
Accessing and Analyzing Linguistic Field Data

1 Introduction

Linguistic fieldwork deals with a variety of data types, the most important being lexicons, paradigms
and texts. A lexicon is a database of words, minimally containing part of speech information and
glosses. A paradigm, broadly construed, is any kind of rational tabulation of words or phrases to
illustrate contrasts and systematic variation. A text is essentially any larger unit such as a narrative or a
conversation. In addition to these data types, linguistic fieldwork involves various kinds of description,
such as field notes, grammars and analytical papers.

These various kinds of data and description enter into a complex web of relations. For example, the
discovery of a new word in a text may require an update to the lexicon and the construction of a new
paradigm (e.g. to correctly classify the word). Such updates may occasion the creation of some field
notes, the extension of a grammar and possibly even the revision of the manuscript for an analytical
paper. Progress on description and analysis gives fresh insights about how to organise existing data and
it informs the quest for new data. Whether one is sorting data, or generating tabulations, or gathering
statistics, or searching for a (counter-)example, or verifying the transcriptions used in a manuscript, the
principal challenge is computational.

In the following we will consider various methods for manipulating linguistic field data using
the Natural Language Toolkit. We begin by considering methods for processing data created with
proprietary tools (e.g. Microsoft Office products). The bulk of the discussion focusses on field data
stored in the popular Shoebox format.

2 Tools and technologies for language documentation and description

Language documentation projects are increasing in their reliance on new digital technologies and
software tools. Bird and Simons (2003) identified and categorized a wide variety of these tools. We
briefly review these here, and mention various ways that our own programs can interface with them.

2.1 General purpose tools

Conventional office software is widely used in computer-based language documentation work, given
its familiarity and ready availability. This includes word processors and spreadsheets.

Word Processors. These are often used in creating dictionaries and interlinear texts. However, it
is rather time-consuming to maintain the consistency of the content and format. Consider a dictionary
in which each entry has a part-of-speech field, drawn from a set of 20 possibilities, displayed after the
pronunciation field, and rendered in 11-point bold. No convential word processor has search or macro
functions capable of verifying that all part-of-speech fields have been correctly entered and displayed.
This task requires exhaustive manual checking. If the word processor permits the document to be saved

1

Introduction to Natural Language Processing (DRAFT) .

in a non-proprietary format, such as RTF, HTML, or XML, it may be possible to write programs to do
this checking automatically.

Consider the following fragment of a lexical entry: “sleep [sli:p] vi condition of body and mind...”.
We can enter this in MSWord, then “Save as Web Page”, then inspect the resulting HTML:

<p class=MsoNormal>sleep [sli:p] vi <i>a

condition of body and mind ...o:p></o:p></i></p>

Observe that the entry is represented as an HTML paragraph, using the <p> element, and that
the part of speech appears inside a element. The following
program defines the set of legal parts-of-speech legal_pos. Then it extracts all 11-point content
from the dict.htm file and stores it in the set used_pos. Observe that the search pattern contains
a parenthesized sub-expression; only the material that matches this sub-expression is returned by
re.findall. Finally, the program constructs the set of illegal parts-of-speech as used_pos -
legal_pos:

>>> import re
>>> legal_pos = set([’n’, ’v.t.’, ’v.i.’, ’adj’, ’det’])
>>> pattern = re.compile(r"’font-size:11.0pt’>([a-z.]+)<")
>>> document = open("dict.htm").read()
>>> used_pos = set(re.findall(pattern, document))
>>> illegal_pos = used_pos.difference(legal_pos)
>>> print list(illegal_pos)
[’v.intr’, ’v.i’, ’intrans’]

This simple program represents the tip of the iceberg. We can develop sophisticated tools to check
the consistency of word processor files, and report errors so that the maintainer of the dictionary can
correct the original file using the original word processor. We can write other programs to convert
the data into a different format. For example, the following program extracts the words and their
pronunciations and generates output in “comma-separated value” (CSV) format:

>>> import re
>>> document = open("dict.htm").read()
>>> document = re.sub("[\r\n]", "", document)
>>> word_pattern = re.compile(r">([\w]+)")
>>> pron_pattern = re.compile(r"\[.*>([a-z:]+)<.*\]")
>>> for entry in document.split("<p"):
... word_match = word_pattern.search(entry)
... pron_match = pron_pattern.search(entry)
... if word_match and pron_match:
... lex = word_match.group(1)
... pos = pron_match.group(1)
... print ’"%s","%s"’ % (lex, pos)
"sleep","sli:p"
"walk","wo:k"
"wake","weik"

Spreadsheets. These are often used for wordlists or paradigms. A comparative wordlist may be
stored in a spreadsheet, with a row for each cognate set, and a column for each language. Examples are

Bird, Curran, Klein & Loper -2 May 18, 2006

Introduction to Natural Language Processing (DRAFT) .

available from www.rosettaproject.org. Programs such as Excel can export spreadsheets in the
CSV format, and we can write programs to manipulate them, with the help of Python’s csv module.
For example, we may want to print out cognates having an edit-distance of at least three from each
other (i.e. 3 insertions, deletions, or substitutions).

