1. Introduction to Natural Language Processing

1.1 Why Language Processing is Easy

How do we write programs to manipulate natural language? What questions about language could we
answer? How would the programs work, and what data would they need? These are just some of the
topics we will cover in these tutorials. Before we tackle the subject systematically, we will take a quick
look at some simple programs that manipulate language data in a variety of interesting and non-trivial
ways. Readers not familiar with programming or with the Python language will still gain a sense of
what these programs do. Later chapters will explore the operation of these and other programs in depth.

The following program scans the CMU Pronunciation Dictionary for words putatively having pre-
preantepenultimate stress. It scans all pronunciation strings pron and extracts the stress numbers from
these strings, storing them in a variable called stress_pattern. If the stress pattern ends with 1
0 0 0 0, indicating no stressed vowels after the fifth-last vowel, the corresponding word is printed.
Observe that the word spiritualists appears multiple times, on account of the differing amounts of
word-final obstruent reduction.

>>> nltk_lite.corpora cmudict
>>> string join
>>> word, num, pron cmudict.raw () :
stress_pattern = join(c c join (pron) c "o12")

stress_pattern.endswith("1 0 0 0 0"):
e word, "/", Jjoin(pron)
ACCUMULATIVELY / AHO K Y UW1 M Y AHO L AHO T IHO V L IYO
AGONIZINGLY / AEl1 G AHO N AYO0 Z IHO NG L IYO
CARICATURIST / K EH1 R AHO K AHO CH ERO AHO S T
CIARAMITARO / CH ER1 AAO0O M IY0O T AAO R OWO
CUMULATIVELY / K Y UN1 M Y AHO L AHO T IHO V L IYO
DEBENEDICTIS / D EH1 B EHO N AHO D IHO K T AHO S
DELEONARDIS / D EH1 L IYO0O AHO N AA0 R D AHO S
FORMALIZATION / F AO1 R M AHO L AHO Z EYO SH AHO N
GIANNATTASIO / JH AA1l N AAO0 T AAO S IYO OWO
HYPERSENSITIVITY / HH AY2 P ERO S EH1 N S AHO T IHO V AHO T IYO
IMAGINATIVELY / IH2 M AE1l JH AHO N AHO T IHO V L IYO
INSTITUTIONALIZES / IH2 N S T AHO T UWl SH AHO N AHO L AYO Z AHO Z
INSTITUTIONALIZING / IH2 N S T AHO T UWl SH AHO N AHO L AY0O Z IHO NG
MANGIARACINA / M AAl1 N JH ERO AAO0 CH IYO N AHO
SPIRITUALIST / S P IH1 R IHO CH AHO W AHO L AHO S T
SPIRITUALISTS / S P IH1 R IHO CH AHO W AHO L AHO S T S
SPIRITUALISTS / S P IH1 R IHO CH AHO W AHO L AHO S S
SPIRITUALISTS / S P IH1 R IHO CH AHO W AHO L AHO S
SPIRITUALLY / S P IH1 R IHO CH AHO W AHO L IYO

Introduction to Natural Language Processing (DRAFT) 1. Introduction to Natural Language Processing

UNALIENABLE / AHO N EYl L IYO EHO N AHO B AHO L
UNDERKOFFLER / AH1 N D ERO K AHO F AHO L ERO

The following program processes a lexicon for the Rotokas language (East Papuan, Bougainville
Island), and generates minimal sets involving the vowels of the first syllable. Each row of the resulting
table provides evidence for vowel distinctions:

>>> nltk_lite.corpora shoebox
>>> nltk lite.utilities MinimalSet
>>> length, position, min = 4, 1, 3
>>> lexemes = [field[l].lower() entry shoebox.raw(’ rotokas.dic’)
R field entry field[0] == ’1x']
>>> ms = MinimalSet ()
>>> lex lexemes:
len(lex) == length:
context = lex[:position] + ' ' + lex[position+l:]

target = lex[position]
ms.add (context, target, lex)

