
Contributed by Steven Bosscher (s.bosscher@gcc.gnu.org).

Using GNU Fortran 95

Steven Bosscher

mailto:s.bosscher@gcc.gnu.org

For the 4.0.2 Version*

Published by the Free Software Foundation
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA

Copyright c© 1999-2005 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the Free
Software Foundation; with the Invariant Sections being “GNU General Public License” and
“Funding Free Software”, the Front-Cover texts being (a) (see below), and with the Back-Cover
Texts being (b) (see below). A copy of the license is included in the section entitled “GNU Free
Documentation License”.
(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:
You have freedom to copy and modify this GNU Manual, like GNU software. Copies published
by the Free Software Foundation raise funds for GNU development.

i

Short Contents

Introduction . 1

GNU GENERAL PUBLIC LICENSE . 3

GNU Free Documentation License . 9

Funding Free Software . 17

1 Getting Started . 19

2 GFORTRAN and GCC . 21

3 GFORTRAN and G77 . 23

4 GNU Fortran 95 Command Options . 25

5 Project Status . 33

6 Extensions . 37

7 Intrinsic Procedures . 39

8 Contributing . 71

9 Standards . 73

Index . 75

ii The GNU Fortran 95 Compiler

iii

Table of Contents

Introduction . 1

GNU GENERAL PUBLIC LICENSE . 3
Preamble . 3
TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION . 3
How to Apply These Terms to Your New Programs . 7

GNU Free Documentation License . 9
ADDENDUM: How to use this License for your documents . 15

Funding Free Software . 17

1 Getting Started . 19

2 GFORTRAN and GCC . 21

3 GFORTRAN and G77 . 23

4 GNU Fortran 95 Command Options . 25
4.1 Option Summary . 25
4.2 Options Controlling Fortran Dialect. 26
4.3 Options to Request or Suppress Warnings . 26
4.4 Options for Debugging Your Program or GNU Fortran . 28
4.5 Options for Directory Search . 28
4.6 Options for Code Generation Conventions . 28
4.7 Environment Variables Affecting GNU Fortran . 30

5 Project Status . 33
5.1 Compiler Status . 33
5.2 Library Status . 33
5.3 Proposed Extensions . 34

5.3.1 Compiler extensions: . 34
5.3.2 Environment Options . 34

6 Extensions . 37
6.1 Old-style kind specifications . 37
6.2 Old-style variable initialization . 37
6.3 Extensions to namelist . 37
6.4 Implicitly interconvert LOGICAL and INTEGER . 38
6.5 Hollerith constants support . 38

iv The GNU Fortran 95 Compiler

7 Intrinsic Procedures . 39
7.1 Introduction to intrinsic procedures . 39
7.2 ABORT — Abort the program . 39
7.3 ABS — Absolute value . 40
7.4 ACHAR — Character in ASCII collating sequence . 40
7.5 ACOS — Arc cosine function . 41
7.6 ADJUSTL — Left adjust a string . 41
7.7 ADJUSTR — Right adjust a string . 41
7.8 AIMAG — Imaginary part of complex number . 42
7.9 AINT — Imaginary part of complex number. 42
7.10 ALL — All values in MASK along DIM are true . 43
7.11 ALLOCATED — Status of an allocatable entity . 44
7.12 ANINT — Imaginary part of complex number . 44
7.13 ANY — Any value in MASK along DIM is true . 45
7.14 ASIN — Arcsine function . 45
7.15 ASSOCIATED — Status of a pointer or pointer/target pair . 46
7.16 ATAN — Arctangent function . 47
7.17 ATAN2 — Arctangent function . 47
7.18 BESJ0 — Bessel function of the first kind of order 0 . 48
7.19 BESJ1 — Bessel function of the first kind of order 1 . 48
7.20 BESJN — Bessel function of the first kind . 49
7.21 BESY0 — Bessel function of the second kind of order 0 . 49
7.22 BESY1 — Bessel function of the second kind of order 1 . 49
7.23 BESYN — Bessel function of the second kind . 50
7.24 BIT_SIZE — Bit size inquiry function . 50
7.25 BTEST — Bit test function . 51
7.26 CEILING — Integer ceiling function . 51
7.27 CHAR — Character conversion function . 52
7.28 CMPLX — Complex conversion function . 52
7.29 COMMAND_ARGUMENT_COUNT — Argument count function . 52
7.30 CONJG — Complex conjugate function . 53
7.31 COS — Cosine function. 53
7.32 COSH — Hyperbolic cosine function . 54
7.33 COUNT — Count function . 54
7.34 CPU_TIME — CPU elapsed time in seconds . 55
7.35 CSHIFT — Circular shift function . 55
7.36 DATE_AND_TIME — Date and time subroutine . 56
7.37 DBLE — Double conversion function . 57
7.38 DCMPLX — Double complex conversion function . 57
7.39 DFLOAT — Double conversion function . 58
7.40 DIGITS — Significant digits function . 58
7.41 DIM — Dim function . 58
7.42 DOT_PRODUCT — Dot product function . 59
7.43 DPROD — Double product function . 59
7.44 DREAL — Double real part function . 60
7.45 DTIME — Execution time subroutine (or function) . 60
7.46 EOSHIFT — End-off shift function . 61
7.47 EPSILON — Epsilon function . 62
7.48 ERF — Error function . 62
7.49 ERFC — Error function . 63
7.50 ETIME — Execution time subroutine (or function) . 63
7.51 EXIT — Exit the program with status. 64
7.52 EXP — Exponential function. 64
7.53 EXPONENT — Exponent function . 65

v

7.54 FLOOR — Integer floor function . 65
7.55 FNUM — File number function . 66
7.56 LOG — Logarithm function . 66
7.57 LOG10 — Base 10 logarithm function . 67
7.58 SIN — Sine function . 67
7.59 SINH — Hyperbolic sine function . 68
7.60 SQRT — Square-root function . 68
7.61 TAN — Tangent function . 69
7.62 TANH — Hyperbolic tangent function . 69

8 Contributing . 71
8.1 Contributors to GNU Fortran 95 . 71
8.2 Projects . 71

9 Standards . 73

Index . 75

vi The GNU Fortran 95 Compiler

1

Introduction

This manual documents the use of gfortran, the GNU Fortran 95 compiler. You can find in
this manual how to invoke gfortran, as well as its features and incompatibilities.

2 The GNU Fortran 95 Compiler

3

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new free programs; and that you know
you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by
the copyright holder saying it may be distributed under the terms of this General Public
License. The “Program”, below, refers to any such program or work, and a “work based
on the Program” means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included
without limitation in the term “modification”.) Each licensee is addressed as “you”.

4 The GNU Fortran 95 Compiler

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:
a. You must cause the modified files to carry prominent notices stating that you changed

the files and the date of any change.
b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and that
users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the Program is not
required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following:
a. Accompany it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution,

5

a complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

c. Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an
offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.
If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. How-
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by modi-
fying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and
this License would be to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by

6 The GNU Fortran 95 Compiler

public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-
BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-
DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

7

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file should have
at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation,

Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:
Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than
‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your
program.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

8 The GNU Fortran 95 Compiler

9

GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.
A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

10 The GNU Fortran 95 Compiler

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifica-
tion. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word proces-
sors, SGML or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.

11

You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

12 The GNU Fortran 95 Compiler

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled

13

“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included an aggregate, this License does not apply to the other works in the
aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warrany Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified

http://www.gnu.org/copyleft/

14 The GNU Fortran 95 Compiler

version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

15

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

16 The GNU Fortran 95 Compiler

17

Funding Free Software

If you want to have more free software a few years from now, it makes sense for you to help
encourage people to contribute funds for its development. The most effective approach known
is to encourage commercial redistributors to donate.

Users of free software systems can boost the pace of development by encouraging for-a-fee
distributors to donate part of their selling price to free software developers—the Free Software
Foundation, and others.

The way to convince distributors to do this is to demand it and expect it from them. So
when you compare distributors, judge them partly by how much they give to free software
development. Show distributors they must compete to be the one who gives the most.

To make this approach work, you must insist on numbers that you can compare, such as,
“We will donate ten dollars to the Frobnitz project for each disk sold.” Don’t be satisfied with
a vague promise, such as “A portion of the profits are donated,” since it doesn’t give a basis for
comparison.

Even a precise fraction “of the profits from this disk” is not very meaningful, since creative
accounting and unrelated business decisions can greatly alter what fraction of the sales price
counts as profit. If the price you pay is $50, ten percent of the profit is probably less than a
dollar; it might be a few cents, or nothing at all.

Some redistributors do development work themselves. This is useful too; but to keep everyone
honest, you need to inquire how much they do, and what kind. Some kinds of development make
much more long-term difference than others. For example, maintaining a separate version of a
program contributes very little; maintaining the standard version of a program for the whole
community contributes much. Easy new ports contribute little, since someone else would surely
do them; difficult ports such as adding a new CPU to the GNU Compiler Collection contribute
more; major new features or packages contribute the most.

By establishing the idea that supporting further development is “the proper thing to do”
when distributing free software for a fee, we can assure a steady flow of resources into making
more free software.

Copyright c© 1994 Free Software Foundation, Inc.
Verbatim copying and redistribution of this section is permitted
without royalty; alteration is not permitted.

18 The GNU Fortran 95 Compiler

Chapter 1: Getting Started 19

1 Getting Started

Gfortran is the GNU Fortran 95 compiler front end, designed initially as a free replacement
for, or alternative to, the unix f95 command; gfortran is command you’ll use to invoke the
compiler.

Gfortran is not yet a fully conformant Fortran 95 compiler. It can generate code for most
constructs and expressions, but work remains to be done. In particular, there are known de-
ficiencies with ENTRY, NAMELIST, and sophisticated use of MODULES, POINTERS and
DERIVED TYPES. For those whose Fortran codes conform to either the Fortran 77 standard
or the GNU Fortran 77 language, we recommend to use g77 from GCC 3.4. We recommend
that distributors continue to provide packages of g77-3.4 until we announce that gfortran fully
replaces g77. The gfortran developers welcome any feedback on user experience with gfortran
at fortran@gcc.gnu.org.

When gfortran is finished, it will do everything you expect from any decent compiler:

• Read a user’s program, stored in a file and containing instructions written in Fortran 77,
Fortran 90 or Fortran 95. This file contains source code.

• Translate the user’s program into instructions a computer can carry out more quickly than
it takes to translate the instructions in the first place. The result after compilation of a
program is machine code, code designed to be efficiently translated and processed by a
machine such as your computer. Humans usually aren’t as good writing machine code as
they are at writing Fortran (or C++, Ada, or Java), because is easy to make tiny mistakes
writing machine code.

• Provide the user with information about the reasons why the compiler is unable to create
a binary from the source code. Usually this will be the case if the source code is flawed.
When writing Fortran, it is easy to make big mistakes. The Fortran 90 requires that the
compiler can point out mistakes to the user. An incorrect usage of the language causes an
error message.

The compiler will also attempt to diagnose cases where the user’s program contains a correct
usage of the language, but instructs the computer to do something questionable. This kind
of diagnostics message is called a warning message.

• Provide optional information about the translation passes from the source code to machine
code. This can help a user of the compiler to find the cause of certain bugs which may
not be obvious in the source code, but may be more easily found at a lower level compiler
output. It also helps developers to find bugs in the compiler itself.

• Provide information in the generated machine code that can make it easier to find bugs in
the program (using a debugging tool, called a debugger, such as the GNU Debugger gdb).

• Locate and gather machine code already generated to perform actions requested by state-
ments in the user’s program. This machine code is organized into modules and is located
and linked to the user program.

Gfortran consists of several components:

• A version of the gcc command (which also might be installed as the system’s cc command)
that also understands and accepts Fortran source code. The gcc command is the driver
program for all the languages in the GNU Compiler Collection (GCC); With gcc, you can
compiler the source code of any language for which a front end is available in GCC.

• The gfortran command itself, which also might be installed as the system’s f95 command.
gfortran is just another driver program, but specifically for the Fortran 95 compiler only.
The difference with gcc is that gfortran will automatically link the correct libraries to
your program.

mailto:fortran@gcc.gnu.org

20 The GNU Fortran 95 Compiler

• A collection of run-time libraries. These libraries contains the machine code needed to sup-
port capabilities of the Fortran language that are not directly provided by the machine code
generated by the gfortran compilation phase, such as intrinsic functions and subroutines,
and routines for interaction with files and the operating system.

• The Fortran compiler itself, (f951). This is the gfortran parser and code generator, linked
to and interfaced with the GCC backend library. f951 “translates” the source code to
assembler code. You would typically not use this program directly; instead, the gcc or
gfortran driver programs will call it for you.

Chapter 2: GFORTRAN and GCC 21

2 GFORTRAN and GCC

GCC used to be the GNU “C” Compiler, but is now known as the GNU Compiler Collection.
GCC provides the GNU system with a very versatile compiler middle end (shared optimization
passes), and with back ends (code generators) for many different computer architectures and
operating systems. The code of the middle end and back end are shared by all compiler front
ends that are in the GNU Compiler Collection.