Databases. Sometimes lexicons are stored in a full-fledged relational database. When properly
normalized, these databases can implement many well-formedness constraints. For example, we can
require that all parts-of-speech come from a specified vocabulary by declaring that the part-of-speech
field is an enumerated type. However, the relational model is often too restrictive for linguistic data,
which typically has many optional and repeatable fields (e.g. dictionary sense definitions and example
sentences). Query languages such as SQL cannot express many linguistically-motivated queries, e.g.
find all words that appear in example sentences for which no dictionary entry is provided. Now
supposing that the database supports exporting data to CSV format, we can express this query in the
following program:

>>> import csv
>>> lexemes = []
>>> defn_words = []
>>> for row in csv.reader(open("dict.csv")):
... lexeme, pron, pos, defn = row
... lexemes.append(lexeme)
... defn_words += defn.split()
>>> undefined = list(set(defn_words).difference(set(lexemes)))
>>> undefined.sort()
>>> print undefined
[’...’, ’a’, ’and’, ’body’, ’by’, ’cease’, ’condition’, ’down’, ’each’, ’foot’, ’lifting’, ’mind’, ’of’, ’progress’, ’setting’, ’to’]

3 Processing Shoebox Data

Over the last two decades, several dozen tools have been developed that provide specialized support
for linguistic data management. (Please see Bird and Simons 2003 for a detailed list of such tools.)
Perhaps the single most popular tool for managing linguistic field data is Shoebox. Together with its
more recent incarnation (Toolbox), Shoebox uses a simple file format which we can easily read and
write, permitting us to apply computational methods to linguistic field data. In this section we discuss
a variety of techniques for manipulating Shoebox data in ways that are not supported by the Shoebox
software.

A Shoebox file consists of a collection of entries (or records), where each record is made up of one
or more fields. Here is an example of an entry taken from a Shoebox dictionary of Rotokas. (Rotokas
is an East Papuan language spoken on the island of Bougainville; this data was provided by Stuart
Robinson):

\lx kaa
\ps N.M
\cl isi
\ge cooking banana
\gp banana bilong kukim
\sf FLORA
\dt 12/Feb/2005
\ex Taeavi iria kaa isi kovopaueva kaparapasia.
\xp Taeavi i bin planim gaden banana bilong kukim tasol long paia.

Bird, Curran, Klein & Loper -3 May 18, 2006

Introduction to Natural Language Processing (DRAFT) .

\xe Taeavi planted banana in order to cook it.

Each field consists of a field name (e.g. lx, for lexeme), and a value (e.g. kaa). Other fields
are: ps part-of-speech; cl classifier; ge English gloss; gp Pidgin English gloss; sf Semantic field;
dt Date last edited; ex Example sentence; xp Pidgin translation of example; xe English translation
of example. These field names are preceded by a backslash, and must always appear at the start of a
line. The characters of the field names must be alphabetic. The field name is separated from the field’s
contents by whitespace. The contents can be arbitrary text, and can continue over several lines (but
cannot contain a line-initial backslash).

3.1 Accessing Shoebox Data

We can use the shoebox.raw() method to access a Shoebox file to perform various operations that
involve single-pass scanning of a lexicon. For example, here we compute the average number of fields
for each entry:

>>> from nltk_lite.corpora import shoebox
>>> sum_size = num_entries = 0
>>> for entry in shoebox.raw(’rotokas’):
... num_entries += 1
... sum_size += len(entry)
>>> print sum_size/num_entries
10

As we will see below, we can also use the raw() method in functions that add or remove fields, or
to examine sequences of fields.

This raw method reads each field into a list, preserving the order of fields. Next we look at the
shoebox.dictionary() method, which reads an entry into a Python dictionary. The following line
generates a dictionary for each entry, and stores the result in the list entries:

>>> entries = list(shoebox.dictionary(’rotokas’))

We can index into this list, thus entries[3] returns entry number 3 (which is actually the fourth
entry counting from zero).

>>> from pprint import pprint
>>> pprint(entries[3])
{’cl’: ’isi’,
’dt’: ’12/Feb/2005’,
’ex’: ’Taeavi iria kaa isi kovopaueva kaparapasia.’,
’ge’: ’cooking banana’,
’gp’: ’banana bilong kukim’,
’lx’: ’kaa’,
’ps’: ’N.M’,
’sf’: ’FLORA’,
’xe’: ’Taeavi planted banana in order to cook it.’,
’xp’: ’Taeavi i bin planim gaden banana bilong kukim tasol long paia.’}

3.2 Simple Entry Processing

The simplest approach to processing a Shoebox file is to scan through each entries, and for each entry,
to scan through each field. As we have seen, the shoebox.raw() method returns entries, where each

Bird, Curran, Klein & Loper -4 May 18, 2006

Introduction to Natural Language Processing (DRAFT) .

entry is just a sequence of fields. Suppose we wanted to create a list of all the lexemes. We can do this
as follows, starting by initialising lexemes to be the empty list.

>>> lexemes = []
>>> for entry in shoebox.raw(’rotokas’):
... for field in entry:
... if field[0] == ’lx’:
... normalised_lexeme = field[1].lower()
... lexemes.append(normalised_lexeme)

Note that we can construct the lexemes list much more economically using Python’s list compre-
hension syntax, as follows:

>>> lexemes = [field[1].lower()
... for entry in shoebox.raw(’rotokas’)
... for field in entry if field[0] == ’lx’]

Each field is stored as a tuple, e.g. (’lx’, ’kakate’). For each field in each entry, we check
to see if the field name is lx. If it is, we convert the field’s contents to lowercase, and append it to
the lexemes list. Observe that this process does not store the entire lexicon in memory. Instead, the
information we want is extracted during a single scan of the lexicon.

