
5. Chunk Parsing

5.1 Introduction

Chunk parsing is an efficient and robust approach to parsing natural language, and a popular alternative
to the full parsing that we will see in later chapters. Chunks are non-overlapping regions of text,
usually consisting of a head word (such as a noun) and the adjacent modifiers and function words (such
as adjectives and determiners).

5.1.1 Motivation

There are two chief motivations for chunking: to locate information, or to ignore information. In the
former case, we may want to extract all noun phrases so that they can be indexed. A text retrieval system
could the use the index to support efficient retrieval for queries involving terminological expressions.

The reverse side of the coin is to ignore information. Suppose that we want to study syntactic
patterns, finding particular verbs in a corpus and displaying their arguments. For instance, here are uses
of the verb gave in the first 100 files of the Penn Treebank corpus. NP-chunking has been used so that
the internal details of each noun phrase can be replaced with NP:

gave NP
gave up NP in NP
gave NP up
gave NP NP

gave NP to NP

In this way we can acquire information about the complementation patterns of a verb like gave.
This information can then be used in the development of a grammar.

5.1.2 Chunking: Analogy with Tokenization and Tagging

Two of the most common operations in language processing are segmentation and labelling. For
example, tokenization segments a sequence of characters into tokens, while tagging labels each of
these tokens. Moreover, these two operations go hand in hand. We segment a stream of characters into
linguistically meaningful pieces (e.g. as words) only so that we can classify those pieces (e.g. with their
part-of-speech categories) and then identify higher-level structures. The result of such classification is
usually stored by adding a label to the piece in question. Now that we have mapped characters to
tagged-tokens, we will carry on with segmentation and labelling at a higher level, as illustrated in the
following diagram. The solid boxes show word-level segmentation and labelling, while the dashed
boxes show a higher-level segmentation and labelling. These larger pieces are called chunks, and the
process of identifying them is called chunking, chunk parsing, partial parsing, or light parsing.
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Figure 1: Segmentation and Labelling at both the Token and Chunk Levels

Chunking is like tokenization and tagging in other respects. First, chunking can skip over material
in the input. Observe that only some of the tagged tokens have been chunked, while others are left
out. Compare this with the way that tokenization has omitted spaces and punctuation characters.
Second, chunking typically uses regular-expression based methods (also known as finite-state methods)
to identify material of interest. For example, the chunk in the above diagram could have been found
by the expression <DT>?<JJ>*<NN> which matches an optional determiner, followed by zero or more
adjectives, followed by a noun. Compare this with the way that tokenization and tagging both make
use of regular expressions.

5.1.3 Chunking vs Parsing

Chunking is akin to parsing in the sense that it can be used to build hierarchical structure over text.
There are several important differences, however. First, as noted above, chunking is not exhaustive, and
typically omits items in the surface string. Second, where parsing constructs deeply nested structures,
chunking creates structures of fixed depth (typically depth 2). Typically, these chunks correspond to the
lowest level of grouping identified in the full parse tree. These differences are illustrated in (1) below:

(1a)

(1b)

Another significant motivation for chunk parsing is its robustness and efficiency relative to so-
called full parsing. The latter approach is built around recursive phrase structure grammars, parsing
strategies, and arbitrary-depth trees. Full parsing has problems with robustness, given the difficulty in
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getting broad coverage and in resolving ambiguity. Full parsing is also relatively inefficient: the time
taken to parse a sentence grows with the cube of the length of the sentence, while the time taken to
chunk a sentence is linear in the length of the sentence (i.e. full parsing is an O(n3) problem, while
chunking is only an O(n) problem.)

Like tagging, chunking is an example of lightweight methodology in natural language processing:
how far can we get with identifying linguistic structures (such as phrases, verb arguments, etc) with
recourse only to local, surface context. Also like tagging, chunking cannot be done perfectly. For
example, as pointed out by Abney (1996), we cannot correctly analyze the structure of the sentence I
turned off the spectroroute without knowing the meaning of spectroroute; is it a kind of road or a type
of device? Without knowing this, we cannot tell whether off is part of a prepositional phrase indicating
direction, or whether off is part of the verb-particle construction turn off. This structural ambiguity is
shown in (2).