A GCC front end is essentially a source code parser and a pass to generate a representation of
the semantics of the program in the source code in the GCC language independent intermediate
language, called GENERIC.

The parser takes a source file written in a particular computer language, reads and parses it,
and tries to make sure that the source code conforms to the language rules. Once the correctness
of a program has been established, the compiler will build a data structure known as the Abstract
Syntax tree, or just AST or “tree” for short. This data structure represents the whole program
or a subroutine or a function. The “tree” is passed to the GCC middle end, which will perform
optimization passes on it, pass the optimized AST and generate assembly for the program unit.

Different phases in this translation process can be, and in fact are merged in many compiler
front ends. GNU Fortran 95 has a strict separation between the parser and code generator.

The goal of the gfortran project is to build a new front end for GCC: A Fortran 95 front
end. In a non-gfortran installation, gcc will not be able to compile Fortran 95 source code
(only the “C” front end has to be compiled if you want to build GCC, all other languages are
optional). If you build GCC with gfortran, gcc will recognize ‘.f/.f90/.f95’ source files and
accepts Fortran 95 specific command line options.

22 The GNU Fortran 95 Compiler

Chapter 3: GFORTRAN and G77 23

3 GFORTRAN and G77

Why do we write a compiler front end from scratch? There’s a fine Fortran 77 compiler in the
GNU Compiler Collection that accepts some features of the Fortran 90 standard as extensions.
Why not start from there and revamp it?

One of the reasons is that Craig Burley, the author of G77, has decided to stop working on
the G77 front end. On Craig explains the reasons for his decision to stop working on G77 in
one of the pages in his homepage. Among the reasons is a lack of interest in improvements to
g77. Users appear to be quite satisfied with g77 as it is. While g77 is still being maintained
(by Toon Moene), it is unlikely that sufficient people will be willing to completely rewrite the
existing code.

But there are other reasons to start from scratch. Many people, including Craig Burley, no
longer agreed with certain design decisions in the G77 front end. Also, the interface of g77
to the back end is written in a style which is confusing and not up to date on recommended
practice. In fact, a full rewrite had already been planned for GCC 3.0.

When Craig decided to stop, it just seemed to be a better idea to start a new project from
scratch, because it was expected to be easier to maintain code we develop ourselves than to do
a major overhaul of g77 first, and then build a Fortran 95 compiler out of it.

http://world.std.com/~burley/g77-why.html

24 The GNU Fortran 95 Compiler

Chapter 4: GNU Fortran 95 Command Options 25

4 GNU Fortran 95 Command Options

The gfortran command supports all the options supported by the gcc command. Only options
specific to gfortran are documented here.

Gfortran is not yet a fully conformant Fortran 95 compiler. It can generate code for most
constructs and expressions, but work remains to be done. In particular, there are known de-
ficiencies with ENTRY, NAMELIST, and sophisticated use of MODULES, POINTERS and
DERIVED TYPES. For those whose Fortran codes conform to either the Fortran 77 standard
or the GNU Fortran 77 language, we recommend to use g77 from GCC 3.4. We recommend
that distributors continue to provide packages of g77-3.4 until we announce that gfortran fully
replaces g77. The gfortran developers welcome any feedback on user experience with gfortran
at fortran@gcc.gnu.org.

See section “GCC Command Options” in Using the GNU Compiler Collection (GCC), for in-
formation on the non-Fortran-specific aspects of the gcc command (and, therefore, the gfortran
command).

All gcc and gfortran options are accepted both by gfortran and by gcc (as well as any
other drivers built at the same time, such as g++), since adding gfortran to the gcc distribution
enables acceptance of gfortran options by all of the relevant drivers.

In some cases, options have positive and negative forms; the negative form of ‘-ffoo’ would
be ‘-fno-foo’. This manual documents only one of these two forms, whichever one is not the
default.

4.1 Option Summary

Here is a summary of all the options specific to GNU Fortran, grouped by type. Explanations
are in the following sections.

Fortran Language Options
See Section 4.2 [Options Controlling Fortran Dialect], page 26.

-ffree-form -fno-fixed-form

-fdollar-ok -fimplicit-none -fmax-identifier-length

-std=std -ffixed-line-length-n -ffixed-line-length-none

-fdefault-double-8 -fdefault-integer-8 -fdefault-real-8

Warning Options
See Section 4.3 [Options to Request or Suppress Warnings], page 26.

-fsyntax-only -pedantic -pedantic-errors

-w -Wall -Waliasing -Wconversion

-Wimplicit-interface -Wnonstd-intrinsics -Wsurprising -Wunderflow

-Wunused-labels -Wline-truncation

-Werror -W

Debugging Options
See Section 4.4 [Options for Debugging Your Program or GCC], page 28.

-fdump-parse-tree

Directory Options
See Section 4.5 [Options for Directory Search], page 28.

-Idir -Mdir

Code Generation Options
See Section 4.6 [Options for Code Generation Conventions], page 28.

-ff2c -fno-underscoring -fsecond-underscore

-fbounds-check -fmax-stack-var-size=n

-fpackderived -frepack-arrays

mailto:fortran@gcc.gnu.org

26 The GNU Fortran 95 Compiler

4.2 Options Controlling Fortran Dialect

The following options control the dialect of Fortran that the compiler accepts:

-ffree-form
-ffixed-form

Specify the layout used by the the source file. The free form layout was introduced
in Fortran 90. Fixed form was traditionally used in older Fortran programs.

-fdefault-double-8
Set the "DOUBLE PRECISION" type to an 8 byte wide.

-fdefault-integer-8
Set the default integer and logical types to an 8 byte wide type. Do nothing if this
is already the default.

-fdefault-real-8
Set the default real type to an 8 byte wide type. Do nothing if this is already the
default.

-fdollar-ok
Allow ‘$’ as a valid character in a symbol name.

-fno-backslash
Compile switch to change the interpretation of a backslash from “C”-style escape
characters to a single backslash character.

-ffixed-line-length-n
Set column after which characters are ignored in typical fixed-form lines in the source
file, and through which spaces are assumed (as if padded to that length) after the
ends of short fixed-form lines.
Popular values for n include 72 (the standard and the default), 80 (card image),
and 132 (corresponds to “extended-source” options in some popular compilers).
n may be ‘none’, meaning that the entire line is meaningful and that continued
character constants never have implicit spaces appended to them to fill out the line.
‘-ffixed-line-length-0’ means the same thing as ‘-ffixed-line-length-none’.

-fmax-identifier-length=n
Specify the maximum allowed identifier length. Typical values are 31 (Fortran 95)
and 63 (Fortran 200x).

-fimplicit-none
Specify that no implicit typing is allowed, unless overridden by explicit ‘IMPLICIT’
statements. This is the equivalent of adding ‘implicit none’ to the start of every
procedure.

-std=std Conform to the specified standard. Allowed values for std are ‘gnu’, ‘f95’, ‘f2003’
and ‘legacy’.

4.3 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erroneous
but which are risky or suggest there might have been an error.

You can request many specific warnings with options beginning ‘-W’, for example
‘-Wimplicit’ to request warnings on implicit declarations. Each of these specific warning
options also has a negative form beginning ‘-Wno-’ to turn off warnings; for example,
‘-Wno-implicit’. This manual lists only one of the two forms, whichever is not the default.

These options control the amount and kinds of warnings produced by GNU Fortran:

Chapter 4: GNU Fortran 95 Command Options 27

-fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

-pedantic
Issue warnings for uses of extensions to FORTRAN 95. ‘-pedantic’ also applies to
C-language constructs where they occur in GNU Fortran source files, such as use of
‘\e’ in a character constant within a directive like ‘#include’.
Valid FORTRAN 95 programs should compile properly with or without this op-
tion. However, without this option, certain GNU extensions and traditional Fortran
features are supported as well. With this option, many of them are rejected.
Some users try to use ‘-pedantic’ to check programs for conformance. They soon
find that it does not do quite what they want—it finds some nonstandard practices,
but not all. However, improvements to gfortran in this area are welcome.
This should be used in conjunction with -std=std.

-pedantic-errors
Like ‘-pedantic’, except that errors are produced rather than warnings.

-w Inhibit all warning messages.

-Wall Enables commonly used warning options that which pertain to usage that we
recommend avoiding and that we believe is easy to avoid. This currently in-
cludes ‘-Wunused-labels’, ‘-Waliasing’, ‘-Wsurprising’, ‘-Wnonstd-intrinsic’
and ‘-Wline-truncation’.

-Waliasing
Warn about possible aliasing of dummy arguments. The following example will
trigger the warning as it would be illegal to bar to modify either parameter.

INTEGER A

CALL BAR(A,A)

-Wconversion
Warn about implicit conversions between different types.

-Wimplicit-interface
Warn about when procedure are called without an explicit interface. Note this only
checks that an explicit interface is present. It does not check that the declared
interfaces are consistent across program units.

-Wnonstd-intrinsic
Warn if the user tries to use an intrinsic that does not belong to the standard the
user has chosen via the -std option.

-Wsurprising
Produce a warning when “suspicious” code constructs are encountered. While tech-
nically legal these usually indicate that an error has been made.
This currently produces a warning under the following circumstances:
• An INTEGER SELECT construct has a CASE that can never be matched as

its lower value is greater than its upper value.
• A LOGICAL SELECT construct has three CASE statements.

-Wunderflow
Produce a warning when numerical constant expressions are encountered, which
yield an UNDERFLOW during compilation.

-Wunused-labels
Warn whenever a label is defined but never referenced.

28 The GNU Fortran 95 Compiler

-Werror Turns all warnings into errors.

-W Turns on “extra warnings” and, if optimization is specified via ‘-O’, the
‘-Wuninitialized’ option. (This might change in future versions of gfortran

See section “Options to Request or Suppress Warnings” in Using the GNU Compiler Collec-
tion (GCC), for information on more options offered by the GBE shared by gfortran, gcc and
other GNU compilers.

Some of these have no effect when compiling programs written in Fortran.

4.4 Options for Debugging Your Program or GNU Fortran

GNU Fortran has various special options that are used for debugging either your program or
gfortran

-fdump-parse-tree
Output the internal parse tree before starting code generation. Only really useful
for debugging gfortran itself.

See section “Options for Debugging Your Program or GCC” in Using the GNU Compiler
Collection (GCC), for more information on debugging options.

4.5 Options for Directory Search

There options affect how affect how gfortran searches for files specified via the INCLUDE direc-
tive, and where it searches for previously compiled modules.

It also affects the search paths used by cpp when used to preprocess Fortran source.

-Idir These affect interpretation of the INCLUDE directive (as well as of the #include
directive of the cpp preprocessor).
Also note that the general behavior of ‘-I’ and INCLUDE is pretty much the same as of
‘-I’ with #include in the cpp preprocessor, with regard to looking for ‘header.gcc’
files and other such things.
This path is also used to search for ‘.mod’ files when previously compiled modules
are required by a USE statement.
See section “Options for Directory Search” in Using the GNU Compiler Collection
(GCC), for information on the ‘-I’ option.

-Mdir

-Jdir This option specifies where to put ‘.mod’ files for compiled modules. It is also added
to the list of directories to searched by an USE statement.
The default is the current directory.
‘-J’ is an alias for ‘-M’ to avoid conflicts with existing GCC options.

4.6 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code generation.
Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would be

‘-fno-foo’. In the table below, only one of the forms is listed—the one which is not the default.
You can figure out the other form by either removing ‘no-’ or adding it.

-ff2c Generate code designed to be compatible with code generated by g77 and f2c.
The calling conventions used by g77 (originally implemented in f2c) require func-
tions that return type default REAL to actually return the C type double, and
functions that return type COMPLEX to return the values via an extra argument in

Chapter 4: GNU Fortran 95 Command Options 29

the calling sequence that points to where to store the return value. Under the de-
fault GNU calling conventions, such functions simply return their results as they
would in GNU C – default REAL functions return the C type float, and COMPLEX
functions return the GNU C type complex. Additionally, this option implies the
‘-fsecond-underscore’ option, unless ‘-fno-second-underscore’ is explicitly re-
quested.
This does not affect the generation of code that interfaces with the libgfortran
library.
Caution: It is not a good idea to mix Fortran code compiled with -ff2c with
code compiled with the default -fno-f2c calling conventions as, calling COMPLEX or
default REAL functions between program parts which were compiled with different
calling conventions will break at execution time.
Caution: This will break code which passes intrinsic functions of type default REAL
or COMPLEX as actual arguments, as the library implementations use the -fno-f2c
calling conventions.