Adding New Fields: It is often convenient to add new fields that are derived from existing ones.
Such fields often facilitate analysis. For example, let us define a function which maps a string of
consonants and vowels to the corresponding CV sequence, e.g. kakapua would map to CVCVCVV.

>>> import re
>>> def cv(s):
... s = s.lower()
... s = re.sub(r’[^a-z]’, r’_’, s)
... s = re.sub(r’[aeiou]’, r’V’, s)
... s = re.sub(r’[^V_]’, r’C’, s)
... return (s)

This mapping has four steps. First, the string is converted to lowercase, then we replace any non-
alphabetic characters [^a-z] with an underscore. Next, we replace all vowels with V. Finally, anything
that is not a V or an underscore must be a consonant, so we replace it with a C. Now, we can scan the
lexicon and add a new cv field after every lx field. Here we will do it for a single entry only:

>>> raw_entries = list(shoebox.raw(’rotokas’))
>>> for field in raw_entries[50]:
... print "\\%s %s" % field
... if field[0] == "lx":
... print "\\cv %s" % cv(field[1])
\lx kaeviro
\cv CVVCVCV
\ps V.A
\ge lift off
\ge take off
\gp go antap
\nt used to describe action of plane
\dt 12/Feb/2005
\ex Pita kaeviroroe kepa kekesia oa vuripierevo kiuvu.
\xp Pita i go antap na lukim haus win i bagarapim.
\xe Peter went to look at the house that the wind destroyed.

Bird, Curran, Klein & Loper -5 May 18, 2006

Introduction to Natural Language Processing (DRAFT) .

Removing Fields: We can also use this technique to make copies of Shoebox data that lack
particular fields. For example, we may want to sanitise our lexical data before giving it to others,
by removing unnecessary fields (e.g. fields containing personal comments.)

>>> retain = (’lx’, ’ps’)
>>> raw_entries = list(shoebox.raw(’rotokas’))
>>> for entry in raw_entries[50:55]:
... for field in entry:
... if field[0] in retain:
... print "\\%s %s" % field
... print
\lx kaeviro
\ps V.A
<BLANKLINE>
\lx kagave
\ps N.F
<BLANKLINE>
\lx kaie
\ps V.A
<BLANKLINE>
\lx kaiea
\ps N.N
<BLANKLINE>
\lx kaikaio
\ps N.N
<BLANKLINE>

Formatting Entries: We can use the shoebox.dictionary() method to print a formatted
version of a lexicon. It allows us to request specific fields without needing to be concerned with their
relative ordering in the original file.

>>> entries = list(shoebox.dictionary(’rotokas’))
>>> for entry in entries[70:80]:
... lex = entry[’lx’]
... pos = entry[’ps’]
... dfn = entry[’ge’]
... if ’eng’ in entry:
... dfn = entry[’eng’]
... print "%s (%s) ’%s’" % (lex, pos, dfn)
kakapikoto (N.N2) ’newborn baby’
kakapu (V.B) ’place in sling for purpose of carrying’
kakapua (N.N) ’sling for lifting’
kakara (N.N) ’bracelet’
Kakarapaia (N.PN) ’village name’
kakarau (N.F) ’stingray’
Kakarera (N.PN) ’name’
Kakareraia (N.???) ’name’
kakata (N.F) ’cockatoo’
kakate (N.F) ’bamboo tube for water’

Producing CSV output
We could have produced comma-separated value (CSV) format with a slightly differ-
ent print statement: print ’"%s";"%s";"%s"\n’ % (lex, pos, dfn)

Bird, Curran, Klein & Loper -6 May 18, 2006

Introduction to Natural Language Processing (DRAFT) .

We can use the same idea to generate HTML tables instead of plain text. This would be useful for
publishing a Shoebox lexicon on the web. It produces HTML elements <table>, <tr> (table row),
and <td> (table data).

>>> html = "<table>\n"
>>> for entry in entries[70:80]:
... lex = entry[’lx’]
... pos = entry[’ps’]
... dfn = entry[’ge’]
... if ’eng’ in entry:
... dfn = entry[’eng’]
... html += " <tr><td>%s</td><td>%s</td><td>%s</td></tr>\n" % (lex, pos, dfn)
>>> html += "</table>"
>>> print html
<table>

<tr><td>kakapikoto</td><td>N.N2</td><td>newborn baby</td></tr>
<tr><td>kakapu</td><td>V.B</td><td>place in sling for purpose of carrying</td></tr>
<tr><td>kakapua</td><td>N.N</td><td>sling for lifting</td></tr>
<tr><td>kakara</td><td>N.N</td><td>bracelet</td></tr>
<tr><td>Kakarapaia</td><td>N.PN</td><td>village name</td></tr>
<tr><td>kakarau</td><td>N.F</td><td>stingray</td></tr>
<tr><td>Kakarera</td><td>N.PN</td><td>name</td></tr>
<tr><td>Kakareraia</td><td>N.???</td><td>name</td></tr>
<tr><td>kakata</td><td>N.F</td><td>cockatoo</td></tr>
<tr><td>kakate</td><td>N.F</td><td>bamboo tube for water</td></tr>

</table>

3.3 Exploration

In this section we consider a variety of analysis tasks.
Reduplication: First, we will develop a program to find reduplicated words. In order to do this

we need to store all lexemes, along with the English glosses. We need to keep the glosses so that they
can be displayed alongside the wordforms. The following code defines a Python dictionary lexgloss
which maps lexemes to their English glosses:

>>> lexgloss = {}
>>> for entry in shoebox.dictionary(’rotokas’):
... if ’lx’ in entry and entry[’ps’][0] == ’V’:
... lexgloss[entry[’lx’]] = entry[’ge’]

Next, for each lexeme lex, we will check if the lexicon contains the reduplicated form lex+lex.
If it does, we report both forms along with their glosses.