>>> context ms.contexts (3) :

target ms.targets () :
"$-4s" % ms.display(context, target, "-"),

kasi - kesi kusi kosi

kava - - kuva kova

karu kiru keru kuru koru

kapu kipu - - kopu

karo kiro - - koro

kari kiri keri kuri kori

kapa - kepa - kopa

kara kira kera - kora

kaku - - kuku koku

kaki kiki - - koki

The above examples have used existing lexical resources. We can write programs to analyze plain
text for style and patterns of word usage. The following program performs a simple bigram analysis of
the book of Genesis (King James Version) then generates nonsense text in the same style. We can use
similar techniques for genre and authorship identification.

>>> nltk_lite.corpora genesis
>>> nltk_lite.probability ConditionalFregDist
>>> nltk lite.utilities print_string

>>> cfdist = ConditionalFreqDist ()

>>> prev = None

>>> word genesis.raw() :
word = word.lower ()
cfdist [prev] .inc (word)
prev = word

>>> words = []
>>> prev = ’'lo,’
>>> i range (99) :
words . append (prev)
word cfdist[prev] .sorted_samples():

word words:

Bird, Curran, Klein & Loper 1-2 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 1. Introduction to Natural Language Processing

prev = word
>>> print_string(join(words))
lo, it came to the land of his father and he said, i will not be a
wife unto him, saying, if thou shalt take our money in their kind,
cattle, in thy seed after these are my son from off any more than all
that is this day with him into egypt, he, hath taken away unawares to
pass, when she bare jacob said one night, because they were born two
hundred years old, as for an altar there, he had made me out at her
pitcher upon every living creature after thee shall come near her:
yea,

The following program reads trees from the Penn Treebank corpus, finds instances of verb phrase
conjunctions involving the word but, and displays strings of part-of-speech tags corresponding to the
two verb phrases.

>>> nltk_lite.corpora treebank
>>> string join
>>> vp_conj (tree) :
tree.node == ’'VP’ len(tree) == tree[l] .leaves() == ['but’]:

True
ce False
>>> tree treebank.parsed() :

vpl, conj, vp2 tree.subtrees (vp_conj) :
join(child.node child vpl), "*xBUT*", join(child.node

VBP ADVP-TMP PP-PRD PP *BUT*x VBP VP
VBZ VP xBUTx VBZ NP PP-CLR

PP-TMP VBZ VP *xBUTx VBD ADVP-TMP S
VBZ SBAR *BUT* VBZ SBAR

VBD SBAR *xBUTx VBD RB VP

VBD SBAR *BUT* VBD S

VBP NP-PRD *BUTx VBP RB ADVP-TMP VP
VBN PP PP-TMP xBUTx ADVP-TMP VBN NP
MD VP *xBUT* VBZ NP SBAR-ADV

VBD ADVP-CLR *BUT* VBD NP

VBN NP PP *BUT* VBN NP PP SBAR-PRP
VBD NP *xBUTx MD RB VP

VBD NP PP-CLR *BUT* VBD PRT NP

VBZ S xBUT* MD VP

We have seen that that writing programs to manipulate natural language is can be accomplished
using simple techniques and a small amount of Python code. In the following sections we will see why
it is interesting and important.

Note

An important aspect of learning NLP using these materials is to experience both the
challenge and -- we hope -- the satisfaction of creating software to process natural
language. The accompanying software, NLTK, is available for free and runs on most
operating systems including Linux/Unix, Mac OSX and Microsoft Windows. You
can download NLTK from http://nltk.sourceforge.net/, along with extensive
documentation. We encourage you to install NLTK on your machine before reading
beyond the end of this chapter.

Bird, Curran, Klein & Loper 1-3 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 1. Introduction to Natural Language Processing

1.2

The Language Challenge

Language is the chief manifestation of human intelligence. Through language we express basic needs
and lofty aspirations, technical know-how and flights of fantasy. Ideas are shared over great separations
of distance and time. The following samples from English illustrate the richness of language:

1.

7.

