for
example, a home theater system consisting of an amplifiey;[a [@ayer, and a (silent) video projector.
Linking the DVD player to the amplifier is allowed becausetbdévices have audio jacks, and linking
the projector to the DVD player is allowed because both d=s/lave compatible video jacks. Links
between the projector and the amplifier may not be made bec¢hagprojector and amplifier have
different types of jacks. Pads in GStreamer serve the sampoge as the jacks in the home theater
system.

For the most part, all data in GStreamer flows one way througtkdetween elements. Data flows out
of one element through one or maseurce padsand elements accept incoming data through one or
moresink padsSource and sink elements have only source and sink pagectesly.

See theGStreamer Library Referender the current implementation details ofzat Pad
(../..Igstreamer/html/GstPad.html).

2.3. Data, Buffers and Events

All streams of data in GStreamer are chopped up into churdtsatte passed from a source pad on one
element to a sink pad on another elem@&staare structures used to hold these chunks of data.

Data contains the following important types:

- An exact type indicating what type of data (control, contenxthis Data is.

- Areference count indicating the number of elements culydrtiding a reference to the buffer. When
the buffer reference count falls to zero, the buffer will beinked, and its memory will be freed in
some sense (see below for more details).

There are two types of data defined: events (control) anctkaifEontent).

Buffers may contain any sort of data that the two linked patskhow to handle. Normally, a buffer
contains a chunk of some sort of audio or video data that flosra bne element to another.

Buffers also contain metadata describing the buffer'seotst Some of the important types of metadata
are:

- A pointer to the buffer's data.

Chapter 2. Foundations

- An integer indicating the size of the buffer’s data.

- Atimestamp indicating the preferred display timestamphefd¢ontent in the buffer.

Events contain information on the state of the stream flowigigveen the two linked pads. Events will
only be sent if the element explicitely supports them, etgecore will (try to) handle the events
automatically. Events are used to indicate, for examplégekaliscontinuity, the end of a media stream
or that the cache should be flushed.

Events may contain several of the following items:

- A subtype indicating the type of the contained event.

- The other contents of the event depend on the specific eveat ty

Events will be discussed extensively@mapter 19Until then, the only event that will be used is the
EOSevent, which is used to indicate the end-of-stream (usealti-of-file).

See theGStreamer Library Referender the current implementation details ofaat Dat a
(../..Igstreamer/html/gstreamer-GstData.hti@d), Buf f er
(../..Igstreamer/html/gstreamer-GstBuffer.html) &sd Event
(../..Igstreamer/html/gstreamer-GstEvent.html).

2.3.1. Buffer Allocation

Buffers are able to store chunks of memory of several diffetgpes. The most generic type of buffer
contains memory allocated by malloc(). Such buffers, alfioconvenient, are not always very fast,
since data often needs to be specifically copied into thesbuff

Many specialized elements create buffers that point toiape®mory. For example, the filesrc element
usually maps a file into the address space of the applicatging mmap()), and creates buffers that
point into that address range. These buffers created bydites exactly like generic buffers, except that
they are read-only. The buffer freeing code automaticatiednines the correct method of freeing the
underlying memory. Downstream elements that recieve tkiesks of buffers do not need to do anything
special to handle or unreference it.

Another way an element might get specialized buffers is quest them from a downstream peer. These
are called downstream-allocated buffers. Elements caa @gler connected to a source pad to create an
empty buffer of a given size. If a downstream element is able¢ate a special buffer of the correct size,
it will do so. Otherwise GStreamer will automatically creat generic buffer instead. The element that
requested the buffer can then copy data into the buffer, ast fhe buffer to the source pad it was
allocated from.

Chapter 2. Foundations

Many sink elements have accelerated methods for copyiregtddtardware, or have direct access to
hardware. Itis common for these elements to be able to cdeatestream-allocated buffers for their
upstream peers. One such example is ximagesink. It creatiesthat contain XImages. Thus, when an
upstream peer copies data into the buffer, it is copyingotlyento the XImage, enabling ximagesink to
draw the image directly to the screen instead of having ty clgpa into an XImage first.

Filter elements often have the opportunity to either worladsuffer in-place, or work while copying
from a source buffer to a destination buffer. It is optimairtgplement both algorithms, since the
GStreamer framework can choose the fastest algorithm asjaipgte. Naturally, this only makes sense
for strict filters -- elements that have exactly the same from source and sink pads.

2.4. Mimetypes and Properties

GStreamer uses a type system to ensure that the data passedmelements is in a recognized format.
The type system is also important for ensuring that the patara required to fully specify a format
match up correctly when linking pads between elements. laklthat is made between elements has a
specified type and optionally a set of properties.

2.4.1. The Basic Types

GStreamer already supports many basic media types. Folipiwia table of a few of the the basic types
used for buffers in GStreamer. The table contains the namar(® type") and a description of the type,
the properties associated with the type, and the meaningabf property. A full list of supported types is
included inList of Defined Types

Table 2-1. Table of Example Types

Mime Type Description Property Property Property Property
Type Values Description
audio/* All audio types| rate integer greater than 0 | The sample

rate of the data
in samples (pel
channel) per
second.

channels integer greater than 0 | The number of|
channels of
audio data.

Chapter 2. Foundations

Mime Type

Description

Property

Property
Type

Property
Values

Property
Description

audio/x-raw-int

Unstructured
and
uncompressed
raw integer
audio data.

endianness

integer

G_BIG_ENDIA
(1234) or
G_LITTLE_EN
(4321)

NThe order of
bytesin a
DHaMNple. The
value
G_LITTLE_EN
(4321) means
“little-endian”
(byte-orderis
“least
significant byte
first”). The
value
G_BIG_ENDIA
(1234) means
“big-endian”
(byte order is
“most
significant byte
first”).

DIAN

signed

boolean

TRUE or
FALSE

Whether the
values of the
integer sample
are signed or
not. Signed
samples use
one bit to
indicate sign
(negative or
positive) of the
value.
Unsigned
samples are

always positive|

width

integer

greater than 0

Number of bits
allocated per
sample.

Chapter 2. Foundations

Mime Type

Description

Property

depth

Property
Type
integer

Property
Values

greater than 0

Property
Description
The number of]
bits used per
sample. This
must be less
than or equal tg
the width: If the
depth is less
than the width,
the low bits are
assumed to be
the ones used.
For example, a
width of 32 and
a depth of 24
means that eag
sample is
stored in a 32
bit word, but
only the low 24
bits are actually
used.

audio/mpeg

Audio data
compressed
using the
MPEG audio
encoding
scheme.

mpegversion

integer

1,2o0r4

The
MPEG-version
used for
encoding the
data. The valug
1refersto
MPEG-1, -2
and -2.5 layer
1,20r3.The
values 2 and 4
refer to the
MPEG-AAC
audio encoding
schemes.

10

Chapter 2. Foundations

Mime Type Description Property Property Property Property

Type Values Description
framed boolean Oorl A true value
indicates that
each buffer
contains
exactly one
frame. A false
value indicates
that frames and
buffers do not
necessarily
match up.

layer integer 1,2,0r3 The
compression
scheme layer
used to
compress the
data(only if
mpegver-
sion=1).

bitrate integer greater than O | The bitrate, in
bits per second.
For VBR
(variable
bitrate) MPEG
data, this is the
average bitrate

audio/x-vorbis | Vorbis audio There are
data currently no
specific
properties
defined for this
type.

11

Il. Building a Plugin

You are now ready to learn how to build a plugin. In this parttef guide, you will learn how to apply
basic GStreamer programming concepts to write a simpleiplddne previous parts of the guide have
contained no explicit example code, perhaps making thirtgsabstract and difficult to understand. In
contrast, this section will present both applications amdiecby following the development of an
example audio filter plugin called “ExampleFilter”.

The example filter element will begin with a single input pad @ single output pad. The filter will, at
first, simply pass media and event data from its sink pad toitsce pad without modification. But by
the end of this part of the guide, you will learn to add someenioteresting functionality, including
properties and signal handlers. And after reading the nasttq the guideAdvanced Filter Concepts
you will be able to add even more functionality to your plugin

The example code used in this part of the guide can be fouagdnpl es/ pwg/ exanpl efil ter/ in
your GStreamer directory.

Chapter 3. Constructing the Boilerplate

In this chapter you will learn how to construct the bare minimcode for a new plugin. Starting from
ground zero, you will see how to get the GStreamer templatecseo Then you will learn how to use a
few basic tools to copy and modify a template plugin to createw plugin. If you follow the examples
here, then by the end of this chapter you will have a functiandio filter plugin that you can compile
and use in GStreamer applications.

3.1. Getting the GStreamer Plugin Templates

There are currently two ways to develop a new plugin for GS8trer: You can write the entire plugin by
hand, or you can copy an existing plugin template and wrigepllangin code you need. The second
method is by far the simpler of the two, so the first method ndlt even be described here. (Errm, that s,
“it is left as an exercise to the reader.”)

The first step is to check out a copy of tpet - t enpl at e CVS module to get an important tool and the
source code template for a basic GStreamer plugin. To chetcthegst - t enpl at e module, make sure
you are connected to the internet, and type the followingroamds at a command console:

shell $ cvs -d:pserver:anoncvs@vs. f reedeskt op. org/ cvs/ gstreaner |ogin
Logging in to :pserver:anoncvs@vs. freedesktop. org:/cvs/ gstreaner
CVS password: [ENTER]

shell $ cvs -z3 -d:pserver:anoncvs@vs. freedesktop.org:/cvs/gstreamer co gst-tenplate
gst - t enpl at e/ READVE

gst -t enpl at e/ gst - app/ AUTHORS

gst -t enpl at e/ gst - app/ ChangelLog

gst-tenpl at e/ gst - app/ Makefil e. am

gst -t enpl at e/ gst - app/ NEWS

gst -t enpl at e/ gst - app/ READVE

gst -t enpl at e/ gst - app/ aut ogen. sh

gst-tenpl at e/ gst-app/ confi gure. ac

gst-tenpl at e/ gst - app/ src/ Makefil e.am

ccccccccc

After the first command, you will have to preBSNTER to log in to the CVS server. (You might have to
log in twice.) The second command will check out a series e$§fdnd directories into

./ gst -t enpl at e. The template you will be using is irf gst - t enpl at e/ gst - pl ugi n/ directory.

You should look over the files in that directory to get a gehiel@a of the structure of a source tree for a

plugin.

13

Chapter 3. Constructing the Boilerplate

3.2. Using the Project Stamp

The first thing to do when making a new element is to specifyesbasic details about it: what its name
is, who wrote it, what version number it is, etc. We also needédfine an object to represent the element
and to store the data the element needs. These details Eretively known as théoilerplate

The standard way of defining the boilerplate is simply to &sbme code, and fill in some structures. As
mentioned in the previous section, the easiest way to dagiiscopy a template and add functionality
according to your needs. To help you do so, there is a tookin tlyst - pl ugi ns/t ool s/ directory.

This tool,make_el enent , is a quick command line tool.

To usemake_element, first open up a terminal window. Change to the
gst -t enpl at e/ gst - pl ugi n/ sr ¢ directory, and then run thmake_element command. The
arguments to thenake _element are:

1. the name of the plugin, and

2. the source file that the tool will use. By default, gstptufg,h} is used.

Note that capitalization is important for the name of thegahuUnder some operating systems,
capitalization is also important when specifying diregtnames. For example, the following commands
create the ExampleFilter plugin based on the plugin tere@at! put the output files in the

gst-tenpl at e/ gst - pl ugi n/ sr c directory:

shell $ cd gst-tenplate/gst-plugin/src
shell $../tool s/ make_el ement Exanpl eFilter

The last command creates two filgst exanpl ef i | t er. ¢ andgst exanpl efilter. h.

3.3. Examining the Basic Code

First we will examine the code you would be likely to place ineader file (although since the interface
to the code is entirely defined by the plugin system, and dbéspend on reading a header file, this is
not crucial.) The code here can be found in

exanpl es/ pwg/ exanpl efilter/boiler/gstexanplefilter.h.

Example 3-1. Example Plugin Header File
#i ncl ude <gst/gst.h>
/+ Definition of structure storing data for this element. x/

typedef struct _GstMFilter {
Gst El enent el enent;

14

Chapter 3. Constructing the Boilerplate
Gst Pad =*si nkpad, =*srcpad;

gbool ean sil ent;

} GstMWFilter;

/* Standard definition defining a class for this element. x/
typedef struct _GstMFilterd ass {

Gst El enent Cl ass parent _cl ass;
} Gst WFilterd ass;

/+ Standard macros for defining types for this element. =*/
#define GST_TYPE_MY_FILTER \

(gst_ny filter_get_type())
#define GST_MY_FILTER(obj) \

(G_TYPE_CHECK | NSTANCE_CAST((0obj), GST_TYPE_MY_FI LTER, Gst MyFil ter))
#define GST_MY_FI LTER_CLASS(kl ass) \

(G_TYPE_CHECK_CLASS_CAST((kl ass), GST_TYPE_MY_FI LTER, Gst MyFi | ter C ass))
#define GST_IS MY_FILTER(obj) \

(G_TYPE_CHECK | NSTANCE_TYPE((0obj), GST_TYPE_MY_FI LTER))
#define GST_I S MY_FILTER CLASS(obj) \

(G_TYPE_CHECK_CLASS_TYPE((kl ass), GST_TYPE_MY_FI LTER))

/+ Standard function returning type information. =*/
Glype gst_ny_filter_get_type (void);

Using this header file, you can use the following macro tos#teGbj ect basics in your source file
so that all functions will be called appropriately:

#include "filter.h"

GST_BO LERPLATE (GstMFilter, gst_ny filter, GstElenent, GST_TYPE_ELEMENT);

3.4. GstElementDetalls

The GstElementDetails structure gives a hierarchical fgpéne element, a human-readable description
of the element, as well as author and version data. The srirée

- Along, english, name for the element.

« The type of the element, as a hierarchy. The hierarchy is el@tiy specifying the top level category,
followed by a "/*, followed by the next level category, ethéltype should be defined according to the
guidelines elsewhere in this document. (FIXME: write théglines, and give a better reference to
them)

15

Chapter 3. Constructing the Boilerplate

« A brief description of the purpose of the element.

- The name of the author of the element, optionally followealpntact email address in angle
brackets.

For example:

static GstElenentDetails ny_filter_details = {
"An exanpl e plugin",
"Exanpl e/ Fi r st Exanpl e",
"Shows the basic structure of a plugin",
"your nanme <your.name@our.isp>"

The element details are registered with the plugin durirg ttase_i nit () function, which is part of
the GObject system. Thebase_i nit () function should be set for this GObject in the function where
you register the type with Glib.

static void
gst_ny _filter_base_init (gpointer klass)

{
Gst El enent Cl ass *el ement _cl ass = GST_ELEMENT_CLASS (kl ass);
static GstElenentDetails ny_filter_details = {
[--]
b
[..]
gst _el ement _cl ass_set _details (el enent_class, &ry_filter_details);
}

3.5. GstStaticPadTemplate

A GstStaticPadTemplate is a description of a pad that trmaexé will (or might) create and use. It
contains:

« A short name for the pad.
 Pad direction.

- Existence property. This indicates whether the pad exigigys (an “always” pad), only in some
cases (a “sometimes” pad) or only if the application reqeabstich a pad (a “request” pad).

« Supported types by this element (capabilities).

For example:

16

Chapter 3. Constructing the Boilerplate

static GstStaticPadTenpl ate sink_factory =
GST_STATI C_PAD_TEMPLATE (

"sink",

GST_PAD_SI NK,

GST_PAD_ALVAYS,

GST_STATI C_CAPS (" ANY")
);

Those pad templates are registered during these_i ni t () function. Pads are created from these
templates in the element’s nit () function usinggst _pad_new from tenpl ate (). The
template can be retrieved from the element class ussng el ement _cl ass_get _pad_tenpl ate

() . See below for more details on this. In order to create a nelfimen this template using

gst _pad_new from tenplate (), you will need to declare the pad template as a global vaiabl
More on this subject itChapter 4

static GstStaticPadTenpl ate sink_factory =1[..],
src_factory =[..];

static void
gst_ny filter_base_init (gpointer klass)
{
Gst El enent Cl ass *el enent _cl ass = GST_ELEMENT_CLASS (kl ass);

[--]

gst _el ement _cl ass_add_pad_tenpl ate (el enent _cl ass,
gst _static_pad_tenplate_get (&src_factory));

gst _el ement _cl ass_add_pad_tenpl ate (el enent _cl ass,
gst _static_pad_tenpl ate_get (&sink_factory));

}

The last argument in a template is its type or list of suppbtypes. In this example, we use 'ANY’,
which means that this element will accept all input. In iéfalsituations, you would set a mimetype and
optionally a set of properties to make sure that only suggabiriput will come in. This representation
should be a string that starts with a mimetype, then a setrofica-separates properties with their
supported values. In case of an audio filter that supportsieager 16-bit audio, mono or stereo at any
samplerate, the correct template would look like this:

static GstStaticPadTenpl ate sink_factory =
GST_STATI C_PAD_TEMPLATE (
"sink",
GST_PAD_SI NK,
GST_PAD_ALVAYS,
GST_STATI C_CAPS (
"audi o/ x-raw-int,
"width = (int) 16,
"depth = (int) 16,
"endi anness = (int) BYTE_ORDER,

17

Chapter 3. Constructing the Boilerplate

"channels = (int) { 1, 2},
"rate = (int) [8000, 96000]"

Values surrounded by curly brackets (“{" and “}") are listgalues surrounded by square brackets (“[”
and “]") are ranges. Multiple sets of types are supported &mal should be separated by a semicolon
(). Later, in the chapter on pads, we will see how to usestypo know the exact format of a stream:
Chapter 4

3.6. Constructor Functions

Each element has three functions which are used for conistnuaf an element. These are the

_base_i ni t () function which is meant to initialize class and child classpgerties during each new
child class creation; thecl ass_i ni t () function, which is used to initialise the class only once
(specifying what signals, arguments and virtual functitiresclass has and setting up global state); and
the_i ni t () function, which is used to initialise a specific instancelos type.

3.7. The plugin_init function

Once we have written code defining all the parts of the pluganeed to write the plugin_init()
function. This is a special function, which is called as sasithe plugin is loaded, and should return
TRUE or FALSE depending on whether it loaded initialized dependencies correctly. Also, in this
function, any supported element type in the plugin shoulcelgéstered.

static gbool ean
plugin_init (GstPlugin *plugin)
{
return gst_elenent _register (plugin, "nmy_filter",
GST_RANK _NONE,
GST_TYPE_MY_FI LTER) ;
}

GST_PLUG N_DEFI NE (
GST_VERSI ON_MAJOR,
GST_VERSI ON_M NOR,
"my_filter",

"My filter plugin",
plugin_init,

VERSI ON,

"LGPL",

"GStreamner",
"http://gstreaner.net/"

)

18

Chapter 3. Constructing the Boilerplate

Note that the information returned by the plugin_init() étion will be cached in a central registry. For
this reason, it is important that the same information isaglsweturned by the function: for example, it
must not make element factories available based on runtimeitions. If an element can only work in
certain conditions (for example, if the soundcard is nohbeised by some other process) this must be
reflected by the element being unable to enter the READY #tateavailable, rather than the plugin
attempting to deny existence of the plugin.