>>> for lex in lexgloss:
... if lex+lex in lexgloss:
... print "%s (%s); %s (%s)" % (lex, lexgloss[lex], lex+lex, lexgloss[lex+lex])
kuvu (fill.up); kuvukuvu (stamp the ground)
kitu (save); kitukitu (scrub clothes)
kopa (ingest); kopakopa (gulp.down)
kasi (burn); kasikasi (angry)
koi (high pitched sound); koikoi (groan with pain)
kee (chip); keekee (shattered)

Bird, Curran, Klein & Loper -7 May 18, 2006

Introduction to Natural Language Processing (DRAFT) .

kauo (jump); kauokauo (jump up and down)
kea (deceived); keakea (lie)
kove (drop); kovekove (drip repeatedly)
kape (unable to meet); kapekape (grip with arms not meeting)
kapo (fasten.cover.strip); kapokapo (fasten.cover.strips)
koa (skin); koakoa (remove the skin)
kipu (paint); kipukipu (rub.on)
koe (spoon out a solid); koekoe (spoon out)
kovo (work); kovokovo (surround)
kiru (have sore near mouth); kirukiru (crisp)
kotu (bite); kotukotu (grind teeth together)
kavo (collect); kavokavo (work black magic)
kuri (scrape); kurikuri (scratch repeatedly)
karu (unhook); karukaru (open)
kare (return); karekare (return)
kari (break); karikari (shred)
kiro (write); kirokiro (write)
kae (carry); kaekae (tempt)
koru (make return); korukoru (obstruct)
ku (finished with); kuku (spoonfeed)
kosi (exit); kosikosi (exit)

Complex Search Criteria: Phonological description typically identifies the segments, alternations,
syllable canon and so forth. It is relatively straightforward to count up the occurrences of all the
different types of CV syllables that occur in lexemes.

In the following example, we first import the regular expression and probability modules. Then we
iterate over the lexemes to find all sequences of a non-vowel [^aeiou] followed by a vowel [aeiou].

>>> from nltk_lite.tokenize import regexp
>>> from nltk_lite.probability import FreqDist
>>> fd = FreqDist()
>>> for lex in lexemes:
... for syl in regexp(lex, pattern=r’[^aeiou][aeiou]’):
... fd.inc(syl)

Now, rather than just printing the syllables and their frequency counts, we can tabulate them to
generate a useful display.

>>> for vowel in ’aeiou’:
... for cons in ’ptkvsr’:
... print ’%s%s:%4d ’ % (cons, vowel, fd.count(cons+vowel)),
... print
pa: 84 ta: 43 ka: 414 va: 87 sa: 0 ra: 185
pe: 32 te: 8 ke: 139 ve: 25 se: 1 re: 62
pi: 97 ti: 0 ki: 88 vi: 96 si: 95 ri: 83
po: 31 to: 140 ko: 403 vo: 42 so: 3 ro: 86
pu: 49 tu: 35 ku: 169 vu: 44 su: 1 ru: 72

Consider the t and s columns, and observe that ti is not attested, while si is frequent. This
suggests that a phonological process of palatalisation is operating in the language. We would then want
to consider the other syllables involving s (e.g. the single entry having su, namely kasuari ’cassowary’
is a loanword).

Bird, Curran, Klein & Loper -8 May 18, 2006

Introduction to Natural Language Processing (DRAFT) .

Prosodically-motivated search: A phonological description may include an examination of the
segmental and prosodic constraints on well-formed morphemes and lexemes. For example, we may
want to find trisyllabic verbs ending in a long vowel. Our program can make use of the fact that syllable
onsets are obligatory and simple (only consist of a single consonant). First, we will encapsulate the
syllabic counting part in a separate function. It gets the CV template of the word cv(word) and counts
the number of consonants it contains:

>>> def num_syls(word):
... template = cv(word)
... num_cons = template.count(’C’)
... return num_cons

We also encapsulate the vowel test in a function, as this improves the readability of the final
program. This function returns the value True just in case char is a vowel.

>>> def is_vowel(char):
... return (char in ’aeiou’)

Over time we may create a useful collection of such functions. We can save them in a file
utilities.py, and then at the start of each program we can simply import all the functions in one
go using from utilities import *. We take the entry to be a verb if the first letter of its part of
speech is a V. Here, then, is the program to display trisyllabic verbs ending in a long vowel:

>>> for entry in shoebox.dictionary(’rotokas’):
... if ’lx’ in entry:
... lex = entry[’lx’]
... pos = entry[’ps’]
... if num_syls(lex) == 3 and is_vowel(lex[-1]) and is_vowel(lex[-2]) and pos[0] == ’V’:
... dfn = entry[’ge’]
... print "%s (%s) ’%s’" % (lex, pos, dfn)
kaetupie (V.B) ’tighten’
kakupie (V.B) ’yodel’
kapatau (V.B) ’add to’
kapuapie (V.B) ’wound’
kapupie (V.B) ’close tight’
kapuupie (V.B) ’close’
karepie (V.B) ’return’
karivai (V.A) ’have an appetite’
kasipie (V.B) ’care for’
kaukaupie (V.B) ’intense sunlight’
kavorou (V.A) ’intercept’
kavupie (V.B) ’leave.behind’
kekepie (V.B) ’show’
keruria (V.A) ’determined’
ketoopie (V.B) ’make sprout from seed’
koatapie (V.B) ’accept’
koetapie (V.B) ’satisfy curiosity’
kokovae (V.A) ’sing’
kokovua (V.B) ’shave the hair line’
kopiipie (V.B) ’kill’
korupie (V.B) ’take outside’
kosipie (V.B) ’make exit’
kovopie (V.B) ’use to make work’