-fno-underscoring
Do not transform names of entities specified in the Fortran source file by appending
underscores to them.
With ‘-funderscoring’ in effect, gfortran appends one underscore to external
names with no underscores.
This is done to ensure compatibility with code produced by many UNIX Fortran
compilers.
Caution: The default behavior of gfortran is incompatible with f2c and g77,
please use the ‘-ff2c’ option if you want object files compiled with ‘gfortran’ to
be compatible with object code created with these tools.
Use of ‘-fno-underscoring’ is not recommended unless you are experimenting with
issues such as integration of (GNU) Fortran into existing system environments (vis-
a-vis existing libraries, tools, and so on).
For example, with ‘-funderscoring’, and assuming other defaults like
‘-fcase-lower’ and that ‘j()’ and ‘max_count()’ are external functions while
‘my_var’ and ‘lvar’ are local variables, a statement like

I = J() + MAX_COUNT (MY_VAR, LVAR)

is implemented as something akin to:
i = j_() + max_count__(&my_var__, &lvar);

With ‘-fno-underscoring’, the same statement is implemented as:
i = j() + max_count(&my_var, &lvar);

Use of ‘-fno-underscoring’ allows direct specification of user-defined names while
debugging and when interfacing gfortran code with other languages.
Note that just because the names match does not mean that the interface im-
plemented by gfortran for an external name matches the interface implemented
by some other language for that same name. That is, getting code produced by
gfortran to link to code produced by some other compiler using this or any other
method can be only a small part of the overall solution—getting the code generated
by both compilers to agree on issues other than naming can require significant effort,
and, unlike naming disagreements, linkers normally cannot detect disagreements in
these other areas.
Also, note that with ‘-fno-underscoring’, the lack of appended underscores intro-
duces the very real possibility that a user-defined external name will conflict with a
name in a system library, which could make finding unresolved-reference bugs quite

30 The GNU Fortran 95 Compiler

difficult in some cases—they might occur at program run time, and show up only
as buggy behavior at run time.
In future versions of gfortran we hope to improve naming and linking issues so
that debugging always involves using the names as they appear in the source, even
if the names as seen by the linker are mangled to prevent accidental linking between
procedures with incompatible interfaces.

-fsecond-underscore
By default, gfortran appends an underscore to external names. If this option is used
gfortran appends two underscores to names with underscores and one underscore
to external names with no underscores. (gfortran also appends two underscores to
internal names with underscores to avoid naming collisions with external names.
This option has no effect if ‘-fno-underscoring’ is in effect. It is implied by the
‘-ff2c’ option.
Otherwise, with this option, an external name such as ‘MAX_COUNT’ is implemented as
a reference to the link-time external symbol ‘max_count__’, instead of ‘max_count_’.
This is required for compatibility with g77 and f2c, and is implied by use of the
‘-ff2c’ option.

-fbounds-check
Enable generation of run-time checks for array subscripts and against the declared
minimum and maximum values. It also checks array indices for assumed and deferred
shape arrays against the actual allocated bounds.
In the future this may also include other forms of checking, eg. checking substring
references.

-fmax-stack-var-size=n
This option specifies the size in bytes of the largest array that will be put on the
stack.
This option currently only affects local arrays declared with constant bounds, and
may not apply to all character variables. Future versions of gfortran may improve
this behavior.
The default value for n is 32768.

-fpackderived
This option tells gfortran to pack derived type members as closely as possible. Code
compiled with this option is likely to be incompatible with code compiled without
this option, and may execute slower.

-frepack-arrays
In some circumstances gfortran may pass assumed shape array sections via a de-
scriptor describing a discontiguous area of memory. This option adds code to the
function prologue to repack the data into a contiguous block at runtime.
This should result in faster accesses to the array. However it can introduce significant
overhead to the function call, especially when the passed data is discontiguous.

See section “Options for Code Generation Conventions” in Using the GNU Compiler Collec-
tion (GCC), for information on more options offered by the GBE shared by gfortran gcc and
other GNU compilers.

4.7 Environment Variables Affecting GNU Fortran

GNU Fortran 95 currently does not make use of any environment variables to control its oper-
ation above and beyond those that affect the operation of gcc.

Chapter 4: GNU Fortran 95 Command Options 31

See section “Environment Variables Affecting GCC” in Using the GNU Compiler Collection
(GCC), for information on environment variables.

32 The GNU Fortran 95 Compiler

Chapter 5: Project Status 33

5 Project Status

As soon as gfortran can parse all of the statements correctly, it will be in the “larva”
state. When we generate code, the “puppa” state. When gfortran is done, we’ll see
if it will be a beautiful butterfly, or just a big bug....

–Andy Vaught, April 2000

The start of the GNU Fortran 95 project was announced on the GCC homepage in March
18, 2000 (even though Andy had already been working on it for a while, or course).

Gfortran is currently reaching the stage where is is able to compile real world programs.
However it is still under development and has many rough edges.

5.1 Compiler Status

Front end This is the part of gfortran which parses a source file, verifies that it is valid Fortran
95, performs compile time replacement of constants (PARAMETER variables) and
reads and generate module files. This is almost complete. Every Fortran 95 source
should be accepted, and most none-Fortran 95 source should be rejected. If you find
a source file where this is not true, please tell us. You can use the -fsyntax-only
switch to make gfortran quit after running the front end, effectively reducing it to
a syntax checker.

Middle end interface
These are the parts of gfortran that take the parse tree generated by the front end
and translate it to the GENERIC form required by the GCC back end. Work is
ongoing in these parts of gfortran, but a large part has already been completed.

5.2 Library Status

Some intrinsic functions map directly to library functions, and in most cases the name of the
library function used depends on the type of the arguments. For some intrinsics we generate
inline code, and for others, such as sin, cos and sqrt, we rely on the backend to use special
instructions in the floating point unit of the CPU if available, or to fall back to a call to libm if
these are not available.

Implementation of some non-elemental intrinsic functions (eg. DOT PRODUCT, AVER-
AGE) is not yet optimal. This is hard because we have to make decisions whether to use inline
code (good for small arrays as no function call overhead occurs) or generate function calls (good
for large arrays as it allows use of hand-optimized assembly routines, SIMD instructions, etc.)

The IO library is still under development. The following features should be usable for real
programs:

− List directed
− Unformatted sequential

Usable with bugs:

− Formatted sequential (’T’ edit descriptor, and others)

Not recommended:

− Unformatted direct access
− Formatted direct access

Many Fortran programs only use a small subset of the available IO capabilities, so your
mileage may vary.

34 The GNU Fortran 95 Compiler

5.3 Proposed Extensions

Here’s a list of proposed extensions for gfortran, in no particular order. Most of these are
necessary to be fully compatible with existing Fortran compilers, but they are not part of the
official J3 Fortran 95 standard.

5.3.1 Compiler extensions:

• Flag for defining the kind number for default logicals.
• User-specified alignment rules for structures.
• Flag to generate a Makefile info.
• Automatically extend single precision constants to double.
• Cray pointers (this was high on the g77 wishlist).
• Compile code that conserves memory by dynamically allocating common and module stor-

age either on stack or heap.
• Flag to cause the compiler to distinguish between upper and lower case names. The Fortran

95 standard does not distinguish them.
• Compile flag to generate code for array conformance checking (suggest -CC).
• User control of symbol names (underscores, etc).
• Compile setting for maximum size of stack frame size before spilling parts to static or heap.
• Flag to force local variables into static space.
• Flag to force local variables onto stack.
• Flag to compile lines beginning with “D”.
• Flag to ignore lines beginning with “D”.
• Flag for maximum errors before ending compile.
• Generate code to check for null pointer dereferences – prints locus of dereference instead of

segfaulting. There was some discussion about this option in the g95 development mailing
list.

• Allow setting default unit number.
• Option to initialize of otherwise uninitialized integer and floating point variables.
• Support for OpenMP directives. This also requires support from the runtime library and

the rest of the compiler.
• Support for Fortran 200x. This includes several new features including floating point ex-

ceptions, extended use of allocatable arrays, C interoperability, Parameterizer data types
and function pointers.

5.3.2 Environment Options

• Pluggable library modules for random numbers, linear algebra. LA should use BLAS calling
conventions.

• Environment variables controlling actions on arithmetic exceptions like overflow, underflow,
precision loss – Generate NaN, abort, default. action.

• Set precision for fp units that support it (i387).
• Variables for setting fp rounding mode.
• Variable to fill uninitialized variables with a user-defined bit pattern.
• Environment variable controlling filename that is opened for that unit number.
• Environment variable to clear/trash memory being freed.
• Environment variable to control tracing of allocations and frees.

Chapter 5: Project Status 35

• Environment variable to display allocated memory at normal program end.
• Environment variable for filename for * IO-unit.
• Environment variable for temporary file directory.
• Environment variable forcing standard output to be line buffered (unix).
• Variable for swapping endianness during unformatted read.
• Variable for swapping Endianness during unformatted write.

36 The GNU Fortran 95 Compiler

Chapter 6: Extensions 37

6 Extensions

gfortran implements a number of extensions over standard Fortran. This chapter contains
information on their syntax and meaning. There are currently two categories of gfortran
extensions, those that provide functionality beyond that provided by any standard, and those
that are supported by gfortran purely for backward compatibility with legacy compilers. By
default, ‘-std=gnu’ allows the compiler to accept both types of extensions, but to warn about the
use of the latter. Specifying either ‘-std=f95’ or ‘-std=f2003’ disables both types of extensions,
and ‘-std=legacy’ allows both without warning.

6.1 Old-style kind specifications
gfortran allows old-style kind specifications in declarations. These look like:

TYPESPEC*k x,y,z

where TYPESPEC is a basic type, and where k is a valid kind number for that type. The
statement then declares x, y and z to be of type TYPESPEC with kind k. In other words, it is
equivalent to the standard conforming declaration

TYPESPEC(k) x,y,z

6.2 Old-style variable initialization
gfortran allows old-style initialization of variables of the form:

INTEGER*4 i/1/,j/2/

REAL*8 x(2,2) /3*0.,1./

These are only allowed in declarations without double colons (::), as these were introduced
in Fortran 90 which also introduced a new syntax for variable initializations. The syntax for the
individual initializers is as for the DATA statement, but unlike in a DATA statement, an initializer
only applies to the variable immediately preceding. In other words, something like INTEGER
I,J/2,3/ is not valid.

Examples of standard conforming code equivalent to the above example, are:
! Fortran 90

INTEGER(4) :: i = 1, j = 2

REAL(8) :: x(2,2) = RESHAPE((/0.,0.,0.,1./),SHAPE(x))

! Fortran 77

INTEGER i, j

DOUBLE PRECISION x(2,2)

DATA i,j,x /1,2,3*0.,1./

6.3 Extensions to namelist

gfortran fully supports the fortran95 standard for namelist io including array qualifiers, sub-
strings and fully qualified derived types. The output from a namelist write is compatible with
namelist read. The output has all names in upper case and indentation to column 1 after the
namelist name. Two extensions are permitted:

Old-style use of $ instead of &
$MYNML

X(:)%Y(2) = 1.0 2.0 3.0

CH(1:4) = "abcd"

$END

It should be noticed that the default terminator is / rather than &END.
Querying of the namelist when inputting from stdin. After at least one space, entering ?

sends to stdout the namelist name and the names of the variables in the namelist:
?

&mynml

x

38 The GNU Fortran 95 Compiler

x%y

ch

&end

Entering =? outputs the namelist to stdout, as if WRITE (*,NML = mynml) had been
called:

=?

&MYNML

X(1)%Y= 0.000000 , 1.000000 , 0.000000 ,

X(2)%Y= 0.000000 , 2.000000 , 0.000000 ,

X(3)%Y= 0.000000 , 3.000000 , 0.000000 ,

CH=abcd, /

To aid this dialog, when input is from stdin, errors produce send their messages to stderr
and execution continues, even if IOSTAT is set.

PRINT namelist is permitted. This causes an error if -std=f95 is used.
PROGRAM test_print

REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/)

NAMELIST /mynml/ x

PRINT mynml

END PROGRAM test_print

6.4 Implicitly interconvert LOGICAL and INTEGER

As a GNU extension for backwards compatability with other compilers, gfortran allows the
implicit conversion of LOGICALs to INTEGERs and vice versa. When converting from a
LOGICAL to an INTEGER, the numeric value of .FALSE. is zero, and that of .TRUE. is one.
When converting from INTEGER to LOGICAL, the value zero is interpreted as .FALSE. and
any non-zero value is interpreted as .TRUE..

INTEGER*4 i

i = .FALSE.

6.5 Hollerith constants support

A Hollerith constant is a string of characters preceded by the letter ‘H’ or ‘h’, and there must
be an literal, unsigned, nonzero default integer constant indicating the number of characters in
the string. Hollerith constants are stored as byte strings, one character per byte.

gfortran supports Hollerith constants. They can be used as the right hands in the DATA
statement and ASSIGN statement, also as the arguments. The left hands can be of Integer, Real,
Complex and Logical type. The constant will be padded or trancated to fit the size of left hand.

Valid Hollerith constants examples:
complex*16 x(2)

data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/

call foo (4H abc)

x(1) = 16Habcdefghijklmnop

Invalid Hollerith constants examples:
integer*4 a

a = 8H12345678 ! The Hollerith constant is too long. It will be truncated.

a = 0H ! At least one character needed.

Chapter 7: Intrinsic Procedures 39

7 Intrinsic Procedures

This portion of the document is incomplete and undergoing massive expansion and editing. All
contributions and corrections are strongly encouraged.