(2a) Prepositional phrase: [ I ] [ turned ] [ off the spectroroute ]

(2b) Verb-particle construction: [ I ] [ turned off ] [ the spectroroute ]

However, we continue undeterred, to find out just how far we can get with this lightweight parsing
method. We begin by considering the representation of chunks and the available annotated corpora. We
then show how chunks can be recognized using a chunk parser based on matching regular expressions
over sequences of part-of-speech tags.

5.2 Accessing Chunked Corpora

5.2.1 Representing Chunks: Tags vs Trees

As befits its intermediate status between tagging and parsing, chunk structures can be represented using
either tags or trees. The most widespread file representation uses so-called IOB tags. In this scheme,
each token is tagged with one of three special chunk tags, INSIDE, OUTSIDE, or BEGIN. A token is
tagged as BEGIN if it is at the beginning of a chunk, and contained within that chunk. Subsequent
tokens within the chunk are tagged INSIDE. All other tokens are tagged OUTSIDE. An example of this
scheme is shown below:

Figure 2: Tag Representation of Chunk Structures

The other obvious representation for chunk structures is to use trees, as shown below. These have
the benefit that each chunk is a constituent that can be manipulated directly. NLTK-Lite uses this latter
method for its internal representation of chunks:

A chunk parser finds contiguous, non-overlapping spans of related tokens and groups them together
into chunks. The chunk parser combines these individual chunks together, along with the intervening
tokens, to form a chunk structure. A chunk structure is a two-level tree that spans the entire text, and
contains both chunks and un-chunked tokens. For example, the following chunk structure captures the
noun phrases in a sentence:
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Figure 3: Tree Representation of Chunk Structures

(S: (NP: ’I’)
’saw’
(NP: ’the’ ’big’ ’dog’)
’on’
(NP: ’the’ ’hill’))

Chunk parsers often operate on tagged texts, and use the tags to help make chunking decisions. A
common string representation for chunked tagged text is illustrated below.:

[ the/DT little/JJ cat/NN ] sat/VBD on/IN [ the/DT mat/NN ]

This can be parsed using tree.chunk() function as shown.

>>> from nltk_lite.parse import tree
>>> tree.chunk("[ the/DT little/JJ cat/NN ] sat/VBD on/IN [ the/DT mat/NN ]")
(S: (NP: (’the’, ’DT’) (’little’, ’JJ’) (’cat’, ’NN’)) (’sat’, ’VBD’)
(’on’, ’IN’) (NP: (’the’, ’DT’) (’mat’, ’NN’)))

We usually want to read structured data from corpora, not strings. In the following sections we
show how this is done for two popular chunked corpus formats, namely bracketed text and IOB-tagged
data.

5.2.2 Reading chunk structures from bracketed text

We can obtain a larger quantity of chunked text from the tagged Wall Street Journal in the Penn
Treebank corpus. NLTK-Lite includes a sample of this corpus. The tagged section of the corpus
consists of chunked, tagged text, such as the annotated sentence shown below:

| In/IN
| [ happier/JJR news/NN ]
| ,/,
| [ South/NNP Korea/NNP ]
| ,/, in/IN establishing/VBG
| [ diplomatic/JJ ties/NNS ]
| with/IN
| [ Poland/NNP yesterday/NN ]
| ,/, announced/VBD
| [ $/$ 450/CD million/CD ]
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| in/IN
| [ loans/NNS ]
| to/TO
| [ the/DT ]
| financially/RB strapped/VBN
| [ Warsaw/NNP government/NN ]

| ./.