19

Chapter 4. Specifying the pads

As explained before, pads are the port through which data goand out of your element, and that
makes them a very important item in the process of elemeatiore In the boilerplate code, we have
seen how static pad templates take care of registering pgulaées with the element class. Here, we will
see how to create actual elements, useet caps () -functions to configure for a particular format and
how to register functions to let data flow through the element

In the elementinit () function, you create the pad from the pad template that has tegistered

with the element class in thébase_i nit () function. After creating the pad, you have to set a
_setcaps () function pointer and optionally aget caps () function pointer. Also, you have to set a
_chain () function pointer. Alternatively, pads can also operateisping mode, which mans that they
can pull data themselves. More on this topic later. Aftet,thau have to register the pad with the
element. This happens like this:

static gboolean gst_ny filter_setcaps (GstPad *pad,
Gst Caps *caps) ;

static GstFlowReturn gst_ny_filter_chain (GstPad *pad,
Gst Buf f er *buf) ;

static void
gst_ny filter_init (GstMFilter *filter, GstMFilterd ass *filter_klass)

{
Gst El enent Cl ass *kl ass = GST_ELEMENT_CLASS (filter_kl ass);

/* pad through which data conmes in to the elenment x/
filter->sinkpad = gst_pad_new fromtenplate (
gst _el ement _cl ass_get _pad_tenpl ate (klass, "sink"), "sink");
gst _pad_set _setcaps_function (filter->sinkpad, gst_ny filter_setcaps);
gst _pad_set _chain_function (filter->sinkpad, gst_ny filter_chain);

gst _el ement _add_pad (GST_ELEMENT (filter), filter->sinkpad);
/* pad through which data goes out of the elenment x/

filter->srcpad = gst_pad_new fromtenplate (
gst _el ement _cl ass_get _pad_tenpl ate (klass, "src"), "src");

gst _el ement _add_pad (GST_ELEMENT (filter), filter->srcpad);

/+ properties initial value */
filter->silent = FALSE;

20

Chapter 4. Specifying the pads

4.1. The setcaps-function

The_set caps () -function is called during caps negotiation, which is dssed in great detail in

Caps negotiatiarThis is the process where the linked pads decide on thenstypa that will transfer
between them. A full list of type-definitions can be founddhapter 12A _|i nk () receives a pointer
to aGst Caps (../../gstreamer/html/gstreamer-GstCaps.html) stihet defines the proposed streamtype,
and can respond with either “yes” (TRUE) or “no” (FALSE). Ifie element responds positively towards
the streamtype, that type will be used on the pad. An example:

static gbool ean
gst_ny _filter_setcaps (GstPad =pad,
Gst Caps *caps)

{
Gst Structure *structure = gst_caps_get_structure (caps, 0);
Gst MyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));
const gchar *m ne;
/* Since we're an audio filter, we want to handl e raw audi o
* and fromthat audio type, we need to get the sanplerate and
* nunmber of channels. =*/
mnme = gst_structure_get_nanme (structure);
if (strcnmp (mne, "audio/x-rawint") I'=0) {
GST_WARNI NG ("Wong m netype % provided, we only support %",
m e, "audi o/ x-rawint");
return FALSE;
}
/+ we're a filter and don't touch the properties of the data.
* That means we can set the given caps unnodified on the next
+ el enent, and use that negotiation return value as ours. =*/
if (lgst_pad_set_caps (filter->srcpad, caps))
return FALSE;
/= Capsnego succeeded, get the stream properties for internal
* usage and return success. */
gst _structure_get _int (structure, "rate", &filter->sanplerate);
gst _structure_get _int (structure, "channels", &filter->channels);
g_print ("Caps negotiation succeeded with % Hz @ % channel s\ n",
filter->sanplerate, filter->channels);
return TRUE;
}

21

Chapter 4. Specifying the pads

In here, we check the mimetype of the provided caps. Normgdly don’t need to do that in your own
plugin/element, because the core does that for you. We giogd it to show how to retrieve the
mimetype from a provided set of caps. Types are storegirst r uct ur e
(../..Igstreamer/html/gstreamer-GstStructure.htmbiinally. AGst Caps
(../..Igstreamer/html/gstreamer-GstCaps.html) is imgtinore than a small wrapper for 0 or more
structures/types. From the structure, you can also retfegperties, as is shown above with the function
gst _structure_get_int ().

If your _I'i nk () function does not need to perform any specific operationi(iveill only forward
caps), you can set it tgst _pad_proxy_l i nk (). Thisis a link forwarding function implementation
provided by the core. It is useful for elements such desntity.

22

Chapter 5. The chain function

The chain function is the function in which all data procegdiakes place. In the case of a simple filter,
_chain () functions are mostly linear functions - so for each incontinéfer, one buffer will go out,
too. Below is a very simple implementation of a chain funetio

static GstFl owReturn
gst_ny_filter_chain (GstPad *pad,
Gst Buf f er xbuf)

{
Gst MyFilter =filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));
if ('filter->silent)
g_print ("Have data of size % bytes!\n", GST_BUFFER_SI ZE (buf));
return gst_pad_push (filter->srcpad, buf);
}

Obviously, the above doesn’t do much useful. Instead otipgrthat the data is in, you would normally
process the data there. Remember, however, that buffer®aedways writable. In more advanced
elements (the ones that do event processing), you may wadtlionally specify an event handling
function, which will be called when stream-events are ssutlf as end-of-stream, discontinuities, tags,
etc.).

static void
gst_ny filter_init (GstMFilter = filter)
{
[--]
gst _pad_set _event _function (filter->sinkpad,
gst_ny filter_event);
[..]
}

static gbool ean
gst_ny_filter_event (GstPad *pad,
Gst Event *event)

{
GstMyFilter =filter = GST_MY_FILTER (GST_OBJECT PARENT (pad));

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_EOCs:
/* end-of -stream we should close down all stream|eftovers here x/
gst_nmy filter_stop_processing (filter);
br eak;
def aul t:
br eak;

23

}

Chapter 5. The chain function

}

return gst_pad_event_default (pad, event);

static GstFl owReturn
gst_ny_filter_chain (GstPad *pad,

{

Gst Buf f er xbuf)

Gst MFilter =filter = GST_MY_FILTER (gst_pad_get_parent (pad));
Gst Buf f er xout buf;

outbuf = gst_ny filter_process_data (filter, buf);

gst _buffer_unref (buf);

if (loutbuf) {
/= somet hing went wong - signal an error */
GST_ELEMENT_ERROR (GST_ELEMENT (filter), STREAM FAILED, (NULL), (NULL));
return GST_FLOW ERROR;

}

return gst_pad_push (filter->srcpad, outbuf);

In some cases, it might be useful for an element to have damtes the input data rate, too. In that case,
you probably want to write a so-calléolop-basedlement. Source elements (with only source pads) can
also beget-basedalements. These concepts will be explained in the advarezgibe of this guide, and

in the section that specifically discusses source pads.

24

Chapter 6. What are states?

A state describes whether the element instance is inigid)iwhether it is ready to transfer data and
whether it is currently handling data. There are four std&ftned in GStreamer:

. GST_STATE_NULL

. GST_STATE_READY
. GST_STATE_PAUSED
. GST_STATE_PLAYING

which will from now on be referred to simply as “NULL”, “READY, “PAUSED” and “PLAYING”.

GST_STATE_NULL is the default state of an element. In thégdestit has not allocated any runtime
resources, it has not loaded any runtime libraries and itotaously not handle data.

GST_STATE_READY is the next state that an element can baithd READY state, an element has all
default resources (runtime-libraries, runtime-memotigaated. However, it has not yet allocated or
defined anything that is stream-specific. When going from Nt READY state
(GST_STATE_CHANGE_NULL_TO_READY), an element shouldakte any non-stream-specific
resources and should load runtime-loadable librariesf) aVhen going the other way around (from
READY to NULL, GST_STATE_CHANGE_READY_TO_NULL), an elemeshould unload these
libraries and free all allocated resources. Examples df sesources are hardware devices. Note that
files are generally streams, and these should thus be coedide stream-specific resources; therefore,
they shouldchotbe allocated in this state.

GST_STATE_PAUSED is the state in which an element is readgtept and handle data. For most
elements this state is the same as PLAYING. The only exaepdithis rule are sink elements. Sink
elements only accept one single buffer of data and then blsidkis point the pipeline is 'prerolled’ and
ready to render data immediately.

GST_STATE_PLAYING is the highest state that an element @imbFor most elements this state is
exactly the same as PAUSED, they accept and process eveisiffiers with data. Only sink elements
need to differentiate between PAUSED and PLAYING state.lAANG state, sink elements actually
render incoming data, e.g. output audio to a sound card alererideo pictures to an image sink.

6.1. Managing filter state

If at all possible, your element should derive from one ofitea base classeRe-made base clas$es
There are ready-made general purpose base classes foeuiffgpes of sources, sinks and
filter/transformation elements. In addition to those, $plesed base classes exist for audio and video
elements and others.

25

Chapter 6. What are states?
If you use a base class, you will rarely have to handle staaegbs yourself. All you have to do is

override the base class’s start() and stop() virtual fuumgi(might be called differently depending on the
base class) and the base class will take care of everythirypto

If, however, you do not derive from a ready-made base clagdrém GstElement or some other class

not built on top of a base class, you will most likely have t@iement your own state change function to

be notified of state changes. This is definitively necesgamyur plugin is a decoder or an encoder, as
there are no base classes for decoders or encoders yet.

An element can be notified of state changes through a virtunation pointer. Inside this function, the
element can initialize any sort of specific data needed bglément, and it can optionally fail to go
from one state to another.

Do not g_assert for unhandled state changes; this is takerothy the GstElement base class.

static Gst StateChangeReturn
gst_nmy _filter_change_state (GstEl ement *el enent, GstStateChange transition);

static void
gst_nmy filter_class_init (GstMFilterd ass *kl ass)

{
Gst El enent Cl ass *el enent _cl ass = GST_ELEMENT_CLASS (kl ass);

el enent _cl ass->change_state = gst_ny_filter_change_state;

}

static Gst StateChangeReturn
gst_ny_filter_change_state (GstEl ement *el ement, Gst StateChange transition)
{

Gst St at eChangeReturn ret = GST_STATE_CHANGE_SUCCESS;

Gst MyFilter =filter = GST_MY_FILTER (el ement);

switch (transition) {
case GST_STATE_CHANGE_NULL_TO READY:
if ('gst_ny filter_allocate_nenory (filter))
return GST_STATE_CHANGE_FAI LURE;
br eak;
defaul t:
br eak;

}

ret = GST_ELEMENT_CLASS (parent_cl ass)->change_state (el enent, transition);
if (ret == GST_STATE_CHANGCE_FAI LURE)
return ret;

switch (transition) {

case GST_STATE CHANGE READY TO NULL:
gst_ny filter_free_nenory (filter);

26

Chapter 6. What are states?

br eak;
defaul t:
br eak;

}

return ret;

}

Note that upwards (NULL=>READY, READY=>PAUSED, PAUSED=>RYING) and downwards
(PLAYING=>PAUSED, PAUSED=>READY, READY=>NULL) state chges are handled in two
separate blocks with the downwards state change handlgafial we have chained up to the parent
class’s state change function. This is necessary in ordsftdy handle concurrent access by multiple
threads.

The reason for this is that in the case of downwards stateggsyou don’t want to destroy allocated
resources while your plugin’s chain function (for exampgetill accessing those resources in another
thread. Whether your chain function might be running or rexgehds on the state of your plugin’s pads,
and the state of those pads is closely linked to the stateecldment. Pad states are handled in the
GstElement class’s state change function, including primp&ing, that's why it is essential to chain up
before destroying allocated resources.

27

Chapter 7. Adding Arguments

The primary and most important way of controlling how an eéetbehaves, is through GObject
properties. GObject properties are defined in_ theass_i nit () function. The element optionally
implements aget _property () anda set_property () function. These functions will be
notified if an application changes or requests the value obpgrty, and can then fill in the value or take
action required for that property to change value integnall

/* properties */

enum {
ARG 0,
ARG_SI LENT
/* FILL ME */
S
static void gst_ny filter_set_property (GObject *0obj ect,
gui nt prop_id,
const GVal ue *val ue,
GPar anfspec *pspec) ;
static void gst_ny filter_get_property (GObject *0obj ect,
gui nt prop_id,
Gval ue *val ue,

GPar anfspec *pspec) ;

static void
gst_nmy filter_class_init (GstMFilterd ass *kl ass)

{
Ghj ect C ass *obj ect_class = G OBJECT_CLASS (kl ass);
/+ define properties */
g_object_class_install _property (object_class, ARG SILENT,
g_param spec_bool ean ("silent", "Silent",
"Whet her to be very verbose or not",
FALSE, G PARAM READWRI TE));
/* define virtual function pointers =/
obj ect _cl ass->set _property = gst_ny_filter_set_property;
obj ect _cl ass->get _property = gst_ny_filter_get_property;
}
static void
gst_ny filter_set_property (GDbject *0bj ect,
gui nt prop_id,

const GVal ue *val ue,
GPar anfspec *pspec)

{
Gst MFilter =filter = GST_MY_FILTER (object);

switch (prop_id) {
case ARG SI LENT:

28

Chapter 7. Adding Arguments

filter->silent = g_val ue_get _bool ean (val ue);
g_print ("Silent argunent was changed to %s\n",

filter->silent ? "true" : "false");
br eak;
defaul t:
G _OBJECT_WARN_| NVALI D_PROPERTY_I D (object, prop_id, pspec);
br eak;

}
}

static void
gst_nmy filter_get_property (Gbject *0bj ect,

gui nt prop_id,
Gval ue +val ue,
GPar anfSpec *pspec)
{
Gst MyFilter =filter = GST_MY_FILTER (object);
switch (prop_id) {
case ARG SI LENT:
g_val ue_set _bool ean (value, filter->silent);
br eak;
def aul t:
G _OBJECT_WARN | NVALI D_PROPERTY_I D (object, prop_id, pspec);
br eak;
}
}

The above is a very simple example of how arguments are usagh@al applications - for example
GStreamer Editor - will use these properties and will dig@aiser-controlleable widget with which
these properties can be changed. This means that - for thenpydo be as user-friendly as possible - you
should be as exact as possible in the definition of the prepdéat only in defining ranges in between
which valid properties can be located (for integers, floats,), but also in using very descriptive (better
yet: internationalized) strings in the definition of the peoty, and if possible using enums and flags
instead of integers. The GObject documentation descrimsetin a very complete way, but below, we'll
give a short example of where this is useful. Note that usitegers here would probably completely
confuse the user, because they make no sense in this carttexéxample is stolen from videotestsrc.

t ypedef enum {
GST_VI DEOTESTSRC SMPTE,
GST_VI DEOCTESTSRC_SNOW
GST_VI DEOTESTSRC BLACK
} GstVideotestsrcPattern;

[--]

#defi ne GST_TYPE_VI DEOTESTSRC PATTERN (gst_vi deotestsrc_pattern_get_type ())
static Glype
gst _vi deotestsrc_pattern_get _type (void)

{

29

Chapter 7. Adding Arguments

static GIype videotestsrc_pattern_type = O;

if (!'videotestsrc_pattern_type) {
static GEnunVal ue pattern_types[] = {
{ GST_VI DECTESTSRC_SMPTE, "snpte", "SMPTE 100% col or bars" },
{ GST_VI DEOCTESTSRC_SNOW "snow', "Random (tel evision snow" },
{ GST_VI DEOCTESTSRC_BLACK, "bl ack", "0% Bl ack" },
{ 0, NULL, NULL },

b

vi deotestsrc_pattern_type =
g_enumregister_static ("GstVideotestsrcPattern",
pattern_types);

}

return videotestsrc_pattern_type;

}
[--]

static void
gst _videotestsrc_class_init (GstvideotestsrcC ass *kl ass)

{

[..]

g_object_class_install_property (G OBJECT_CLASS (kl ass), ARG TYPE,
g_param spec_enum ("pattern”, "Pattern",
"Type of test pattern to generate",

GST_TYPE_VI DEOTESTSRC_PATTERN, 1, G PARAM READVRI TE));

30

Chapter 8. Signals

GObject signals can be used to notify applications of evepesific to this object. Note, however, that
the application needs to be aware of signals and their mgasinif you're looking for a generic way for
application-element interaction, signals are probablywitat you're looking for. In many cases,
however, signals can be very useful. See the GObject dociatiam
(http:/lwww.le-hacker.org/papers/gobject/index.Htfat all internals about signals.

31

Chapter 9. Building a Test Application

Often, you will want to test your newly written plugin in an simall setting as possible. Usually,

gst -1 aunch is a good first step at testing a plugin. However, you will ofteeed more testing features
than gst-launch can provide, such as seeking, eventsaatiaty and more. Writing your own small
testing program is the easiest way to accomplish this. Tédsan explains - in a few words - how to do
that. For a complete application development guide, seAppdcation Development Manual
(-./../manual/html/index.html).

At the start, you need to initialize the GStreamer core liptay callinggst _init (). You can
alternatively callgst _i nit _wi t h_popt _t abl es (), which will return a pointer to popt tables. You
can then use libpopt to handle the given argument table fasavill finish the GStreamer intialization.

You can create elements usiggt _el enent _f act ory_make (), where the first argumentis the
element type that you want to create, and the second argusnefree-form name. The example at the
end uses a simple filesource - decoder - soundcard outpuir@pleut you can use specific debugging
elements if that's necessary. For exampleij dent i t y element can be used in the middle of the
pipeline to act as a data-to-application transmitter. This be used to check the data for misbehaviours
or correctness in your test application. Also, you can uselkasi nk element at the end of the pipeline
to dump your data to the stdout (in order to do this, setitingp property to TRUE). Lastly, you can use
theef ence element (indeed, an eletric fence memory debugger wrapeereat) to check for memory
errors.

During linking, your test application can use fixation orditd caps as a way to drive a specific type of
data to or from your element. This is a very simple and efiectvay of checking multiple types of input
and output in your element.

Running the pipeline happens through tfse _bi n_i terate () function. Note that during running,
you should connect to at least the “error” and “eos” signalsh@ pipeline and/or your plugin/element to
check for correct handling of this. Also, you should add esémto the pipeline and make sure your
plugin handles these correctly (with respect to clockintgiinal caching, etc.).

Never forget to clean up memory in your plugin or your testlaapion. When going to the NULL state,
your element should clean up allocated memory and cachss, Akhould close down any references
held to possible support libraries. Your application sldaudr ef () the pipeline and make sure it
doesn’t crash.

#i ncl ude <gst/gst.h>

static gbool ean

bus_call (GstBus *bus,
Cst Message *nsg,
gpoi nter dat a)

{

Gvai nLoop *l oop = dat a;

32

}

Chapter 9. Building a Test Application

switch (GST_MESSAGE TYPE (nsg)) {
case GST_MESSAGE _ECs:
g_print ("End-of-streamn");
g_main_l oop_quit (loop);
br eak;
case GST_MESSAGE ERROR: {
gchar *debug
GError *err;

gst _nmessage_parse_error (nsg, &err, &debug);
g_free (debug);

g_print ("Error: 9%\n", err->nessage);
g_error_free (err);

g_main_l oop_quit (loop);
br eak;

}

defaul t:
br eak;

}

return TRUE;

gi nt
mai n (gint argc,

{

gchar =xargv[])

Gst El enent =pipeline, *filesrc, *decoder, *filter, =*sink;
Gwvai nLoop *I oop;

/* initialization */

gst_init (&rgc, &argv);

|l oop = g_mmi n_l oop_new (NULL, FALSE);

if (argc '= 2) {
g_print ("Usage: % <np3 filename>\n", argv[O0]);
return 01;

}

/+ create elenments x/
pi peline = gst_pipeline_new ("ny_pipeline");
gst _bus_add_wat ch (gst_pi peline_get_bus (GST_PI PELI NE (pi peline)),

bus_call, |oop);
filesrc = gst_elenent_factory_make ("filesrc", "nmy_filesource");
decoder = gst_elenent_factory_nake ("mad", "ny_decoder");
filter = gst_elenent _factory_make ("ny_filter", "nmy_filter");
si nk = gst_el enent _factory_neke ("osssink", "audi osink");
if (!'sink || !decoder) {

g_print ("Decoder or output could not be found - check your install\n");
return -1;

33

Chapter 9. Building a Test Application

} else if (!filter) {
g_print ("Your self-witten filter could not be found. Make sure it
"is installed correctly in $(libdir)/gstreamer-0.9/ and that
"you' ve ran gst-register-0.9 to register it. Check availability "
"of the plugin afterwards using \"gst-inspect-0.9 nmy_filter\"");
return -1;

}

g_object_set (G OBJECT (filesrc), "location", argv[1], NULL);
/* link everything together =/

gst _element _link_many (filesrc, decoder, filter, sink, NULL);
gst _bin_add_many (GST_BIN (pipeline), filesrc, decoder, filter, sink, NULL);
[+ run x/

gst _el ement _set_state (pipeline, GST_STATE_PLAYI NG ;

g_mai n_|l oop_run (1l oop);

[+ clean up */

gst _el ement _set_state (pipeline, GST_STATE NULL);

gst _obj ect _unref (GST_OBJECT (pipeline));

return O;

34

Ill. Advanced Filter Concepts

By now, you should be able to create basic filter elementscrateceive and send data. This is the
simple model that GStreamer stands for. But GStreamer canudi more than only this! In this

chapter, various advanced topics will be discussed, susbtesluling, special pad types, clocking,
events, interfaces, tagging and more. These topics areiga that makes GStreamer so easy to use for
applications.

Chapter 10. Caps negotiation

Caps negotiation is the process where elements configurestiiees and each other for streaming a
particular media format over their pads. Since differepety of elements have different requirements for
the media formats they can negotiate to, it is importanttiatprocess is generic and implements all
those use cases correctly.