7.1 Introduction to intrinsic procedures

Gfortran provides a rich set of intrinsic procedures that includes all the intrinsic procedures
required by the Fortran 95 standard, a set of intrinsic procedures for backwards compatibility
with Gnu Fortran 77 (i.e., g77), and a small selection of intrinsic procedures from the Fortran
2003 standard. Any description here, which conflicts with a description in either the Fortran 95
standard or the Fortran 2003 standard, is unintentional and the standard(s) should be considered
authoritative.

The enumeration of the KIND type parameter is processor defined in the Fortran 95 stan-
dard. Gfortran defines the default integer type and default real type by INTEGER(KIND=4) and
REAL(KIND=4), respectively. The standard mandates that both data types shall have another
kind, which have more precision. On typical target architectures supported by gfortran, this
kind type parameter is KIND=8. Hence, REAL(KIND=8) and DOUBLE PRECISION are equivalent.
In the description of generic intrinsic procedures, the kind type parameter will be specified by
KIND=*, and in the description of specific names for an intrinsic procedure the kind type pa-
rameter will be explicitly given (e.g., REAL(KIND=4) or REAL(KIND=8)). Finally, for brevity the
optional KIND= syntax will be omitted.

Many of the intrinsics procedures take one or more optional arguments. This document
follows the convention used in the Fortran 95 standard, and denotes such arguments by square
brackets.

Gfortran offers the ‘-std=f95’ and ‘-std=gnu’ options, which can be used to restrict the set
of intrinsic procedures to a given standard. By default, gfortran sets the ‘-std=gnu’ option,
and so all intrinsic procedures described here are accepted. There is one caveat. For a select
group of intrinsic procedures, g77 implemented both a function and a subroutine. Both classes
have been implemented in gfortran for backwards compatibility with g77. It is noted here that
these functions and subroutines cannot be intermixed in a given subprogram. In the descriptions
that follow, the applicable option(s) is noted.

7.2 ABORT — Abort the program

Description:
ABORT causes immediate termination of the program. On operating systems that
support a core dump, ABORT will produce a core dump, which is suitable for debug-
ging purposes.

Option: gnu

Class: non-elemental subroutine

Syntax : CALL ABORT

Return value:
Does not return.

Example:
program test_abort

integer :: i = 1, j = 2

if (i /= j) call abort

end program test_abort

40 The GNU Fortran 95 Compiler

7.3 ABS — Absolute value

Description:
ABS(X) computes the absolute value of X.

Option: f95, gnu

Class: elemental function

Syntax : X = ABS(X)

Arguments:
X The type of the argument shall be an INTEGER(*), REAL(*), or

COMPLEX(*).

Return value:
The return value is of the same type and kind as the argument except the return
value is REAL(*) for a COMPLEX(*) argument.

Example:
program test_abs

integer :: i = -1

real :: x = -1.e0

complex :: z = (-1.e0,0.e0)

i = abs(i)

x = abs(x)

x = abs(z)

end program test_abs

Specific names:
Name Argument Return type Option
CABS(Z) COMPLEX(4) Z REAL(4) f95, gnu
DABS(X) REAL(8) X REAL(8) f95, gnu
IABS(I) INTEGER(4) I INTEGER(4) f95, gnu
ZABS(Z) COMPLEX(8) Z COMPLEX(8) gnu
CDABS(Z) COMPLEX(8) Z COMPLEX(8) gnu

7.4 ACHAR — Character in ASCII collating sequence

Description:
ACHAR(I) returns the character located at position I in the ASCII collating sequence.

Option: f95, gnu

Class: elemental function

Syntax : C = ACHAR(I)

Arguments:
I The type shall be INTEGER(*).

Return value:
The return value is of type CHARACTER with a length of one. The kind type parameter
is the same as KIND(’A’).

Example:
program test_achar

character c

c = achar(32)

end program test_achar

Chapter 7: Intrinsic Procedures 41

7.5 ACOS — Arc cosine function

Description:
ACOS(X) computes the arc cosine of X.

Option: f95, gnu

Class: elemental function

Syntax : X = ACOS(X)

Arguments:
X The type shall be REAL(*) with a magnitude that is less than one.

Return value:
The return value is of type REAL(*) and it lies in the range 0 ≤ arccos(x) ≤ π. The
kind type parameter is the same as X.

Example:
program test_acos

real(8) :: x = 0.866_8

x = achar(x)

end program test_acos

Specific names:
Name Argument Return type Option
DACOS(X) REAL(8) X REAL(8) f95, gnu

7.6 ADJUSTL — Left adjust a string

Description:
ADJUSTL(STR) will left adjust a string by removing leading spaces. Spaces are
inserted at the end of the string as needed.

Option: f95, gnu

Class: elemental function

Syntax : STR = ADJUSTL(STR)

Arguments:
STR The type shall be CHARACTER.

Return value:
The return value is of type CHARACTER where leading spaces are removed and the
same number of spaces are inserted on the end of STR.

Example:
program test_adjustl

character(len=20) :: str = ’ gfortran’

str = adjustl(str)

print *, str

end program test_adjustl

7.7 ADJUSTR — Right adjust a string

Description:
ADJUSTR(STR) will right adjust a string by removing trailing spaces. Spaces are
inserted at the start of the string as needed.

Option: f95, gnu

Class: elemental function

42 The GNU Fortran 95 Compiler

Syntax : STR = ADJUSTR(STR)

Arguments:
STR The type shall be CHARACTER.

Return value:
The return value is of type CHARACTER where trailing spaces are removed and the
same number of spaces are inserted at the start of STR.

Example:
program test_adjustr

character(len=20) :: str = ’gfortran’

str = adjustr(str)

print *, str

end program test_adjustr

7.8 AIMAG — Imaginary part of complex number

Description:
AIMAG(Z) yields the imaginary part of complex argument Z.

Option: f95, gnu

Class: elemental function

Syntax : X = AIMAG(Z)

Arguments:
Z The type of the argument shall be COMPLEX(*).

Return value:
The return value is of type real with the kind type parameter of the argument.

Example:
program test_aimag

complex(4) z4

complex(8) z8

z4 = cmplx(1.e0_4, 0.e0_4)

z8 = cmplx(0.e0_8, 1.e0_8)

print *, aimag(z4), dimag(z8)

end program test_aimag

Specific names:
Name Argument Return type Option
DIMAG(Z) COMPLEX(8) Z REAL(8) f95, gnu

7.9 AINT — Imaginary part of complex number

Description:
AINT(X [, KIND]) truncates its argument to a whole number.

Option: f95, gnu

Class: elemental function

Syntax : X = AINT(X) X = AINT(X, KIND)

Arguments:
X The type of the argument shall be REAL(*).
KIND (Optional) KIND shall be a scalar integer initialization expression.

Return value:
The return value is of type real with the kind type parameter of the argument if
the optional KIND is absent; otherwise, the kind type parameter will be given by

Chapter 7: Intrinsic Procedures 43

KIND. If the magnitude of X is less than one, then AINT(X) returns zero. If the
magnitude is equal to or greater than one, then it returns the largest whole number
that does not exceed its magnitude. The sign is the same as the sign of X.

Example:
program test_aint

real(4) x4

real(8) x8

x4 = 1.234E0_4

x8 = 4.321_8

print *, aint(x4), dint(x8)

x8 = aint(x4,8)

end program test_aint

Specific names:
Name Argument Return type Option
DINT(X) REAL(8) X REAL(8) f95, gnu

7.10 ALL — All values in MASK along DIM are true

Description:
ALL(MASK [, DIM]) determines if all the values are true in MASK in the array along
dimension DIM.

Option: f95, gnu

Class: transformational function

Syntax : L = ALL(MASK) L = ALL(MASK, DIM)

Arguments:
MASK The type of the argument shall be LOGICAL(*) and it shall not be scalar.
DIM (Optional) DIM shall be a scalar integer with a value that lies between

one and the rank of MASK.
Return value:

ALL(MASK) returns a scalar value of type LOGICAL(*) where the kind type parameter
is the same as the kind type parameter of MASK. If DIM is present, then ALL(MASK,
DIM) returns an array with the rank of MASK minus 1. The shape is determined
from the shape of MASK where the DIM dimension is elided.

(A) ALL(MASK) is true if all elements of MASK are true. It also is true if
MASK has zero size; otherwise, it is false.

(B) If the rank of MASK is one, then ALL(MASK,DIM) is equivalent to
ALL(MASK). If the rank is greater than one, then ALL(MASK,DIM) is
determined by applying ALL to the array sections.

Example:
program test_all

logical l

l = all((/.true., .true., .true./))

print *, l

call section

contains

subroutine section

integer a(2,3), b(2,3)

a = 1

b = 1

b(2,2) = 2

print *, all(a .eq. b, 1)

print *, all(a .eq. b, 2)

end subroutine section

end program test_all

44 The GNU Fortran 95 Compiler

7.11 ALLOCATED — Status of an allocatable entity

Description:
ALLOCATED(X) checks the status of whether X is allocated.

Option: f95, gnu

Class: inquiry function

Syntax : L = ALLOCATED(X)

Arguments:
X The argument shall be an ALLOCATABLE array.

Return value:
The return value is a scalar LOGICAL with the default logical kind type parameter.
If X is allocated, ALLOCATED(X) is .TRUE.; otherwise, it returns the .TRUE.

Example:
program test_allocated

integer :: i = 4

real(4), allocatable :: x(:)

if (allocated(x) .eqv. .false.) allocate(x(i)

end program test_allocated

7.12 ANINT — Imaginary part of complex number

Description:
ANINT(X [, KIND]) rounds its argument to the nearest whole number.

Option: f95, gnu

Class: elemental function

Syntax : X = ANINT(X) X = ANINT(X, KIND)

Arguments:
X The type of the argument shall be REAL(*).
KIND (Optional) KIND shall be a scalar integer initialization expression.

Return value:
The return value is of type real with the kind type parameter of the argument if
the optional KIND is absent; otherwise, the kind type parameter will be given by
KIND. If X is greater than zero, then ANINT(X) returns AINT(X+0.5). If X is less
than or equal to zero, then return AINT(X-0.5).

Example:
program test_anint

real(4) x4

real(8) x8

x4 = 1.234E0_4

x8 = 4.321_8

print *, anint(x4), dnint(x8)

x8 = anint(x4,8)

end program test_anint

Specific names:
Name Argument Return type Option
DNINT(X) REAL(8) X REAL(8) f95, gnu

Chapter 7: Intrinsic Procedures 45

7.13 ANY — Any value in MASK along DIM is true

Description:
ANY(MASK [, DIM]) determines if any of the values in the logical array MASK along
dimension DIM are .TRUE..

Option: f95, gnu

Class: transformational function

Syntax : L = ANY(MASK) L = ANY(MASK, DIM)

Arguments:
MASK The type of the argument shall be LOGICAL(*) and it shall not be scalar.
DIM (Optional) DIM shall be a scalar integer with a value that lies between

one and the rank of MASK.

Return value:
ANY(MASK) returns a scalar value of type LOGICAL(*) where the kind type parameter
is the same as the kind type parameter of MASK. If DIM is present, then ANY(MASK,
DIM) returns an array with the rank of MASK minus 1. The shape is determined
from the shape of MASK where the DIM dimension is elided.

(A) ANY(MASK) is true if any element of MASK is true; otherwise, it is false.
It also is false if MASK has zero size.

(B) If the rank of MASK is one, then ANY(MASK,DIM) is equivalent to
ANY(MASK). If the rank is greater than one, then ANY(MASK,DIM) is
determined by applying ANY to the array sections.

Example:
program test_any

logical l

l = any((/.true., .true., .true./))

print *, l

call section

contains

subroutine section

integer a(2,3), b(2,3)

a = 1

b = 1

b(2,2) = 2

print *, any(a .eq. b, 1)

print *, any(a .eq. b, 2)

end subroutine section

end program test_any

7.14 ASIN — Arcsine function

Description:
ASIN(X) computes the arcsine of its X.

Option: f95, gnu

Class: elemental function

Syntax : X = ASIN(X)

Arguments:
X The type shall be REAL(*), and a magnitude that is less than one.

Return value:
The return value is of type REAL(*) and it lies in the range −π/2 ≤ arccos(x) ≤ π/2.
The kind type parameter is the same as X.

46 The GNU Fortran 95 Compiler

Example:
program test_asin

real(8) :: x = 0.866_8

x = asin(x)

end program test_asin

Specific names:
Name Argument Return type Option
DASIN(X) REAL(8) X REAL(8) f95, gnu

7.15 ASSOCIATED — Status of a pointer or pointer/target pair

Description:
ASSOCIATED(PTR [, TGT]) determines the status of the pointer PTR or if PTR is
associated with the target TGT.

Option: f95, gnu

Class: inquiry function

Syntax : L = ASSOCIATED(PTR) L = ASSOCIATED(PTR [, TGT])

Arguments:
PTR PTR shall have the POINTER attribute and it can be of any type.
TGT (Optional) TGT shall be a POINTER or a TARGET. It must have the same

type, kind type parameter, and array rank as PTR.
The status of neither PTR nor TGT can be undefined.