We can read in a chunked sentence as follows:

>>> from nltk_lite.corpora import treebank, extract
>>> chunk_tree = extract(603, treebank.chunked())
>>> print chunk_tree
(S:

(’In’, ’IN’)
(NP: (’happier’, ’JJR’) (’news’, ’NN’))
(’,’, ’,’)
(NP: (’South’, ’NNP’) (’Korea’, ’NNP’))
(’,’, ’,’)
(’in’, ’IN’)
(’establishing’, ’VBG’)
(NP: (’diplomatic’, ’JJ’) (’ties’, ’NNS’))
(’with’, ’IN’)
(NP: (’Poland’, ’NNP’) (’yesterday’, ’NN’))
(’,’, ’,’)
(’announced’, ’VBD’)
(NP: (’$’, ’$’) (’450’, ’CD’) (’million’, ’CD’))
(’in’, ’IN’)
(NP: (’loans’, ’NNS’))
(’to’, ’TO’)
(NP: (’the’, ’DT’))
(’financially’, ’RB’)
(’strapped’, ’VBN’)
(NP: (’Warsaw’, ’NNP’) (’government’, ’NN’))
(’.’, ’.’))

We can display this tree graphically using the nltk_lite.draw.tree module:

from nltk_lite.draw.tree import *
chunk_tree.draw()

5.2.3 Reading chunked text from IOB-tagged data

Using the nltk_lite.corpora module we can load files that have been chunked using the IOB
(INSIDE/OUTSIDE/BEGIN) notation, such as that provided by the evaluation competitions run by
CoNLL, the Conference on Natural Language Learning. In the CoNLL format, each sentence is
represented in a file as a multi-line string, as shown below:

he PRP B-NP
accepted VBD B-VP
the DT B-NP
position NN I-NP

...
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Each line consists of a word, its part-of-speech, the chunk category B (begin), I (inside) or O
(outside), and the chunk type NP, VP or PP. The CoNLL chunk reader parse.conll_chunk() parses
this information into a chunk structure. Moreover, it permits us to choose any subset of the three chunk
types to use (by default it includes all three). The example below produces only NP chunks:

>>> from nltk_lite import parse
>>> text = ’’’
... he PRP B-NP
... accepted VBD B-VP
... the DT B-NP
... position NN I-NP
... of IN B-PP
... vice NN B-NP
... chairman NN I-NP
... of IN B-PP
... Carlyle NNP B-NP
... Group NNP I-NP
... , , O
... a DT B-NP
... merchant NN I-NP
... banking NN I-NP
... concern NN I-NP
... . . O
... ’’’
>>> print parse.conll_chunk(text)
(S:

(NP: (’he’, ’PRP’))
(’accepted’, ’VBD’)
(NP: (’the’, ’DT’) (’position’, ’NN’))
(’of’, ’IN’)
(NP: (’vice’, ’NN’) (’chairman’, ’NN’))
(’of’, ’IN’)
(NP: (’Carlyle’, ’NNP’) (’Group’, ’NNP’))
(’,’, ’,’)
(NP:

(’a’, ’DT’)
(’merchant’, ’NN’)
(’banking’, ’NN’)
(’concern’, ’NN’))

(’.’, ’.’))

We can load the CoNLL 2000 corpus using the CoNLL corpus reader corpora.conll2000.chunked().
This concludes our discussion of loading chunked data. In the rest of this chapter we will see how

chunked data can be created from tokenized text, chunked using a chunk parser, then evaluated against
the so-called gold-standard data.

5.2.4 Exercises

1. IOB Tagging: A common file representation of chunks uses the tags BEGIN, INSIDE
and OUTSIDE. Why are three tags necessary? What problem would be caused if we used
INSIDE and OUTSIDE tags exclusively?
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2. CoNLL 2000 Corpus: In this section we saw how chunked data could be read from the
Treebank corpus. Write a similar program to access the first sentence of the CoNLL 2000
corpus. You will need to import the conll2000 module from the nltk_lite.corpora
package.

