
INDI Developers Manual

Jasem Mutlaq
Elwood Downey

Rev 1.0
June 2004

Table of Contents

1. Introduction... 3

2. Purpose of manual... 3

3. Intended audience.. 3

4. How to use this manual.. 4

5. Introduction to the INDI architecture... 4

6. Supported devices.. 5

7. INDI library components... 5

8. INDI API reference... 10

9. INDI tutorials... 11

1. Introduction

The Instrument-Neutral-Distributed-Interface control protocol (INDI) is a new key
technology for device automation and control. INDI introduces a common universal
standard for developing robust, adaptive, and scalable device drivers under several
platforms.

The INDI Library aims to create a solid driver support for a wide range of instruments used
both in amateur and professional astronomy. The current INDI repository contains support
for several popular telescopes, focusers, CCD cameras, and video capture devices.

INDI has many advantages over similar technologies, including loose coupling between
hardware devices and software drivers. Clients that use the device drivers are completely
unaware of the device capabilities. In run time, clients discover the device capabilities
through introspection. This enables clients to build a completely dynamical GUI based on
services provided by the device. Therefore, new device drivers can be written or updated
and clients can take full advantage of them without any changes on the client side.

Furthermore, remote control of devices is seamless with INDI's server/client architecture.
Distributed devices can be controlled from one centralized environment.

2. Purpose of Manual

The purpose of this manual is to enable programmers to take full advantage of the INDI
architecture, by providing a clear and concise guide illustrating the different aspects of the
control protocol. The manual covers the architecture of INDI in detail, and provides the
latest Application Programming Interface (API) for INDI wire protocol version 1.2.

The manual does not cover the development of INDI clients. Client applications can be
very diverse. They can range from simple loggers to complicated automated scripts.
Programmers who are interested in client development may want to check out existing
clients like KStars and Xephem.

The INDI Library is released under the GNU Library General Public License (LGPL).

3. Intended Audience

The INDI protocol is geared toward experienced programmers planning to develop back-
end hardware drivers to run under the INDI architecture. The task of developing hardware
drivers requires programmers with sufficient experience on least one high level
programming language such as C/C++.

While the INDI Wire protocol is platform-independent, the INDI Library v0.2 is designed
to operate on UNIX/Linux platforms. Depending on the nature of a particular device,
developers may need to interact with the Linux kernel and its underlying architecture.
Developers can port the library and device drivers to different platforms as desired.

4. How to use this manual

This manual is a practical guide to developing device drivers under INDI. A clear
understanding of the design and philosophy of the INDI architecture is required
before developing any INDI drivers. Elwood Downey, author of the INDI wire protocol,
maintains an up to date INDI White paper

<http://www.clearskyinstitute.com/INDI/INDI.pdf>

You should read the white paper as it serves the foundation of this manual. The following
sections provide a brief introduction to the INDI architecture, current supported devices in
INDI library, and the major components of the INDI library.

The manual makes several references to INDI tutorials, which are packaged with the
official INDI Library release. Refer to section 9 for more details.

5. Introduction to the INDI Architecture

INDI is a simple XML-like communications protocol described for interactive and
automated remote control of diverse instrumentation. INDI is small, easy to parse, and
stateless. In the INDI paradigm each Device poses all command and status functions in
terms of settings and getting Properties. Each Property is a vector of one or more members.
Each property has a current value vector; a target value vector; provides information about
how it should be sequenced with respect to other Properties to accomplish one coordinated
unit of observation; and provides hints as to how it might be displayed for interactive
manipulation in a GUI.

Figure 1 illustrates a simple INDI configuration. INDI does not pose any restrictions on the
methods clients employ to represent data. Possible clients include simple loggers, GUI
clients, and complex automated scripts.

 INDI Protocol

 GUI Client Devices

Figure 1. Simple INDI Configuration

Clients learn the Properties of a particular Device at runtime using introspection. This
decouples Client and Device implementation histories. Devices have complete authority
over whether to accept commands from Clients. INDI accommodates intermediate servers,
broadcasting, and connection topologies ranging from one-to-one on a single system to
many-to-many between systems of different genres.

The INDI protocol can be nested within other XML elements such as constraints for
automatic scheduling and execution.

6. Supported Devices

The INDI Library currently supports the following devices:

Telescopes:

• LX200 Generic.
• LX200 Autostar.
• LX200 16". LX200 Classic.
• LX200 GPS. Celestron GPS.
• LX200 Compatible Devices (Astro-Physics AP,
 Astro-Electronic FS-2, Mel Bartels Controllers...etc).