Return value:
ASSOCIATED(PTR) returns a scalar value of type LOGICAL(4). There are several
cases:

(A) If the optional TGT is not present, then ASSOCIATED(PTR)
is true if PTR is associated with a target; otherwise, it returns false.

(B) If TGT is present and a scalar target, the result is true if
TGT is not a 0 sized storage sequence and the target associated with
PTR occupies the same storage units. If PTR is disassociated, then the
result is false.

(C) If TGT is present and an array target, the result is true if
TGT and PTR have the same shape, are not 0 sized arrays, are arrays
whose elements are not 0 sized storage sequences, and TGT and PTR
occupy the same storage units in array element order. As in case(B),
the result is false, if PTR is disassociated.

(D) If TGT is present and an scalar pointer, the result is true if
target associated with PTR and the target associated with TGT are
not 0 sized storage sequences and occupy the same storage units. The
result is false, if either TGT or PTR is disassociated.

(E) If TGT is present and an array pointer, the result is true if
target associated with PTR and the target associated with TGT have
the same shape, are not 0 sized arrays, are arrays whose elements are
not 0 sized storage sequences, and TGT and PTR occupy the same
storage units in array element order. The result is false, if either TGT
or PTR is disassociated.

Example:

Chapter 7: Intrinsic Procedures 47

program test_associated

implicit none

real, target :: tgt(2) = (/1., 2./)

real, pointer :: ptr(:)

ptr => tgt

if (associated(ptr) .eqv. .false.) call abort

if (associated(ptr,tgt) .eqv. .false.) call abort

end program test_associated

7.16 ATAN — Arctangent function

Description:
ATAN(X) computes the arctangent of X.

Option: f95, gnu

Class: elemental function

Syntax : X = ATAN(X)

Arguments:
X The type shall be REAL(*).

Return value:
The return value is of type REAL(*) and it lies in the range −π/2 ≤ arcsin(x) ≤ π/2.

Example:
program test_atan

real(8) :: x = 2.866_8

x = atan(x)

end program test_atan

Specific names:
Name Argument Return type Option
DATAN(X) REAL(8) X REAL(8) f95, gnu

7.17 ATAN2 — Arctangent function

Description:
ATAN2(Y,X) computes the arctangent of the complex number X + iY .

Option: f95, gnu

Class: elemental function

Syntax : X = ATAN2(Y,X)

Arguments:
Y The type shall be REAL(*).
X The type and kind type parameter shall be the same as Y. If Y is zero,

then X must be nonzero.

Return value:
The return value has the same type and kind type parameter as Y. It is the principle
value of the complex number X + iY . If X is nonzero, then it lies in the range
−π ≤ arccos(x) ≤ π. The sign is positive if Y is positive. If Y is zero, then the
return value is zero if X is positive and π if X is negative. Finally, if X is zero, then
the magnitude of the result is π/2.

Example:
program test_atan2

real(4) :: x = 1.e0_4, y = 0.5e0_4

x = atan2(y,x)

end program test_atan2

48 The GNU Fortran 95 Compiler

Specific names:
Name Argument Return type Option
DATAN2(X) REAL(8) X REAL(8) f95, gnu

7.18 BESJ0 — Bessel function of the first kind of order 0

Description:
BESJ0(X) computes the Bessel function of the first kind of order 0 of X.

Option: gnu

Class: elemental function

Syntax : X = BESJ0(X)

Arguments:
X The type shall be REAL(*), and it shall be scalar.

Return value:
The return value is of type REAL(*) and it lies in the range −0.4027... ≤
Bessel(0, x) ≤ 1.

Example:
program test_besj0

real(8) :: x = 0.0_8

x = besj0(x)

end program test_besj0

Specific names:
Name Argument Return type Option
DBESJ0(X) REAL(8) X REAL(8) gnu

7.19 BESJ1 — Bessel function of the first kind of order 1

Description:
BESJ1(X) computes the Bessel function of the first kind of order 1 of X.

Option: gnu

Class: elemental function

Syntax : X = BESJ1(X)

Arguments:
X The type shall be REAL(*), and it shall be scalar.

Return value:
The return value is of type REAL(*) and it lies in the range −0.5818... ≤
Bessel(0, x) ≤ 0.5818.

Example:
program test_besj1

real(8) :: x = 1.0_8

x = besj1(x)

end program test_besj1

Specific names:
Name Argument Return type Option
DBESJ1(X) REAL(8) X REAL(8) gnu

Chapter 7: Intrinsic Procedures 49

7.20 BESJN — Bessel function of the first kind

Description:
BESJN(N, X) computes the Bessel function of the first kind of order N of X.

Option: gnu

Class: elemental function

Syntax : Y = BESJN(N, X)

Arguments:
N The type shall be INTEGER(*), and it shall be scalar.
X The type shall be REAL(*), and it shall be scalar.

Return value:
The return value is a scalar of type REAL(*).

Example:
program test_besjn

real(8) :: x = 1.0_8

x = besjn(5,x)

end program test_besjn

Specific names:
Name Argument Return type Option
DBESJN(X) INTEGER(*) N REAL(8) gnu

REAL(8) X

7.21 BESY0 — Bessel function of the second kind of order 0

Description:
BESY0(X) computes the Bessel function of the second kind of order 0 of X.

Option: gnu

Class: elemental function

Syntax : X = BESY0(X)

Arguments:
X The type shall be REAL(*), and it shall be scalar.

Return value:
The return value is a scalar of type REAL(*).

Example:
program test_besy0

real(8) :: x = 0.0_8

x = besy0(x)

end program test_besy0

Specific names:
Name Argument Return type Option
DBESY0(X) REAL(8) X REAL(8) gnu

7.22 BESY1 — Bessel function of the second kind of order 1

Description:
BESY1(X) computes the Bessel function of the second kind of order 1 of X.

Option: gnu

50 The GNU Fortran 95 Compiler

Class: elemental function

Syntax : X = BESY1(X)

Arguments:
X The type shall be REAL(*), and it shall be scalar.

Return value:
The return value is a scalar of type REAL(*).

Example:
program test_besy1

real(8) :: x = 1.0_8

x = besy1(x)

end program test_besy1

Specific names:
Name Argument Return type Option
DBESY1(X) REAL(8) X REAL(8) gnu

7.23 BESYN — Bessel function of the second kind

Description:
BESYN(N, X) computes the Bessel function of the second kind of order N of X.

Option: gnu

Class: elemental function

Syntax : Y = BESYN(N, X)

Arguments:
N The type shall be INTEGER(*), and it shall be scalar.
X The type shall be REAL(*), and it shall be scalar.

Return value:
The return value is a scalar of type REAL(*).

Example:
program test_besyn

real(8) :: x = 1.0_8

x = besyn(5,x)

end program test_besyn

Specific names:
Name Argument Return type Option
DBESYN(N,X) INTEGER(*) N REAL(8) gnu

REAL(8) X

7.24 BIT_SIZE — Bit size inquiry function

Description:
BIT_SIZE(I) returns the number of bits (integer precision plus sign bit) represented
by the type of I.

Option: f95, gnu

Class: elemental function

Syntax : I = BIT_SIZE(I)

Arguments:
I The type shall be INTEGER(*).

Chapter 7: Intrinsic Procedures 51

Return value:
The return value is of type INTEGER(*)

Example:
program test_bit_size

integer :: i = 123

integer :: size

size = bit_size(i)

print *, size

end program test_bit_size

7.25 BTEST — Bit test function

Description:
BTEST(I,POS) returns logical .TRUE. if the bit at POS in I is set.

Option: f95, gnu

Class: elemental function

Syntax : I = BTEST(I,POS)

Arguments:
I The type shall be INTEGER(*).
POS The type shall be INTEGER(*).

Return value:
The return value is of type LOGICAL

Example:
program test_btest

integer :: i = 32768 + 1024 + 64

integer :: pos

logical :: bool

do pos=0,16

bool = btest(i, pos)

print *, pos, bool

end do

end program test_btest

7.26 CEILING — Integer ceiling function

Description:
CEILING(X) returns the least integer greater than or equal to X.

Option: f95, gnu

Class: elemental function

Syntax : I = CEILING(X[,KIND])

Arguments:
X The type shall be REAL(*).
KIND Optional scaler integer initialization expression.

Return value:
The return value is of type INTEGER(KIND)

Example:
program test_ceiling

real :: x = 63.29

real :: y = -63.59

print *, ceiling(x) ! returns 64

print *, ceiling(y) ! returns -63

end program test_ceiling

52 The GNU Fortran 95 Compiler

7.27 CHAR — Character conversion function

Description:
CHAR(I,[KIND]) returns the character represented by the integer I.

Option: f95, gnu

Class: elemental function

Syntax : C = CHAR(I[,KIND])

Arguments:
I The type shall be INTEGER(*).
KIND Optional scaler integer initialization expression.

Return value:
The return value is of type CHARACTER(1)

Example:
program test_char

integer :: i = 74

character(1) :: c

c = char(i)

print *, i, c ! returns ’J’

end program test_char

7.28 CMPLX — Complex conversion function

Description:
CMPLX(X,[Y,KIND]) returns a complex number where X is converted to the real
component. If Y is present it is converted to the imaginary component. If Y is not
present then the imaginary component is set to 0.0. If X is complex then Y must
not be present.

Option: f95, gnu

Class: elemental function

Syntax : C = CMPLX(X[,Y,KIND])

Arguments:
X The type may be INTEGER(*), REAL(*), or COMPLEX(*).
Y Optional, allowed if X is not COMPLEX(*). May be INTEGER(*) or REAL(*).
KIND Optional scaler integer initialization expression.

Return value:
The return value is of type COMPLEX(*)

Example:
program test_cmplx

integer :: i = 42

real :: x = 3.14

complex :: z

z = cmplx(i, x)

print *, z, cmplx(x)

end program test_cmplx

7.29 COMMAND_ARGUMENT_COUNT — Argument count function

Description:
COMMAND_ARGUMENT_COUNT() returns the number of arguments passed on the com-
mand line when the containing program was invoked.

Chapter 7: Intrinsic Procedures 53

Option: f2003, gnu

Class: non-elemental function

Syntax : I = COMMAND_ARGUMENT_COUNT()

Arguments:
None

Return value:
The return value is of type INTEGER(4)

Example:
program test_command_argument_count

integer :: count

count = command_argument_count()

print *, count

end program test_command_argument_count

7.30 CONJG — Complex conjugate function

Description:
CONJG(Z) returns the conjugate of Z. If Z is (x, y) then the result is (x, -y)

Option: f95, gnu

Class: elemental function

Syntax : Z = CONJG(Z)

Arguments:
Z The type shall be COMPLEX(*).

Return value:
The return value is of type COMPLEX(*).

Example:
program test_conjg

complex :: z = (2.0, 3.0)

complex(8) :: dz = (2.71_8, -3.14_8)

z= conjg(z)

print *, z

dz = dconjg(dz)

print *, dz

end program test_conjg

Specific names:
Name Argument Return type Option
DCONJG(Z) COMPLEX(8) Z COMPLEX(8) gnu

7.31 COS — Cosine function

Description:
COS(X) computes the cosine of X.

Option: f95, gnu

Class: elemental function

Syntax : X = COS(X)

Arguments:
X The type shall be REAL(*) or COMPLEX(*).

54 The GNU Fortran 95 Compiler

Return value:
The return value has the same type and kind as X.

Example:
program test_cos

real :: x = 0.0

x = cos(x)

end program test_cos

Specific names:
Name Argument Return type Option
DCOS(X) REAL(8) X REAL(8) f95, gnu
CCOS(X) COMPLEX(4) X COMPLEX(4) f95, gnu
ZCOS(X) COMPLEX(8) X COMPLEX(8) f95, gnu
CDCOS(X) COMPLEX(8) X COMPLEX(8) f95, gnu

7.32 COSH — Hyperbolic cosine function

Description:
COSH(X) computes the hyperbolic cosine of X.

Option: f95, gnu

Class: elemental function

Syntax : X = COSH(X)

Arguments:
X The type shall be REAL(*).

Return value:
The return value is of type REAL(*) and it is positive (cosh(x) ≥ 0.

Example:
program test_cosh

real(8) :: x = 1.0_8

x = cosh(x)

end program test_cosh

Specific names:
Name Argument Return type Option
DCOSH(X) REAL(8) X REAL(8) f95, gnu

7.33 COUNT — Count function

Description:
COUNT(MASK[,DIM]) counts the number of .TRUE. elements of MASK along the
dimension of DIM. If DIM is omitted it is taken to be 1. DIM is a scaler of type
INTEGER in the range of 1/leqDIM/leqn) where n is the rank of MASK.

Option: f95, gnu

Class: transformational function

Syntax : I = COUNT(MASK[,DIM])

Arguments:
MASK The type shall be LOGICAL.
DIM The type shall be INTEGER.

Return value:
The return value is of type INTEGER with rank equal to that of MASK.