3. Format Conversion: We have seen two file formats for chunk data, and NLTK-Lite
provides corpus readers for both.

a) Write functions chunk2brackets() and chunk2iob() which take a single
chunk structure as their sole argument, and return the required multi-line string
representation.

b) Write command-line conversion utilities bracket2iob.py and iob2bracket.py
that take a file in Treebank or CoNLL format (resp) and convert it to the other
format. (Obtain some raw Treebank or CoNLL data from the NLTK Corpora,
save it to a file, and then use open(filename).readlines() to access it
from Python.)

5.3 Chunk Parsing

5.3.1 Chunking with Regular Expressions

Earlier we noted that chunking builds flat (or non-nested) structures. In practice, the extents of text to
be chunked are identified using regular expressions over sequences of part-of-speech tags. NLTK-Lite
provides a regular expression chunk parser, parse.RegexpChunk to define the kinds of chunk we are
interested in, and then to chunk a tagged text.

RegexpChunk works by manipulating a chunk structure, which represents a particular chunking
of the text. The chunk parser begins with a structure in which no tokens are chunked. Each regular-
expression pattern (or chunk rule) is applied in turn, successively updating the chunk structure. Once
all of the rules have been applied, the resulting chunk structure is returned.

In order to define chunk rules, we first need to introduce the notion of “tag strings.” A tag string is a
string consisting of tags delimited with angle-brackets, e.g., <DT><JJ><NN><VBD><DT><NN>. (Note
that tag strings do not contain any whitespace.) We can now create a special kind of regular expression
pattern over tag strings, called a tag pattern. An example of a tag pattern is <DT><JJ>?<NN>, which
matches a determiner followed by an optional adjective, followed by a noun. Tag patterns are similar
to the regular expression patterns we have already seen, except for three differences which make them
easier to use for chunk parsing. First, the angle brackets group their contents into atomic units, so
“<NN>+” matches one or more repetitions of the tag string “<NN>”; and “<NN|JJ>” matches the
tag strings “<NN>” or “<JJ>.” Second, the period wildcard operator is constrained not to cross tag
boundaries, so that “<NN.*>” matches any single tag starting with “NN.”

Now that we can define tag patterns, it is a straightforward matter to set up an chunk parser.
The simplest type of rule is ChunkRule. This chunks anything that matches a given tag pattern.
ChunkRule takes a tag pattern and a description string as arguments. Here is a rule which chunks
sequences consisting of one or more words tagged as DT or NN (i.e. determiners and nouns).

>>> rule = parse.ChunkRule(’<DT|NN>+’,
... ’Chunk sequences of DT and NN’)

Now we can define a regular expression chunk parser based on this rule as follows:
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>>> chunkparser = parse.RegexpChunk([rule], chunk_node=’NP’)

Note that RegexpChunk has optional second and third arguments that specify the node labels for
chunks and for the top-level node, respectively. Now we can use this to chunk a tagged sentence, as
illustrated by the complete program below.

Observe that the object being parsed is actually a tree. It consists of an S root node which dominates
all the leaf nodes.

We can also use more complex tag patterns, such as <DT>?<JJ.*>*<NN.*>. This can be used
to chunk any sequence of tokens beginning with an optional determiner DT, followed by zero or more
adjectives of any type JJ.*, followed by a single noun of any type NN.*.

If a tag pattern matches at multiple overlapping locations, the first match takes precedence. For
example, if we apply a rule that matches two consecutive nouns to a text containing three consecutive
nouns, then the first two nouns will be chunked:

>>> ttoks = string2tags("dog/NN cat/NN mouse/NN")
>>> sent = Tree(’S’, ttoks)
>>> rule = parse.ChunkRule(’<NN><NN>’, ’Chunk two consecutive nouns’)
>>> chunkparser = parse.RegexpChunk([rule], chunk_node=’NP’)
>>> print chunkparser.parse(sent)
(S: (NP: (’dog’, ’NN’) (’cat’, ’NN’)) (’mouse’, ’NN’))

Note

If a tag pattern matches at multiple overlapping locations, the first match takes
precedence.