In this chapter, we will discuss downstream negotiation @pstream negotiation from a pipeline
perspective, implicating the responsibilities of diffetéypes of elements in a pipeline, and we will
introduce the concept dixed caps

10.1. Caps negotiation use cases

Let's take the case of a file source, linked to a demuxer, tirnkea decoder, linked to a converter with a
caps filter and finally an audio output. When dataflow oridinstarts, the demuxer will parse the file
header (e.g. the Ogg headers), and notice that there isxdon@e, a Vorbis stream in this Ogg file.
Noticing that, it will create an output pad for the Vorbismlentary stream and set a Vorbis-caps on it.
Lastly, it adds the pad. As of this point, the pad is ready tased to stream data, and so the Ogg
demuxer is now done. This padnstre-negotiatable, since the type of the data stream is enelgedd
within the data.

The Vorbis decoder will decode the Vorbis headers and theiSatata coming in on its sinkpad. Now,
some decoders may be able to output in multiple output fanfiat example both 16-bit integer output
and floating-point output, whereas other decoders may leetalinly decode into one specific format,
e.g. only floating-point (32-bit) audio. Those two casesshaansequences for how caps negotiation
should be implemented in this decoder element. In the ores @tds possible to use fixed caps, and
you're done. In the other case, however, you should impletienpossibility forenegotiationin this
element, which is the possibility for the data format to baraded to another format at some point in the
future. We will discuss how to do this in one of the sectiongtfer on in this chapter.

The filter can be used by applications to force, for examp#gexific channel configuration
(5.1/surround or 2.0/stereo), on the pipeline, so that #e can enjoy sound coming from all its
speakers. The audio sink, in this example, is a standard AuBput element (alsasink). The converter
element supports any-to-any, and the filter will make sua¢ ¢imly a specifically wanted channel
configuration streams through this link (as provided by teeris channel configuration preference). By
changing this preference while the pipeline is running, s@ements will have to renegotiatdile the
pipeline is running This is done through upstream caps renegotiation. Thatwil be discussed in
detail in a section further below.

In order for caps negotiation on non-fixed links to work cethg pads can optionally implement a
function that tells peer elements what formats it suppartder preferes. When upstream renegotiation
is triggered, this becomes important.

36

Chapter 10. Caps negotiation

Downstream elements are notified of a newly set caps only whénis actually passing their pad. This
is because caps is attached to buffers during dataflow. So thieevorbis decoder sets a caps on its
source pad (to configure the output format), the convertiinet yet be notified. Instead, the converter
will only be notified when the decoder pushes a buffer ovesatsrce pad to the converter. Right before
calling the chain-function in the converter, GStreamet elileck whether the format that was previously
negotiated still applies to this buffer. If not, it first cathe setcaps-function of the converter to configure
it for the new format. Only after that will it call the chainriation of the converter.

10.2. Fixed caps

The simplest way in which to do caps negotiation is settingedficaps on a pad. After a fixed caps has
been set, the pad can not be renegotiated from the outsigeorilir way to reconfigure the pad is for the
element owning the pad to set a new fixed caps on the pad. Fiyedis a setup property for pads, called
when creating the pad:

[..]

pad = gst_pad_new fromtenplate (..);
gst _pad_use_fixed_caps (pad);

[..]

The fixed caps can then be set on the pad by caflistg pad_set _caps ().

[..]
caps = gst_caps_new sinple ("audi o/ x-rawfloat",
"wi dth", G TYPE_INT, 32,
"endi anness", G TYPE | NT, G BYTE ORDER,
"buffer-frames", G TYPE_INT, <bytes-per-frane>,
"rate", G_TYPE_INT, <sanplerate>,
"channel s", G_TYPE_I NT, <num channel s>, NULL);
if (!gst_pad_set_caps (pad, caps)) {
GST_ELEMENT_ERROR (el enent, CORE, NEGOTI ATI ON, (NULL),
("Some debug information here"));
return GST_FLOW ERROR;

}
[--]

Elements that could implement fixed caps (on their source)a@@, in general, all elements that are not
renegotiatable. Examples include:

- Atypefinder, since the type found is part of the actual datzash and can thus not be re-negotiated.

+ Pretty much all demuxers, since the contained elementadaystileams are defined in the file headers,
and thus not renegotiatable.

« Some decoders, where the format is embedded in the datastreénot part of the peercapad
where the decoder itself is not reconfigureable, too.

37

Chapter 10. Caps negotiation

All other elements that need to be configured for the formau&himplement full caps negotiation,
which will be explained in the next few sections.

10.3. Downstream caps negotiation

Downstream negotiation takes place when a format needsgetlm a source pad to configure the
output format, but this element allows renegotiation bsedts format is configured on the sinkpad caps,
or because it supports multiple formats. The requirememtdding the actual negotiation differ slightly.

10.3.1. Negotiating caps embedded in input caps

Many elements, particularly effects and converters, wellble to parse the format of the stream from
their input caps, and decide the output format right at tina¢ already. When renegotiation takes place,
some may merely need to "forward" the renegotiation bacligiapstream (more on that later). For those
elements, all (downstream) caps negotiation can be dormmething that we call theset caps ()
function. This function is called when a buffer is pushedravpad, but the format on this buffer is not
the same as the format that was previously negotiated (oilasly, no format was negotiated yet so far).

Inthe_set caps () -function, the element can forward the caps to the next eht=ued, if that pad
accepts the format too, the element can parse the relevearhpters from the caps and configure itself
internally. The caps passed to this functiomli&waysa subset of the template caps, so there’s no need for
extensive safety checking. The following example shouw @i clear indication of how such a function
can be implemented:

static gbool ean
gst_mny _filter_setcaps (GstPad =pad,
Gst Caps *caps)

{
Gst MyFilter =filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));
GstStructure =*s;
/= forward-negotiate */
if (lgst_pad_set_caps (filter->srcpad, caps))

return FALSE;

/* negotiation succeeded, so now configure ourselves */
s = gst_caps_get_structure (caps, 0);
gst _structure_get _int (s, "rate", &ilter->sanplerate);
gst _structure_get _int (s, "channels", &filter->channels);
return TRUE;

}

38

Chapter 10. Caps negotiation

There may also be cases where the filter actually is aldbangethe format of the stream. In those
cases, it will negotiate a new format. Obviously, the elenséould first attempt to configure
“pass-through”, which means that it does not change tharstssformat. However, if that fails, then it
should callgst _pad_get _al | owed_caps () onits sourcepad to get a list of supported formats on the
outputs, and pick the first. The return value of that functguaranteed to be a subset of the template
caps.

Let’s look at the example of an element that can convert betveamplerates, so where input and output
samplerate don’t have to be the same:

static gbool ean
gst_mny _filter_setcaps (GstPad =pad,
Gst Caps *caps)
{
Gst MyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));

if (gst_pad_set_caps (filter->sinkpad, caps)) {
filter->passthrough = TRUE;

} else {
Gst Caps =*ot hercaps, *newcaps;
Gst Structure *s = gst_caps_get _structure (caps, 0), *others;

/* no passthrough, setup internal conversion */
gst _structure_get _int (s, "channels", &filter->channels);
ot hercaps = gst_pad_get _all owed_caps (filter->srcpad);
ot hers = gst_caps_get_structure (othercaps, 0);
gst _structure_set (others,
"channel s", G.TYPE_INT, filter->channels, NULL);

/* now, the sanplerate value can optionally have nmultiple val ues, so
* we "fixate" it, which neans that one fixed value is chosen */
newcaps = gst_caps_copy_nth (othercaps, 0);
gst _caps_unref (ot hercaps);
gst _pad_fixate_caps (filter->srcpad, newcaps);
if (!'gst_pad_set_caps (filter->srcpad, newcaps))

return FALSE;

/* we are now set up, configure internally =/
filter->passthrough = FALSE;

gst _structure_get_int (s, "rate", &filter->fromsanplerate);

ot hers = gst_caps_get_structure (newcaps, 0);

gst _structure_get _int (others, "rate", &ilter->to_sanplerate);

}

return TRUE;
}

static GstFl owReturn

gst_ny_filter_chain (GstPad *pad,
Gst Buf f er xbuf)

{

39

Chapter 10. Caps negotiation

Gst MyFilter *filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));
Gst Buf fer *out;

/* push on if in passthrough node */
if (filter->passthrough)
return gst_pad_push (filter->srcpad, buf);

/* convert, push =/
out = gst_ny_filter_convert (filter, buf);
gst _buffer_unref (buf);

return gst_pad_push (filter->srcpad, out);

10.3.2. Parsing and setting caps

Other elements, such as certain types of decoders, will@able to parse the caps from their input,
simply because the input format does not contain the infionaequired to know the output format yet;
rather, the data headers need to be parsed, too. In many fiasdscaps will be enough, but in some
cases, particularly in cases where such decoders are rgatadte, it is also possible to use full caps
negotiation.

Fortunately, the code required to do so is very similar tolése code example in

Negotiating caps embedded in input capih the difference being that the caps is selected in the
_chai n () -function rather than in theset caps () -function. The rest, as for getting all allowed caps
from the source pad, fixating and such, is all the same. Retizigpn, which will be handled in the next
section, is very different for such elements, though.

10.4. Upstream caps (re)negotiation

Upstream negotiation’s primary use is to renegotiate (pfran already-negotiated pipeline to a new
format. Some practical examples include to select a differeeleo size because the size of the video
window changed, and the video output itself is not capablestaling, or because the audio channel
configuration changed.

Upstream caps renegotiation is done ing¢lsé_pad_al | oc_buf f er () -function. The idea here is that
an element requesting a buffer from downstream, has tofypéei type of that buffer. If renegotiation is
to take place, this type will no longer apply, and the dowaestn element will set a new caps on the
provided buffer. The element should then reconfigure itgeffush buffers with the returned caps. The
source pad’s setcaps will be called once the buffer is pushed

40

Chapter 10. Caps negotiation

It is important to note here that different elements acyuadlve different responsibilities here:

- Elements should implement a “padalloc”-function in ordebg able to change format on
renegotiation. This is also true for filters and converters.

- Elements should allocate new buffers usiysg _pad_al | oc_buffer ().

- Elements that are renegotiatable should implement a ‘gsgtdanction on their sourcepad as well.

Unfortunately, not all details here have been worked outs@this documentation is incomplete.
FIXME.

10.5. Implementing a getcaps function

A _getcaps () -function is called when a peer element would like to knowehhiormats this element
supports, and in what order of preference. The return vdioels be all formats that this elements
supports, taking into account limitations of peer elemémther downstream or upstream, sorted by
order of preference, highest preference first.

static GstCaps *
gst_nmy _filter_getcaps (GstPad *pad)

{
Gst WFilter =filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));
Gst Pad *otherpad = (pad == filter->srcpad) ? filter->sinkpad :
filter->srcpad;
Gst Caps *ot hercaps = gst_pad_get_al |l owed_caps (ot herpad), =*caps;
gint i;
/* W& support *any* sanplerate, indifferent fromthe sanplerate
* supported by the linked el enents on both sides. =*/
for (i =0; i < gst_caps_get_size (othercaps); i++) {
Gst Structure *structure = gst_caps_get_structure (othercaps, i);
gst _structure_renove_field (structure, "rate");
}
caps = gst_caps_intersect (othercaps, gst_pad_get_pad_tenpl ate_caps (pad));
gst _caps_unref (othercaps);
return caps;
}

Using all the knowledge you've acquired by reading this ¢bgyou should be able to write an element
that does correct caps negotiation. If in doubt, look at o#ements of the same type in our CVS
repository to get an idea of how they do what you want to do.

41

Chapter 11. Different scheduling modes

Scheduling is, in short, a method for making sure that evienment gets called once in a while to
process data and prepare data for the next element. Likesvlisrnel has a scheduler to for processes,
and your brain is a very complex scheduler too in a way. Rargoalling elements’ chain functions
won't bring us far, however, so you'll understand that theestulers in GStreamer are a bit more
complex than this. However, as a start, it's a nice picture.

So far, we have only discussedhai n () -operating elements, i.e. elements that have a chainiamct
set on their sinkpad and push buffers on their sinkpad. Radd€ments) can also operate in two other
scheduling modes, however. In this chapter, we will diseusat those scheduling modes are, how they
can be enabled and in what cases they are useful. The othscheduling modes are random access
(_getrange ()-based) or task-runner (which means that this element idritasimg force in the

pipeline) mode.

11.1. The pad activation stage

The stage in which GStreamer decides in what scheduling iti@dearious elements will operate, is
called the pad-activation stage. In this stage, GStrearileguery the scheduling capabilities (i.e. it will
see in what modes each particular element/pad can operatelegide on the optimal scheduling
composition for the pipeline. Next, each pad will be notifiddhe scheduling mode that was assigned to
it, and after that the pipeline will start running.

Pads can be assigned one of three modes, each mode putingl ggerequisites on the pads. Pads
should implement a natification functioggt _pad_set _acti vatepul | _function () and

gst _pad_set _acti vat epush_function ()) to be notified of the scheduling mode assignment.
Also, sinkpads assigned to do pull-based scheduling manlddistart and stop their task in this function.

- If all pads of an element are assigned to do “push”-basedisting, then this means that data will be
pushed by upstream elements to this element using the slekpaai n () -function. Prerequisites
for this scheduling mode are that a chain-function was segdch sinkpad
usingyst _pad_set _chai n_function () and that all downstream elements operate in the same
mode. Pads are assigned to do push-based scheduling itosaak+ce element order, and within an
element first sourcepads and then sinkpads. Sink elememntspesiate in this mode if their sinkpad is
activated for push-based scheduling. Source element®tharchain-based.

- Alternatively, sinkpads can be the driving force behind@efine by operating in “pull”-based mode,
while the sourcepads of the element still operate in pusedhanode. In order to be the driving force,
those pads start@t Task when their pads are being activated. This task is a threaidwill call a
function specified by the element. When called, this functidl have random data access (through
gst _pad_get _range ()) over all sinkpads, and can push data over the sourcepaits) wh
effectively means that this element controls dataflow ingipeline. Prerequisites for this mode are
that all downstream elements can act in chain-based modéhaball upstream elements allow
random access (see below). Source elements can be tolditothist mode if their sourcepads are

42

Chapter 11. Different scheduling modes

activated in push-based fashion. Sink elements can bedeldttin this mode when their sinkpads are
activated in pull-mode.

- lastly, all pads in an element can be assigned to act in patlentoo. However, contrary to the above,
this does not mean that they start a task on their own. Ratimeeans that they are pull slave for the
downstream element, and have to provide random data accid$soim their_get _r ange
() -function. Requiremenents are that theggt _r ange () -function was set on this pad using the
functiongst _pad_set _getrange_function (). Also, if the element has any sinkpads, all those
pads (and thereby their peers) need to operate in randoresaouzde, too. Note that the element is
supposed to activate those elements itself! GStreamenaiiltio that for you.

In the next two sections, we will go closer into pull-basedextuling (elements/pads driving the
pipeline, and elements/pads providing random access)s@me specific use cases will be given.

11.2. Pads driving the pipeline

Sinkpads assigned to operate in pull-based mode, while ofdtesourcepads operate in pull-based
mode (or it has no sourcepads), can start a task that wikdhig pipeline dataflow. Within this function,
those elements have random access over all of their sinkpadgush data over their sourcepads. This
can come in useful for several different kinds of elements:

- Demuxers, parsers and certain kinds of decoders where dataescin unparsed (such as MPEG-audio
or video streams), since those will prefer byte-exact (cemgaccess from their input. If possible,
however, such elements should be prepared to operate in-bhaed mode, too.

« Certain kind of audio outputs, which require control ovegithnput dataflow, such as the Jack sound
server.

In order to start this task, you will need to create it in théwation function.

#include "filter.h"
#include <string. h>

static gbool ean gst_ny_filter_activate (GstPad * pad);
static gboolean gst_ny filter_activate_pull (GstPad =+ pad,
gbool ean active);

static void gst_ny filter_loop (GstMFilter = filter);

GST_BO LERPLATE (GstMFilter, gst_ny filter, GstElenent, GST_TYPE_ELEMENT);

static void
gst_nmy filter_init (GstMFilter = filter)
{

[--]

43

Chapter 11. Different scheduling modes

gst _pad_set _activate_function (filter->sinkpad, gst_ny filter_activate);
gst _pad_set _activatepul |l _function (filter->sinkpad,
gst_ny filter_activate_pull);

static gbool ean
gst_ny filter_activate (GstPad * pad)

{
if (gst_pad_check_pull _range (pad)) {
return gst_pad_activate_pull (pad, TRUE);
} else {
return FALSE;
}
}

static gbool ean
gst_ny filter_activate_pull (GstPad =*pad,
gbool ean active)

{
GstMyFilter =filter = GST_MY_FILTER (GST_OBJECT PARENT (pad));

if (active) {

filter->offset = 0;

return gst_pad_start_task (pad,

(Gst TaskFunction) gst_ny filter_loop, filter);

} else {

return gst_pad_stop_task (pad);
}

}

Once started, your task has full control over input and outplie most simple case of a task function is
one that reads input and pushes that over its source padottall that useful, but provides some more
flexibility than the old chain-based case that we've beekilapat so far.

#defi ne BLOCKSI ZE 2048

static void
gst_ny filter_loop (GstMFilter » filter)
{

Gst Fl owRet urn ret;

gui nt 64 | en;

Gst Format fnt = GST_FORVAT_BYTES;

Gst Buf fer xbuf = NULL;

if (!gst_pad_query_duration (filter->sinkpad, & m, & en)) {
GST_DEBUG OBJECT (filter, "failed to query duration, pausing");

44

Chapter 11. Different scheduling modes

got o stop;

}

if (filter->offset >= len) {

GST_DEBUG OBJECT (filter, "at end of input, sending ECS, pausing");
gst _pad_push_event (filter->srcpad, gst_event_new eos ());

goto stop;

}

/+* now, read BLOCKSIZE bytes frombyte offset filter->offset */
ret = gst_pad_pull _range (filter->sinkpad, filter->offset,
BLOCKSI ZE, &buf);

if (ret '= GST_FLOW.K) {
GST_DEBUG OBJECT (filter, "pull _range failed: %", gst_flow get_nanme (ret));
goto stop;

}

/* now push buffer downstream */
ret = gst_pad_push (filter->srcpad, buf);

buf = NULL; /* gst_pad_push() took ownership of buffer */

if (ret '= GST_FLOW.K) {
GST_DEBUG OBJECT (filter, "pad_push failed: %", gst_flow get_nane (ret));
goto stop;

}

/* everything is fine, increase offset and wait for us to be called again */
filter->of fset += BLOCKSI ZE;
return;

st op:
GST_DEBUG OBJECT (filter, "pausing task");
gst _pad_pause_task (filter->sinkpad);

}

11.3. Providing random access

In the previous section, we have talked about how elemenfsa@s) that are assigned to drive the
pipeline using their own task, have random access overshdipads. This means that all elements
linked to those pads (recursively) need to provide randoces&functions. Requesting random access is
done using the functiogst _pad_pul | _range (), which requests a buffer of a specified size and
offset. Source pads implementing and assigned to do randoess will have aget _r ange

() -function set usingst _pad_set _get range_f uncti on (), and that function will be called when
the peer pad requests some data. The element is then rdspdosseeking to the right offset and
providing the requested data. Several elements can implermedom access:

45

Chapter 11. Different scheduling modes

- Data sources, such as a file source, that can provide dataafngroffset with reasonable low latency.

- Filters that would like to provide a pull-based-like schizdgimode over the whole pipeline. Note that
elements assigned to do random access-based schedulthgmselves responsible for assigning this
scheduling mode to their upstream peers! GStreamer wiltinaghat for you.

- Parsers who can easily provide this by skipping a small gahedr input and are thus essentially
"forwarding" random access requests literally without amyn processing involved. Examples include
tag readers (e.g. ID3) or single output parsers, such as aBN\¥arser.

