
6. Advanced Programming in Python

6.1 Introduction

This chapter introduces concepts in algorithms, data structures, program design, and advanced Python
programming. It contains many working program fragments which you should try yourself.

6.2 Functions

6.2.1 Defining Functions

It often happens that part of a program needs to be used several times over. For example, suppose
we were writing a program that needed to be able to form the plural of a singular noun, and that this
needed to be done at various places during the program. Rather than repeating the same code several
times over, it is more efficient (and reliable) to localize this work inside a function. A function is a
programming construct which takes one or more inputs, and produces an output. In this case, we will
take the singular noun as input, and generate a plural form as output:

>>> def plural(word):
... if word[-1] == ’y’:
... return word[:-1] + ’ies’
... elif word[-1] in ’sx’:
... return word + ’es’
... elif word[-2:] in [’sh’, ’ch’]:
... return word + ’es’
... elif word[-2:] == ’an’:
... return word[:-2] + ’en’
... return word + ’s’
>>> plural(’fairy’)
’fairies’
>>> plural(’woman’)
’women’

Well-structured programs often make extensive use of functions. Often when a block of program
code grows longer than a screenful, it is a great help to readability if it is decomposed into one or more
functions.

6.2.2 Predicting the Next Word (Revisited)
>>> from nltk_lite.corpora import genesis
>>> from nltk_lite.probability import ConditionalFreqDist
>>> cfdist = ConditionalFreqDist()

1



Introduction to Natural Language Processing (DRAFT) 6. Advanced Programming in Python

We then examine each token in the corpus, and increment the appropriate sample’s count. We use
the variable prev to record the previous word.

>>> prev = None
>>> for word in genesis.raw():
... cfdist[prev].inc(word)
... prev = word

Note

Sometimes the context for an experiment is unavailable, or does not exist. For
example, the first token in a text does not follow any word. In these cases, we
must decide what context to use. For this example, we use None as the context for
the first token. Another option would be to discard the first token.

Once we have constructed a conditional frequency distribution for the training corpus, we can use
it to find the most likely word for any given context. For example, taking the word living as our context,
we can inspect all the words that occurred in that context.

>>> word = ’living’
>>> cfdist[word].samples()
[’creature,’, ’substance’, ’soul.’, ’thing’, ’thing,’, ’creature’]

We can set up a simple loop to generate text: we set an initial context, picking the most likely token
in that context as our next word, and then using that word as our new context:

>>> word = ’living’
>>> for i in range(20):
... print word,
... word = cfdist[word].max()
living creature that he said, I will not be a wife of the land
of the land of the land

NOW: doing this with functions...

6.3 Trees

6.4 Recursion

1. recurse over tree to display in some useful way (e.g. whitespace formatting)

2. recurse over tree to look for coordinate constructions (cf 4th example in chapter 1.1)

3. generate new dependency tree from a phrase-structure tree

(possible extension: callback function for Tree.subtrees())

Bird, Curran, Klein & Loper 6-2 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 6. Advanced Programming in Python

6.5 Writing Complete Programs

6.5.1 Classifying Words Automatically

A tagged corpus can be used to train a simple classifier, which can then be used to guess the tag for
untagged words. For each word, we can count the number of times it is tagged with each tag. For
instance, the word deal is tagged 89 times as nn and 41 times as vb. On this evidence, if we were
asked to guess the tag for deal we would choose nn, and we would be right over two-thirds of the
time. The following program performs this tagging task, when trained on the “g” section of the Brown
Corpus (so-called belles lettres, creative writing valued for its aesthetic content).

>>> from nltk_lite.corpora import brown
>>> cfdist = ConditionalFreqDist()
>>> for sentence in brown.tagged(’g’):
... for token in sentence:
... word = token[0]
... tag = token[1]
... cfdist[word].inc(tag)
>>> for word in "John saw 3 polar bears".split():
... print word, cfdist[word].max()
John np
saw vbd
3 cd-tl
polar jj
bears vbz

Note that bears was incorrectly tagged as the 3rd person singular form of a verb, since this word
appears more frequently as a verb than a noun in esthetic writing.