Overhead the day drives level and grey, hiding the sun by a flight of grey spears. (William
Faulkner, As I Lay Dying, 1935)

. When using the toaster please ensure that the exhaust fan is turned on. (sign in dormitory

kitchen)

Amiodarone weakly inhibited CYP2C9, CYP2D6, and CYP3A4-mediated activities with
Ki values of 45.1-271.6 uM (Medline)

Iraqi Head Seeks Arms (spoof headline, http: //www. snopes.com/humor/nonsense/head97.htm

. The earnest prayer of a righteous man has great power and wonderful results. (James

5:16b)

Twas brillig, and the slithy toves did gyre and gimble in the wabe (Lewis Carroll, Jabber-
wocky, 1872)

There are two ways to do this, AFAIK :smile: (internet discussion archive)

Thanks to this richness, the study of language is part of many disciplines outside of linguistics,
including translation, literary criticism, philosophy, anthropology and psychology. Many less obvious
disciplines investigate language use, such as law, hermeneutics, forensics, telephony, pedagogy, archae-
ology, cryptanalysis and speech pathology. Each applies distinct methodologies to gather observations,
develop theories and test hypotheses. Yet all serve to deepen our understanding of language and of the
intellect which is manifested in language.

The importance of language to science and the arts is matched in significance by the cultural
treasure that is inherent in language. Each of the world’s ~7,000 human languages is rich in unique
respects, in its oral histories and creation legends, down to its grammatical constructions and its very
words and their nuances of meaning. Threatened remnant cultures have words to distinguish plant
subspecies according to therapeutic uses which are unknown to science. Languages evolve over time
as they come into contact with each other and they provide a unique window onto human pre-history.
Technological change gives rise to new words like blog and new morphemes like e- and cyber-. In
many parts of the world, small linguistic variations from one town to the next add up to a completely
different language in the space of a half-hour drive. For its breathtaking complexity and diversity,
human language is as a colourful tapestry stretching through time and space.

Each new wave of computing technology has faced new challenges for language analysis. Early
machine languages gave way to high-level programming languages which are automatically parsed
and interpreted. Databases are interrogated using linguistic expressions like SELECT age FROM
employee. Recently, computing devices have become ubiquitous and are often equipped with multi-
modal interfaces supporting text, speech, dialogue and pen gestures. One way or another, building new
systems for natural linguistic interaction will require sophisticated language analysis.

Today, the greatest challenge for language analysis is presented by the explosion of text and
multimedia content on the world-wide web. For many people, a large and growing fraction of work
and leisure time is spent navigating and accessing this universe of information. What tourist sites can

Bird, Curran, Klein & Loper 1-4 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 1. Introduction to Natural Language Processing

I visit between Philadelphia and Pittsburgh on a limited budget? What do expert critics say about
Canon digital cameras? What predictions about the steel market were made by credible commentators
in the past week? At present, humans require skill, knowledge, and some luck, to extract answers
to these questions from existing search engines. Getting a computer to answer them automatically
would involve a range of language processing tasks, including information extraction, inference, and
summarisation. The scale of such tasks often calls for high-performance computing.

As we have seen, natural language processing, or NLP, is important for scientific, economic, social,
and cultural reasons. NLP is experiencing rapid growth as its theories and methods are deployed in a
variety of new language technologies. For this reason it is important for a wide range of people to
have a working knowledge of NLP. Within academia, this includes people in areas from humanities
computing and corpus linguistics through to computer science and artificial intelligence. Within
industry, this includes people in human-computer interaction, business information analysis, and web
software development. We hope that you, a member of this diverse audience reading these materials,
will come to appreciate the workings of this rapidly growing field of NLP and will apply its techniques
in the solution of real-world problems. The following chapters present a carefully-balanced selection
of theoretical foundations and practical application, and equips readers to work with large datasets, to
create robust models of linguistic phenomena, and to deploy them in working language technologies.
By integrating all of this with the Natural Language Toolkit (NLTK), we hope this book opens up the
exciting endeavour of practical natural language processing to a broader audience than ever before.