5.3.2 Developing Chunk Parsers

Creating a good chunk parser usually requires several iterations of development and testing, during
which existing rules are refined and new rules are added. In a later section we will describe an automatic
evaluation method that can be used to support this development process. Here we show how to trace
the execution of a chunk parser, to help the developer diagnose any problems.

RegexpChunk has an optional trace argument, which specifies whether debugging output should
be shown during parsing. This output shows the rules that are applied, and shows the chunking
hypothesis at each stage of processing. In the execution trace, chunks are indicated by braces. In
the following example, two chunking rules are applied to the input sentence. The first rule finds all
sequences of three tokens whose tags are DT, JJ, and NN, and the second rule finds any sequence of
tokens whose tags are either DT or NN.

>>> ttoks = string2tags("the/DT little/JJ cat/NN sat/VBD on/IN the/DT mat/NN")
>>> sent = Tree(’S’, ttoks)
>>> rule1 = parse.ChunkRule(’<DT><JJ><NN>’, ’Chunk det+adj+noun’)
>>> rule2 = parse.ChunkRule(’<DT|NN>+’, ’Chunk sequences of NN and DT’)
>>> chunkparser = parse.RegexpChunk([rule1, rule2], chunk_node=’NP’)
>>> chunk_tree = chunkparser.parse(sent, trace=1)
Input:

<DT> <JJ> <NN> <VBD> <IN> <DT> <NN>
Chunk det+adj+noun:

{<DT> <JJ> <NN>} <VBD> <IN> <DT> <NN>
Chunk sequences of NN and DT:

{<DT> <JJ> <NN>} <VBD> <IN> {<DT> <NN>}

Bird, Curran, Klein & Loper 5-8 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 5. Chunk Parsing

When a ChunkRule is applied to a chunking hypothesis, it will only create chunks that do not
partially overlap with chunks already in the hypothesis. Thus, if we apply these two rules in reverse
order, we will get a different result:

>>> chunkparser = parse.RegexpChunk([rule2, rule1], chunk_node=’NP’)
>>> chunk_tree = chunkparser.parse(sent, trace=1)
Input:

<DT> <JJ> <NN> <VBD> <IN> <DT> <NN>
Chunk sequences of NN and DT:

{<DT>} <JJ> {<NN>} <VBD> <IN> {<DT> <NN>}
Chunk det+adj+noun:

{<DT>} <JJ> {<NN>} <VBD> <IN> {<DT> <NN>}

Here, rule 2 (“chunk det+adj+noun”) did not find any chunks, since all chunks that matched its tag
pattern overlapped with chunks that were already in the hypothesis.

5.3.3 The Chink Rule

Sometimes it is easier to define what we don’t want to include in a chunk than it is to define what we
do want to include. In these cases, it may be easier to build a chunk parser using ChinkRule.

The word chink initially meant a sequence of stopwords, according to a 1975 paper by Ross and
Tukey (cited by Abney in the recommended reading for this chapter). Following Abney, we define
a chink is a sequence of tokens that is not included in a chunk. In the following example, sat/VBD
on/IN is a chink:

[ the/DT little/JJ cat/NN ] sat/VBD on/IN [ the/DT mat/NN ]

Chinking is the process of removing a sequence of tokens from a chunk. If the sequence of tokens
spans an entire chunk, then the whole chunk is removed; if the sequence of tokens appears in the
middle of the chunk, these tokens are removed, leaving two chunks where there was only one before.
If the sequence is at the beginning or end of the chunk, these tokens are removed, and a smaller chunk
remains. These three possibilities are illustrated in the following table:

Chinking
Entire chunk Middle of a chunk End of a chunk

Input [a/DT big/JJ cat/NN] [a/DT big/JJ cat/NN] [a/DT big/JJ cat/NN]
Operation Chink “a/DT big/JJ

cat/NN”
Chink “big/JJ” Chink “cat/DT”