Chapter 7: Intrinsic Procedures 55

Example:
program test_count

integer, dimension(2,3) :: a, b

logical, dimension(2,3) :: mask

a = reshape((/ 1, 2, 3, 4, 5, 6 /), (/ 2, 3 /))

b = reshape((/ 0, 7, 3, 4, 5, 8 /), (/ 2, 3 /))

print ’(3i3)’, a(1,:)

print ’(3i3)’, a(2,:)

print *

print ’(3i3)’, b(1,:)

print ’(3i3)’, b(2,:)

print *

mask = a.ne.b

print ’(3l3)’, mask(1,:)

print ’(3l3)’, mask(2,:)

print *

print ’(3i3)’, count(mask)

print *

print ’(3i3)’, count(mask, 1)

print *

print ’(3i3)’, count(mask, 2)

end program test_count

7.34 CPU_TIME — CPU elapsed time in seconds

Description:
Returns a REAL value representing the elapsed CPU time in seconds. This is useful
for testing segments of code to determine execution time.

Option: f95, gnu

Class: subroutine

Syntax : CPU_TIME(X)

Arguments:
X The type shall be REAL with intent out.

Return value:
None

Example:
program test_cpu_time

real :: start, finish

call cpu_time(start)

! put code to test here

call cpu_time(finish)

print ’("Time = ",f6.3," seconds.")’,finish-start

end program test_cpu_time

7.35 CSHIFT — Circular shift function

Description:
CSHIFT(ARRAY, SHIFT[,DIM]) performs a circular shift on elements of ARRAY
along the dimension of DIM. If DIM is omitted it is taken to be 1. DIM is a
scaler of type INTEGER in the range of 1/leqDIM/leqn) where n is the rank of AR-
RAY. If the rank of ARRAY is one, then all elements of ARRAY are shifted by
SHIFT places. If rank is greater than one, then all complete rank one sections of
ARRAY along the given dimension are shifted. Elements shifted out one end of
each rank one section are shifted back in the other end.

Option: f95, gnu

56 The GNU Fortran 95 Compiler

Class: transformational function

Syntax : A = CSHIFT(A, SHIFT[,DIM])

Arguments:
ARRAY May be any type, not scaler.
SHIFT The type shall be INTEGER.
DIM The type shall be INTEGER.

Return value:
Returns an array of same type and rank as the ARRAY argument.

Example:
program test_cshift

integer, dimension(3,3) :: a

a = reshape((/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))

print ’(3i3)’, a(1,:)

print ’(3i3)’, a(2,:)

print ’(3i3)’, a(3,:)

a = cshift(a, SHIFT=(/1, 2, -1/), DIM=2)

print *

print ’(3i3)’, a(1,:)

print ’(3i3)’, a(2,:)

print ’(3i3)’, a(3,:)

end program test_cshift

7.36 DATE_AND_TIME — Date and time subroutine

Description:
DATE_AND_TIME(DATE, TIME, ZONE, VALUES) gets the corresponding date and time
information from the real-time system clock. DATE is INTENT(OUT) and has
form ccyymmdd. TIME is INTENT(OUT) and has form hhmmss.sss. ZONE is
INTENT(OUT) and has form (+-)hhmm, representing the difference with respect to
Coordinated Universal Time (UTC). Unavailable time and date parameters return
blanks.
VALUES is INTENT(OUT) and provides the following:

VALUE(1): The year
VALUE(2): The month
VALUE(3): The day of the month
VAlUE(4): Time difference with UTC in minutes
VALUE(5): The hour of the day
VALUE(6): The minutes of the hour
VALUE(7): The seconds of the minute
VALUE(8): The milliseconds of the second

Option: f95, gnu

Class: subroutine

Syntax : CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])

Arguments:
DATE (Optional) The type shall be CHARACTER(8) or larger.
TIME (Optional) The type shall be CHARACTER(10) or larger.
ZONE (Optional) The type shall be CHARACTER(5) or larger.
VALUES (Optional) The type shall be INTEGER(8).

Return value:
None

Chapter 7: Intrinsic Procedures 57

Example:
program test_time_and_date

character(8) :: date

character(10) :: time

character(5) :: zone

integer,dimension(8) :: values

! using keyword arguments

call date_and_time(date,time,zone,values)

call date_and_time(DATE=date,ZONE=zone)

call date_and_time(TIME=time)

call date_and_time(VALUES=values)

print ’(a,2x,a,2x,a)’, date, time, zone

print ’(8i5))’, values

end program test_time_and_date

7.37 DBLE — Double conversion function

Description:
DBLE(X) Converts X to double precision real type. DFLOAT is an alias for DBLE

Option: f95, gnu

Class: elemental function

Syntax : X = DBLE(X) X = DFLOAT(X)

Arguments:
X The type shall be INTEGER(*), REAL(*), or COMPLEX(*).

Return value:
The return value is of type double precision real.

Example:
program test_dble

real :: x = 2.18

integer :: i = 5

complex :: z = (2.3,1.14)

print *, dble(x), dble(i), dfloat(z)

end program test_dble

7.38 DCMPLX — Double complex conversion function

Description:
DCMPLX(X [,Y]) returns a double complex number where X is converted to the real
component. If Y is present it is converted to the imaginary component. If Y is not
present then the imaginary component is set to 0.0. If X is complex then Y must
not be present.

Option: f95, gnu

Class: elemental function

Syntax : C = DCMPLX(X) C = DCMPLX(X,Y)

Arguments:
X The type may be INTEGER(*), REAL(*), or COMPLEX(*).
Y Optional if X is not COMPLEX(*). May be INTEGER(*) or REAL(*).

Return value:
The return value is of type COMPLEX(8)

Example:

58 The GNU Fortran 95 Compiler

program test_dcmplx

integer :: i = 42

real :: x = 3.14

complex :: z

z = cmplx(i, x)

print *, dcmplx(i)

print *, dcmplx(x)

print *, dcmplx(z)

print *, dcmplx(x,i)

end program test_dcmplx

7.39 DFLOAT — Double conversion function

Description:
DFLOAT(X) Converts X to double precision real type. DFLOAT is an alias for DBLE.
See DBLE.

7.40 DIGITS — Significant digits function

Description:
DIGITS(X) returns the number of significant digits of the internal model represen-
tation of X. For example, on a system using a 32-bit floating point representation,
a default real number would likely return 24.

Option: f95, gnu

Class: inquiry function

Syntax : C = DIGITS(X)

Arguments:
X The type may be INTEGER(*) or REAL(*).

Return value:
The return value is of type INTEGER.

Example:
program test_digits

integer :: i = 12345

real :: x = 3.143

real(8) :: y = 2.33

print *, digits(i)

print *, digits(x)

print *, digits(y)

end program test_digits

7.41 DIM — Dim function

Description:
DIM(X,Y) returns the difference X-Y if the result is positive; otherwise returns zero.

Option: f95, gnu

Class: elemental function

Syntax : X = DIM(X,Y)

Arguments:
X The type shall be INTEGER(*) or REAL(*)
Y The type shall be the same type and kind as X.

Return value:
The return value is of type INTEGER(*) or REAL(*).

Chapter 7: Intrinsic Procedures 59

Example:
program test_dim

integer :: i

real(8) :: x

i = dim(4, 15)

x = dim(4.345_8, 2.111_8)

print *, i

print *, x

end program test_dim

Specific names:
Name Argument Return type Option
IDIM(X,Y) INTEGER(4) X,Y INTEGER(4) gnu
DDIM(X,Y) REAL(8) X,Y REAL(8) gnu

7.42 DOT_PRODUCT — Dot product function

Description:
DOT_PRODUCT(X,Y) computes the dot product multiplication of two vectors X and
Y. The two vectors may be either numeric or logical and must be arrays of rank one
and of equal size. If the vectors are INTEGER(*) or REAL(*), the result is SUM(X*Y).
If the vectors are COMPLEX(*), the result is SUM(CONJG(X)*Y). If the vectors are
LOGICAL, the result is ANY(X.AND.Y).

Option: f95

Class: transformational function

Syntax : S = DOT_PRODUCT(X,Y)

Arguments:
X The type shall be numeric or LOGICAL, rank 1.
Y The type shall be numeric or LOGICAL, rank 1.

Return value:
If the arguments are numeric, the return value is a scaler of numeric type,
INTEGER(*), REAL(*), or COMPLEX(*). If the arguments are LOGICAL, the return
value is .TRUE. or .FALSE..

Example:
program test_dot_prod

integer, dimension(3) :: a, b

a = (/ 1, 2, 3 /)

b = (/ 4, 5, 6 /)

print ’(3i3)’, a

print *

print ’(3i3)’, b

print *

print *, dot_product(a,b)

end program test_dot_prod

7.43 DPROD — Double product function

Description:
DPROD(X,Y) returns the product X*Y.

Option: f95, gnu

Class: elemental function

Syntax : D = DPROD(X,Y)

60 The GNU Fortran 95 Compiler

Arguments:
X The type shall be REAL.
Y The type shall be REAL.

Return value:
The return value is of type REAL(8).

Example:
program test_dprod

integer :: i

real :: x = 5.2

real :: y = 2.3

real(8) :: d

d = dprod(x,y)

print *, d

end program test_dprod

7.44 DREAL — Double real part function

Description:
DREAL(Z) returns the real part of complex variable Z.

Option: gnu

Class: elemental function

Syntax : D = DREAL(Z)

Arguments:
Z The type shall be COMPLEX(8).

Return value:
The return value is of type REAL(8).

Example:
program test_dreal

complex(8) :: z = (1.3_8,7.2_8)

print *, dreal(z)

end program test_dreal

7.45 DTIME — Execution time subroutine (or function)

Description:
DTIME(TARRAY, RESULT) initially returns the number of seconds of runtime since the
start of the process’s execution in RESULT. TARRAY returns the user and system
components of this time in TARRAY(1) and TARRAY(2) respectively. RESULT is
equal to TARRAY(1) + TARRAY(2).
Subsequent invocations of DTIME return values accumulated since the previous in-
vocation.
On some systems, the underlying timings are represented using types with suffi-
ciently small limits that overflows (wraparounds) are possible, such as 32-bit types.
Therefore, the values returned by this intrinsic might be, or become, negative, or
numerically less than previous values, during a single run of the compiled program.
If DTIME is invoked as a function, it can not be invoked as a subroutine, and vice
versa.
TARRAY and RESULT are INTENT(OUT) and provide the following:

TARRAY(1): User time in seconds.
TARRAY(2): System time in seconds.
RESULT: Run time since start in seconds.

Chapter 7: Intrinsic Procedures 61

Option: gnu

Class: subroutine

Syntax :
CALL DTIME(TARRAY, RESULT).
RESULT = DTIME(TARRAY), (not recommended).

Arguments:
TARRAY The type shall be REAL, DIMENSION(2).
RESULT The type shall be REAL.

Return value:
Elapsed time in seconds since the start of program execution.

Example:
program test_dtime

integer(8) :: i, j

real, dimension(2) :: tarray

real :: result

call dtime(tarray, result)

print *, result

print *, tarray(1)

print *, tarray(2)

do i=1,100000000 ! Just a delay

j = i * i - i

end do

call dtime(tarray, result)

print *, result

print *, tarray(1)

print *, tarray(2)

end program test_dtime

7.46 EOSHIFT — End-off shift function

Description:
EOSHIFT(ARRAY, SHIFT[,BOUNDARY, DIM]) performs an end-off shift on elements of
ARRAY along the dimension of DIM. If DIM is omitted it is taken to be 1. DIM
is a scaler of type INTEGER in the range of 1/leqDIM/leqn) where n is the rank of
ARRAY. If the rank of ARRAY is one, then all elements of ARRAY are shifted by
SHIFT places. If rank is greater than one, then all complete rank one sections of
ARRAY along the given dimension are shifted. Elements shifted out one end of each
rank one section are dropped. If BOUNDARY is present then the corresponding
value of from BOUNDARY is copied back in the other end. If BOUNDARY is not
present then the following are copied in depending on the type of ARRAY.
Array Type Boundary Value
Numeric 0 of the type and kind of ARRAY.
Logical .FALSE..
Character(len) len blanks.

Option: f95, gnu

Class: transformational function

Syntax : A = EOSHIFT(A, SHIFT[,BOUNDARY, DIM])

Arguments:
ARRAY May be any type, not scaler.
SHIFT The type shall be INTEGER.
BOUNDARY Same type as ARRAY.
DIM The type shall be INTEGER.

62 The GNU Fortran 95 Compiler

Return value:
Returns an array of same type and rank as the ARRAY argument.

Example:
program test_eoshift

integer, dimension(3,3) :: a

a = reshape((/ 1, 2, 3, 4, 5, 6, 7, 8, 9 /), (/ 3, 3 /))

print ’(3i3)’, a(1,:)

print ’(3i3)’, a(2,:)

print ’(3i3)’, a(3,:)

a = EOSHIFT(a, SHIFT=(/1, 2, 1/), BOUNDARY=-5, DIM=2)

print *

print ’(3i3)’, a(1,:)

print ’(3i3)’, a(2,:)

print ’(3i3)’, a(3,:)

end program test_eoshift

7.47 EPSILON — Epsilon function

Description:
EPSILON(X) returns a nearly negligible number relative to 1.