The following example will show how aget _r ange () -function can be implemented in a source
element:

#include "filter.h"
static GstFl owReturn

gst_ny filter_get_range (GstPad * pad,
gui nt 64 of f set,
gui nt | engt h,

Gst Buf fer ** buf);

GST_BO LERPLATE (GstMFilter, gst_ny filter, GstEl enent, GST_TYPE_ELEMENT);

static void
gst_nmy filter_init (GstMFilter = filter)

{
Gst El enent Cl ass *kl ass = GST_ELEMENT_GET_CLASS (filter);
filter->srcpad = gst_pad_new fromtenplate (
gst _el ement _cl ass_get _pad_tenpl ate (klass, "src"), "src");
gst _pad_set _getrange_function (filter->srcpad,
gst_ny filter_get_range);
gst _el ement _add_pad (GST_ELEMENT (filter), filter->srcpad);
[-.]
}
static gbool ean
gst_nmy filter_get_range (GstPad * pad,
gui nt 64 of f set,
gui nt | engt h,
Gst Buf fer =+ buf)
{
Gst WFilter =filter = GST_MY_FILTER (GST_OBJECT_PARENT (pad));
[.. here, you would fill =buf ..]
return GST_FLOW OK;
}

46

Chapter 11. Different scheduling modes

In practice, many elements that could theoretically do can@ccess, may in practice often be assigned
to do push-based scheduling anyway, since there is no dmanstlement able to start its own task.
Therefore, in practice, those elements should implemethit&oget _r ange () -function and a chai n

() -function (for filters and parsers) or aet _r ange () -function and be prepared to start their own
task by providing acti vat e_* () -functions (for source elements), so that GStreamer caideéor

the optimal scheduling mode and have it just work fine in pcact

a7

Chapter 12. Types and Properties

There is a very large set of possible types that may be useaktogata between elements. Indeed, each
new element that is defined may use a new data format (thoughsuat least one other element
recognises that format, it will be most likely be uselesgsinothing will be able to link with it).

In order for types to be useful, and for systems like autogérg to work, it is necessary that all elements
agree on the type definitions, and which properties are redtdior each type. The GStreamer framework
itself simply provides the ability to define types and partarg but does not fix the meaning of types
and parameters, and does not enforce standards on theareatiew types. This is a matter for a policy
to decide, not technical systems to enforce.

For now, the policy is simple:

- Do not create a new type if you could use one which alreadyt®xis

- If creating a new type, discuss it first with the other GStreadevelopers, on at least one of: IRC,
mailing lists.

- Try to ensure that the name for a new format is as unlikely tflezi with anything else created
already, and is not a more generalised name than it shoulblbexample: "audio/compressed"
would be too generalised a name to represent audio data essgat with an mp3 codec. Instead
"audio/mp3" might be an appropriate name, or "audio/cosgrd" could exist and have a property
indicating the type of compression used.

- Ensure that, when you do create a new type, you specify itlglead get it added to the list of known
types so that other developers can use the type correctly whigng their elements.

12.1. Building a Simple Format for Testing

If you need a new format that has not yet been defined irL@mtiof Defined Typesyou will want to

have some general guidelines on mimetype naming, propentié such. A mimetype would ideally be
one defined by IANA,; else, it should be in the form type/x-namieere type is the sort of data this
mimetype handles (audio, video, ...) and name should betbimyespecific for this specific type. Audio
and video mimetypes should try to support the general avidied properties (see the list), and can use
their own properties, too. To get an idea of what propertieghink are useful, see (again) the list.

Take your time to find the right set of properties for your tyfplere is no reason to hurry. Also,
experimenting with this is generally a good idea. Experéglearns that theoretically thought-out types
are good, but they still need practical use to assure thgtdheve their needs. Make sure that your
property names do not clash with similar properties usedhertypes. If they match, make sure they
mean the same thing; properties with different types bustdmee names aretallowed.

48

Chapter 12. Types and Properties

12.2. Typefind Functions and Autoplugging

With only definingthe types, we're not yet there. In order for a random datadileg recognized and
played back as such, we need a way of recognizing their typefdhe blue. For this purpose,
“typefinding” was introduced. Typefinding is the process efettting the type of a datastream.
Typefinding consists of two separate parts: first, there'srdimited number of functions that we call
typefind functionswhich are each able to recognize one or more types from art 8igeam. Then,
secondly, there’s a small engine which registers and catth ef those functions. This is the typefind
core. On top of this typefind core, you would normally writearioplugger, which is able to use this
type detection system to dynamically build a pipeline agban input stream. Here, we will focus only
on typefind functions.

A typefind function ususally lives igst - pl ugi ns/ gst/typefind/ gsttypefindfunctions.c,
unless there’s a good reason (like library dependenciga)tid elsewhere. The reason for this
centralization is to decreate the number of plugins thatinede loaded in order to detect a stream’s
type. Below is an example that will recognize AVI files, whigtart with a “RIFF” tag, then the size of
the file and then an “AVI " tag:

static void
gst _mny_typefind_function (GstTypeFind *tf,

gpoi nt er dat a)
{
guint8 *data = gst_type_find_peek (tf, 0, 12);
if (data &&
GUI NT32_FROM LE (&((guint32 x) data)[0]) == GST_MAKE_FOURCC ("R ,’I","F ,"F) &&
GUI NT32_FROM LE (&((guint32 *) data)[2]) == GST_MAKE_FOURCC (A" ,"V ., 1"," ")) {

gst _type_find_suggest (tf, GST_TYPE_FI ND_MAXI MUM
gst _caps_new_si npl e ("video/ x-nsvi deo", NULL));
}
}

static gbool ean
plugin_init (GstPlugin *plugin)

{
static gchar *exts[] = { "avi", NULL };
if ('gst_type_find_ register (plugin, "", GST_RANK PRI MARY,
gst _ny_typefind_function, exts,
gst _caps_new_si npl e ("vi deo/ x- msvi deo",
NULL), NULL))
return FALSE;
}

Note thatgst - pl ugi ns/ gst/ t ypefi nd/ gsttypefindfuncti ons. c has some simplification
macros to decrease the amount of code. Make good use of thamewant to submit typefinding
patches with new typefind functions.

49

Chapter 12. Types and Properties

Autoplugging has been discussed in great detail in the &pptin Development Manual.

12.3. List of Defined Types

Below is a list of all the defined types in GStreamer. They ali 8p in separate tables for audio, video,
container, subtitle and other types, for the sake of reditalBelow each table might follow a list of
notes that apply to that table. In the definition of each typetry to follow the types and rules as
defined by IANA (http://www.iana.org/assignmentsmedigeis) for as far as possible.

Jump directly to a specific table:

« Table of Audio Types

- Table of Video Types

- Table of Container Types
- Table of Subtitle Types

« Table of Other Types

Note that many of the properties are metuired but ratheroptionalproperties. This means that most of
these properties can be extracted from the container hdadehat - in case the container header does
not provide these - they can also be extracted by parsingrbans header or the stream content. The
policy is that your element should provide the data that @wes about by only parsing its own content,
not another element’s content. Example: the AVI headeriges/samplerate of the contained audio
stream in the header. MPEG system streams don’t. This mbabhart AVI stream demuxer would
provide samplerate as a property for MPEG audio streamsiealsean MPEG demuxer would not. A
decoder needing this data would require a stream parsetwebe two extract this from the header or
calculate it from the stream.

Table 12-1. Table of Audio Types

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values

All audio types.

audio/* | All rate integer | greater | The sample rate of the data, in samples (per channel)
audio than O |per second.
types | channelsnteger | greater | The number of channels of audio data.
than 0

All raw audio types.

50

Chapter 12. Types and Properties

n

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
audio/x4{ Un- endianngsteger | G_BIG_ENiRIANer of bytes in a sample. The value
raw-int | struc- (1234) |G_LITTLE_ENDIAN (4321) means “little-endian”
tured or (byte-order is “least significant byte first”). The value
and G_LITT& BNDIENDIAN (1234) means “big-endian” (byte
uncom- (4321) | order is “most significant byte first”).
pressed signed |boolear| TRUE | Whether the values of the integer samples are signed or
raw or not. Signed samples use one bit to indicate sign
fixed- FALSE | (negative or positive) of the value. Unsigned sample
integer are always positive.
audio | yigth |integer | greater | Number of bits allocated per sample.
data. than O
depth |integer | greater | The number of bits used per sample. This must be |ess
than O |[than or equal to the width: If the depth is less than the
width, the low bits are assumed to be the ones used.
example, a width of 32 and a depth of 24 means that
each sample is stored in a 32 bit word, but only the low
24 bits are actually used.
audio/x4{ Un- endianngsteger | G_BIG_ENiRIANer of bytes in a sample. The value
raw- struc- (1234) |G_LITTLE_ENDIAN (4321) means “little-endian”
float tured or (byte-order is “least significant byte first”). The value
and G_LITT|& BNDIANDIAN (1234) means “big-endian” (byte
uncom- (4321) | order is “most significant byte first”).
pressed
raw
floating-
point
audio
data.
width |integer |greater | The
than 0 | amount
of bits
used
and al-
located
per
sample.

All encoded audio types.

51

Chapter 12. Types and Properti

es

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
audio/x4{ AC-3 There are currently no specific properties defined of
ac3 or A52 needed for this type.
audio
streams.
audio/x{ ADPCM layout | string The layout defines the packing of the samples in the
adpcm | Audio “quick- |stream. In ADPCM, most formats store multiple
streams. time”, |samples per channel together. This number of samples
“dvi”, |differs per format, hence the different layouts. On thg
“mi- long term, we probably want this variable to die and use
crosoft”| something more descriptive, but this will do for now.
or
“4xm”.
block_aligneger | Any Chunk buffer size.
audio/x4 Audio There are currently no specific properties defined of
cinepak| as pro- needed for this type.
vided
ina
Cinepak
(Quick-
time)
stream.
audio/x4 Audio There are currently no specific properties defined of
dv as pro- needed for this type.
vided
ina
Digital
Video
stream.
audio/x- Free There are currently no specific properties defined of
flac Loss- needed for this type.
less
Audio
codec
(FLAC).

52

Chapter 12. Types and Properti

es

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
audio/x4 Data There are currently no specific properties defined of
gsm en- needed for this type.
coded
by the
GSM
codec.
audio/x4 A-Law There are currently no specific properties defined of
alaw | Audio. needed for this type.
audio/x4 Mu- There are currently no specific properties defined of
mulaw | Law needed for this type.
Audio.
audio/x{ MACE | maceversiteger | 3or6 | The version of the MACE audio codec used to encade
mace |Audio the stream.
(used in
Quick-
time).
audio/mpAgdio | mpegversiteger | 1, 2 or | The MPEG-version used for encoding the data. The
data 4 value 1 refers to MPEG-1, -2 and -2.5 layer 1, 2 or 3.
com- The values 2 and 4 refer to the MPEG-AAC audio
pressed encoding schemes.
using |framed |boolear| O or1 | A true value indicates that each buffer contains exactly
the one frame. A false value indicates that frames and
MPEG buffers do not necessarily match up.
audio
encod- | layer integer | 1, 2, or | The compression scheme layer used to compress the
ing 3 data(only if mpegversion=1)
sce-
hem. : - : — -
bitrate |integer | greater | The bitrate, in bits per second. For VBR (variable
than O |bitrate) MPEG data, this is the average bitrate.
audio/x4 Data There are currently no specific properties defined of
gdm2 |en- needed for this type.
coded
by the
QDM
version
2
codec.

53

Chapter 12. Types and Properties

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
audio/x{ Realmepiaversiofinteger |1 or 2 | The version of the Real Audio codec used to encode
pn- Audio the stream. 1 stands for a 14k4 stream, 2 stands forja
realaudialata. 28k8 stream.
audio/x4 Data There are currently no specific properties defined of
speex |en- needed for this type.

coded

by the

Speex

audio

codec
audio/xq Vorbis There are currently no specific properties defined of
vorbis |audio needed for this type.

data
audio/xq Windowsvmaversioteger | 1,2 or 3| The version of the WMA codec used to encode the
wma | Media stream.

Audio
audio/xq Ensonid There are currently no specific properties defined of
paris | PARIS needed for this type.

audio
audio/x{ Amiga There are currently no specific properties defined of
SVX IFF/ needed for this type.

SVX8/

SV16

audio
audio/xq Sphere There are currently no specific properties defined of
nist NIST needed for this type.

audio
audio/x4 Sound There are currently no specific properties defined of
voC Blaster needed for this type.

VOC

audio
audio/x- Berkeley/IRCAM/CARL There are currently no specific properties defined of
ircam |audio needed for this type.
audio/x{ Sonic There are currently no specific properties defined of
w64 Foundry’s needed for this type.

64 bit

RIFF/WRAV

54

Table 12-2. Table of Video Types

Chapter 12. Types and Properti

es

working on little-endian computers).

All encoded video types.

55

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
All video types.
video/* | All width |integer | greater | The width of the video image
video than O
types | height |integer | greater | The height of the video image
than 0
frameratéraction | greater | The (average) framerate in frames per second. Notg
or that this property does not guaranteaimnyway that it
equal O | will actually come close to this value. If you need a
fixed framerate, please use an element that provides that
(such as “videodrop”). 0 means a variable framerate.
All raw video types.
video/x-| YUV |format |fourcc | YUY2, | The layout of the video. See FourCC definition site
raw- (or YVYU, | (http://www.fourcc.org/) for references and definitions.
yuv Y'Cb’Cr] UYVY, |YUY2, YVYU and UYVY are 4:2:2 packed-pixel,
video Y41P, |Y41Pis 4:1:1 packed-pixeland IYU2 is 4:4:4
format. IYU2, |packed-pixel. Y42B is 4:2:2 planar, YV12 and 1420 are
Y42B, |4:2:0planar, Y41B is 4:1:1 planar and YUV9 and
YV12, |YVU9 are 4:1:0 planar. Y800 contains Y-samples only
1420, | (black/white).
Y41B,
YUV9,
YVU9,
Y800
video/x-| Red- |bpp integer | greater | The number of bits allocated per pixel. This is usually
raw-rgb| Green- than 0 |16, 24 or 32.
Blue depth |integer | greater | The number of bits used per pixel by the R/G/B
(RBG) than O |components. This is usually 15, 16 or 24.
video. | endianrigsteger | G_BIG |EN@IANer of bytes in a sample. The value
(1234) |G_LITTLE_ENDIAN (4321) means “little-endian”
or (byte-order is “least significant byte first”). The value
G_LITT|& BNDIANDIAN (1234) means “big-endian” (byte
(4321) | order is “most significant byte first”). For 24/32bpp,
this should always be big endian because the byte order
can be given in both.
red_maskteger | any The masks that cover all the bits used by each of the
green_mask samples. The mask should be given in the endianness
and specified above. This means that for 24/32bpp, the
blue_mask masks might be opposite to host byte order (if you are

Chapter 12. Types and Properties

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
video/x-| 3ivx There are currently no specific properties defined of
3ivx video. needed for this type.
video/x- DivX | divxvergiotieger | 3, 4 or | Version of the DivX codec used to encode the stream.
divx video. 5
video/x- Digital | systemgtoembean FALSE | Indicates that this streami®ta system container
dx Video. stream.
video/x-| FFMpeg ffvversiginteger | 1 Version of the FFMpeg video codec used to encode the
ffv video. stream.
video/x- H-263 There are currently no specific properties defined oy
h263 |video. needed for this type.
video/x-| H-264 There are currently no specific properties defined of
h264 |video. needed for this type.
video/x-| Huffyuv There are currently no specific properties defined of
huffyuv | video. needed for this type.
video/x- Indeo |indeoversiteger | 3 Version of the Indeo codec used to encode this stream.
indeo |video.
video/x- Motion- There are currently no specific properties defined oy
ipeg JPEG needed for this type. Note that video/x-jpeg only
video. applies to Motion-JPEG pictures (YUY2 colourspaceg).
RGB colourspace JPEG images are referred to as
image/jpeg (JPEG image).
video/mpd&EG | mpegvelrsiteger | 1, 2 or | Version of the MPEG codec that this stream was
video. 4 encoded with. Note that we have different mimetypes
for 3ivx, XviD, DivX and "standard" ISO MPEG-4.
This isnota good thing and we’re fully aware of this.
However, we do not have a solution yet.
systemstbeatean FALSE | Indicates that this stream it a system container
stream.
video/x-| Microsoftnsmpegirdegien | 41, 42 | Version of the MS-MPEG-4-like codec that was used
msmpegMPEG- or43 |to encode this version. A value of 41 refers to MS
4 video MPEG 4.1, 42 to 4.2 and 43 to version 4.3.
devia-
tions.

56

Chapter 12. Types and Properti

es

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values
video/x-| Microsofftnsvidegwueteiem | 1 Version of the codec - always 1.
msvideo&btdeac 1
(oldish
codec).
video/x-| Realmeflimversiomteger | 1, 2 or | Version of the Real Video codec that this stream wgs
pn- video. 3 encoded with.
realvidep
video/x-| RLE layout |string |"microsofi"fhe RLE format inside the Microsoft AVI container
rle anima- or has a different byte layout than the RLE format inside
tion "quick- | Apple’s Quicktime container; this property keeps track
format. time" | of the layout.
depth |integer | 1to 64 | Bitdepth of the used palette. This means that the palette
that belongs to this format defines 2”depth colors.
palette |dasaBuffer Buffer containing a color palette (in native-endian
RGBA) used by this format. The buffer is of size
4*2"depth.
video/x-| Sorensesvqversjameger | 1 or 3 | Version of the Sorensen codec that the stream was
svq Video. encoded with.
video/x-| Tarkin There are currently no specific properties defined of
tarkin | video. needed for this type.
video/x-| Theora There are currently no specific properties defined of
theora |video. needed for this type.
video/x-| VP-3 There are currently no specific properties defined of
vp3 video. needed for this type. Note that we have different
mimetypes for VP-3 and Theora, which is not
necessarily a good idea. This could probably be
improved.
video/x-| Windowswvmvversioteger | 1,2 or 3| Version of the WMV codec that the stream was
wmyv | Media encoded with.
Video
video/x-| XviD There are currently no specific properties defined of
xvid video. needed for this type.

All image types.

57

Chapter 12. Types and Properties

Mime | DescriptiBroperty Property Property Property Description

Type Type |Values

image/jpdgint There are currently no specific properties defined of
Picture needed for this type. Note that image/jpeg only applies
Expert to RGB-colourspace JPEG images; YUY2-colourspace
Group JPEG pictures are referred to as video/x-jpeg ("Motion
Image. JPEG").

image/prigprtable There are currently no specific properties defined of
Net- needed for this type.
work
Graph-
ics
Image.

Table 12-3. Table of Container Types

Mime | DescriptiBroperty Property Property Property Description

Type Type |Values
video/x-| Advanced There are currently no specific properties defined of
ms-asf | Stream- needed for this type.

ing

Format

(ASF).
video/x-| AVI. There are currently no specific properties defined of
msvideq needed for this type.

video/x- Digital | systemgtoemiean TRUE | Indicates that this is a container system stream rather

dv Video. than an elementary video stream.
video/x-| Matroska. There are currently no specific properties defined of
matroskia needed for this type.

video/mpdgtion | systemgtoemean TRUE | Indicates that this is a container system stream rather
Pic- than an elementary video stream.
tures
Expert
Group
System
Stream.

applicatj@gogg There are currently no specific properties defined of
needed for this type.

58

Chapter 12. Types and Properties

Mime | DescriptiBroperty Property Property Property Description

Type Type |Values

video/quiQkiickEme. There are currently no specific properties defined of
needed for this type.

video/x- Digital | systemgtoemiean TRUE | Indicates that this is a container system stream rather

pn- Video. than an elementary video stream.

realvidep

audio/x{ WAV. There are currently no specific properties defined of

wav needed for this type.

Table 12-4. Table of Subtitle Types

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values

None defined yet.

Table 12-5. Table of Other Types

Mime | DescriptiBroperty Property Property Property Description
Type Type |Values

None defined yet.

59

Chapter 13. Request and Sometimes pads

Until now, we've only dealt with pads that are always avd#alblowever, there’s also pads that are only
being created in some cases, or only if the application retgibe pad. The first is calledsametimes

the second is calledraquestpad. The availability of a pad (always, sometimes or reQuest be seen in

a pad’s template. This chapter will discuss when each ofvtlead useful, how they are created and when
they should be disposed.

13.1. Sometimes pads

A “sometimes” pad is a pad that is created under certain ¢i@mgdi, but not in all cases. This mostly
depends on stream content: demuxers will generally paessttbkam header, decide what elementary
(video, audio, subtitle, etc.) streams are embedded its&system stream, and will then create a
sometimes pad for each of those elementary streams. At itschwice, it can also create more than one
instance of each of those per element instance. The onltaliion is that each newly created pad should
have a unique name. Sometimes pads are disposed when Hra siaita is disposed, too (i.e. when going
from PAUSED to the READY state). You shoumt dispose the pad on EOS, because someone might
re-activate the pipeline and seek back to before the ersfre&m point. The stream should still stay

valid after EOS, at least until the stream data is disposedny case, the element is always the owner of
such a pad.