Bird, Curran, Klein & Loper -9 May 18, 2006

Introduction to Natural Language Processing (DRAFT) .

kukuvai (V.B) ’cover the head from rain or sun’
kuvaupie (V.B) ’leave alone’
kuverea (V.A) ’not all right’

Finding Minimal Sets: In order to establish a contrast segments (or lexical properties, for that
matter), we would like to find pairs of words which are identical except for a single property. For
example, the words pairs mace vs maze and face vs faze, and many others like them, demonstrate the
existence of a phonemic distinction between s and z in English. NLTK-Lite provides flexible support for
constructing minimal sets, using the MinimalSet() class. This class needs three pieces of information
for each item to be added: context: the material that must be fixed across all members of a minimal
set; target: the material that changes across members of a minimal set; display: the material that
should be displayed for each item.

Examples of Minimal Set Parameters
Minimal Set Context Target Display
bib, bid, big first two letters third letter word
deal (N), deal (V) whole word pos word (pos)

We begin by creating a list of parameter values, generated from the full lexical entries. In our first
example, we will print minimal sets involving lexemes of length 4, with a target position of 1 (second
segment). The context is taken to be the entire word, except for the target segment. Thus, if lex is
kasi, then context is lex[:1]+’_’+lex[2:], or k_si. Note that no parameters are generated if the
lexeme does not consist of exactly four segments.

>>> lexemes = [entry[’lx’] for entry in shoebox.dictionary(’rotokas’)
... if ’lx’ in entry]
>>> position = 1
>>> parameters = [(lex[:position] + ’_’ + lex[position+1:],
... lex[position],
... lex)
... for lex in lexemes if len(lex) == 4]

Now, we define a function that builds creates and populates the MinimalSet object. For each
context, target, display triple, it adds an entry to the minimal set.

>>> from nltk_lite.utilities import MinimalSet
>>> def build_min_set(parameters):
... min_set = MinimalSet()
... for context, target, display in parameters:
... min_set.add(context, target, display)
... return min_set

Finally, we print the table of minimal sets. We specify that each context was seen at least 3 times.

>>> ms = build_min_set(parameters)
>>> for context in ms.contexts(3):
... print context + ’:’,
... for target in ms.targets():
... print "%-4s" % ms.display(context, target, "-"),
... print
k_si: kasi - kesi - kosi

Bird, Curran, Klein & Loper -10 May 18, 2006

Introduction to Natural Language Processing (DRAFT) .

k_ru: karu kiru keru kuru koru
k_pu: kapu kipu - - kopu
k_ro: karo kiro - - koro
k_ri: kari kiri keri kuri kori
k_pa: kapa - kepa - kopa
k_ra: kara kira kera - kora
k_ku: kaku - - kuku koku
k_ki: kaki kiki - - koki

Observe in the above example that the context, target, and displayed material were all based on
the lexeme field. However, the idea of minimal sets is much more general. For instance, suppose we
wanted to get a list of wordforms having more than one possible part-of-speech. Then the target will
be part-of-speech field, and the context will be the lexeme field. We will also display the English gloss
field.

>>> parameters = [(entry[’lx’], entry[’ps’][0], "%s (%s)" % (entry[’ps’][0], entry[’ge’]))
... for entry in shoebox.dictionary(’rotokas’) if ’lx’ in entry]
>>> ms = build_min_set(parameters)
>>> for context in ms.contexts()[:10]:
... print "%10s:" % context, "; ".join(ms.display_all(context))
kokovara: N (unripe coconut); V (unripe)

kapua: N (sore); V (have sores)
koie: N (pig); V (get pig to eat)
kovo: C (garden); N (work); V (work)

kavori: N (lobster); V (collect crayfish or lobster)
korita: N (cutlet?); V (cut up meat)

keru: N (bone); V (harden like bone)
kirokiro: N (bush used for sorcery); V (write)

kaapie: N (fishhook); V (capture)
kou: C (heap); V (defecate)

3.4 Example Applications: Improving Access to Lexical Resources

A lexicon constructed as part of field-based research is a potential language resource for speakers of a
language. Even when the language in question has a standard writing system, many speakers will not
be literate in the language. They may be able to attempt an approximate spelling for a word, or they
may prefer to access the dictionary via an index which uses the language of wider communication. In
this section we deal with the first of these. The second is left to the reader as an exercise. We will also
generate a wordfinder puzzle which can be used to test knowledge of lexical items.

3.4.1 Fuzzy Spelling (notes)

Confusible sets of segments: if two segments are confusible, map them to the same integer.

>>> group = {
... ’ ’:0, # blank (for short words)
... ’p’:1, ’b’:1, ’v’:1, # labials
... ’t’:2, ’d’:2, ’s’:2, # alveolars
... ’l’:3, ’r’:3, # sonorant consonants
... ’i’:4, ’e’:4, # high front vowels
... ’u’:5, ’o’:5, # high back vowels

Bird, Curran, Klein & Loper -11 May 18, 2006

Introduction to Natural Language Processing (DRAFT) .