1.3 A Brief History of Natural Language Processing

A long-standing challenge within computer science has been to build intelligent machines. The chief
measure of machine intelligence has been a linguistic one, namely the Turing Test: can a dialogue
system, responding to a user’s typed input with its own textual output, perform so naturally that users
cannot distinguish it from a human interlocutor using the same interface? Today, there is substantial
ongoing research and development in such areas as machine translation and spoken dialogue, and
significant commercial systems are in widespread use. The following dialogue illustrates a typical
application:

S: How may I help you?
U: When is Saving Private Ryan playing?
S: For what theater?
U: The Paramount theater.
S: Saving Private Ryan is not playing at the Paramount theater, but
it’s playing at the Madison theater at 3:00, 5:30, 8:00, and 10:30.

Today’s commercial dialogue systems are strictly limited to narrowly-defined domains. We could
not ask the above system to provide driving instructions or details of nearby restaurants unless the
requisite information had already been stored and suitable question and answer sentences had been
incorporated into the language processing system. Observe that the above system appears to understand
the user’s goals: the user asks when a movie is showing and the system correctly determines from this
that the user wants to see the movie. This inference seems so obvious to humans that we usually do not
even notice it has been made, yet a natural language system needs to be endowed with this capability
in order to interact naturally. Without it, when asked “Do you know when Saving Private Ryan is
playing”, a system might simply -- and unhelpfully -- respond with a cold “Yes”. While it appears

Bird, Curran, Klein & Loper 1-5 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 1. Introduction to Natural Language Processing

that this dialogue system can perform simple inferences, such sophistication is only found in cutting
edge research prototypes. Instead, the developers of commercial dialogue systems use contextual
assumptions and simple business logic to ensure that the different ways in which a user might express
requests or provide information are handled in a way that makes sense for the particular application.
Thus, whether the user says “When is ...”, or “I want to know when ...”, or “Can you tell me when ...”,
simple rules will always result in users being presented with screening times. This is sufficient for the
system to provide a useful service.

Despite some recent advances, it is generally true that those natural language systems which have
been fully deployed still cannot perform common-sense reasoning or draw on world knowledge. We
can wait for these difficult artificial intelligence problems to be solved, but in the meantime it is
necessary to live with some severe limitations on the reasoning and knowledge capabilities of natural
language systems. Accordingly, right from the beginning, an important goal of NLP research has been
to make progress on the holy grail of natural linguistic interaction without recourse to this unrestricted
knowledge and reasoning capability. This is an old challenge, and so it is instructive to review the
history of the field.

The very notion that natural language could be treated in a computational manner grew out of a
research program, dating back to the early 1900s, to reconstruct mathematical reasoning using logic,
most clearly manifested in the work by Frege, Russell, Wittgenstein, Tarski, Lambek and Carnap.
This work led to the notion of language as a formal system amenable to automatic processing. Three
later developments laid the foundation for natural language processing. The first was formal language
theory. This defined a language as a set of strings accepted by a class of automata, such as context-free
languages and pushdown automata, and provided the underpinnings for computational syntax.

The second development was symbolic logic. This provided a formal method for capturing selected
aspects of natural language that are relevant for expressing logical proofs. A formal calculus in
symbolic logic provides the syntax of a language, together with rules of inference and, possibly, rules
of interpretation in a set-theoretic model; examples are propositional logic and first-order logic. Given
such a calculus, with a well-defined syntax and semantics, it becomes possible to associate meanings
with expressions of natural language by translating them into expressions of the formal calculus. For
example, if we translate John saw Mary into a formula saw (j, m) , we (implicitly or explicitly) intepret
the English verb saw as a binary relation, and John and Mary as denoting individuals. More general
statements like All birds fly require quantifiers, in this case V meaning for all: V x: bird(x) — fly(x).
This use of logic provided the technical machinery to perform inferences that are an important part of
language understanding.