A problem with this approach is that it creates a huge model, with an entry for every possible
combination of word and tag. For certain tasks it is possible to construct reasonably good models
which are tiny in comparison. For instance, let’s try to guess whether a verb is a noun or adjective from
the last letter of the word alone. We can do this as follows:

>>> tokens = []
>>> for sent in brown.tagged(’g’):
... for (word,tag) in sent:
... if tag in [’nn’, ’jj’] and len(word) > 3:
... char = word[-1]
... tokens.append((char,tag))
>>> split = len(tokens)*9/10
>>> train, test = tokens[:split], tokens[split:]
>>> cfdist = ConditionalFreqDist()
>>> for (char,tag) in train:
... cfdist[char].inc(tag)
>>> correct = total = 0
>>> for (char,tag) in test:
... if tag == cfdist[char].max():
... correct += 1
... total += 1
>>> print correct*100/total
71

Bird, Curran, Klein & Loper 6-3 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 6. Advanced Programming in Python

This result of 71% is marginally better than the result of 65% that we get if we assign the nn tag to
every word. We can inspect the model to see which tag is assigned to a word given its final letter. Here
we learn that words which end in c or l are more likely to be adjectives than nouns:

>>> print [(c, cfdist[c].max()) for c in cfdist.conditions()]

[(’%’, ’nn’), ("’", None), (’-’, ’jj’), (’2’, ’nn’), (’5’, ’nn’), (’A’, ’nn’), (’D’, ’nn’), (’O’, ’nn’), (’S’, ’nn’), (’a’, ’nn’), (’c’, ’jj’), (’b’, ’nn’), (’e’, ’nn’), (’d’, ’nn’), (’g’, ’nn’), (’f’, ’nn’), (’i’, ’nn’), (’h’, ’nn’), (’k’, ’nn’), (’m’, ’nn’), (’l’, ’jj’), (’o’, ’nn’), (’n’, ’nn’), (’p’, ’nn’), (’s’, ’nn’), (’r’, ’nn’), (’u’, ’nn’), (’t’, ’nn’), (’w’, ’nn’), (’y’, ’nn’), (’x’, ’nn’), (’z’, ’nn’)]

6.5.2 Exploring text genres

Now that we can load a significant quantity of tagged text, we can process it and extract items of
interest. The following code iterates over the fifteen genres of the Brown Corpus (accessed using
brown.groups()). The material for each genre lives in a set of files (accessed using brown.items).
Each of these is tokenized in turn. The next step is to check if the token has the md tag. For each of these
words we increment a count. This uses the conditional frequency distribution, where the condition is
the current genre, and the event is the modal.

>>> cfdist = ConditionalFreqDist()
>>> for genre in brown.items: # each genre
... for sent in brown.tagged(genre): # each sentence
... for (word,tag) in sent: # each tagged token
... if tag == ’md’: # found a modal
... cfdist[genre].inc(word.lower())

The conditional frequency distribution is nothing more than a mapping from each genre to the
distribution of modals in that genre. The following code fragment identifies a small set of modals of
interest, and processes the data structure to output the required counts.

>>> modals = [’can’, ’could’, ’may’, ’might’, ’must’, ’will’]
>>> print "%-40s" % ’Genre’, ’ ’.join([("%6s" % m) for m in modals])
Genre can could may might must will
>>> for genre in cfdist.conditions(): # generate rows
... print "%-40s" % brown.item_name[genre],
... for modal in modals:
... print "%6d" % cfdist[genre].count(modal),
... print
press: reportage 94 86 66 36 50 387
press: reviews 44 40 45 26 18 56
press: editorial 122 56 74 37 53 225
skill and hobbies 273 59 130 22 83 259
religion 84 59 79 12 54 64
belles-lettres 249 216 213 113 169 222
popular lore 168 142 165 45 95 163
miscellaneous: government & house organs 115 37 152 13 99 237
fiction: general 39 168 8 42 55 50
learned 366 159 325 126 202 330
fiction: science 16 49 4 12 8 16
fiction: mystery 44 145 13 57 31 17
fiction: adventure 48 154 6 58 27 48
fiction: romance 79 195 11 51 46 43
humor 17 33 8 8 9 13

Bird, Curran, Klein & Loper 6-4 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 6. Advanced Programming in Python

There are some interesting patterns in this table. For instance, compare the rows for government
literature and adventure literature; the former is dominated by the use of can, may, must, will
while the latter is characterised by the use of could and might. With some further work it might be
possible to guess the genre of a new text automatically, according to its distribution of modals.