The example code below will parse a text file, where the fing 16 a number (n). The next lines all start
with a number (0 to n-1), which is the number of the source pat which the data should be sent.

foo
bar
boo
bye

NeERO®

The code to parse this file and create the dynamic “sometipass, looks like this:

typedef struct _GstMFilter {
[..]

gbool ean firstrun;

GLi st *srcpadlist;
} GstMWFilter;

static void

gst_ny filter_base_ init (GstMFilterd ass xkl ass)

{
Gst El enent Cl ass *el ement _cl ass = GST_ELEMENT_CLASS (kl ass);
static GstStaticPadTenpl ate src_factory =
GST_STATI C_PAD_TEMPLATE (

60

Chapter 13. Request and Sometimes pads

"src_992d",
GST_PAD_SRC,
GST_PAD_SOVETI MES,
GST_STATI C_CAPS (" ANY")
)
[--]
gst _el ement _cl ass_add_pad_tenpl ate (el enent _cl ass,
gst _static_pad_tenplate_get (&src_factory));
[--]
}

static void
gst_ny filter_init (GstMyFilter *filter)

{

[--]
filter->firstrun = TRUE;
filter->srcpadlist = NULL;

}

| *

* Get one line of data - w thout new ine.
*/

static GstBuffer =
gst_ny filter_getline (GstMFilter *filter)

{
gui nt 8 *dat a;
gint n, num
/+ max. line length is 512 characters - for safety */
for (n =0; n < 512; n++) {
num = gst _bytestream peek_bytes (filter->bs, &ata, n + 1);
if (num!=n + 1)
return NULL;
/* new ine? =/
if (data[n] == "\n") {
Gst Buf fer xbuf = gst_buffer_new and_alloc (n + 1);
gst _bytestream peek_bytes (filter->bs, &data, n);
mencpy (GST_BUFFER DATA (buf), data, n);
GST_BUFFER_DATA (buf)[n] = "\0";
gst _bytestream flush_fast (filter->bs, n + 1);
return buf;
}
}
}

static void
gst _nmy_filter_l oopfunc (GstEl enent *el ement)

{
Gst WFilter =filter = GST_MY_FILTER (el enent);

61

Chapter 13. Request and Sometimes pads

Gst Buf f er *buf;
Gst Pad *pad;
gint num n;

[+ parse header */

if (filter->firstrun) {
Gst El enent Cl ass Kkl ass;
Gst PadTenpl ate *tenpl ;
gchar *padnane;

if (!'(buf = gst_ny filter_getline (filter))) {

gst _elenent_error (el ement, STREAM READ, (NULL),
("Stream contains no header"));

return;
}
num = atoi (GST_BUFFER_DATA (buf));
gst_buffer_unref (buf);

/+ for each of the streans, create a pad */
kl ass = GST_ELEMENT_GET_CLASS (filter);
tenpl = gst_elenent_class_get_pad_tenplate (klass, "src_%02d");
for (n =0; n < num n++) {
padnane = g_strdup_printf ("src_%2d", n);
pad = gst_pad_new fromtenplate (tenpl, padnane);
g_free (padnane);

[+ here, you would set _getcaps () and _link () functions x/

gst _el ement _add_pad (el enent, pad);
filter->srcpadlist = g_list_append (filter->srcpadlist, pad);
}
}

/* and now, sinply parse each |line and push over =*/
if (!'(buf = gst_ny filter_getline (filter))) {
Gst Event *event = gst_event _new (GST_EVENT_EOCS);
GLi st *padlist;

for (padlist = srcpadlist;
padlist !'= NULL; padlist = g_list_next (padlist)) {
pad = GST_PAD (padlist->data);
gst _event _ref (event);
gst _pad_push (pad, GST_DATA (event));
}
gst _event _unref (event);
gst _el ement _set_eos (el enent);

return;

}

[+ parse stream nunber and go beyond the ':’ in the data =*/
num = atoi (GST_BUFFER _DATA (buf));
if (num>=0 & num< g _list_length (filter->srcpadlist)) {

62

Chapter 13. Request and Sometimes pads
pad = GST_PAD (g_list_nth_data (filter->srcpadlist, nunj;

/* magi c buffer parsing foo */

for (n = 0; GST_BUFFER_DATA (buf)[n] !'=":" &&
GST_BUFFER _DATA (buf)[n] !'="'\0"; n++)
i f (GST_BUFFER DATA (buf)[n] !'="\0") {

Gst Buf fer *sub;

[+ create subbuffer that starts right past the space. The reason

* that we don’t just forward the data pointer is because the

* pointer is no longer the start of an allocated bl ock of menory,

* but just a pointer to a position sonewhere in the mddle of it.

That cannot be freed upon disposal, so we’'d either crash or have
* a menl eak. Creating a subbuffer is a sinple way to solve that. =/
sub = gst_buffer_create_sub (buf, n + 1, GST_BUFFER SIZE (buf) - n - 1);
gst _pad_push (pad, GST_DATA (sub));

}

}
gst _buffer_unref (buf);

*

}

Note that we use a lot of checks everywhere to make sure taathtent in the file is valid. This has two
purposes: first, the file could be erronous, in which case weemnt a crash. The second and most
important reason is that - in extreme cases - the file couldsked maliciously to cause undefined
behaviour in the plugin, which might lead to security issuda/aysassume that the file could be used to
do bad things.

13.2. Request pads

“Request” pads are similar to sometimes pads, except thatst are created on demand of something
outside of the element rather than something inside theaxiérihis concept is often used in muxers,
where - for each elementary stream that is to be placed inutpubsystem stream - one sink pad will be
requested. It can also be used in elements with a variabléeuaf input or outputs pads, such as the

t ee (multi-output),swi t ch oraggr egat or (both multi-input) elements. At the time of writing this g
unclear to me who is responsible for cleaning up the creaaeldapd how or when that should be done.
Below is a simple example of an aggregator based on requést pa

static GstPad * gst_ny_filter_request_new pad (GstEl enent el ement ,
Gst PadTenpl ate *tenpl,
const gchar *namne) ;

static void
gst_ny filter_base_init (GstMFilterd ass xkl ass)

{
Gst El enent Cl ass *el ement _cl ass = GST_ELEMENT_CLASS (kl ass);

63

Chapter 13. Request and Sometimes pads

static GstStaticPadTenpl ate sink_factory =
GST_STATI C_PAD_TEMPLATE (

"sink_%d",

GST_PAD_SI NK,

GST_PAD_REQUEST,

GST_STATI C_CAPS (" ANY")
)
]

gst _el ement _cl ass_add_pad_t enpl ate (kl ass,
gst _static_pad_tenplate_get (&sink_factory));

}

[

static void
gst_nmy filter_class_init (GstMFilterd ass *kl ass)

{
Gst El enent Cl ass *el ement _cl ass = GST_ELEMENT_CLASS (kl ass);

[--]

el enent _cl ass->request _new _pad = gst_ny_filter_request_new pad;

}

static GstPad =

gst_mny_filter_request_new pad (GstEl enent el enent,
Gst PadTenpl ate *tenpl,
const gchar *namne)
{
Gst Pad *pad;

Gst MyFi | t er | nput Cont ext *cont ext;

context = g_new0 (GstMFilterlnputContext, 1);

pad = gst_pad_new fromtenplate (tenpl, nane);

gst _el ement _set_private_data (pad, context);

/+* normally, you would set _link () and _getcaps () functions here */

gst _el ement _add_pad (el enent, pad);

return pad;

64

Chapter 14. Clocking

When playing complex media, each sound and video samplelmeystiyed in a specific order at a
specific time. For this purpose, GStreamer provides a spmiration mechanism.

14.1. Types of time

There are two kinds of time in GStream@tock timeis an absolute time. By contrastement timeis
the relative time, usually to the start of the current metfi@ssn. The element time represents the time
that should have a media sample that is being processed ljetment at this time. The element time is
calculated by adding an offset to the clock time.

14.2. Clocks

GStreamer can use different clocks. Though the system tamdve used as a clock, soundcards and
other devices provides a better time source. For this ressoe elements provide a clock. The method
get _cl ock is implemented in elements that provide one.

As clocks return an absolute measure of time, they are natliyaused directly. Instead, a reference to a
clock is stored in any element that needs it, and it is usextniaty by GStreamer to calculate the element
time.

14.3. Flow of data between elements and time

Now we will see how time information travels the pipeline iffefent states.

The pipeline starts playing. The source element typicaligwks the time of each sampleFirst, the
source element sends a discontinous event. This everg¢garformation about the current relative time
of the next sample. This relative time is arbitrary, but itshibe consistent with the timestamp that will
be placed in buffers. It is expected to be the relative timiéostart of the media stream, or whatever
makes sense in the case of each media. When receiving ittiteeedements adjust their offset of the
element time so that this time matches the time written iretrent.

Then the source element sends media samples in bufferselEnigent places a timestamp in each buffer
saying when the sample should be played. When the buffehsdhe sink pad of the last element, this
element compares the current element time with the timgstafrthe buffer. If the timestamp is higher or
equal it plays the buffer, otherwise it waits until the tinogpiace the buffer arrives with

gst _element _wait().

65

Chapter 14. Clocking

If the stream is seeked, the next samples sent will have atam® that is not adjusted with the element
time. Therefore, the source element must send a discorstienent.

14.4. Obligations of each element.

Notes

Let us clarify the contract between GStreamer and each eleiméhe pipeline.

14.4.1. Source elements

Source elements (or parsers of formats that provide nofitime, such as MPEG, as explained above)
must place a timestamp in each buffer that they deliver. Tiggroof the time used is arbitrary, but it
must match the time delivered in the discontinous eventl§sémy). However, it is expected that the
origin is the origin of the media stream.

In order to initialize the element time of the rest of the pipe, a source element must send a
discontinous event before starting to play. In additiotgredeeking, a discontinious event must be sent,
because the timestamp of the next element does not matclethere time of the rest of the pipeline.

14.4.2. Sink elements

If the element is intended to emit samples at a specific tiea (ime playing), the element should
require a clock, and thus implement the metked_cl ock.

In addition, before playing each sample, if the current @entime is less than the timestamp in the
sample, it wait until the current time arrives should @t _el ement _wai t () 2

1. Sometimes itis a parser element the one that knows the fimiestance if a pipeline contains a
filesrc element connected to a MPEG decoder element, thesfasthe one that knows the time of
each sample, because the knowledge of when to play eachesagphbedded in the MPEG format.
In this case this element will be regarded as the source eleimethis discussion.

2. With some schedulergst _el ement _wai t () blocks the pipeline. For instance, if there is one
audio sink element and one video sink element, while theceeléiment is waiting for a sample the
video element cannot play other sample. This behaviourdeudiscussion, and might change in a
future release.

66

Chapter 15. Supporting Dynamic Parameters

Sometimes object properties are not powerful enough torobthite parameters that affect the behaviour
of your element. When this is the case you can mark these paeasras beeing Controllable. Aware
appliations can use the controller subsystem to dynaryiadjust the property values over time.

15.1. Getting Started

The controller subsystem is contained within s cont r ol | er library. You need to include the
header in your element’s source file:

#i ncl ude <gst/gst.h>
#i ncl ude <gst/controller/gstcontroller.h>

Even though thegst cont rol | er library may be linked into the host application, you shoulake sure
it is initialized in yourpl ugi n_i ni t function:

static gbool ean
plugin_init (GstPlugin *plugin)
{

[+ initialize library */
gst_controller_init (NULL, NULL);

It makes not sense for all GObject parameter to be real-tionéraolled. Therefore the next step is to
mark controllable parameters. This is done by using theiapftag GST_PARAM CONTROLLABLE. when
setting up GObject params in thel ass_i ni t method.

g_object_class_install_property (gobject_class, PROP_FREQ
g_param spec_doubl e ("freq", "Frequency", "Frequency of test signal",
0.0, 20000.0, 440.0,
G_PARAM READWRI TE | GST_PARAM CONTRCLLABLE)) ;

67

Chapter 15. Supporting Dynamic Parameters

15.2. The Data Processing Loop

In the last section we learned how to mark GObject paramsasattable. Application developers can
then queue parameter changes for these parameters. Tloaepine controller subsystem takes is to
make plugins responsible for pulling the changes in. Thigiies just one action:

gst _obj ect _sync_val ues(el ement, ti mest anp) ;

This call makes all parameter-changes for the given tinmegtactive by adjusting the GObject
properties of the element. Its up to the element to deterthiasynchronisation rate.

15.2.1. The Data Processing Loop for Video Elements

For video processing elements it is the best to synchoniseviery frame. That means one would add the
gst _obj ect _sync_val ues() call described in the previous section to the data procgdgainction of
the element.

15.2.2. The Data Processing Loop for Audio Elements

For audio processing elements the case is not as easy aséarpiocessing elements. The problem here
is that audio has a much higher rate. For PAL video one will grgcess 25 full frames per second, but
for standard audio it will be 44100 samples. It is rarely ustd synchronise controllable parameters that
often. The easiest solution is also to have just one syn@ation call per buffer processing. This makes
the control-rate dependend on the buffer size.

Elements that need a specific control-rate need to breakdhta processing loop to synchronise every
n-samples.

68

Chapter 16. MIDI

WRITEME

69

Chapter 17. Interfaces

Previously, in the chaptekdding Argumentswe have introduced the concept of GObject properties of
controlling an element’s behaviour. This is very powerhulf it has two big disadvantages: first of all, it
is too generic, and second, it isn’t dynamic.

The first disadvantage is related to the customizabilithefénd-user interface that will be built to

control the element. Some properties are more importantdtizers. Some integer properties are better
shown in a spin-button widget, whereas others would be betpgesented by a slider widget. Such
things are not possible because the Ul has no actual meanthg application. A Ul widget that
represents a bitrate property is the same as a Ul widgetepatsents the size of a video, as long as both
are of the samePar anSpec type. Another problem, is that things like parameter gragpfunction
grouping, or parameter coupling are not really possible.

The second problem with parameters are that they are nonaignn many cases, the allowed values for
a property are not fixed, but depend on things that can onlyebected at runtime. The names of inputs
fora TV card in a video4linux source element, for example, aaly be retrieved from the kernel driver
when we've opened the device; this only happens when theeglegoes into the READY state. This
means that we cannot create an enum property type to shototthis user.

The solution to those problems is to create very specialigees of controls for certain often-used
controls. We use the concept of interfaces to achieve this.bBsis of this all is the glib

GTypel nt er f ace type. For each case where we think it's useful, we've crebtiifaces which can be
implemented by elements at their own will. We've also crdateamall extension tGTypel nt er f ace
(which is static itself, too) which allows us to query forenfiace availability based on runtime properties.
This extension is calledGst | npl enent sl nt er f ace
(../../gstreamer/html/Gstimplementsinterface.html).

One important note: interfaces dotreplace properties. Rather, interfaces should be haitt to
properties. There are two important reasons for this. Birstl, properties can be saved in XML files.
Second, properties can be specified on the commandjite (aunch).

17.1. How to Implement Interfaces

Implementing interfaces is intiated in thget _t ype () of your element. You can register one or more
interfaces after having registered the type itself. Soneriaces have dependencies on other interfaces
or can only be registered by certain types of elements. Ydibeinotified of doing that wrongly when
using the element: it will quit with failed assertions, whiwill explain what went wrong. In the case of
GStreamer, the only dependency thaimeinterfaces have isGst | npl enent sl nter f ace
(../..Igstreamer/html/Gstimplementsinterface.htiér interface, we will indicate clearly when it
depends on this extension. If it does, you need to regispgraatiforthatinterface before registering
support for the interface that you're wanting to supporte Bxample below explains how to add support

70

Chapter 17. Interfaces

for a simple interface with no further dependencies. For alexplanation on
Gst | npl enent sl nt er f ace (../../gstreamer/html/Gstimplementsinterface.htsgg the next section
about the mixer interfacédlixer Interface

static void gst_ny filter_sone_interface_init (GstSonelnterface xiface);

Glype
gst_ny _filter_get_type (void)
{
static Glype ny_filter_type = 0;

if ('my_filter_type) {
static const GIypelnfo nmy_filter_info
sizeof (Gst MFilterd ass),
(GBasel nitFunc) gst_ny filter_base_init,
NULL,
(GO asslnitFunc) gst_ny filter_class_init,
NULL,
NULL,
sizeof (GstMyFilter),
0,
(G nstancelnitFunc) gst_ny filter_init
b
static const Anterfacelnfo some_interface_info = {
(G nterfacelnitFunc) gst_ny filter_sone_interface_init,
NULL,
NULL

b

{

my_filter_type =
g_type_register_static (GST_TYPE_MY_FILTER,
"Gst WFilter",
&y _filter_info, 0);
g_type_add_interface_static (ny_filter_type,
GST_TYPE_SOVE_| NTERFACE,
&some_i nterface_info);

}

return ny_filter_type;
}

static void
gst_ny filter_sone_interface_init (GstSonelnterface xiface)

{

/* here, you would set virtual function pointers in the interface */

}

71

Chapter 17. Interfaces

17.2. URIl interface

WRITEME

17.3. Mixer Interface

The goal of the mixer interface is to provide a simple yet pduléAPI to applications for audio

hardware mixer/volume control. Most soundcards have harewmixers, where volume can be changed,
they can be muted, inputs can be modified to mix their contgatwhat will be read from the device by
applications (in our case: audio source plugins). The minerface is the way to control those. The
mixer interface can also be used for volume control in saftwa.g. the “volume” element). The end
goal of this interface is to allow development of hardwarkiage control applications and for the control
of audio volume and input/output settings.

The mixer interface requires theést | npl enent sl nterface
(../..Igstreamer/html/Gstimplementsinterface.htmi¢rface to be implemented by the element. The
example below will feature both, so it serves as an examplté Gst | npl ement sl nterface
(../..Igstreamer/html/Gstimplementsinterface.htitol, In this interface, it is required to set a function
pointer for the supported () function. If you don't, this function will always return FARE (default
implementation) and the mixer interface implementatiolh mat work. For the mixer interface, the only
required functionis i st _tracks (). All other function pointers in the mixer interface are aptal,
although it is strongly recommended to set function pomtfer at least thget _vol une () and

set _vol une () functions. The API reference for this interface documelmésgoal of each function, so
we will limit ourselves to the implementation here.

The following example shows a mixer implementation for awafe N-to-1 element. It does not show
the actual process of stream mixing, that is far too comfgit#or this guide.

#i ncl ude <gst/ m xer/ m xer. h>

typedef struct _GstMFilter {
[--]

gi nt vol une;

Gi st *tracks;
} GstMWFilter;

static void gst_ny filter_inplenents_interface_init (GstlnplenmentslnterfaceC ass *iface);
static void gst_ny filter_mxer_interface_init (GstM xerCl ass *iface);

Glype
gst_ny _filter_get_type (void)
{
[-.]
static const Anterfacelnfo inplements_interface_info = {
(G nterfacelnitFunc) gst_ny filter_inplenents_interface_init,
NULL,

72

Chapter 17. Interfaces

NULL
s
static const Anterfacelnfo mixer_interface_info = {
(G nterfacelnitFunc) gst_ny filter_mxer_interface_init,
NULL,
NULL
}
[--]
g_type_add_interface_static (ny_filter_type,
GST_TYPE_| MPLEMENTS_| NTERFACE,
& mpl ements_interface_info);
g_type_add_interface_static (ny_filter_type,
GST_TYPE_M XER,
&m xer _interface_info);
[--]
}

static void
gst_ny filter_init (GstMFilter *filter)
{
Gst M xer Track *track = NULL;
[--]
filter->volune = 100;
filter->tracks = NULL;
track = g_object_new (GST_TYPE_M XER TRACK, NULL);
track->l abel = g_strdup ("MTrack");
track->num channel s = 1;
track->m n_vol une = O;
track->max_vol une = 100;
track->fl ags = GST_M XER_TRACK_ SOFTWARE;
filter->tracks = g_list_append (filter->tracks, track);

}

static gbool ean
gst_ny filter_interface_supported (Gstlnplenentsinterface *iface,
Glype i face_type)
{
g_return_val _if_fail (iface_type == GST_TYPE_M XER, FALSE);

/+ for the sake of this exanple, we'll always support it. However, nornally,
* you woul d check whet her the device you've opened supports m xers. x/
return TRUE;

}

static void
gst_ny filter_inplements_interface_init (GstlnplenmentslnterfaceC ass *iface)

{

i face->supported = gst_mny_filter_interface_supported;

}
| *

* This function returns the list of support tracks (inputs, outputs)
* on this elenent instance. Elenents usually build this Iist during

73

Chapter 17

* _init () or when going fromNULL to READY.
*/

static const Gist =
gst_nmy filter_mxer_list_tracks (GstM xer =*m xer)

{
Gst MyFilter =filter = GST_MY_FILTER (m xer);

return filter->tracks;

}

| *

* Set volume. volunes is an array of size track->num channels, and
* each value in the array gives the wanted vol une for one channel
* on the track.