The third development was the principle of compositionality. This was the notion that the meaning
of a complex expression is comprised of the meaning of its parts and their mode of combination. This
principle provided a useful correspondence between syntax and semantics, namely that the meaning of
a complex expression could be computed recursively. Given the representation of I is not true that -,
as (p) and John saw Mary as saw (j, m), we can compute the interpretation of It is not true that
John saw Mary recursively using the above information to get (saw (j,m)). Today, this approach
is most clearly manifested in a family of grammar formalisms known as unification-based grammar,
and NLP applications implemented in the Prolog programming language.

A separate strand of development in the 1960s and 1970s eschewed the declarative/procedural
distinction and the principle of compositionality. They only seemed to get in the way of building
practical systems. For example, early question answering systems employed fixed pattern-matching
templates such as: How many -; does -; have?, where slot i is a feature or service, and slot j is a
person or place. Each template came with a predefined semantic function, such as count (i, j). A
user’s question which matched the template would be mapped to the corresponding semantic function

Bird, Curran, Klein & Loper 1-6 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 1. Introduction to Natural Language Processing

and then “executed” to obtain an answer, k = count (i, j). This answer would be substituted into
a new template: -; has - -;. For example, the question How many airports; does London; have? can
be mapped onto a template (as shown by the subscripts) and translated to an executable program. The
result can be substituted into a new template and returned to the user: London has five airports. Finally,
the subscripts are removed and the natural language answer is returned to the user.

This approach to NLP is known as semantic grammar. Such grammars are formalized like phrase-
structure grammars, but their constituents are no longer grammatical categories such as Noun Phrase,
but semantic categories like Airport and City. These grammars work very well in limited domains, and
are still widely used in spoken language systems. However, they lack robustness and portability, and
they duplicate grammatical structure in different semantic categories.

The contrasting approaches to NLP described in the preceding paragraphs relates back to early
metaphysical debates about rationalism versus empiricism and realism versus idealism that occurred
in the Enlightenment period of Western philosophy. These debates took place against a backdrop of
orthodox thinking in which the source of all knowledge was believed to be divine revelation. During this
period of the seventeenth and eighteenth centuries, philosophers argued that human reason or sensory
experience has priority over revelation. Descartes and Leibniz, amongst others, took the rationalist
position, asserting that all truth has its origins in human thought, and in the existence of “innate
ideas” implanted in our minds from birth. For example, they saw that the principles of Euclidean
geometry were developed using human reason, and were not the result of supernatural revelation or
sensory experience. In contrast, Locke and others took the empiricist view, that our primary source of
knowledge is the experience of our faculties, and that human reason plays a secondary role in reflecting
on that experience. Prototypical evidence for this position was Galileo’s discovery -- based on careful
observation of the motion of the planets -- that the solar system is heliocentric and not geocentric. In the
context of linguistics, this debate leads to the following question: to what extent does human linguistic
experience, versus our innate “language faculty”, provide the basis for our knowledge of language? In
NLP this matter surfaces as differences in the priority of corpus data versus linguistic introspection in
the construction of computational models.

A further concern, enshrined in the debate between realism and idealism, was the metaphysical sta-
tus of the constructs of a theory. Kant argued for a distinction between phenomena, the manifestations
we can experience, and “things in themselves” which can never been known directly. A linguistic realist
would take a theoretical construct like “noun phrase” to be real world entity that exists independently
of human perception and reason, and which actually causes the observed linguistic phenomena. A
linguistic idealist, on the other hand, would argue that noun phrases, along with more abstract constructs
like semantic representations, are intrinsically unobservable, and simply play the role of useful fictions.
The way linguists write about theories often betrays a realist position, while NLP practitioners occupy
neutral territory or else lean towards the idealist position.