6.5.3 Exercises

1. Classifying words automatically: The program for classifying words as nouns or adjec-
tives scored 71%. Try to come up with better conditions, to get the system to score 80%
or better.

a) Revise the condition to use a longer suffix of the word, such as the last two
characters, or the last three characters. What happens to the performance?
Which suffixes are diagnostic for adjectives?

b) Explore other conditions, such as variable length prefixes of a word, or the
length of a word, or the number of vowels in a word.

c) Finally, combine multiple conditions into a tuple, and explore which combina-
tion of conditions gives the best result.

2. Exploring text genres: Investigate the table of modal distributions and look for other
patterns. Try to explain them in terms of your own impressionistic understanding of
the different genres. Can you find other closed classes of words that exhibit significant
differences across different genres?

6.6 Program Development

Programming is a skill which is acquired over several years of experience with a variety of pro-
gramming languages and tasks. Key high-level abilities are algorithm design and its manifestation
in structured programming. Key low-level abilities include familiarity with the syntactic constructs of
the language, and knowledge of a variety of diagnostic methods for trouble-shooting a program which
does not exhibit the expected behaviour.

6.6.1 List Comprehensions

List comprehensions are another important Python construct. Many language processing tasks involve
applying the same operation to every item in a list. Here we lowercase each word:

>>> sent = [’The’, ’dog’, ’gave’, ’John’, ’the’, ’newspaper’]
>>> [word.lower() for word in sent]
[’the’, ’dog’, ’gave’, ’john’, ’the’, ’newspaper’]

As another example, we could remove all determiners from a list of words:

>>> def is_lexical(word):
... return word.lower() not in (’a’, ’an’, ’the’, ’that’, ’to’)
>>> [word for word in sent if is_lexical(word)]
[’dog’, ’gave’, ’John’, ’newspaper’]

Or equivalently:

Bird, Curran, Klein & Loper 6-5 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 6. Advanced Programming in Python

>>> filter(is_lexical, sent)
[’dog’, ’gave’, ’John’, ’newspaper’]

Combining the transformations...

>>> [word.lower() for word in sent if is_lexical(word)]
[’dog’, ’gave’, ’john’, ’newspaper’]

The following code builds a list of tuples, where each tuple consists of a word and its length.

>>> [(x, len(x)) for x in sent]
[(’The’, 3), (’dog’, 3), (’gave’, 4), (’John’, 4), (’the’, 3), (’newspaper’, 9)]

6.6.2 Programming Style

We have just seen how the same task can be performed in different ways, with implications for
efficiency. Another factor influencing program development is programming style. Consider the
following program to compute the average length of words in the Brown Corpus:

>>> from nltk_lite.corpora import brown
>>> count = 0
>>> total = 0
>>> for sent in brown.raw(’a’):
... for token in sent:
... count += 1
... total += len(token)
>>> print float(total) / count
4.2765382469

In this program we use the variable count to keep track of the number of tokens seen, and total to
store the combined length of all words. This is a low-level style, not far removed from machine code,
the primitive operations performed by the computer’s CPU. The two variables are just like a CPU’s
registers, accumulating values at many intermediate stages, values which are almost meaningless. We
say that this program is written in a procedural style, dictating the machine operations step by step.
Now consider the following program which computes the same thing:

>>> tokens = [token for sent in brown.raw(’a’) for token in sent]
>>> total = sum(map(len, tokens))
>>> print float(total)/len(tokens)
4.2765382469

The first line uses a list comprehension to construct the sequence of tokens. The second line maps
the len function to this sequence, to create a list of length values, which are summed. The third line
computes the average as before. Notice here that each line of code performs a complete, meaningful
action. Moreover, they do not dictate how the computer will perform the computations; we state high
level relationships like “total is the sum of the lengths of the tokens” and leave the details to the
Python interpreter. Accordingly, we say that this program is written in a declarative style.