Focusers:

• Meade LX200GPS Microfocuser.
• Meade 1206 Primary Mirror Focuser.
• JMI NGF Series.
• JMI MOTOFOCUS.

CCDs:

• Finger Lakes Instruments CCDs.

Video Capture:

• Any Video4Linux compatible device.
• Phillips Web cam.

7. INDI Library Components

The INDI Library consists of four main components:

1. INDI Core Components: This includes the INDI server and the INDI API required to
develop device drivers. The API reference follows INDI wire protocol v1.2

2. The Little XML library reference: A simple library to parse and process XML.

3. FITS library: A simple FITS library for reading and writing FITS files.

4. MiniZLO: A small and fast lossless compression library used to transfer binary data to
INDI clients.

7.1 INDI Server

INDI server is the public network access point where one or more INDI Clients may
contact one or more INDI Drivers. Indiserver launches each driver process and arranges for
it to receive the INDI protocol from Clients on its stdin (standard in) and expects to find
commands destined for Clients on the driver's stdout (standard out).

Anything arriving from a driver process' stderr is copied to indiserver's stderr (standard
error). Indiserver only provides convenient port, fork and data steering services. If desired,
a Client may run and connect to INDI Drivers directly.

Typical INDI Client / Server / Driver / Device connectivity is illustrated in Figure 2:

Figure 2. End to End Connectivity

The syntax for INDI server is as following:

$ indiserver [options] [driver ...]

Options:

-p p : alternate IP port, default 7624

-r n : max restart attempts, default 2

-v : more verbose to stderr

For example, if you want to start an INDI server running an LX200 GPS driver and
listening to connections on port 8000, you would run the following command:

$ indiserver -p 8000 lx200gps

7.2 Driver Construction

An INDI driver typically consists of one or more .c files (e.g. mydriver.c) which includes
indiapi.h and indidevapi.h to access the reference API declarations.
It is compiled then linked with indidrivermain.o, eventloop.o , liblilxml.a, and (optionally)

 INDI Client 1 --| |-- INDI Driver A -- Dev X
 | |
 INDI Client 2 --| |-- INDI Driver B -- Dev Y
 | | |
 ... |-- indiserver --| |-- Dev Z
 | |
 | |
 INDI Client n --| |-- INDI Driver C -- Dev T

 Client INET Server UNIX Driver Hardware
 processes sockets process pipes processes devices

indicom.a to form an INDI process. These supporting files contain the implementation of
the INDI Driver API and need not be changed in any way.

Note that eventloop.[ch] provides a callback facility independent of INDI which may be
used in other projects if desired. The driver implementation, again in our example
mydriver.c, does not contain a main() but is expected to operate as an event-driven
program.

The driver must implement each ISxxx() function but never call them. The IS() functions
are called by the reference implementation main() as messages arrive from Clients. Within
each IS function the driver performs the desired tasks and then may report back to the
Client by calling the IDxxx() functions.

The indicom.a library contains a list of common astronomical and parsing routines used
across different INDI drivers. The reference API provides IE() functions to allow the driver
to add its own callback functions if desired. The driver can arrange for functions to be
called when reading a file descriptor that will not block; when a time interval has expired;
or when there is no other client traffic in progress. Several utility functions to search and
find various INDI vector structs are provided for convenience in the API.

The sample indiserver is a stand-alone process that may be used to run one or more INDI-
compliant drivers. It takes the name of each driver process to run from its command line
arguments. Once a binary driver is compiled, indiserver can load the driver and handle all
data steering services between the driver and any number of clients.

7.3 INDI Standard Properties

While INDI clients can build GUIs to represent all device properties, direct human
intervention is required to control the device. To enable complete automation of
astronomical devices, drivers and clients alike need to be aware of the INDI Standard
Properties (ISP).

The ISP is a list of common astronomical properties that are critical to the operation of
many devices. For example, if a client needs to move a telescope to a new position, it can
search and modify the EQUATORIAL_COORDS vector property (J2000 geocentric
equatorial coordinates). The imposed semantics insure interoperability across all INDI
clients and devices (see Tutorial 1, 2).

The following is a list of reserved INDI Standard Properties as of INDI Library v0.2:

Property Name Type Member Description

EQUATORIAL_COORD Number

RA

DEC

Equatorial astrometric J2000 coordinate

J2000 RA, hours

J2000 Dec, degrees +N

GEOGRAPHIC_COORD Number

LATITUDE

LONGITUDE

Earth geodetic coordinate

Latitude, degrees +N

Longitude, degrees +E

HORIZONTAL_COORD Number

ALTITUDE

AZIMUTH

Topocentric coordinate

Degrees above horizon

Degrees E or N

ABORT_MOTION Switch

ABORT Stop rapidly but gracefully

ON_COORD_SET Switch

SLEW

TRACK

SYNC

Action device takes when sent any *_COORD property.