These issues are still alive today, and show up in the distinctions between symbolic vs statistical
methods, deep vs shallow processing, binary vs gradient classifications, and scientific vs engineering
goals. However, these contrasts are highly nuanced, and the debate is no longer as polarised as it once
was. In fact, most of the discussions -- and most of the advances even -- involve a balancing act of the
two extremes. For example, one intermediate position is to assume that humans are innately endowed
with analogical and memory-based learning methods (weak rationalism), and use these methods to
identify meaningful patterns in their sensory language experience (empiricism). For a more concrete
illustration, consider the way in which statistics from large corpora may serve as evidence for binary
choices in a symbolic grammar. For instance, dictionaries describe the words absolutely and definitely
as nearly synonymous, yet their patterns of usage are quite distinct when combined with a following
verb, as shown below:

Bird, Curran, Klein & Loper 1-7 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 1. Introduction to Natural Language Processing

Absolutely vs Definitely (Liberman 2005, LanguageLog.org)
Google hits adore love like prefer
absolutely 289,000 905,000 16,200 644
definitely 1,460 51,000 158,000 62,600
ratio 198/1 18/1 1710 1/97

Observe that absolutely adore is about 200 times as popular as definitely adore, while absolutely
prefer is about 100 times rarer then definitely prefer. This information is used by statistical language
models, but it also counts as evidence for a symbolic account of word combination in which absolutely
can only modify extreme actions or attributes. This information could be represented as a binary-valued
feature of certain lexical items. Thus, we see statistical data informing symbolic models. Once this
information has been codified, it is available to be exploited as a contextual feature for a statistical
language modelling, alongside many other rich sources of symbolic information, like hand-constructed
parse trees and semantic representations. Now the circle is closed, and we see symbolic information
informing statistical models.

This new rapprochement is giving rise to many exciting new developments. We will touch on some
of these in the ensuing pages. We too will perform this balancing act, employing approaches to NLP
that integrate these historically-opposed philosophies and methodologies.

1.4 The Architecture of linguistic and NLP systems

Within the approach to linguistic theory known as generative grammar, it is claimed that humans have
distinct kinds of linguistic knowledge, organised into different modules: for example, knowledge of
a language’s sound structure (phonology), knowledge of word structure (morphology), knowledge of
phrase structure (syntax), and knowledge of meaning (semantics). In a formal linguistic theory, each
kind of linguistic knowledge is made explicit as different module of the theory, consisting of a collection
of basic elements together with a way of combining them into complex structures. For example, a
phonological module might provide a set of phonemes together with an operation for concatenating
phonemes into phonological strings. Similarly, a syntactic module might provide labelled nodes as
primitives together wih a mechanism for assembling them into trees. A set of linguistic primitives,
together with some operators for defining complex elements, is often called a level of representation.

As well as defining modules, a generative grammar will prescribe how the modules interact. For
example, well-formed phonological strings will provide the phonological content of words, and words
will provide the terminal elements of syntax trees. Well-formed syntactic trees will be mapped to
semantic representations, and contextual or pragmatic information will ground these semantic repre-
sentations in some real-world situation.

As we indicated above, an important aspect of theories of generative grammar is that they are
intended to model the linguistic knowledge of speakers and hearers; they are not intended to explain
how humans actually process linguistic information. This is, in part, reflected in the claim that a
generative grammer encodes the competence of an idealized native speaker, rather than the speaker’s
performance. A closely related distinction is to say that a generative grammar encodes declarative
rather than procedural knowledge. As you might expect, computational linguistics has the crucial
role of proposing procedural models of language. A central example is parsing, where we have to
develop computational mechanisms which convert strings of words into structural representations such
as syntax trees. Nevertheless, it is widely accepted that well-engineered computational models of

Bird, Curran, Klein & Loper 1-8 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 1. Introduction to Natural Language Processing

language contain both declarative and procedural aspects. Thus, a full account of parsing will say how
declarative knowledge in the form of a grammar and lexicon combines with procedural knowledge
which determines how a syntactic analysis should be assigned to a given string of words. This
procedural knowledge will be expressed as an algorithm: that is, an explicit recipe for mapping some
input into an appropriate output in a finite number of steps.