... ’a’:6 # low vowels

... }

Soundex: idea of a signature. Words with the same signature considered confusible. Consider first
letter of a word to be so cognitively salient that people will not get it wrong.

>>> def soundex(word):
... if len(word) == 0: return word # sanity check
... word += ’ ’ # ensure word long enough
... c0 = word[0].upper()
... c1 = group[word[1]]
... cons = filter(lambda x: x in ’pbvtdslr ’, word[2:])
... c2 = group[cons[0]]
... c3 = group[cons[1]]
... return "%s%d%d%d" % (c0, c1, c2, c3)
>>> print soundex(’kalosavi’)
K632
>>> print soundex(’ti’)
T400

Now we can build a soundex index of the lexicon:

>>> soundex_idx = {}
>>> for lex in lexemes:
... code = soundex(lex)
... if code not in soundex_idx:
... soundex_idx[code] = set()
... soundex_idx[code].add(lex)

We should sort these candidates by proximity with the target word.

>>> from nltk_lite.utilities import edit_dist
>>> def fuzzy_spell(target):
... scored_candidates = []
... code = soundex(target)
... for word in soundex_idx[code]:
... dist = edit_dist(word, target)
... scored_candidates.append((dist, word))
... scored_candidates.sort()
... return [w for (d,w) in scored_candidates[:10]]

Finally, we can look up a word to get approximate matches:

>>> fuzzy_spell(’kokopouto’)
[’kokopeoto’, ’kokopuoto’, ’kokepato’, ’koovoto’, ’koepato’, ’kooupato’, ’kopato’, ’kopiito’, ’kovuto’, ’koavaato’]
>>> fuzzy_spell(’kogou’)
[’kogo’, ’koou’, ’kokeu’, ’koko’, ’kokoa’, ’kokoi’, ’kokoo’, ’koku’, ’kooe’, ’kooku’]

3.4.2 Wordfinder Puzzle

Here we will generate a grid of letters, containing words found in the dictionary. First we remove
any duplicates and disregard the order in which the lexemes appeared in the dictionary. We do this by
converting it to a set, then back to a list. Then we select the first 200 words, and then only keep those
words having a reasonable length.

Bird, Curran, Klein & Loper -12 May 18, 2006

Introduction to Natural Language Processing (DRAFT) .

>>> words = list(set(lexemes))
>>> words = words[:200]
>>> words = [w for w in words if 3 <= len(w) <= 12]

Now we generate the wordfinder grid, and print it out.

>>> from nltk_lite.misc.wordfinder import wordfinder
>>> grid, used = wordfinder(words)
>>> for i in range(len(grid)):
... for j in range(len(grid[i])):
... print grid[i][j],
... print
O G H K U U V U V K U O R O V A K U N C
K Z O T O I S E K S N A I E R E P A K C
I A R A A K I O Y O V R S K A W J K U Y
L R N H N K R G V U K G I A U D J K V N
I I Y E A U N O K O O U K T R K Z A E L
A V U K O X V K E R V T I A A E R K R K
A U I U G O K U T X U I K N V V L I E O
R R K O K N U A J Z T K A K O O S U T R
I A U A U A S P V F O R O O K I C A O U
V K R R T U I V A O A U K V V S L P E K
A I O A I A K R S V K U S A A I X I K O
P S V I K R O E O A R E R S E T R O J X
O I I S U A G K R O R E R I T A I Y O A
R R R A T O O K O I K I W A K E A A R O
O E A K I K V O P I K H V O K K G I K T
K K L A K A A R M U G E P A U A V Q A I
O O O U K N X O G K G A R E A A P O O R
K V V P U J E T Z P K B E I E T K U R A
N E O A V A E O R U K B V K S Q A V U E
C E K K U K I K I R A E K O J I Q K K K

Finally we generate the words which need to be found.

>>> for i in range(len(used)):
... print "%-12s" % used[i],
... if float(i+1)%5 == 0: print
KOKOROPAVIRA KOROROVIVIRA KAEREASIVIRA KOTOKOTOARA KOPUASIVIRA
KATAITOAREI KAITUTUVIRA KERIKERISI KOKARAPATO KOKOVURITO
KAUKAUVIRA KOKOPUVIRA KAEKAESOTO KAVOVOVIRA KOVAKOVARA
KAAREKOPIE KAEPIEVIRA KAPUUPIEPA KOKORUUTO KIKIRAEKO
KATAAVIRA KOVOKOVOA KARIVAITO KARUVIRA KAPOKARI
KUROVIRA KITUKITU KAKUPUTE KAEREASI KUKURIKO
KUPEROO KAKAPUA KIKISI KAVORA KIKIPI
KAPUA KAARE KOETO KATAI KUVA
KUSI KOVO KOAI

3.5 Generating Reports

Finally, we take a look at simple methods to generate summary reports, giving us an overall picture of
the quality and organisation of the data.

Bird, Curran, Klein & Loper -13 May 18, 2006

Introduction to Natural Language Processing (DRAFT) .