Option: f95, gnu

Class: inquiry function

Syntax : C = EPSILON(X)

Arguments:
X The type shall be REAL(*).

Return value:
The return value is of same type as the argument.

Example:
program test_epsilon

real :: x = 3.143

real(8) :: y = 2.33

print *, EPSILON(x)

print *, EPSILON(y)

end program test_epsilon

7.48 ERF — Error function

Description:
ERF(X) computes the error function of X.

Option: gnu

Class: elemental function

Syntax : X = ERF(X)

Arguments:
X The type shall be REAL(*), and it shall be scalar.

Return value:
The return value is a scalar of type REAL(*) and it is positive (−1 ≤ erf(x) ≤ 1.

Example:
program test_erf

real(8) :: x = 0.17_8

x = erf(x)

end program test_erf

Chapter 7: Intrinsic Procedures 63

Specific names:
Name Argument Return type Option
DERF(X) REAL(8) X REAL(8) gnu

7.49 ERFC — Error function

Description:
ERFC(X) computes the complementary error function of X.

Option: gnu

Class: elemental function

Syntax : X = ERFC(X)

Arguments:
X The type shall be REAL(*), and it shall be scalar.

Return value:
The return value is a scalar of type REAL(*) and it is positive (0 ≤ erfc(x) ≤ 2.

Example:
program test_erfc

real(8) :: x = 0.17_8

x = erfc(x)

end program test_erfc

Specific names:
Name Argument Return type Option
DERFC(X) REAL(8) X REAL(8) gnu

7.50 ETIME — Execution time subroutine (or function)

Description:
ETIME(TARRAY, RESULT) returns the number of seconds of runtime since the start
of the process’s execution in RESULT. TARRAY returns the user and system com-
ponents of this time in TARRAY(1) and TARRAY(2) respectively. RESULT is equal
to TARRAY(1) + TARRAY(2).

On some systems, the underlying timings are represented using types with suffi-
ciently small limits that overflows (wraparounds) are possible, such as 32-bit types.
Therefore, the values returned by this intrinsic might be, or become, negative, or
numerically less than previous values, during a single run of the compiled program.

If ETIME is invoked as a function, it can not be invoked as a subroutine, and vice
versa.

TARRAY and RESULT are INTENT(OUT) and provide the following:

TARRAY(1): User time in seconds.
TARRAY(2): System time in seconds.
RESULT: Run time since start in seconds.

Option: gnu

Class: subroutine

Syntax :

CALL ETIME(TARRAY, RESULT).
RESULT = ETIME(TARRAY), (not recommended).

64 The GNU Fortran 95 Compiler

Arguments:
TARRAY The type shall be REAL, DIMENSION(2).
RESULT The type shall be REAL.

Return value:
Elapsed time in seconds since the start of program execution.

Example:
program test_etime

integer(8) :: i, j

real, dimension(2) :: tarray

real :: result

call ETIME(tarray, result)

print *, result

print *, tarray(1)

print *, tarray(2)

do i=1,100000000 ! Just a delay

j = i * i - i

end do

call ETIME(tarray, result)

print *, result

print *, tarray(1)

print *, tarray(2)

end program test_etime

7.51 EXIT — Exit the program with status.

Description:
EXIT causes immediate termination of the program with status. If status is omitted
it returns the canonical success for the system. All Fortran I/O units are closed.

Option: gnu

Class: non-elemental subroutine

Syntax : CALL EXIT([STATUS])

Arguments:
STATUS The type of the argument shall be INTEGER(*).

Return value:
STATUS is passed to the parent process on exit.

Example:
program test_exit

integer :: STATUS = 0

print *, ’This program is going to exit.’

call EXIT(STATUS)

end program test_exit

7.52 EXP — Exponential function

Description:
EXP(X) computes the base e exponential of X.

Option: f95, gnu

Class: elemental function

Syntax : X = EXP(X)

Arguments:
X The type shall be REAL(*) or COMPLEX(*).

Chapter 7: Intrinsic Procedures 65

Return value:
The return value has same type and kind as X.

Example:
program test_exp

real :: x = 1.0

x = exp(x)

end program test_exp

Specific names:
Name Argument Return type Option
DEXP(X) REAL(8) X REAL(8) f95, gnu
CEXP(X) COMPLEX(4) X COMPLEX(4) f95, gnu
ZEXP(X) COMPLEX(8) X COMPLEX(8) f95, gnu
CDEXP(X) COMPLEX(8) X COMPLEX(8) f95, gnu

7.53 EXPONENT — Exponent function

Description:
EXPONENT(X) returns the value of the exponent part of X. If X is zero the value
returned is zero.

Option: f95, gnu

Class: elemental function

Syntax : I = EXPONENT(X)

Arguments:
X The type shall be REAL(*).

Return value:
The return value is of type default INTEGER.

Example:
program test_exponent

real :: x = 1.0

integer :: i

i = exponent(x)

print *, i

print *, exponent(0.0)

end program test_exponent

7.54 FLOOR — Integer floor function

Description:
FLOOR(X) returns the greatest integer less than or equal to X.

Option: f95, gnu

Class: elemental function

Syntax : I = FLOOR(X[,KIND])

Arguments:
X The type shall be REAL(*).
KIND Optional scaler integer initialization expression.

Return value:
The return value is of type INTEGER(KIND)

Example:

66 The GNU Fortran 95 Compiler

program test_floor

real :: x = 63.29

real :: y = -63.59

print *, floor(x) ! returns 63

print *, floor(y) ! returns -64

end program test_floor

7.55 FNUM — File number function

Description:
FNUM(UNIT) returns the Posix file descriptor number coresponding to the open For-
tran I/O unit UNIT.

Option: gnu

Class: non-elemental function

Syntax : I = FNUM(UNIT)

Arguments:
UNIT The type shall be INTEGER.

Return value:
The return value is of type INTEGER

Example:
program test_fnum

integer :: i

open (unit=10, status = "scratch")

i = fnum(10)

print *, i

close (10)

end program test_fnum

7.56 LOG — Logarithm function

Description:
LOG(X) computes the logarithm of X.

Option: f95, gnu

Class: elemental function

Syntax : X = LOG(X)

Arguments:
X The type shall be REAL(*) or COMPLEX(*).

Return value:
The return value is of type REAL(*) or COMPLEX(*). The kind type parameter is
the same as X.

Example:
program test_log

real(8) :: x = 1.0_8

complex :: z = (1.0, 2.0)

x = log(x)

z = log(z)

end program test_log

Specific names:
Name Argument Return type Option
ALOG(X) REAL(4) X REAL(4) f95, gnu

Chapter 7: Intrinsic Procedures 67

DLOG(X) REAL(8) X REAL(8) f95, gnu
CLOG(X) COMPLEX(4) X COMPLEX(4) f95, gnu
ZLOG(X) COMPLEX(8) X COMPLEX(8) f95, gnu
CDLOG(X) COMPLEX(8) X COMPLEX(8) f95, gnu

7.57 LOG10 — Base 10 logarithm function

Description:
LOG10(X) computes the base 10 logarithm of X.

Option: f95, gnu

Class: elemental function

Syntax : X = LOG10(X)

Arguments:
X The type shall be REAL(*) or COMPLEX(*).

Return value:
The return value is of type REAL(*) or COMPLEX(*). The kind type parameter is
the same as X.

Example:
program test_log10

real(8) :: x = 10.0_8

x = log10(x)

end program test_log10

Specific names:
Name Argument Return type Option
ALOG10(X) REAL(4) X REAL(4) f95, gnu
DLOG10(X) REAL(8) X REAL(8) f95, gnu

7.58 SIN — Sine function

Description:
SIN(X) computes the sine of X.

Option: f95, gnu

Class: elemental function

Syntax : X = SIN(X)

Arguments:
X The type shall be REAL(*) or COMPLEX(*).

Return value:
The return value has same type and king than X.

Example:
program test_sin

real :: x = 0.0

x = sin(x)

end program test_sin

Specific names:
Name Argument Return type Option
DSIN(X) REAL(8) X REAL(8) f95, gnu
CSIN(X) COMPLEX(4) X COMPLEX(4) f95, gnu
ZSIN(X) COMPLEX(8) X COMPLEX(8) f95, gnu
CDSIN(X) COMPLEX(8) X COMPLEX(8) f95, gnu

68 The GNU Fortran 95 Compiler

7.59 SINH — Hyperbolic sine function

Description:
SINH(X) computes the hyperbolic sine of X.

Option: f95, gnu

Class: elemental function

Syntax : X = SINH(X)

Arguments:
X The type shall be REAL(*).

Return value:
The return value is of type REAL(*).

Example:
program test_sinh

real(8) :: x = - 1.0_8

x = sinh(x)

end program test_sinh

Specific names:
Name Argument Return type Option
DSINH(X) REAL(8) X REAL(8) f95, gnu

7.60 SQRT — Square-root function

Description:
SQRT(X) computes the square root of X.

Option: f95, gnu

Class: elemental function

Syntax : X = SQRT(X)

Arguments:
X The type shall be REAL(*) or COMPLEX(*).

Return value:
The return value is of type REAL(*) or COMPLEX(*). The kind type parameter is
the same as X.

Example:
program test_sqrt

real(8) :: x = 2.0_8

complex :: z = (1.0, 2.0)

x = sqrt(x)

z = sqrt(z)

end program test_sqrt

Specific names:
Name Argument Return type Option
DSQRT(X) REAL(8) X REAL(8) f95, gnu
CSQRT(X) COMPLEX(4) X COMPLEX(4) f95, gnu
ZSQRT(X) COMPLEX(8) X COMPLEX(8) f95, gnu
CDSQRT(X) COMPLEX(8) X COMPLEX(8) f95, gnu

Chapter 7: Intrinsic Procedures 69

7.61 TAN — Tangent function

Description:
TAN(X) computes the tangent of X.

Option: f95, gnu

Class: elemental function

Syntax : X = TAN(X)

Arguments:
X The type shall be REAL(*).

Return value:
The return value is of type REAL(*). The kind type parameter is the same as X.

Example:
program test_tan

real(8) :: x = 0.165_8

x = tan(x)

end program test_tan

Specific names:
Name Argument Return type Option
DTAN(X) REAL(8) X REAL(8) f95, gnu

7.62 TANH — Hyperbolic tangent function

Description:
TANH(X) computes the hyperbolic tangent of X.

Option: f95, gnu

Class: elemental function

Syntax : X = TANH(X)

Arguments:
X The type shall be REAL(*).

Return value:
The return value is of type REAL(*) and lies in the range −1 ≤ tanh(x) ≤ 1.

Example:
program test_tanh

real(8) :: x = 2.1_8

x = tanh(x)

end program test_tanh

Specific names:
Name Argument Return type Option
DTANH(X) REAL(8) X REAL(8) f95, gnu

70 The GNU Fortran 95 Compiler

Chapter 8: Contributing 71

8 Contributing

Free software is only possible if people contribute to efforts to create it. We’re always in need
of more people helping out with ideas and comments, writing documentation and contributing
code.

If you want to contribute to GNU Fortran 95, have a look at the long lists of projects you
can take on. Some of these projects are small, some of them are large; some are completely
orthogonal to the rest of what is happening on gfortran, but others are “mainstream” projects
in need of enthusiastic hackers. All of these projects are important! We’ll eventually get around
to the things here, but they are also things doable by someone who is willing and able.

8.1 Contributors to GNU Fortran 95

Most of the parser was hand-crafted by Andy Vaught, who is also the initiator of the whole
project. Thanks Andy! Most of the interface with GCC was written by Paul Brook.

The following individuals have contributed code and/or ideas and significant help to the
gfortran project (in no particular order):
− Andy Vaught
− Katherine Holcomb
− Tobias Schlter
− Steven Bosscher
− Toon Moene
− Tim Prince
− Niels Kristian Bech Jensen
− Steven Johnson
− Paul Brook
− Feng Wang
− Bud Davis

The following people have contributed bug reports, smaller or larger patches, and much
needed feedback and encouragement for the gfortran project:
− Erik Schnetter
− Bill Clodius
− Kate Hedstrom

Many other individuals have helped debug, test and improve gfortran over the past two
years, and we welcome you to do the same! If you already have done so, and you would like to
see your name listed in the list above, please contact us.

8.2 Projects

Help build the test suite
Solicit more code for donation to the test suite. We can keep code private on request.

Bug hunting/squishing
Find bugs and write more test cases! Test cases are especially very welcome, because
it allows us to concentrate on fixing bugs instead of isolating them.

Smaller projects (“bug” fixes):
− Allow init exprs to be numbers raised to integer powers.
− Implement correct rounding.

72 The GNU Fortran 95 Compiler

− Implement F restrictions on Fortran 95 syntax.
− See about making Emacs-parsable error messages.