A simple parsing algorithm for context-free grammars, for instance, looks first for a rule of the form
S — X; - -+ X,, and builds a partial tree structure. It then steps through the grammar rules one-by-one,
looking for a rule of the form X; — ¥ ... ¥; which will expand the leftmost daughter introduced by the
S rule, and further extends the partial tree. This process continues, for example by looking for a rule of
the form Y; — Z; ... Z; and expanding the partial tree appropriately, until the leftmost node label in the
partial tree is a lexical category; the parser then checks to see if the first word of the input can belong
to the category. To illustrate, let’s suppose that the first grammer rule chosen by the parser is S — NP
VP and the second rule chosen is NP — Det N; then the partial tree will be:

S

PN

NP VP

/N

Det N

If we assume that the input string we are trying to parse is the cat slept, we will succeed in
identifying the as a word which can belong to the category Det. In this case, the parser goes on to
the next node of the tree, N, and next input word, cat. However, if we had built the same partial tree
with an input string did the cat sleep, the parse would fail at this point, since did is not of category Det.
The parser would throw away the structure built so far and look for an alternative way of going from
the S node down to a leftmost lexical category (e.g., using a rule S — v NP VP). The important point
for now is not the details of this or other parsing algorithms; we discuss this topic much more fully in
the chapter on parsing. Rather, we just want to illustrate the idea that an algorithm can be broken down
into a fixed number of steps which produce a definite result at the end.

In the following figure we further illustrate some of these points in the context of a spoken dialogue
system, such as our earlier example of an application that offers the user information about movies
currently on show.

Down the lefthand side of the diagram we have shown a pipeline of some representative speech
understanding components. These map from speech input via syntactic parsing to some kind of
meaning representation. Up the righthand side is an inverse pipeline of components for concept-to-
speech generation. These components constitute the procedural aspect of the system’s natural language
processing. In the central column of the diagram are some representative declaratives aspects: the
repositories of language-related information which are called upon by the processing components.

In addition to embodying the declarative/procedural distinction, the diagram also illustrates that
linguistically motivated ways of modularizing linguistic knowledge are often reflected in computational
systems. That is, the various components are organized so that the data which they exchange corre-
sponds roughly to different levels of representation. For example, the output of the speech analysis
component will contain sequences of phonological representations of words, and the output of the
parser will be a semantic representation. Of course the parallel is not precise, in part because it is
often a matter of practical expedience where to place the boundaries between different processing
components. For example, we can assume that within the parsing component there is a level of syntactic
representation, although we have chosen not to expose this at the level of the system diagram. Despite

Bird, Curran, Klein & Loper 1-9 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 1. Introduction to Natural Language Processing

—
"
- prOnUNC- .
spaoch analysis \ation spooch synthasis
madel
l - —F
—
morghological and | marpho- | morphological
lexical analysis logical realization
rules
J -
l I
S
. lexicon syntactic
-— - bt
parsing and realization
gremmar
T — ——
] — —
contextual
N ——] discourss -l
reasoning ——— utterance planning
-
domain
wnirwledge

g

application
reasoning and
axecution

Figure 1: Architecture of Spoken Dialogue System

such idiosyncracies, most NLP systems break down their work into a series of discrete steps. In the
process of natural language understanding, these steps go from more concrete levels to more abstract
ones, while in natural language production, the direction is reversed.

1.5 The Python Programming Language

NLTK is written in the Python language, a simple yet powerful scripting language with excellent func-
tionality for processing linguistic data. Python can be downloaded for free from http: //www.python.org/.
Here is a five-line Python program which takes text input and prints all the words ending in ing:

>>> import sys # load the system library
>>> for line in sys.stdin.readlines(): # for each line of input
for word in line.split(): # for each word in the line
if word.endswith(’'ing’): # does the word end in ’ing’?
print word # if so, print the word

This program illustrates some of the main features of Python. First, whitespace is used to nest
lines of code, thus the line starting with i £ falls inside the scope of the previous line starting with for,
so the ing test is performed for each word. Second, Python is object-oriented; each variable is an
entity which has certain defined attributes and methods. For example, 1ine is more than a sequence
of characters. It is a string object that has a method (or operation) called split that we can use to
break a line into its words. To apply a method to an object, we give the object name, followed by a
period, followed by the method name. Third, methods have arguments expressed inside parentheses.
For instance, split had no argument because we were splitting the string wherever there was white
space. To split a string into sentences delimited by a period, we could write split (' .’). Finally, and

Bird, Curran, Klein & Loper 1-10 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 1. Introduction to Natural Language Processing

most importantly, Python is highly readable, so much so that it is fairly easy to guess what the above
program does even if you have never written a program before.