*/

static void

gst_nmy _filter_m xer_set_volume (GstM xer *mioxer,
Gst M xer Track *track,
gi nt *vol unes)

{

Gst MFilter *filter = GST_MY_FILTER (m xer);
filter->volume = vol umes[0];

g_print ("Volune set to %\ n", filter->volune);

}

static void

gst_nmy _filter_m xer_get_vol ume (GstM xer *mioxer,
Gst M xer Track *track,
gi nt *vol unes)

{
Gst WFilter *filter = GST_MY_FILTER (m xer);

vol unes[0] = filter->vol uneg;

}

static void
gst_ny _filter_mxer_interface_init (GstM xerd ass =i face)
{
/+* the mxer interface requires a definition of the m xer type:
* hardware or software? =*/
GST_M XER TYPE (iface) = GST_M XER_SOFTWARE;

/* virtual function pointers */

iface->list_tracks = gst_ny _filter_m xer_|ist_tracks;
iface->set_volune = gst_ny filter_m xer_set_vol uneg;
i face->get _volume = gst_ny_filter_nmi xer_get_vol une;

. Interfaces

74

Chapter 17. Interfaces

The mixer interface is very audio-centric. However, witle goftware flag set, the mixer can be used to
mix any kind of stream in a N-to-1 element to join (not aggtedjestreams together into one output
stream. Conceptually, that’s called mixing too. You canaglgvuse the element factory’s “category” to
indicate type of your element. In a software element thaesbandom streams, you would not be
required to implement theget _vol une () or_set _vol une () functions. Rather, you would only
implement the set _record () to enable or disable tracks in the output stream. to maketbate
mixer-implementing element is of a certain type, check fleenent factory’s category.

17.4. Tuner Interface

As opposed to the mixer interface, that's used to join togethstreams into one output stream by
mixing all streams together, the tuner interface is used-o elements too, but instead of mixing the
input streams, it will select one stream and push the dataabfstream to the output stream. It will
discard the data of all other streams. There is a flag thatatels whether this is a software-tuner (in
which case it is a pure software implementation, with N sinkpand 1 source pad) or a hardware-tuner,
in which case it only has one source pad, and the whole strebtti®n process is done in hardware.
The software case can be used in elements sustviéch The hardware case can be used in elements
with channel selection, such as video source elementsréy4#l2src, etc.). If you need a specific
element type, use the element factory’s “category” to make that the element is of the type that you
need. Note that the interface itself is highly analog-videatric.

This interface requires theGst | npl enensl nt er f ace
(../..Igstreamer/html/Gstimplementsinterface.htmi¢rface to work correctly.

The following example shows how to implement the tuner fiaige in an element. It does not show the
actual process of stream selection, that is irrelevantfisrgection.

#i ncl ude <gst/tuner/tuner. h>

typedef struct _GstMFilter {
[--]

gint active_input;

GLi st *channel s;
} GstMWFilter;

static void gst_ny filter_inplenents_interface_init (GstlnplenmentslnterfaceC ass *iface);
static void gst_ny filter_tuner_interface_init (GstTunerC ass *iface);

Glype
gst_ny_filter_get_type (void)
{
[..]
static const Anterfacelnfo inplements_interface_info = {
(G nterfacelnitFunc) gst_ny filter_inplenents_interface_init,
NULL,
NULL
b

75

Chapter 17. Interfaces

static const Anterfacelnfo tuner_interface_info = {
(A nterfacelnitFunc) gst_ny filter_tuner_interface_init,
NULL,
NULL
s
[-.]
g_type_add_interface_static (nmy_filter_type,
GST_TYPE_| MPLEMENTS_| NTERFACE,
& mpl ements_i nterface_info);
g_type_add_interface_static (ny_filter_type,
GST_TYPE_TUNER,
& unerr_interface_info);
[-.]
}

static void

gst_ny filter_init (GstMFilter *filter)

{

Gst Tuner Channel *channel = NULL;

]

filter->active_input = 0;

filter->channel s = NULL;

channel = g_object_new (GST_TYPE_TUNER CHANNEL, NULL);
channel - >l abel = g_strdup ("M/Channel ");

channel - >fl ags = GST_TUNER_CHANNEL_ | NPUT;
filter->channels = g_list_append (filter->channels, channel);

}

[

static gbool ean
gst_ny filter_interface_supported (Gstlnplenmentsinterface *iface,
GType i face_type)
{
g_return_val _if_fail (iface_type == GST_TYPE_TUNER, FALSE);

/+ for the sake of this exanple, we'll always support it. However, nornally,
* you woul d check whet her the device you’'ve opened supports tuning. */
return TRUE;

}

static void
gst_ny filter_inplements_interface_init (GstlnplenmentslnterfaceC ass *iface)

{

i face->supported = gst_my_filter_interface_supported;

}

static const Gist =
gst_ny _filter_tuner_list_channels (GstTuner *tuner)

{
Gst MyFilter =filter = GST_MY_FILTER (tuner);

return filter->channels;

76

Chapter 17. Interfaces

static GstTuner Channel =
gst_ny_filter_tuner_get_channel (GstTuner =*tuner)

{
Gst WFilter »filter = GST_MY_FILTER (tuner);
return g_list_nth_data (filter->channels,
filter->active_input);
}

static void
gst_ny_filter_tuner_set_channel (GstTuner xtuner,
Gst Tuner Channel =*channel)

{
Gst MFilter *filter = GST_MY_FILTER (tuner);
filter->active_input = g_list_index (filter->channels, channel);
g_assert (filter->active_input >= 0);

}

static void
gst_nmy filter_tuner_interface_init (GstTunerd ass *iface)

{
iface->list_channels = gst_ny_filter_tuner_list_channels;
i face->get _channel = gst_ny_filter_tuner_get_channel;
i face->set _channel = gst_ny_filter_tuner_set_channel;

}

As said, the tuner interface is very analog video-centtifedtures functions for selecting an input or
output, and on inputs, it features selection of a tuningdesy if the channel supports frequency-tuning
on that input. Likewise, it allows signal-strength-aciugyif the input supports that. Frequency tuning
can be used for radio or cable-TV tuning. Signal-strengtimindication of the signal and can be used
for visual feedback to the user or for autodetection. Nexh#d, it also features norm selection, which is
only useful for analog video elements.

17.5. Color Balance Interface

WRITEME

17.6. Property Probe Interface

Property probing is a generic solution to the problem thapprties’ value lists in an enumeration are
static. We've shown enumerationsAdding ArgumentsProperty probing tries to accomplish a goal
similar to enumeration lists: to have a limited, explic#tlof allowed values for a property. There are two
differences between enumeration lists and probing. jretiumerations only allow strings as values;
property probing works for any value type. Secondly, thetents of a probed list of allowed values may

77

Chapter 17. Interfaces

change during the life of an element. The contents of an eratioa list are static. Currently, property
probing is being used for detection of devices (e.g. for Ogients, Video4linux elements, etc.). It
could - in theory - be used for any property, though.

Property probing stores the list of allowed (or recommendatles in eaGval ueAr r ay and returns that
to the user. NULL is a valid return value, too. The processropprty probing is separated over two
virtual functions: one for probing the property to createMal ueAr r ay, and one to retrieve the current
Gval ueArray. Those two are separated because probing might take a loed $everal seconds). Also,
this simpliies interface implementation in elements. farapplication, there are functions that wrap
those two. For more information on this, have a look at the Asfdrence for th&st Pr oper t yPr obe
interface.

Below is a example of property probing for the audio filteme&t; it will probe for allowed values for
the “silent” property. Indeed, this value is a gboolean spiésn’t make much sense. Then again, it’s
only an example.

#i ncl ude <gst/ propertyprobe/ propertyprobe. h>
static void gst_ny filter_probe_interface_init (GstPropertyProbelnterface *iface);

Glype
gst_ny_filter_get_type (void)
{
[]
static const Anterfacelnfo probe_interface_info = {
(A nterfacelnitFunc) gst_ny filter_probe_interface_init,
NULL,
NULL
S
[..]
g_type_add_interface_static (ny_filter_type,
GST_TYPE_PROPERTY_PROBE,
&probe_interface_info);
[..]
}

static const GList =
gst_mny _filter_probe_get_properties (GstPropertyProbe xprobe)

{

Gbj ect O ass *kl ass G OBJECT_GET_CLASS (probe);
static GList *props = NULL;

if (!props) {
GPar anfSpec *pspec;

pspec = g_object_class_find_property (klass, "silent");
props = g_list_append (props, pspec);
}

return props;

78

Chapter 17. Interfaces

}

static gbool ean

gst_ny_filter_probe_needs_probe (GstPropertyProbe *probe,
gui nt prop_id,
const GPar anSpec *pspec)

gbool ean res = FALSE;

switch (prop_id) {
case ARG SI LENT:
res = FALSE;
br eak;
defaul t:
G _OBJECT_WARN_| NVALI D_PROPERTY_I D (probe, prop_id, pspec);
br eak;

}

return res;

}

static void

gst _nmy_filter_probe_probe_property (GstPropertyProbe *probe,
gui nt prop_id,
const GPar anfSpec *pspec)

{
switch (prop_id) {
case ARG _SI LENT:
[+ don’t need to do nuch here... =/
br eak;
defaul t:
G _OBJECT_WARN_| NVALI D_PROPERTY_I D (probe, prop_id, pspec);
br eak;
}
}

static Gval ueArray =
gst_ny filter_get_silent_values (GstMFilter *xfilter)

{

Gval ueArray *array = g_value_array_new (2);
Gval ue value = { 0 };

g_value_init (&value, G TYPE _BOCLEAN);

/+ add TRUE =*/
g_val ue_set _bool ean (&val ue, TRUE);
g_val ue_array_append (array, &value);

/+ add FALSE =*/
g_val ue_set _bool ean (&val ue, FALSE);
g_val ue_array_append (array, &value);

g_val ue_unset (&val ue);

79

Chapter 17. Interfaces

return array,

}

static Gval ueArray =

gst_mny_filter_probe_get_val ues (GstPropertyProbe *probe,
gui nt prop_id,
const GPar anSpec *pspec)

Gst MyFilter *filter = GST_MY_FILTER (probe);
GVal ueArray »array = NULL;

switch (prop_id) {
case ARG _SI LENT:
array = gst_ny filter_get_silent_values (filter);
br eak;
defaul t:
G _OBJECT_WARN_| NVALI D_PROPERTY_I D (probe, prop_id, pspec);
br eak;

}

return array,

}

static void
gst_nmy filter_probe_interface_init (GstPropertyProbelnterface *iface)

{
i face->get _properties = gst_ny_filter_probe_get_properties;
i face- >needs_pr obe = gst_ny_filter_probe_needs_probe;
i face->probe_property = gst_ny_filter_probe_probe_property;
i face->get _val ues = gst_ny_filter_probe_get_val ues;

}

You don't need to support any functions for getting or settmalues. All that is handled via the standard
Gbj ect _set_property () and_get property () functions.

17.7. X Overlay Interface

An X Overlay is basically a video output in a XFree86 drawaBlkements implementing this interface
will draw video in a X11 window. Through this interface, ajgaltions will be proposed 2 different
modes to work with a plugin implemeting it. The first mode isssgive mode where the plugin owns,
creates and destroys the X11 window. The second mode is ige awtde where the application handles
the X11 window creation and then tell the plugin where it ddautput video. Let’s get a bit deeper in
those modes...

A plugin drawing video output in a X11 window will need to habat window at one stage or another.
Passive mode simply means that no window has been given b before that stage, so the plugin

80

Chapter 17. Interfaces

created the window by itself. In that case the plugin is resjide of destroying that window when it's
not needed anymore and it has to tell the applications thahdow has been created so that the
application can use it. This is done using tiezve_xwi ndow_i d signal that can be emitted from the
plugin with thegst _x_over| ay_got _xwi ndow_i d method.

As you probably guessed already active mode just meansggad{ 11 window to the plugin so that
video output goes there. This is done usingdhe_x_over| ay_set _xwi ndow_i d method.

It is possible to switch from one mode to another at any monsenthe plugin implementing this
interface has to handle all cases. There are only 2 methatpliigins writers have to implement and
they most probably look like that :

static void
gst_nmy _filter_set_xw ndow_id (GstXOverlay *overlay, Xl D xwi ndow_id)

{
Gst WFilter »ny_filter = GST_MY_FILTER (overl ay);

if (my_filter->w ndow)
gst_ny _filter_destroy_w ndow (ny_filter->w ndow);

ny_filter->w ndow = xwi ndow_i d;

}

static void
gst_ny_filter_get_desired_size (Gst XOverlay *overl ay,
guint =wi dth, guint xheight)

{
Gst MFilter *ny filter = GST_MY_FILTER (overl ay);
*width = ny_filter->w dth;
*hei ght = ny_filter->height;

}

static void
gst_ny filter_xoverlay_init (GstXOverlayd ass i face)

{
i face->set _xwindow.id = gst_ny _filter_set_xw ndow_ i d;
i face->get _desired_size = gst_ny_filter_get_desired_size;

}

You will also need to use the interface methods to fire sigwailsn needed such as in the pad link
function where you will know the video geometry and maybetaehe window.

static MyFilter Wndow *
gst_mny_filter_wi ndow create (GstMyFilter »ny_filter, gint w dth, gint height)
{

MyFi | t er Wndow *wi ndow = g_new (M/FilterWndow, 1);

gst _x_overlay_got _xwi ndow_id (GST_X OVERLAY (ny_filter), w ndow >wi n);

81

Chapter 17. Interfaces

}

static GstPadLi nkReturn
gst_ny _filter_sink_link (GstPad *pad, const GstCaps *caps)
{

Gst WFilter »ny_filter = GST_MY_FILTER (overl ay);

gint width, height;

gbool ean ret;

ret = gst_structure_get_int (structure, "width", &wi dth);
ret & gst_structure_get_int (structure, "height", &height);
if ('ret) return GST_PAD_LI NK_REFUSED;

if ('my_filter->w ndow)
ny_filter->wi ndow = gst_ny_filter_create_w ndow (nmy_filter, w dth, height);

gst _x_overlay_got _desired_size (GST_X OVERLAY (ny_filter),
wi dt h, height);

17.8. Navigation Interface

WRITEME

82

Chapter 18. Tagging (Metadata and Streaminfo)

Tags are pieces of information stored in a stream that artheatontent itself, but they rathdescribe

the content. Most media container formats support taggirane way or another. Ogg uses
VorbisComment for this, MP3 uses ID3, AVl and WAV use RIFR$HO list chunk, etc. GStreamer
provides a general way for elements to read tags from tharsteind expose this to the user. The tags (at
least the metadata) will be part of the stream inside thelipgeThe consequence of this is that
transcoding of files from one format to another will autoroally preserve tags, as long as the input and
output format elements both support tagging.

Tags are separated in two categories in GStreamer, evegtitapplications won'’t notice anything of
this. The first are callethetadatathe second are callesfreaminfo Metadata are tags that describe the
non-technical parts of stream content. They can be changhdwtneeding to re-encode the stream
completely. Examples are “author”, “title” or “album”. Tle®ntainer format might still need to be
re-written for the tags to fit in, though. Streaminfo, on thieey hand, are tags that describe the stream
contents technically. To change them, the stream needsr®é&ecoded. Examples are “codec” or
“bitrate”. Note that some container formats (like ID3) gmarious streaminfo tags as metadata in the
file container, which means that they can be changed so tatitn’t match the content in the file
anymore. Still, they are called metadata becdasknically they can be changed without re-encoding
the whole stream, even though that makes them invalid. fildssuch metadata tags will have the same
tag twice: once as metadata, once as streaminfo.

A tag reading element is call&thgGet t er in GStreamer. A tag writer is callethgSet t er
(../..Igstreamer/html/GstTagSetter.html). An elemempisorting both can be used in a tag editor for quick
tag changing.

18.1. Reading Tags from Streams

The basic object for tags is@t TagLi st (../../gstreamer/html/gstreamer-GstTagList.html). An
element that is reading tags from a stream should create ptyeaglist and fill this with individual tags.
Empty tag lists can be created wight _tag_| i st _new (). Then, the element can fill the list using
gst_tag_list_add_values () .Note thatan element probably reads metadata as stringgaloes
might not necessarily be strings. Be sure to gise_val ue_t r ansf orm () to make sure that your data
is of the right type. After data reading, the application bemotified of the new taglist by calling

gst _el enent _found_tags (). Thetags should also be part of the datastream, so theydsheul
pushed over all source pads. The functign_event _new_tag () creates an event from a taglist. This
can be pushed over source pads ugisig_pad_push (). Simple elements with only one source pad
can combine all these steps all-in-one by using the funeféan el ement _f ound_t ags_f or _pad ().

The following example program will parse a file and parse thiés metadata/tags rather than as actual
content-data. It will parse each line as “name:value”, elreme is the type of metadata (title, author,
...) and value is the metadata value. Thyet | i ne () is the same as the one givenSometimes pads

83

static void
gst _nmy_filter_l oopfunc (GstEl enent *el ement)

Chapter 18. Tagging (Metadata and Streaminfo)

{
Gst MyFilter =filter = GST_MY_FILTER (el enent);
Gst Buf f er *buf;
Gst TagLi st *taglist = gst_tag_list_new ();
/* get each line and parse as netadata */
while ((buf = gst_nmy filter_getline (filter))) {
gchar *line = GST_BUFFER _DATA (buf), =*colon_pos, *type = NULL;a
/* get the position of the ':’ and go beyond it =/
if (!'(colon_pos = strchr (line, ":")))
got o next:
/+* get the string before that as type of netadata */
type = g_strndup (line, colon_pos - line);
/* content is one character beyond the ’:’ x/
col on_pos = &col on_pos[1];
if (*xcolon_pos == "\0")
got o next;
/* get the netadata category, it’'s value type, store it in that
* type and add it to the taglist. =/
if (gst_tag exists (type)) {
Gvalue from={ 0}, to={ 0};
Glype to_type
to_type = gst_tag _get_type (type);
g_value_init (& rom G_TYPE STRING ;
g_value_set_string (& rom col on_pos);
g_value_init (& o, to_type);
g_value_transform (& rom &to);
g_val ue_unset (& rom;
gst _tag_list_add_values (taglist, GST_TAG MERGE_APPEND,
type, & o, NULL);
g_val ue_unset (&to);
}
next :

g_free (type);
gst _buffer_unref (buf);

}

/* signal

net adata */

gst _el ement _found_tags_for_pad (elenment, filter->srcpad, 0, taglist);
gst _tag list_free (taglist);

/* send ECS x/

gst _pad_send_event (filter->srcpad, GST_DATA (gst_event_new (GST_EVENT_EQS)));
gst _el ement _set_eos (el ement);

84

Chapter 18. Tagging (Metadata and Streaminfo)

We currently assume the core to alredahypwthe mimetypedst _t ag_exi sts ()). You can add new
tags to the list of known tags usimgt _tag_regi ster (). Ifyou think the tag will be useful in more
cases than just your own element, it might be a good idea titémldst t ag. c instead. That's up to you
to decide. If you want to do it in your own element, it's eastesegister the tag in one of your class init
functions, preferrablycl ass_init ().

static void
gst_nmy filter_class_init (GstMFilterd ass *kl ass)

{
[..]
gst _tag_register ("nmy_tag_nanme", GST_TAG FLAG META,

G_TYPE_STRI NG,
_("my own tag"),
_("atag that is specific to my own elenent"),
NULL) ;

[..]

}

18.2. Writing Tags to Streams

Tag writers are the opposite of tag readers. Tag writers takg metadata tags into account, since that's
the only type of tags that have to be written into a stream.\ilidigrs can receive tags in three ways:
internal, application and pipeline. Internal tags are tagsl by the element itself, which means that the
tag writer is - in that case - a tag reader, too. Applicatiggstare tags provided to the element via the
TagSetter interface (which is just a layer). Pipeline tagstags provided to the element from within the
pipeline. The element receives such tags via the GST_EVHNG event, which means that tags
writers should automatically be event aware. The tag wisteesponsible for combining all these three
into one list and writing them to the output stream.

The example below will receive tags from both applicatiod pipeline, combine them and write them to
the output stream. It implements the tag setter so appicaitan set tags, and retrieves pipeline tags
from incoming events.