If you wish to work on the runtime libraries, please contact a project maintainer.

Chapter 9: Standards 73

9 Standards

The GNU Fortran 95 Compiler aims to be a conforming implementation of ISO/IEC 1539:1997
(Fortran 95).

In the future it may also support other variants and extensions to the Fortran language. This
includes ANSI Fortran 77, Fortran 90, Fortran 2000 (not yet finalized), and OpenMP.

74 The GNU Fortran 95 Compiler

Chapter 9: Index 75

Index

-
-fbounds-check option . 30
-fdefault-double-8, option . 26
-fdefault-integer-8, option . 26
-fdefault-real-8, option . 26
-fdollar-ok option . 26
-fdump-parse-tree option . 28
‘-ff2c’ option . 28
-ffixed-line-length-n option . 26
-ffortran-bounds-check option 30
-ffree-form option . 26
-fimplicit-none option . 26
-fmax-identifier-length=n option. 26
-fmax-stack-var-size option . 30
-fno-backslash option . 26
-fno-fixed-form option . 26
‘-fno-underscoring option’ . 29
-fpackderived . 30
-frepack-arrays option . 30
‘-fsecond-underscore option’ 30
-fsyntax-only option . 27
-Idir option . 28
-Mdir option . 28
-pedantic option . 27
-pedantic-errors option . 27
-std=std option . 26
-w option . 27
-W option . 28
-Waliasing option . 27
-Wall option . 27
-Wconversion option. 27
-Werror . 27
-Wimplicit-interface option . 27
-Wnonstd-intrinsic option . 27
-Wsurprising . 27
-Wunderflow . 27
-Wunused-labels option . 27

A
abort . 39
ABORT . 39
ABS intrinsic . 40
absolute value . 40
ACHAR intrinsic . 40
ACOS intrinsic . 41
adjust string . 41
ADJUSTL intrinsic . 41
ADJUSTR intrinsic . 41
AIMAG intrinsic . 42
AINT intrinsic . 42
aliasing . 27
ALL intrinsic . 43
all warnings . 27
ALLOCATED intrinsic . 44
allocation status . 44
ALOG intrinsic . 66
ALOG10 intrinsic . 67
ANINT intrinsic . 44
ANY intrinsic . 45
arc cosine . 41

arcsine . 45
arctangent . 47
array bounds checking . 30
ASCII collating sequence . 40
ASIN intrinsic . 45
ASSOCIATED intrinsic . 46
ATAN intrinsic . 47
ATAN2 intrinsic . 47
Authors . 71

B
backslash . 26
BESJ0 intrinsic . 48
BESJ1 intrinsic . 48
BESJN intrinsic . 49
Bessel . 48, 49, 50
BESY0 intrinsic . 49
BESY1 intrinsic . 49
BESYN intrinsic . 50
bit size . 50
BIT_SIZE intrinsic . 50
bounds checking . 30
BTEST . 51
BTEST intrinsic . 51

C
CABS intrinsic . 40
calling convention . 28
card image . 26
CDABS intrinsic . 40
CDCOS intrinsic . 53
CDEXP intrinsic . 64
CDLOG intrinsic . 66
CDSIN intrinsic . 67
CDSQRT intrinsic . 68
CEILING . 51
CEILING intrinsic . 51
CHAR . 52
CHAR intrinsic . 52
character set . 26
checking subscripts . 30
CLOG intrinsic . 66
CMPLX . 52
CMPLX intrinsic . 52
code generation, conventions . 28
command argument count . 52
command options . 25
COMMAND_ARGUMENT_COUNT intrinsic 52
complex conjugate . 53
CONJG intrinsic . 53
Contributing . 71
Contributors . 71
conversion . 27
COS intrinsic . 53
COSH intrinsic . 54
cosine . 53
count . 54
COUNT intrinsic . 54
CPU TIME . 55

76 The GNU Fortran 95 Compiler

CPU_TIME intrinsic . 55
Credits . 71
cshift intrinsic . 55
CSHIFT intrinsic . 55
CSQRT intrinsic . 68

D
DABS intrinsic . 40
DACOS intrinsic . 41
DASIN intrinsic . 45
DATAN intrinsic . 47
DATAN2 intrinsic . 47
DATE AND TIME . 56
DATE_AND_TIME intrinsic . 56
DBESJ0 intrinsic . 48
DBESJ1 intrinsic . 48
DBESJN intrinsic . 49
DBESY0 intrinsic . 49
DBESY1 intrinsic . 49
DBESYN intrinsic . 50
DBLE intrinsic . 57
DCMPLX . 57
DCMPLX intrinsic . 57
DCONJG intrinsic . 53
DCOS intrinsic . 53
DCOSH intrinsic . 54
DDIM intrinsic . 58
debugging information options 28
DEXP intrinsic . 64
DFLOAT intrinsic . 58
dialect options . 26
DIGITS intrinsic . 58
digits, significant . 58
dim . 58
DIM intrinsic . 58
DIMAG intrinsic . 42
DINT intrinsic . 42
directive, INCLUDE . 28
directory, options . 28
directory, search paths for inclusion 28
DLOG intrinsic . 66
DLOG10 intrinsic . 67
DNINT intrinsic . 44
dollar sign . 26
Dot product . 59
DOT_PRODUCT intrinsic . 59
double conversion . 57
double float conversion . 58
Double product . 59
Double real part . 60
DPROD intrinsic . 59
DREAL intrinsic . 60
DSIN intrinsic . 67
DSINH intrinsic . 68
DSQRT intrinsic . 68
DTAN intrinsic . 69
DTANH intrinsic . 69
DTIME intrinsic . 60
dtime subroutine . 60

E
environment variables . 30

eoshift intrinsic . 61
EOSHIFT intrinsic . 61
EPSILON intrinsic . 62
epsilon, significant . 62
ERF intrinsic . 62
ERFC intrinsic . 63
error function . 62, 63
escape characters . 26
ETIME intrinsic . 63
ETIME subroutine . 63
exit . 64
EXIT . 64
EXP intrinsic . 64
exponent function . 65
EXPONENT intrinsic . 65
exponential . 64
extended-source option . 26
Extension . 37
extra warnings . 28

F
f2c calling convention . 28, 30
FDL, GNU Free Documentation License 9
fixed form . 26
floor . 65
FLOOR intrinsic . 65
fnum . 66
FNUM intrinsic . 66
Fortran 77 . 23
Fortran 90, features . 26
free form . 26

G
G77 . 23
g77 calling convention . 28, 30
GNU Compiler Collection . 21
GNU Fortran 95 command options 25

H
Hollerith constants . 38
hyperbolic cosine . 54
hyperbolic sine . 68
hyperbolic tangent . 69

I
IABS intrinsic . 40
IDIM intrinsic . 58
Imaginary part . 42
Implicitly interconvert LOGICAL and INTEGER

. 38
INCLUDE directive . 28
inclusion, directory search paths for 28
Initialization . 37
Intrinsic Procedures . 39
Introduction . 1

K
Kind specifications . 37

Chapter 9: Index 77

L
labels, unused . 27
language, dialect options . 26
length of source lines . 26
libf2c calling convention . 28, 30
limits, lengths of source lines . 26
lines, length . 26
LOG intrinsic . 66
LOG10 intrinsic . 67
logarithm . 66, 67

M
messages, warning . 26
module search path . 28

N
Namelist . 37
negative forms of options . 25

O
option -fmax-identifier-length=n. 26
option, -fdefault-double-8 . 26
option, -fdefault-integer-8 . 26
option, -fdefault-real-8 . 26
option, -fdump-parse-tree . 28
option, -Mdir . 28
option, -std=std . 26
options, -fdollar-ok . 26
options, ‘-ff2c’ . 28
options, -ffixed-line-length-n. 26
options, -ffree-form . 26
options, -fimplicit-none . 26
options, -fno-backslash . 26
options, -fno-fixed-form . 26
options, ‘-fno-underscoring’ 29
options, ‘-fsecond-underscore’ 30
options, -fsyntax-only . 27
options, -Idir . 28
options, -pedantic . 27
options, -pedantic-errors . 27
options, -w . 27
options, -W . 28
options, -Waliasing . 27
options, -Wall . 27
options, -Wconversion . 27
options, -Werror . 27
options, -Wimplicit-interface . 27
options, -Wnonstd-intrinsic . 27
options, -Wsurprising . 27
options, -Wunderflow . 27
options, -Wunused-labels . 27
options, code generation . 28
options, debugging . 28
options, dialect . 26
options, directory search . 28
options, GNU Fortran 95 command 25
options, negative forms . 25
options, warnings . 26

P
paths, search . 28
pointer status . 46

R
range checking . 30
Repacking arrays . 30
run-time, options . 28

S
search path . 28
search paths, for included files 28
SIN intrinsic . 67
sine . 67
SINH intrinsic . 68
source file format . 26
Source Form . 26
SQRT intrinsic . 68
square-root . 68
Standards . 73
Structure packing . 30
subscript checking . 30
suppressing warnings . 26
Suspicious . 27
symbol names . 26
symbol names, transforming 29, 30
symbol names, underscores 29, 30
syntax checking . 27

T
TAN intrinsic . 69
tangent . 69
TANH intrinsic . 69
transforming symbol names 29, 30
true values . 43, 45

U
UNDERFLOW . 27
underscore . 29, 30
unused labels . 27

W
warnings, all . 27
warnings, extra . 28
warnings, suppressing . 26
whole number . 42, 44

Z
ZABS intrinsic . 40
ZCOS intrinsic . 53
ZEXP intrinsic . 64
ZLOG intrinsic . 66
ZSIN intrinsic . 67
ZSQRT intrinsic . 68

78 The GNU Fortran 95 Compiler

	Introduction
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING,DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs

	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Funding Free Software
	Getting Started
	GFORTRAN and GCC
	GFORTRAN and G77
	GNU Fortran 95 Command Options
	Option Summary
	Options Controlling Fortran Dialect
	Options to Request or Suppress Warnings
	Options for Debugging Your Program or GNU Fortran
	Options for Directory Search
	Options for Code Generation Conventions
	Environment Variables Affecting GNU Fortran

	Project Status
	Compiler Status
	Library Status
	Proposed Extensions
	Compiler extensions:
	Environment Options

	Extensions
	Old-style kind specifications
	Old-style variable initialization
	Extensions to namelist
	Implicitly interconvert LOGICAL and INTEGER
	Hollerith constants support

	Intrinsic Procedures
	Introduction to intrinsic procedures
	ABORT --- Abort the program
	ABS --- Absolute value
	ACHAR --- Character in ASCII collating sequence
	ACOS --- Arc cosine function
	ADJUSTL --- Left adjust a string
	ADJUSTR --- Right adjust a string
	AIMAG --- Imaginary part of complex number
	AINT --- Imaginary part of complex number
	ALL --- All values in MASK along DIM are true
	ALLOCATED --- Status of an allocatable entity
	ANINT --- Imaginary part of complex number
	ANY --- Any value in MASK along DIM is true
	ASIN --- Arcsine function
	ASSOCIATED --- Status of a pointer or pointer/target pair
	ATAN --- Arctangent function
	ATAN2 --- Arctangent function
	BESJ0 --- Bessel function of the first kind of order 0
	BESJ1 --- Bessel function of the first kind of order 1
	BESJN --- Bessel function of the first kind
	BESY0 --- Bessel function of the second kind of order 0
	BESY1 --- Bessel function of the second kind of order 1
	BESYN --- Bessel function of the second kind
	BIT_SIZE --- Bit size inquiry function
	BTEST --- Bit test function
	CEILING --- Integer ceiling function
	CHAR --- Character conversion function
	CMPLX --- Complex conversion function
	COMMAND_ARGUMENT_COUNT --- Argument count function
	CONJG --- Complex conjugate function
	COS --- Cosine function
	COSH --- Hyperbolic cosine function
	COUNT --- Count function
	CPU_TIME --- CPU elapsed time in seconds
	CSHIFT --- Circular shift function
	DATE_AND_TIME --- Date and time subroutine
	DBLE --- Double conversion function
	DCMPLX --- Double complex conversion function
	DFLOAT --- Double conversion function
	DIGITS --- Significant digits function
	DIM --- Dim function
	DOT_PRODUCT --- Dot product function
	DPROD --- Double product function
	DREAL --- Double real part function
	DTIME --- Execution time subroutine (or function)
	EOSHIFT --- End-off shift function
	EPSILON --- Epsilon function
	ERF --- Error function
	ERFC --- Error function
	ETIME --- Execution time subroutine (or function)
	EXIT --- Exit the program with status.
	EXP --- Exponential function
	EXPONENT --- Exponent function
	FLOOR --- Integer floor function
	FNUM --- File number function
	LOG --- Logarithm function
	LOG10 --- Base 10 logarithm function
	SIN --- Sine function
	SINH --- Hyperbolic sine function
	SQRT --- Square-root function
	TAN --- Tangent function
	TANH --- Hyperbolic tangent function

	Contributing
	Contributors to GNU Fortran 95
	Projects

	Standards
	Index