3.5.1 Discovering Entry Patterns

Print most frequent fields

>>> fd = FreqDist()
>>> for entry in shoebox.raw(’rotokas’):
... for field in entry:
... fd.inc(field[0])
>>> fd.sorted_samples()[:10]
[’ge’, ’ex’, ’xe’, ’xp’, ’gp’, ’lx’, ’ps’, ’dt’, ’rt’, ’eng’]

Discovering patterns of fields:

>>> fd = FreqDist()
>>> for entry in shoebox.raw(’rotokas’):
... marker_list = [field[0] for field in entry]
... markers = ’:’.join(marker_list)
... fd.inc(markers)
>>> top_ten = fd.sorted_samples()[:10]
>>> print ’\n’.join(top_ten)
lx:rt:ps:ge:gp:dt:ex:xp:xe
lx:ps:ge:gp:dt:ex:xp:xe
lx:ps:ge:gp:dt:ex:xp:xe:ex:xp:xe
lx:rt:ps:ge:gp:dt:ex:xp:xe:ex:xp:xe
lx:ps:ge:gp:nt:dt:ex:xp:xe
lx:ps:ge:gp:dt
lx:ps:ge:ge:gp:dt:ex:xp:xe:ex:xp:xe
lx:rt:ps:ge:ge:gp:dt:ex:xp:xe:ex:xp:xe
lx:ps:ge:ge:gp:dt:ex:xp:xe
lx:rt:ps:ge:ge:gp:dt:ex:xp:xe

Finding frequent pairs of fields:

>>> fd = FreqDist()
>>> for entry in shoebox.raw(’rotokas’):
... previous = "0"
... for field in entry:
... current = field[0]
... fd.inc("%s->%s" % (previous, current))
... previous = current
>>> fd.sorted_samples()[:10]
[’ex->xp’, ’xp->xe’, ’0->lx’, ’ge->gp’, ’ps->ge’, ’dt->ex’, ’lx->ps’, ’gp->dt’, ’xe->ex’, ’lx->rt’]

Some shoebox entries have nested structure. Thus they correspond to a tree over the fields. We can
check for well-formedness by parsing the field names, e.g.:

>>> from nltk_lite import parse
>>> grammar = parse.cfg.parse_grammar(’’’
... S -> Head "ps" Glosses Comment "dt" Examples
... Head -> "lx" | "lx" "rt"
... Glosses -> Gloss Glosses
... Glosses ->
... Gloss -> "ge" | "gp"
... Examples -> Example Examples
... Examples ->

Bird, Curran, Klein & Loper -14 May 18, 2006

Introduction to Natural Language Processing (DRAFT) .

... Example -> "ex" "xp" "xe"

... Comment -> "cmt"

... Comment ->

... ’’’)

>>> rd_parser = parse.RecursiveDescent(grammar)

>>> fd = FreqDist()
>>> for entry in shoebox.raw(’rotokas’):
... marker_list = [field[0] for field in entry]
... if rd_parser.get_parse_list(marker_list):
... print "+", marker_list
... else:
... print "-", marker_list

3.5.2 Looking at Timestamps

>>> fd = FreqDist()
>>> from string import split
>>> for entry in shoebox.dictionary(’rotokas’):
... if ’dt’ in entry:
... (day, month, year) = split(entry[’dt’], ’/’)
... fd.inc((month, year))
>>> for time in fd.sorted_samples():
... print time[0], ’/’, time[1], ’:’, fd.count(time)
Feb / 2005 : 307
Dec / 2004 : 151
Jan / 2005 : 123
Feb / 2004 : 64
Sep / 2004 : 49
May / 2005 : 46
Mar / 2005 : 37
Apr / 2005 : 29
Jul / 2004 : 14
Nov / 2004 : 5
Oct / 2004 : 5
Aug / 2004 : 4
May / 2003 : 2
Jan / 2004 : 1
May / 2004 : 1

To put these in time order, we need to set up a special comparison function. Otherwise, if we just
sort the months, we’ll get them in alphabetical order.

>>> month_index = {
... "Jan" : 1, "Feb" : 2, "Mar" : 3, "Apr" : 4,
... "May" : 5, "Jun" : 6, "Jul" : 7, "Aug" : 8,
... "Sep" : 9, "Oct" : 10, "Nov" : 11, "Dec" : 12
... }
>>> def time_cmp(a, b):
... a2 = a[1], month_index[a[0]]
... b2 = b[1], month_index[b[0]]
... return cmp(a2, b2)

Bird, Curran, Klein & Loper -15 May 18, 2006

Introduction to Natural Language Processing (DRAFT) .

The comparison function says that we compare two times of the form (’Mar’, ’2004’) by
reversing the order of the month and year, and converting the month into a number to get (’2004’,
’3’), then using Python’s built-in cmp function to compare them.

Now we can get the times found in the Shoebox entries, sort them according to our time_cmp
comparison function, and then print them in order. This time we print bars to indicate frequency:

>>> times = fd.samples()
>>> times.sort(cmp=time_cmp)
>>> for time in times:
... print time[0], ’/’, time[1], ’:’, ’#’ * (1 + fd.count(time)/10)
May / 2003 : #
Jan / 2004 : #
Feb / 2004 : #######
May / 2004 : #
Jul / 2004 : ##
Aug / 2004 : #
Sep / 2004 : #####
Oct / 2004 : #
Nov / 2004 : #
Dec / 2004 : ################
Jan / 2005 : #############
Feb / 2005 : ###############################
Mar / 2005 : ####
Apr / 2005 : ###
May / 2005 : #####

4 Language Archives

Language technology and the linguistic sciences are confronted with a vast array of language re-
sources, richly structured, large and diverse. Multiple communities depend on language resources,
including linguists, engineers, teachers and actual speakers. Thanks to recent advances in digital
technologies, we now have unprecedented opportunities to bridge these communities to the language
resources they need. First, inexpensive mass storage technology permits large resources to be stored
in digital form, while the Extensible Markup Language (XML) and Unicode provide flexible ways to
represent structured data and ensure its long-term survival. Second, digital publication on the web is
the most practical and efficient means of sharing language resources. Finally, a standard resource
description model and interchange method provided by the Open Language Archives Community
(OLAC) makes it possible to construct a union catalog over multiple repositories and archives (see
http://www.language-archives.org/).