Slew to a coordinate and stop

Slew to a coordinate and track

Accept current coordinate as correct

CONNECTION Switch

CONNECT

DISCONNECT

Establish connection to the device

Terminate connection to the device

TIME Text

UTC UTC Time in ISO 8601 format

DEVICE_PORT Text

PORT Port name the device is connected to

PARK Switch Park the telescope

SDTIME Text

LST Local sidereal time

DATA_CHANNEL Number

CHANNEL Port number of the binary data transfer channel

VIDEO_STREAM Switch

ON

OFF

Turn on video stream

Turn off video stream

IMAGE_SIZE Number

WIDTH

HEIGHT

Image width in pixels

Image height in pixels

Property Name Type Member Description

MOVEMENT Switch

NORTH

WEST

EAST

SOUTH

Compound directions at the current slew speed

Move to the north

Move the the west

Move to the east

Move to the south

EXPOSE_DURATION Number

EXPOSE_S Expose the CCD chip for EXPOSE_S seconds

7.4 Binary Data Transfer

If a driver needs an additional channel for binary transfer (e.g. to transfer video streams or
regular files), it must establish a separate port for such service (see Tutorial 3). The driver
must insure that the additional binary channel is operational for any number of potential
clients. To utilize any type of binary transfer, clients must be aware of the binary
transfer content and any associated semantics. This can be accomplished by defining
additional INDI properties to describe the binary data.

Binary data transfer is accomplished using a simple custom protocol:

1. The driver defines an INumberVectorProperty with an ISP name of
DATA_CHANNEL. The one INumber member name is CHANNEL. The initial value
of CHANNEL is zero.

2. The driver establishes a server and selects free port to listen to. The CHANNEL
numeric value is then set to the port number.

3. The driver sets the status of the DATA_CHANNEL property to IPS_OK, which signals
the client that the driver is ready to receive client connections on the data port.

4. Upon a successful connection, the driver can send any arbitrary type of data to the client.

For our discussion, we will define an INDI frame as an atomic chunk of data sent by the
driver to its clients.

INDI frames must be compressed using the minizlo library first. The minizlo is a very
small and fast lossless library (see Tutorial 3). It must be used in the driver to compress
data and in the client to decompress data.

Three mandatory pieces of information are attached to each frame header. The header fields
are encapsulated in XML. The fields are as following:

• Data Type: The data type is a string describing the content of the frame. This is usually
 a type that a client can process (e.g. FITS). If the client cannot process the
 data type, it may save the data on the disk as a regular file, with the data

 type string as the file extension. For example, if the data type was "PNG"
 and the client does not recognize "PNG", it can save the data to disk using a
 time-stamped name with PNG as its extension
 (e.g. File-2004-06-04T12:14:04.PNG). The client is not required to save any

 unrecognizable data, it can silently ignore them. Some clients, like KStars,
 can process video streams and FITS files using the standard VIDEO and
 FITS data types (see Tutorial 3).

• Uncompressed frame size: Uncompressed frame size in bytes. This enables clients to
 to allocate memory resources for the decompression process.

• Compressed frame size: Compressed frame size in bytes. This is the size of the actual
 binary data transfered over the data channel to the client.

The header is flexible enough to allow drivers to add more fields as needed. All clients that
support binary data transfer must support the three basic obligatory fields at minimum

The DTD of the header is as following:

<!ELEMENT Data>
<!ATTLIST Data
 type %data type; #REQUIRED
 size %uncompressed size in bytes; #REQUIRED
 compsize %compressed size in bytes; #REQUIRED
>

Here is example of a simple header:

<Data type='FITS' size='1024' compsize='128' />

The data type is FITS; the uncompressed size is 1024 bytes; and the compressed size (the
data being transfered) is 128 bytes.

8. INDI API Reference

The INDI Reference is maintained on the INDI Sourceforge site.

<http://indi.sourceforge.net/doc/>

9. INDI Tutorials

The INDI tutorials are included in the official INDI Library v0.2 distribution from
sourceforge.

<http://indi.sf.net>

The tutorials will aid you in applying the knowledge gained from this manual in developing
device drivers that can run under any INDI compatible client.

The tutorials are located in the src/examples directory. Refer to the README file for
detailed instructions on building and running the tutorials as device drivers.