Here is another example to illustrate the procedural/declarative distinction. Notice again that the
procedural version involves low-level steps and a variable having meaningless intermediate values:

Bird, Curran, Klein & Loper 6-6 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 6. Advanced Programming in Python

>>> word_list = []
>>> for sent in brown.raw(’a’):
... for token in sent:
... if token not in word_list:
... word_list.append(token)
>>> word_list.sort()

The declarative version (given second) makes use of higher-level built-in functions:

>>> tokens = [word for sent in brown.raw(’a’) for word in sent]
>>> word_list = list(set(tokens))
>>> word_list.sort()

What do these programs compute? Which version was easier to interpret?
Consider one further example, which sorts three-letter words by their final letters. The words come

from the widely-used Unix word-list, made available as an NLTK corpus called words. Two words
ending with the same letter will be sorted according to their second-last letters. The result of this
sort method is that rhyming words will be contiguous. Two programs are given; Which one is more
declarative, and which is more procedural?

As an aside, for readability we define a function for reversing strings that will be used by both
programs:

>>> def reverse(word):
... return word[::-1]

Here’s the first program. We define a helper function reverse_cmp which calls the built-in cmp
comparison function on reversed strings. The cmp function returns -1, 0, or 1, depending on whether
its first argument is less than, equal to, or greater than its second argument. We tell the list sort function
to use reverse_cmp instead of cmp (the default).

>>> from nltk_lite.corpora import words
>>> def reverse_cmp(x,y):
... return cmp(reverse(x), reverse(y))
>>> word_list = [word for word in words.raw(’en’) if len(word) == 3]
>>> word_list.sort(reverse_cmp)
>>> print word_list[-12:]
[’toy’, ’spy’, ’cry’, ’dry’, ’fry’, ’pry’, ’try’, ’buy’, ’guy’, ’ivy’, ’Paz’, ’Liz’]

Here’s the second program. In the first loop it collects up all the three-letter words in reversed form.
Next, it sorts the list of reversed words. Then, in the second loop, it iterates over each position in the
list using the variable i, and replaces each item with its reverse. We have now re-reversed the words,
and can print them out.

>>> word_list = []
>>> for word in words.raw(’en’):
... if len(word) == 3:
... word_list.append(reverse(word))
>>> word_list.sort()
>>> for i in range(len(word_list)):
... word_list[i] = reverse(word_list[i])
>>> print word_list[-12:]
[’toy’, ’spy’, ’cry’, ’dry’, ’fry’, ’pry’, ’try’, ’buy’, ’guy’, ’ivy’, ’Paz’, ’Liz’]

Bird, Curran, Klein & Loper 6-7 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 6. Advanced Programming in Python

Choosing between procedural and declarative styles is just that, a question of style. There are no
hard boundaries, and it is possible to mix the two. Readers new to programming are encouraged to
experiment with both styles, and to make the extra effort required to master higher-level constructs,
such as list comprehensions, and built-in functions like map.

6.6.3 Exercises

1. Write a program to sort words by length. Define a helper function cmp_len which uses
the cmp comparison function on word lengths.

2. Consider the tokenized sentence [’The’, ’dog’, ’gave’, ’John’, ’the’, ’newspaper’].
Using the map() and len() functions, write a single line program to convert this list of
tokens into a list of token lengths: [3, 3, 4, 4, 3, 9]

6.7 Further Reading

About this document...
This chapter is a draft from Introduction to Natural Language Processing,
by Steven Bird, James Curran, Ewan Klein and Edward Loper, Copyright
 2006 the authors. It is distributed with the Natural Language Toolkit
[http://nltk.sourceforge.net], under the terms of the Creative Commons Attribution-
ShareAlike License [http://creativecommons.org/licenses/by-sa/2.5/].

Bird, Curran, Klein & Loper 6-8 July 9, 2006

http://www.csse.unimelb.edu.au/~sb/
http://www.it.usyd.edu.au/about/people/staff/james.shtml
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.sourceforge.net
http://creativecommons.org/licenses/by-sa/2.5/