Glype
gst_ny_filter_get_type (void)
{
[--]
static const Anterfacelnfo tag_setter_info = {
NULL,

85

Chapter 18. Tagging (Metadata and Streaminfo)

NULL,
NULL
}s

[--]
g_type_add_interface_static (ny_filter_type,
GST_TYPE_TAG SETTER,
& ag_setter_info);
[--]
}

static void
gst_ny filter_init (GstMFilter *filter)
{
GST_FLAG SET (filter, GST_ELEMENT_EVENT_AWARE);
[--]
}

| *
* Wite one tag.
*

static void
gst_nmy filter_wite_tag (const GstTagList *taglist,

const gchar *t agnane,
gpoi nt er dat a)
{

Gst WFilter »filter = GST_MY_FILTER (data);

GstBuffer xbuffer;

guint numvalues = gst_tag |list_get_tag_size (list, tag_nane), n;

const Gval ue *from

Gvalue to = { 0 };

g_value_init (& o, G TYPE_STRI NG ;

for (n = 0; n < numyval ues; n++) {
from= gst_tag_list_get_value_index (taglist, tagnanme, n);
g_value_transform(from &to);
buf = gst_buffer_new ();
GST_BUFFER _DATA (buf) = g_strdup_printf ("%: %", tagnane,

g_val ue_get_string (& o0));

GST_BUFFER_SI ZE (buf) = strlen (GST_BUFFER _DATA (buf));
gst _pad_push (filter->srcpad, GST_DATA (buf));

}

g_val ue_unset (&to);

}

static void
gst_ny_filter_l oopfunc (GstEl enent *el ement)
{
Gst WFilter =filter = GST_MY_FILTER (el enent);
Gst TagSetter *tagsetter = GST_TAG SETTER (el enent);

86

Chapter 18. Tagging (Metadata and Streaminfo)

Gst Dat a *dat a;

Gst Event *event;

gbool ean eos = FALSE;

Gst TagLi st *taglist = gst_tag_list_new ();

while (!eos) {
data = gst_pad_pull (filter->sinkpad);

/+ W' re not very much interested in data right now */
if (GST_I S_BUFFER (data))

gst _buffer_unref (GST_BUFFER (data));
event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT TAG
gst _tag_list_insert (taglist, gst_event_tag_get_list (event),
GST_TAG_MERGE_PREPEND) ;
gst _event _unref (event);

br eak;
case GST_EVENT ECs:
eos = TRUE;
gst _event _unref (event);
br eak;
defaul t:
gst _pad_event _default (filter->sinkpad, event);
br eak;

}
}

/+* merge tags with the ones retrieved fromthe application =/
if ((gst_tag_setter_get tag list (tagsetter)) {

gst _tag list_insert (taglist,

gst _tag setter_get _tag list (tagsetter),

gst _tag_setter_get_tag_nerge_node (tagsetter));

}

[+ wite tags */
gst _tag list_foreach (taglist, gst_mnmy filter_wite tag, filter);

/+ signal ECS =*/
gst _pad_push (filter->srcpad, GST_DATA (gst_event_new (GST_EVENT_EQOS)));
gst _el ement _set_eos (el enent);

Note that normally, elements would not read the full stre@fofe processing tags. Rather, they would
read from each sinkpad until they've received data (sings tsually come in before the first data
buffer) and process that.

87

Chapter 19. Events: Seeking, Navigation and
More

There are many different event types but only 2 ways they i@k across the pipeline: downstream or
upstream. It is very important to understand how both of ¢hosthods work because if one elementin
the pipeline is not handling them correctly the whole evgstam of the pipeline is broken. We will try
to explain here how these methods work and how elements pposad to implement them.

19.1. Downstream events

Downstream events are received through the sink pad’s datdflepending if your element is loop or
chain based you will receive events in your loop/chain figrcas a GstData withst _pad_pul | or
directly in the function call arguments. So when receiviagaflow from the sink pad you have to check
first if this data chunk is an event. If that’s the case you &heleat kind of event it is to react on relevant
ones and then forward others downstream ugiig pad_event _def aul t . Here is an example for
both loop and chain based elements.

/+ Chain based el enent =*/

static void

gst_nmy _filter_chain (GstPad =*pad,
Gst Dat a *dat a)

{
Gst MyFilter =filter = GST_MY_FILTER (gst_pad_get_parent (pad));

if (GST_IS_EVENT (data)) {
Gst Event *event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT ECs:
[end-of -stream we should close down all streamleftovers here */
gst_ny _filter_stop_processing (filter);
[+ fall-through to default event handling */
defaul t:
gst _pad_event _default (pad, event);
br eak;
}

return;

}
}

[+ Loop based el ement =*/
static void
gst_nmy filter_l oop (GstElenent *el enent)

{
Gst WFilter =filter = GST_MY_FILTER (el enent);

88

Chapter 19. Events: Seeking, Navigation and More
Gst Data *data = NULL;
data = gst_pad_pull (filter->sinkpad);

if (GST_IS_EVENT (data)) {
Gst Event *event = GST_EVENT (data);

switch (GST_EVENT_TYPE (event)) {

case GST_EVENT ECs:
[end-of -stream we should close down all streamleftovers here */
gst_ny _filter_stop_processing (filter);
[+ fall-through to default event handling */

defaul t:
gst _pad_event _default (filter->sinkpad, event);
br eak;

}

return;

}

19.2. Upstream events

Upstream events are generated by an element somewheregipéti@e and sent using the

gst _pad_send_event function. This function simply realizes the pad and calldiefault event handler
of that pad. The default event handler of padgss_pad_event _def aul t , it basically sends the event
to the peer pad. So upstream events always arrive on the drafyaur element and are handled by the
default event handler except if you override that handldrandle it yourself. There are some specific
cases where you have to do that :

« If you have multiple sink pads in your element. In that case will have to decide which one of the
sink pads you will send the event to.

« If you need to handle that event locally. For example a retidg event that you will want to convert
before sending it upstream.

The processing you will do in that event handler does noty@adtter but there are important rules you
have to absolutely respect because one broken elementrenadfier is breaking the whole pipeline
event handling. Here they are :

» Always forward events you won’'t handle upstream using tekaditgst _pad_event _def aul t
method.

* If you are generating some new event based on the one yowedaon’t forget to gst_event_unref
the event you received.

89

Chapter 19. Events: Seeking, Navigation and More

» Event handler function are supposed to return TRUE or FAliREcating if the event has been

handled or not. Never simply return TRUE/FALSE in that hamaixcept if you really know that you
have handled that event.

Here is an example of correct upstream event handling fougiplthat wants to modify navigation
events.

static gbool ean
gst_ny_filter_handl e_src_event (GstPad *pad,

{

Gst Event *event)
Gst MFilter *filter = GST_MY_FILTER (gst_pad_get_parent (pad));

switch (GST_EVENT_TYPE (event)) {
case GST_EVENT_ NAVI GATI ON:
Gst Event *new_event = gst_event_new (GST_EVENT_NAVI GATI ON) ; ;
/+ Create a new event based on received one and then send it =*/

gst _event _unref (event);
return gst_pad_event_default (pad, new event);
defaul t:
[+ Falling back to default event handling for that pad */
return gst_pad_event_default (pad, event);

19.3. All Events Together

In this chapter follows a list of all defined events that areently being used, plus how they should be
used/interpreted. Events are stored iBsaEvent (../../gstreamer/html/gstreamer-GstEvent.html)
structure, which is simply a big C union with the types forleagent in it. For the next development
cycle, we intend to switch events over@et St r uct ur e
(../..Igstreamer/html/gstreamer-GstStructure.htinl),you don’t need to worry about that too much for
now.

In this chapter, we will discuss the following events:

End of Stream (EOS)
Flush

Stream Discontinuity
Seek Request
Stream Filler

Interruption

90

Chapter 19. Events: Seeking, Navigation and More

- Navigation

« Tag (metadata)

19.3.1. End of Stream (EOS)

End-of-stream events are sent if the stream that an elererds®ut is finished. An element receiving
this event (from upstream, so it receives it on its sinkpaitl\generally forward the event further
downstream and set itself to EO§s€ _el enent _set _eos ()).gst _pad_event _default () takes
care of all this, so most elements do not need to supportteisteExceptions are elements that
explicitly need to close a resource down on EOS, and N-tethehts. Note that the stream itselfist a
resource that should be closed down on EOS! Applicationfitisigek back to a point before EOS and
set the pipeline to PLAYING again.

The EOS event (GST_EVENT_EOS) has no properties, and thegsigone of the simplest events in
GStreamer. It is created usiggt _event _new (GST_EVENT_ECS) ; .

Some elements support the EOS event upstream, too. Thalsidye element to go into EOS as soon as
possible and signal the EOS event forward downstream. Shiseéful for elements that have no concept
of end-of-stream themselves. Examples are TV card sowsiceln card sources, etc. This is not (yet)
part of the official specifications of this event, though.

19.3.2. Flush

The flush event is being sent downstream if all buffers antiesin the pipeline should be emptied.
“Queue” elements will empty their internal list of bufferdven they receive this event, for example. File
sink elements (e.g. “filesink”) will flush the kernel-to-Risache { dat async () orfflush ())when
they receive this event. Normally, elements receiving évisnt will simply just forward it, since most
filter or filter-like elements don’t have an internal cachelafa.gst _pad_event _default () does

just that, so for most elements, it is enough to forward theneusing the default event handler.

The flush event is created witfst _event _new (GST_EVENT_FLUSH) ; . Like the EOS event, it has no
properties.

19.3.3. Stream Discontinuity

A discontinuity event is sent downstream to indicate a disionity in the data stream. This can happen
because the application used the seek event to seek to redtffesition in the stream, but it can also be
because a real-time network source temporarily lost th@ection. After the connection is restored, the
data stream will continue, but not at the same point wheretitagt. Therefore, a discontinuity event is
being sent downstream, too.

91

Chapter 19. Events: Seeking, Navigation and More

Depending on the element type, the event can simply be foedansingyst _pad_event _def aul t

(), orit should be parsed and a modified event should be sentanlast is true for demuxers, which
generally have a byte-to-time conversion concept. Theinirs usually byte-based, so the incoming
event will have an offset in byte units (GST_FORMAT_BYTE®). Elements downstream, however,
expect discontinuity events in time units, so that it can $eduto update the pipeline clock. Therefore,
demuxers and similar elements should not forward the ebemparse it, free it and send a new
discontinuity event (in time units, GST_FORMAT_TIME) fbdr downstream.

The discontinuity event is created using the functisn_event _new_di sconti nuous (). It should
set a boolean value which indicates if the discontinuitynéi®@sent because of a new media type (this
can happen if - during iteration - a new location was set ontaark source or on a file source). then, it
should give a list of formats and offsets in that format. Tisedhould be terminated by 0 as format.

static void
my_filter_some_function (GstMFilter *filter)

{
Gst Event *event;
[..]
event = gst_event_new di sconti nuous (FALSE,
GST_FORMAT_BYTES, O,
GST_FORMAT_TI ME, O,
0);
gst _pad_push (filter->srcpad, GST_DATA (event));
[..]
}

Elements parsing this event can use macros and functiomsésgthe various properties.
GST_EVENT_DI SCONT_NEW MEDI A (event) checks the new-media boolean value.

gst _event _di scont _get _val ue (event, format, &val ue) gets the offset of the new stream
position in the specified format. If that format was not sfiediwhen creating the event, the function
returns FALSE.

19.3.4. Seek Request

Seek events are meant to request a new stream position tergienthis new position can be set in
several formats (time, bytes or “units” [a term indicatimgrhes for video, samples for audio, etc.]).
Seeking can be done with respect to the end-of-file, stafileobr current position, and can happen in
both upstream and downstream direction. Elements reagsgek events should, depending on the
element type, either forward it (filters, decoders), chathgeformat in which the eventis given and
forward it (demuxers), handle the event by changing the Bliater in their internal stream resource (file
sources) or something else.

Seek events are, like discontinuity events, built up usiogjtns in specified formats (time, bytes,
units). They are created using the functgst _event _new _seek (), where the first argumentis the
seek type (indicating with respect to which position [catrend, start] the seek should be applied, and

92

Chapter 19. Events: Seeking, Navigation and More

the format in which the new position is given (time, bytestslnand an offset which is the requested
position in the specified format.

static void
ny_filter_some_function (Gst MyFilter *filter)

{
Gst Event *event;
[-.]
/* seek to the start of a resource */
event = gst_event _new seek (GST_SEEK SET | GST_FORMAT_BYTES, 0);
gst _pad_push (filter->srcpad, GST_DATA (event));
[--]
}

Elements parsing this event can use macros and functiomséssthe properties. The seek type can be
retrieved usingsST_EVENT_SEEK_TYPE (event) . This seek type contains both the indicator of with
respect to what position the seek should be applied, andtheat in which the seek event is given. To
get either one of these properties separatelyG33e EVENT_SEEK_FORMAT (event) or
GST_EVENT_SEEK_METHOD (event). The requested position is available through
GST_EVENT_SEEK_OFFSET (event), and is given in the specified format.

19.3.5. Stream Filler

The filler event is, as the name says, a “filler” of the streantivihas no special meaning associated
with itself. It is used to provide data to downstream elera@md should be interpreted as a way of
assuring that the normal data flow will continue further detweam. The event is especially intended for
real-time MIDI source elements, which only generate datamégomethinghangesMIDI decoders will
therefore stall if nothing changes for several secondstla@e:fore playback will stop. The filler event is
sent downstream to assure the MIDI decoder that nothingggdrso that the normal decoding process
will continue and playback will, too. Unless you intend torkavith MIDI or other
control-language-based data types, you don’t need thigteYeu can mostly simply forward it with

gst _pad_event _default ().

The stream filler is created usingt _event _new (GST_EVENT_FI LLER) ; . It has no properties.

19.3.6. Interruption

The interrupt event is generated by queue elements and eenstream if a timeout occurs on the
stream. The scheduler will use this event to get back in its main loop and schedule other elements.
This prevents deadlocks or a stream stall if no data is géexbver a part of the pipeline for a
considerable amount of time. The scheduler will processeatient internally, so any normal elements do
not need to generate or handle this event at all.

93

Chapter 19. Events: Seeking, Navigation and More

The difference between the filler event and the interrupheigethat the filler event is a real part of a
pipeline, so it will reach fellow elements, which can useitdo nothing else than what | used to do".
The interrupt event never reaches fellow elements.

The interrupt eventgst _event _new (GST_EVENT_I NTERRUPT) ;) has no properties.

19.3.7. Navigation

WRITEME

19.3.8. Tag (metadata)

Tagging events are being sent downstream to indicate tlseaaparsed from the stream data. This is
currently used to preserve tags during stream transcodimg 6ne format to the other. Tags are
discussed extensively Dhapter 18Most elements will simply forward the event by calling

gst _pad_event _default ().

The tag event is created using the functign _event _new tag (). It requires afilled taglist as
argument.

Elements parsing this event can use the fungji®in event _tag_get _|ist (event) to acquire the
taglist that was parsed.

94

V. Creating special element types

By now, we have looked at pretty much any feature that can beedded into a GStreamer element.
Most of this has been fairly low-level and given deep inssghthow GStreamer works internally.
Fortunately, GStreamer contains some easier-to-usdaots to create such elements. In order to do
that, we will look closer at the element types for which G&tner provides base classes (sources, sinks
and transformation elements). We will also look closer amsdypes of elements that require no specific
coding such as scheduling-interaction or data passingatiur require specific pipeline control (e.g.
N-to-1 elements and managers).

Chapter 20. Pre-made base classes

So far, we've been looking at low-level concepts of creating type of GStreamer element. Now, let's
assume that all you want is to create an simple audiosinkibeks exactly the same as, say, “esdsink”,
or a filter that simply normalizes audio volume. Such elermané very general in concept and since they
do nothing special, they should be easier to code than tagegwour own scheduler activation functions
and doing complex caps negotiation. For this purpose, @Btee provides base classes that simplify
some types of elements. Those base classes will be discngesichapter.

20.1. Writing a sink

Sinks are special elements in GStreamer. This is becauselgiments have to take caremeroll,
which is the process that takes care that elements goinghatesT_STATE PAUSED state will have
buffers ready after the state change. The result of thisasghch elements can start processing data
immediately after going into th€ST_STATE_PLAYI NGstate, without requiring to take some time to
initialize outputs or set up decoders; all that is done alydzefore the state-change to
GST_STATE_PAUSED successfully completes.

Preroll, however, is a complex process that would requieestime code in many elements. Therefore,
sink elements can derive from ti@st BaseSi nk base-class, which does preroll and a few other utility
functions automatically. The derived class only needs fgdément a bunch of virtual functions and will
work automatically.

TheGst BaseSi nk base-class specifies some limitations on elements, though:

- It requires that the sink only has one sinkpad. Sink elemthiatsneed more than one sinkpad, cannot
use this base-class.

« The base-class owns the pad, and specifies caps negotitarhandling, pad allocation and such
functions. If you need more than the ones provided as viftuadtions, then you cannot use this
base-class.

- By implementing thead_al | ocat e () function, it is possible for upstream elements to use specia
memory, such as memory on the X server side that only the sinlkaliocate, or even hardware
memorymmap () 'ed from the kernel. Note that in almost all cases, you wilhivin subclass the
Gst Buf f er object, so that your own set of functions will be called whiea buffer loses its last
reference.

Sink elements can derive fro@st BaseSi nk using the usuablbj ect type creation voodoo, or by
using the convenience madBST_BO LERPLATE () :

GST_BO LERPLATE_FULL (Gst MySi nk, gst_ny_sink, GstBaseSink, GST_TYPE_BASE Sl NK);

[--]

96

Chapter 20. Pre-made base classes

static void
gst_my_sink_class_init (Gst MySinkC ass * kl ass)
{
kl ass->set _caps = [..];
kl ass->render = [..];
[--]
}

The advantages of deriving froGst BaseSi nk are numerous:

- Derived implementations barely need to be aware of preaiatl, do not need to know anything about
the technical implementation requirements of preroll. Bhse-class does all the hard work.

Less code to write in the derived class, shared code (andstiared bugfixes).

There are also specialized base classes for audio and Véd'sdook at those a bit.

20.1.1. Writing an audio sink

Essentially, audio sink implementations are just a speeisé of a general sink. There are two audio base
classes that you can choose to derive from, depending onngmasGst BaseAudi osi nk and

Gst Audi 0Si nk. The baseaudiosink provides full control over how synchration and scheduling is
handled, by using a ringbuffer that the derived class cdmaind provides. The audiosink base-class is a
derived class of the baseaudiosink, implementing a stamitegbuffer implementing default
synchronization and providing a standard audio-samplekcloerived classes of this base class merely
need to provide aopen (),_close () anda wite () functionimplementation, and some optional
functions. This should suffice for many sound-server ougherinents and even most interfaces. More
demanding audio systems, such as Jack, would want to implgineGst BaseAudi 0Si nk base-class.

TheGst BaseAusi 0Si nk has little to no limitations and should fit virtually every jplementation, but is
hard to implement. Thést Audi 0Si nk, on the other hand, only fits those systems with a simpkn

() /close () /wite () API (which practically means pretty much all of them), bus lilae
advantage that it is a lot easier to implement. The benefitsi®second base class are large:

- Automatic synchronization, without any code in the derigtabs.

- Also automatically provides a clock, so that other sinkg.(& case of audio/video playback) are
synchronized.

- Features can be added to all audiosinks by making a change bese class, which makes
maintainance easy.

« Derived classes require only three small functions, pluses@tbj ect boilerplate code.

97

Chapter 20. Pre-made base classes

In addition to implementing the audio base-class virtuattions, derived classes can (should) also
implement thesst BaseSi nk set _caps () andget _caps () virtual functions for negotiation.

20.1.2. Writing a video sink

Writing a videosink can be done using tGet Vi deoSi nk base-class, which derives from

Gst BaseSi nk internally. Currently, it does nothing yet but add anothempile dependency, so derived
classes will need to implement all base-sink virtual fumres. When they do this correctly, this will have
some positive effects on the end user experience with theogidk:

- Because of preroll (and thg er ol | () virtual function), it is possible to display a video frame
already when going into theST_STATE_PAUSED state.

+ By adding new features st Vi deoSi nk, it will be possible to add extensions to videosinks that
affect all of them, but only need to be coded once, which isgehuaintainance benefit.

20.2. Writing a source

In the previous part, particularigroviding random acceswe have learned that some types of elements
can provide random access. This applies most definitelydacseelements reading from a randomly
seekable location, such as file sources. However, othecs@lements may be better described as a live
source element, such as a camera source, an audio card aodrsaech; those are not seekable and do
not provide byte-exact access. For all such use cases,@®trgorovides two base classes:

Gst BaseSr ¢ for the basic source functionality, a@t PushSr ¢, which is a non-byte exact source
base-class. The pushsource base class itself derives &sesturce as well, and thus all statements
about the basesource apply to the pushsource, too.