4.1 Managing Metadata for Language Resources

OLAC metadata extends the Dublin Core metadata set with descriptors that are important for language
resources.

The container for an OLAC metadata record is the element <olac>. Here is a valid OLAC
metadata record from the Pacific And Regional Archive for Digital Sources in Endangered Cultures
(PARADISEC):

<olac:olac xsi:schemaLocation="http://purl.org/dc/elements/1.1/ http://www.language-archives.org/OLAC/1.0/dc.xsd

Bird, Curran, Klein & Loper -16 May 18, 2006

Introduction to Natural Language Processing (DRAFT) .

http://purl.org/dc/terms/ http://www.language-archives.org/OLAC/1.0/dcterms.xsd
http://www.language-archives.org/OLAC/1.0/ http://www.language-archives.org/OLAC/1.0/olac.xsd">
<dc:title>Tiraq Field Tape 019</dc:title>
<dc:identifier>AB1-019</dc:identifier>
<dcterms:hasPart>AB1-019-A.mp3</dcterms:hasPart>
<dcterms:hasPart>AB1-019-A.wav</dcterms:hasPart>
<dcterms:hasPart>AB1-019-B.mp3</dcterms:hasPart>
<dcterms:hasPart>AB1-019-B.wav</dcterms:hasPart>
<dc:contributor xsi:type="olac:role" olac:code="recorder">Brotchie, Amanda</dc:contributor>
<dc:subject xsi:type="olac:language" olac:code="x-sil-MME"/>
<dc:language xsi:type="olac:language" olac:code="x-sil-BCY"/>
<dc:language xsi:type="olac:language" olac:code="x-sil-MME"/>
<dc:format>Digitised: yes;</dc:format>
<dc:type>primary_text</dc:type>
<dcterms:accessRights>standard, as per PDSC Access form</dcterms:accessRights>
<dc:description>SIDE A<p>1. Elicitation Session - Discussion and

translation of Lise’s and Marie-Claire’s Songs and Stories from
Tape 18 (Tamedal)<p><p>SIDE B<p>1. Elicitation Session: Discussion
of and translation of Lise’s and Marie-Clare’s songs and stories
from Tape 018 (Tamedal)<p>2. Kastom Story 1 - Bislama
(Alec). Language as given: Tiraq</dc:description>

</olac:olac>

Note

The remainder of this section will discuss how to manipulate OLAC metadata.

5 Further Reading

Bird, Steven (1999). Multidimensional exploration of online linguistic field data Proceedings of the
29th Meeting of the North-East Linguistic Society, pp 33-50.

Bird, Steven and Gary Simons (2003). Seven Dimensions of Portability for Language Documenta-
tion and Description, Language 79: 557-582.

6 Exercises

1. Write a program that scans an HTML dictionary file to find entries having an illegal part-
of-speech field, and reports the headword for each entry.

2. Obtain a comparative wordlist in CSV format, and write a program that prints those
cognates having an edit-distance of at least three from each other.

3. Write a program to filter out just the date field (dt) without having to list the fields we
wanted to retain.

4. Print an index of a lexicon. For each lexical entry, construct a tuple of the form (gloss,
lexeme), then sort and print them all.

Bird, Curran, Klein & Loper -17 May 18, 2006

Introduction to Natural Language Processing (DRAFT) .

5. Write a program to find any parts of speech (ps field) that occurred less than ten times.
Perhaps these are typing mistakes?

6. We saw a method for discovering cases of whole-word reduplication. Write a function to
find words that may contain partial reduplication. Use the re.search() method, and the
following regular expression: (..+)\1

7. What is the frequency of each consonant and vowel contained in lexeme fields?

8. We saw a method for adding a cv field. There is an interesting issue with keeping this
up-to-date when someone modifies the content of the lx field on which it is based. Write
a version of this program to add a cv field, replacing any existing cv field.

9. Build an index of those lexemes which appear in example sentences. Suppose the lexeme
for a given entry is w. Then add a single cross-reference field xrf to this entry, referencing
the headwords of other entries having example sentences containing w. Do this for all
entries and save the result as a shoebox-format file.

10. Write a program to add a new field syl which gives a count of the number of syllables in
the word.

11. Write a function which displays the complete entry for a lexeme. When the lexeme is
incorrectly spelled it should display the entry for the most similarly spelled lexeme.

12. How many entries were last modified in 2004?

About this document...
This chapter is a draft from Introduction to Natural Language Processing,
by Steven Bird, James Curran, Ewan Klein and Edward Loper, Copyright
 2006 the authors. It is distributed with the Natural Language Toolkit
[http://nltk.sourceforge.net], under the terms of the Creative Commons Attribution-
ShareAlike License [http://creativecommons.org/licenses/by-sa/2.5/].

Bird, Curran, Klein & Loper -18 May 18, 2006

http://www.csse.unimelb.edu.au/~sb/
http://www.it.usyd.edu.au/about/people/staff/james.shtml
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.sourceforge.net
http://creativecommons.org/licenses/by-sa/2.5/