We chose Python as the implementation language for NLTK because it has a shallow learning
curve, its syntax and semantics are transparent, and it has good string-handling functionality. As a
scripting language, Python facilitates interactive exploration. As an object-oriented language, Python
permits data and methods to be encapsulated and re-used easily. Python comes with an extensive
standard library, including components for graphical programming, numerical processing, and web
data processing.

NLTK defines a basic infrastructure that can be used to build NLP programs in Python. It provides:

e Basic classes for representing data relevant to natural language processing.
e Standard interfaces for performing tasks, such as tokenization, tagging, and parsing.
e Standard implementations for each task, which can be combined to solve complex problems.

e Extensive documentation, including tutorials and reference documentation.

1.6 Further Reading

The Association for Computational Linguistics (ACL) is the foremost professional body in NLP. Its
journal and conference proceedings, approximately 10,000 articles, are available online with a full-text
search interface, via http://www.aclweb.org/anthology/.

Several NLP systems have online interfaces that you might like to experiment with, e.g.:

e WordNet: http://wordnet .princeton.edu/

Translation: http://world.altavista.com/

ChatterBots: http://www.loebner.net/Prizef/loebner-prize.html

Question Answering: http://www.answerbus.com/
e Summarisation: http://newsblaster.cs.columbia.edu/

Useful websites with substantial information about NLP: http: //www.hltcentral.org/, http://www.lt-wo.
http://www.aclweb.org/, http://www.elsnet.org/. The ACL website contains an overview
of computational linguistics, including copies of introductory chapters from recent textbooks, at
http://www.aclweb.org/archive/what.html.

Recent field-wide surveys: Mitkov, Dale et al, HLT Survey.

Acknowledgements: The dialogue example is taken from Bob Carpenter and Jennifer Chu-Carroll’s
ACL-99 Tutorial on Spoken Dialogue Systems.

1.6.1 Development of NLTK

Edward Loper and Steven Bird (2002). NLTK: The Natural Language Toolkit, Proceedings of the
ACL Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing

and Computational Linguistics, Somerset, NJ: Association for Computational Linguistics, pp. 62-69,
http://arXiv.org/abs/cs/0205028

Bird, Curran, Klein & Loper 1-11 July 9, 2006

http://arXiv.org/abs/cs/0205028

Introduction to Natural Language Processing (DRAFT) 1. Introduction to Natural Language Processing

Steven Bird and Edward Loper (2004). NLTK: The Natural Language Toolkit, Proceedings of the
ACL demonstration session, pp 214-217.

Steven Bird (2005). NLTK-Lite: Efficient Scripting for Natural Language Processing, 4th Interna-
tional Conference on Natural Language Processing, pp 1-8.

Edward Loper (2004). NLTK: Building a Pedagogical Toolkit in Python, PyCon DC 2004 Python
Software Foundation, http://www.python.org/pycon/dc2004/papers/

About this document...

This chapter is a draft from Introduction to Natural Language Processing,
by Steven Bird, James Curran, Ewan Klein and Edward Loper, Copyright
© 2006 the authors. It is distributed with the Natural Language Toolkit
[http://nltk.sourceforge.net], under the terms of the Creative Commons Attribution-
ShareAlike License [http://creativecommons.org/licenses/by-sa/2.5/].

Bird, Curran, Klein & Loper 1-12 July 9, 2006

http://www.python.org/pycon/dc2004/papers/
http://www.csse.unimelb.edu.au/~sb/
http://www.it.usyd.edu.au/about/people/staff/james.shtml
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.sourceforge.net
http://creativecommons.org/licenses/by-sa/2.5/