The basesrc class does several things automatically faredietlasses, so they no longer have to worry
about it:

- Fixes toGst BaseSr ¢ apply to all derived classes automatically.

- Automatic pad activation handling, and task-wrapping isecae get assigned to start a task ourselves.

TheGst BaseSr ¢ may not be suitable for all cases, though; it has limitations

- There is one and only one sourcepad. Source elements mgjaitiltiple sourcepads cannot use this
base-class.

- Since the base-class owns the pad and derived classes garoaiol it as far as the virtual functions
allow, you are limited to the functionality provided by thigtual functions. If you need more, you
cannot use this base-class.

98

Chapter 20. Pre-made base classes

It is possible to use special memory, such as X server menanggrs ommap () 'ed memory areas, as
data pointers in buffers returned from tbieeat e() virtual function. In almost all cases, you will want
to subclassst Buf f er so that your own set of functions can be called when the bidféestroyed.

20.2.1. Writing an audio source

An audio source is nothing more but a special case of a pustesoudio sources would be anything
that reads audio, such as a source reading from a soundsekernel interface (such as ALSA) or a test
sound / signal generator. GStreamer provides two baseeslasisnilar to the two audiosinks described in
Writing an audio sinkone is ringbuffer-based, and requires the derived clatakecare of its own
scheduling, synchronization and such. The other is basdli®ast BaseAudi 0Sr ¢ and is called

Gst Audi 0Sr ¢, and provides a simplepen (),cl ose () andread () interface, which is rather
simple to implement and will suffice for most soundserverses and audio interfaces (e.g. ALSA or
OSS) out there.

TheGst Audi 0Sr c base-class has several benefits for derived classes, ofttop leenefits of the
Gst PushSr ¢ base-class that it is based on:

- Does syncronization and provides a clock.

- New features can be added to it and will apply to all derivedsts automatically.

20.3. Writing a transformation element

A third base-class that GStreamer provides isGeBaseTr ansf or m This is a base class for elements
with one sourcepad and one sinkpad which act as a filter of smmgesuch as volume changing, audio
resampling, audio format conversion, and so on and so orreTitguite a lot of bookkeeping that such
elements need to do in order for things such as buffer allmecébrwarding, passthrough, in-place
processing and such to all work correctly. This base class dt that for you, so that you just need to do
the actual processing.

Since theGst BaseTr ansf or mis based on the 1-to-1 model for filters, it may not apply wektements
such as decoders, which may have to parse properties frogtrébam. Also, it will not work for
elements requiring more than one sourcepad or sinkpad.

99

Chapter 21. Writing a Demuxer or Parser

Demuxers are the 1-to-N elements that need very special they are responsible for timestamping
raw, unparsed data into elementary video or audio streamaistheere are many things that you can
optimize or do wrong. Here, several culprits will be mengdrand common solutions will be offered.
Parsers are demuxers with only one source pad. Also, thgycomkhe stream into buffers, they don't
touch the data otherwise.

As mentioned previously i€aps negotiatigrdemuxers should use fixed caps, since their data type will
not change.

As discussed iDifferent scheduling modeslemuxer elements can be written in multiple ways:

- They can be the driving force of the pipeline, by running tloevn task. This works particularly well
for elements that need random access, for example an AVI gemu

« They can also run in push-based mode, which means that areapsélement drives the pipeline.
This works particularly well for streams that may come froatwork, such as Ogg.

In addition, audio parsers with one output can, in theog &le written in random access mode.
Although simple playback will mostly work if your elementlgraccepts one mode, it may be required
to implement multiple modes to work in combination with ailts of applications, such as editing. Also,
performance may become better if you implement multiple eso&edifferent scheduling modés

see how an element can accept multiple scheduling modes.

100

Chapter 22. Writing a N-to-1 Element or Muxer

N-to-1 elements have been previously mentioned and disdussothChapter 13and in

Different scheduling mode3he main noteworthy thing about N-to-1 elements is thahgea is
push-based in its own thread, and the N-to-1 element synctesthose streams by
expected-timestamp-based logic. This means it lets &asts wait except for the one that provides the
earliest next-expected timestamp. When that stream has/pdsone buffer, the next
earliest-expected-timestamp is calculated, and we stak Where we were, until all streams have
reached EOS. There is a helper base class, caledol | ect Pads, that will help you to do this.

Note, however, that this helper class will only help you wgtiabbing a buffer from each input and
giving you the one with earliest timestamp. If you need aimgimore difficult, such as
"don’t-grab-a-new-buffer until a given timestamp" or sahirg like that, you'll need to do this yourself.

101

Chapter 23. Writing a Manager

Managers are elements that add a function or unify the fanctf another (series of) element(s).
Managers are generallyGst Bi n with one or more ghostpads. Inside them is/are the actualesigs)
that matters. There is several cases where this is usefubéxXaonple:

- To add support for private events with custom event handbtrenother element.
« To add support for custom padjuery () or_convert () handling to another element.

- To add custom data handling before or after another elesydata handler function (generally its
_chain () function).

- To embed an element, or a series of elements, into sometman¢poks and works like a simple
element to the outside world.

Making a manager is about as simple as it gets. You can deawedGst Bi n, and in most cases, you
can embed the required elements in thei t () already, including setup of ghostpads. If you need any
custom data handlers, you can connect signals or embed adselmment which you control.

102

V. Appendices

This chapter contains things that don’t belong anywhere els

Chapter 24. Things to check when writing an
element

This chapter contains a fairly random selection of thingst@ care of when writing an element. It's up
to you how far you're going to stick to those guidelines. Hoerekeep in mind that when you're writing
an element and hope for it to be included in the mainstreame@Bter distribution, ihas tomeet those
requirements. As far as possible, we will try to explain whgge requirements are set.

24.1. About states

- Make sure the state of an element gets reset when goirgdLto. Ideally, this should set all object
properties to their original state. This function shoulsiabe called from _init.

- Make sure an element forgegserythingabout its contained stream when going freAUSED to
READY. In READY, all stream states are reset. An element that goes FISED to READY and back to
PAUSED should start reading the stream from he start again.

- People that usgst-launch for testing have the tendency to not care about cleaning hig.iwrong.
An element should be tested using various applicationsyeviesting not only means to “make sure it
doesn’t crash”, but also to test for memory leaks using teoth asvalgrind. Elements have to be
reusable in a pipeline after having been reset.

24.2. Debugging

- Elements shouldeveruse their standard output for debugging (using functiocb stspri ntf ()
org_print ()).Instead, elements should use the logging functions geal/by GStreamer, named
GST_DEBUG (), GST_LOG (), GST_I NFO (), GST_WARNI NG () andGST_ERROR () . The various
logging levels can be turned on and off at runtime and canlleussed for solving issues as they turn
up. Instead of5ST_LOG () (as an example), you can also &S LOG OBJECT () to print the
object that you're logging output for.

- ldeally, elements should use their own debugging cate®bogt elements use the following code to
do that:

GST_DEBUG_CATEGORY_STATI C (nyel enent _debug) ;
#defi ne GST_CAT_DEFAULT nyel enment _debug

-]

static void
gst _nyel enent _class_init (Gst Wel enent Cl ass *kl ass)
{
[..]
GST_DEBUG_CATEGORY_INI'T (nyel ement _debug, "mnyel enent”,
0, "My own elenent");

104

Chapter 24. Things to check when writing an element

At runtime, you can turn on debugging using the commandIptéa --gst-debug=myelement: 5.

Elements should use GST_DEBUG_FUNCPTR when setting padifuns or overriding element
class methods, for example:

gst _pad_set _event _func (nyel enent - >srcpad,
GST_DEBUG_FUNCPTR (my_el enent _src_event));

This makes debug output much easier to read later on.

Elements that are aimed for inclusion into one of the GSteranodules should ensure consistent
naming of the element name, structures and function nanoegxample, if the element type is
GstYellowFooDec, functions should be prefixed with gstlowl foo_dec_and the element should be
registered as 'yellowfoodec’. Separate words should barségin this scheme, so it should be
GstFooDec and gst_foo_dec, and not GstFoodec and gst doode

24.3. Querying, events and the like

All elements to which it applies (sources, sinks, demuxshsuld implement query functions on their
pads, so that applications and neighbour elements canseiipgecurrent position, the stream length
(if known) and so on.

Elements should make sure they forward events they do nalidavith gst_pad_event_default (pad,
event) instead of just dropping them. Events should nevertgped unless specifically intended.

Elements should make sure they forward queries they do matleavith gst_pad_query_default (pad,
query) instead of just dropping them.

Elements should use gst_pad_get_parent() in event ang fureations, so that they hold a reference
to the element while they are operating. Note that gst_peid pgrent() increases the reference count
of the element, so you must be very careful to call gst_objeutef (element) before returning from
your query or event function, otherwise you will leak memory

24.4. Testing your element

gst-launch is nota good tool to show that your element is finished. Applicatisnch as Rhythmbox
and Totem (for GNOME) or AmaroK (for KDEre. gst-launch will not test various things such as
proper clean-up on reset, interrupt event handling, qugrgind so on.

Parsers and demuxers should make sure to check their imputt tannot be trusted. Prevent possible
buffer overflows and the like. Feel free to error out on unkeeable stream errors. Test your demuxer
using stream corruption elements suclbasaknydat a (included in gst-plugins). It will randomly
insert, delete and modify bytes in a stream, and is theref@eod test for robustness. If your element
crashes when adding this element, your element needs fixihgrrors out properly, it's good

enough. ldeally, it'd just continue to work and forward datamuch as possible.

105

Chapter 24. Things to check when writing an element

- Demuxers should not assume that seeking works. Be preparecrk with unseekable input streams
(e.g. network sources) as well.

« Sources and sinks should be prepared to be assigned anlottietteen the one they expose
themselves. Always use the provided clock for synchroionatlse you'll get A/V sync issues.

106

Chapter 25. Porting 0.8 plug-ins to 0.9

This section of the appendix will discuss shortly what ctesi plugins will be needed to quickly and
conveniently port most applications from GStreamer-0.&8&ireamer-0.9, with references to the
relevant sections in this Plugin Writer’s Guide where nekd#ith this list, it should be possible to port
most plugins to GStreamer-0.9 in less than a day. Exceptimnelements that will require a base class
in 0.9 (sources, sinks), in which case it may take a lot londgpending on the coder’s skills (however,
when using th&st BaseSi nk andGst BaseSr ¢ base-classes, it shouldn't be all too bad), and elements
requiring the deprecated bytestream interface, whichlshtalie 1-2 days with random access. The
scheduling parts of muxers will also need a rewrite, whichtake about the same amount of time.

25.1. List of changes

- Discont events have been replaced by newsegment event9, lihi® essential that you send a
newsegment event downstream before you send your firstri{irif6.8 the scheduler would invent
discont events if you forgot them, in 0.9 this is no longerchse).

+ In 0.9, buffers have caps attached to them. Elements shtothte new buffers with
gst _pad_al | oc_buffer ().SeeCaps negotiatiofor more details.

- Most functions returning an object or an object propertyehlagen changed to return its own reference
rather than a constant reference of the one owned by thetatgelf. The reason for this change is
primarily threadsafety. This means effectively that ratualues of functions such as
gst _el enent _get _pad (), gst_pad_get _nane (),gst_pad_get_parent (),
gst _obj ect _get _parent (), and many more like these have to be free’ed or unrefererfoed a
use. Check the API references of each function to know fag strether return values should be
free’ed or not.

« In 0.8, scheduling could happen in any way. Source elementislbe_get () -based or | oop
() -based, and any other element could b&ai n () -based or | oop () -based, with no limitations.
Scheduling in 0.9 is simpler for the scheduler, and the efgnsexpected to do some more work.
Pads get assigned a scheduling mode, based on which theiftzamoperate in random access-mode,
in pipeline driving mode or in push-mode. all this is docuneehin detail in
Different scheduling mode#s a result of this, the bytestream object no longer exidsments
requiring byte-level access should now use random acceggeorsinkpads.

- Negotiation is asynchronous. This means that downstregutiagion is done as data comes in and
upstream negotiation is done whenever renegotiation isired, All details are described in
Caps negotiation

+ For as far as possible, elements should try to use existiag tlasses in 0.9. Sink and source
elements, for example, could derive frait BaseSr c andGst BaseSi nk. Audio sinks or sources
could even derive from audio-specific base classes. Altiegibase classes have been discussed in
Pre-made base classmsd the next few chapters.

- In 0.9, event handling and buffers are separated once affaimmeans that in order to receive events,
one no longer has to set tlesST_FLAG_EVENT_AWARE flag, but can simply set an event handling
function on the element’s sinkpad(s), using the functish_pad_set _event function (). The
_chai n () -function will only receive buffers.

107

Chapter 25. Porting 0.8 plug-ins to 0.9

Although core will wrap most threading-related locking §au (e.g. it takes the stream lock before
calling your data handling functions), you are still resgibie for locking around certain functions,
e.g. object properties. Be sure to lock properly here, sapmications will change those properties in
a different thread than the thread which does the actualptesing! You can use the
GST_OBJECT_LOCK () andGST_OBJECT_UNLOCK () helpers in most cases, fortunately, which
grabs the default property lock of the element.

Gst Val ueFi xedLi st and allx_fixed_|ist_» () functionswere renamed t&t Val ueArr ay
andx_array_» ().

The semantics of GST_STATE_PAUSED and GST_STATE_PLAYIN&echanged for elements

that are not sink elements. Non-sink elements need to ba@hlEept and process data already in the
GST_STATE_PAUSED state now (ie. when prerolling the pipe)i More details can be found in
Chapter 6

If your plugin’s state change function hasn’t been superddyy virtual start() and stop() methods of
one of the new base classes, then your plugin’s state changédns may need to be changed in order
to safely handle concurrent access by multiple threadst tymical state change function will now

first handle upwards state changes, then chain up to thecstatge function of the parent class
(usually GstElementClass in these cases), and only thefidhdownwards state changes. See the
vorbis decoder plugin in gst-plugins-base for an example.

The reason for this is that in the case of downwards stateggsayou don’t want to destroy allocated
resources while your plugin’s chain function (for exampgestill accessing those resources in another
thread. Whether your chain function might be running or rexiehds on the state of your plugin’s
pads, and the state of those pads is closely linked to the atéhe element. Pad states are handled in
the GstElement class’s state change function, includinggrlocking, that's why it is essential to
chain up before destroying allocated resources.

As already mentioned above, you should really rewrite ydugin to derive from one of the new base
classes though, so you don’t have to worry about these thasgthe base class will handle it for you.
There are no base classes for decoders and encoders yet,afmotre paragraphs about state changes
definitively apply if your plugin is a decoder or an encoder.

gst _pad_set _|ink_function (), which used to set a function that would be called when a
format was negotiated between t@et Pads, now sets a function that is called when two elements are
linked together in an application. For all practical purpssyou most likely want to use the function

gst _pad_set _set caps_function (), nowadays, which sets a function that is called when the
format streaming over a pad changes (so similarstet _| i nk_f uncti on () in GStreamer-0.8).

If the element is derived from@st Base class, then override theet _caps ().

gst _pad_use_explicit_caps () hasbeenreplaced loygt _pad_use_fi xed_caps (). You
can then set the fixed caps to use on a pad wéth pad_set _caps ().

108

Chapter 26. GStreamer licensing

26.1. How to license the code you write for GStreamer

GStreamer is a plugin-based framework licensed under theLL Ghe reason for this choice in licensing
is to ensure that everyone can use GStreamer to build afiplisausing licenses of their choice.

To keep this policy viable, the GStreamer community has naaféev licensing rules for code to be
included in GStreamer’s core or GStreamer’s official moduli&e our plugin packages. We require that
all code going into our core package is LGPL. For the plugidezave require the use of the LGPL for

all plugins written from scratch or linking to external ldmies. The only exception to this is when
plugins contain older code under more liberal license (liie MPL or BSD). They can use those
licenses instead and will still be considered for inclusidfe do not accept GPL code to be added to our
plugins module, but we do accept LGPL-licensed pluginsgiamexternal GPL library. The reason for
demanding plugins be licensed under the LGPL, even wheigyasBPL library, is that other developers
might want to use the plugin code as a template for plugingrmto non-GPL libraries.

We also plan on splitting out the plugins using GPL librairgs a separate package eventually and
implement a system which makes sure an application will eddlide to access these plugins unless it
uses some special code to do so. The point of this is not t&I@&1 -licensed plugins from being used
and developed, but to make sure people are not unintenityonalating the GPL license of said plugins.

This advisory is part of a bigger advisory with a FAQ which yaan find on the GStreamer website
(http://gstreamer.freedesktop.org/documentatioerfiging.html)

109

	GStreamer Plugin Writer's Guide (0.10.9)
	Table of Contents
	List of Tables
	I. Introduction
	Chapter 1. Preface
	1.1. What is GStreamer?
	1.2. Who Should Read This Guide?
	1.3. Preliminary Reading
	1.4. Structure of This Guide

	Chapter 2. Foundations
	2.1. Elements and Plugins
	2.2. Pads
	2.3. Data, Buffers and Events
	2.3.1. Buffer Allocation

	2.4. Mimetypes and Properties
	2.4.1. The Basic Types

	II. Building a Plugin
	Chapter 3. Constructing the Boilerplate
	3.1. Getting the GStreamer Plugin Templates
	3.2. Using the Project Stamp
	3.3. Examining the Basic Code
	3.4. GstElementDetails
	3.5. GstStaticPadTemplate
	3.6. Constructor Functions
	3.7. The plugininit function

	Chapter 4. Specifying the pads
	4.1. The setcapsfunction

	Chapter 5. The chain function
	Chapter 6. What are states?
	6.1. Managing filter state

	Chapter 7. Adding Arguments
	Chapter 8. Signals
	Chapter 9. Building a Test Application
	III. Advanced Filter Concepts
	Chapter 10. Caps negotiation
	10.1. Caps negotiation use cases
	10.2. Fixed caps
	10.3. Downstream caps negotiation
	10.3.1. Negotiating caps embedded in input caps
	10.3.2. Parsing and setting caps

	10.4. Upstream caps (re)negotiation
	10.5. Implementing a getcaps function

	Chapter 11. Different scheduling modes
	11.1. The pad activation stage
	11.2. Pads driving the pipeline
	11.3. Providing random access

	Chapter 12. Types and Properties
	12.1. Building a Simple Format for Testing
	12.2. Typefind Functions and Autoplugging
	12.3. List of Defined Types

	Chapter 13. Request and Sometimes pads
	13.1. Sometimes pads
	13.2. Request pads

	Chapter 14. Clocking
	14.1. Types of time
	14.2. Clocks
	14.3. Flow of data between elements and time
	14.4. Obligations of each element.
	14.4.1. Source elements
	14.4.2. Sink elements

	Chapter 15. Supporting Dynamic Parameters
	15.1. Getting Started
	15.2. The Data Processing Loop
	15.2.1. The Data Processing Loop for Video Elements
	15.2.2. The Data Processing Loop for Audio Elements

	Chapter 16. MIDI
	Chapter 17. Interfaces
	17.1. How to Implement Interfaces
	17.2. URI interface
	17.3. Mixer Interface
	17.4. Tuner Interface
	17.5. Color Balance Interface
	17.6. Property Probe Interface
	17.7. X Overlay Interface
	17.8. Navigation Interface

	Chapter 18. Tagging (Metadata and Streaminfo)
	18.1. Reading Tags from Streams
	18.2. Writing Tags to Streams

	Chapter 19. Events: Seeking, Navigation and More
	19.1. Downstream events
	19.2. Upstream events
	19.3. All Events Together
	19.3.1. End of Stream (EOS)
	19.3.2. Flush
	19.3.3. Stream Discontinuity
	19.3.4. Seek Request
	19.3.5. Stream Filler
	19.3.6. Interruption
	19.3.7. Navigation
	19.3.8. Tag (metadata)

	IV. Creating special element types
	Chapter 20. Premade base classes
	20.1. Writing a sink
	20.1.1. Writing an audio sink
	20.1.2. Writing a video sink

	20.2. Writing a source
	20.2.1. Writing an audio source

	20.3. Writing a transformation element

	Chapter 21. Writing a Demuxer or Parser
	Chapter 22. Writing a Nto1 Element or Muxer
	Chapter 23. Writing a Manager
	V. Appendices
	Chapter 24. Things to check when writing an element
	24.1. About states
	24.2. Debugging
	24.3. Querying, events and the like
	24.4. Testing your element

	Chapter 25. Porting 0.8 plugins to 0.9
	25.1. List of changes

	Chapter 26. GStreamer licensing
	26.1. How to license the code you write for GStreamer