Output a/DT big/JJ cat/NN [a/DT] big/JJ [cat/NN] [a/DT big/JJ] cat/NN

A ChinkRule chinks anything that matches a given tag pattern. For example, the following rule
will chink any sequence of tokens whose tags are all “VBD” or “IN”:

>>> chink_rule = parse.ChinkRule(’<VBD|IN>+’,
... ’Chink sequences of VBD and IN’)

Before we apply our chink rule, we’ll apply a rule that puts the entire sentence in a single chunk:

>>> chunkall_rule = parse.ChunkRule(’<.*>+’,
... ’Chunk everything’)
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Now we can combine these two rules to create a chunk parser:

>>> chunkparser = parse.RegexpChunk([chunkall_rule, chink_rule], chunk_node=’NP’)
>>> chunk_tree = chunkparser.parse(sent, trace=1)
Input:

<DT> <JJ> <NN> <VBD> <IN> <DT> <NN>
Chunk everything:

{<DT> <JJ> <NN> <VBD> <IN> <DT> <NN>}
Chink sequences of VBD and IN:

{<DT> <JJ> <NN>} <VBD> <IN> {<DT> <NN>}

RegexpChunk can use any number of ChunkRules and ChinkRules, in any order. NLTK also
provides a method for merging adjacent chunks, called MergeRule, and a method for splitting a chunk
in two, called SplitRule.

5.3.4 Exercises

1. Simple Chunker: Pick one of the three chunk types in the CoNLL corpus. Inspect the
CoNLL corpus and try to observe any patterns in the POS tag sequences that make up this
kind of chunk. Develop a simple chunker using ChunkRule and the regular-expression
chunk parser RegexpChunk. Discuss any tag sequences that are difficult to chunk reliably.

2. Automatic Analysis: Pick one of the three chunk types in the CoNLL corpus. Write
functions to do the following tasks for your chosen type:

a) List all the tag sequences that occur with each instance of this chunk type.

b) Count the frequency of each tag sequence, and produce a ranked list in order
of decreasing frequency; each line should consist of an integer (the frequency)
and the tag sequence.

c) Inspect the high-frequency tag sequences. Use these as the basis for developing
a better chunker.

3. Chinking: An early definition of chunk was the material that occurs between chinks.
Develop a chunker which starts by putting the whole sentence in a single chunk, and then
does the rest of its work solely using chink rules. Determine which tags (or tag sequences)
are most likely to make up chinks with the help of your own utility program. Compare the
performance and simplicity of this approach relative to a chunker based entirely on chunk
rules.

4. Complex Chunker: Develop a chunker for one of the chunk types in the CoNLL corpus
using the regular-expression chunk parser RegexpChunk. Use any combination of rules
(i.e. ChunkRule, ChinkRule, MergeRule, and SplitRule).

5.4 Evaluating Chunk Parsers

An easy way to evaluate a chunk parser is to take some already chunked text, strip off the chunks,
rechunk it, and compare the result with the original chunked text. The ChunkScore.score() function
takes the correctly chunked sentence as its first argument, and the newly chunked version as its second
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argument, and compares them. It reports the fraction of actual chunks that were found (recall), the
fraction of hypothesized chunks that were correct (precision), and a combined score, the F-measure
(the harmonic mean of precision and recall).

A number of different metrics can be used to evaluate chunk parsers. We will concentrate on a class
of metrics that can be derived from two sets:

• guessed: The set of chunks returned by the chunk parser.

• correct: The correct set of chunks, as defined in the test corpus.

The evaluation method we will use comes from the field of information retrieval, and considers
the performance of a document retrieval system. We will set up an analogy between the correct set
of chunks and a user’s so-called “information need”, and between the set of returned chunks and a
system’s returned documents. Consider the following diagram.

Figure 4: True and False Positives and Negatives

The intersection of these sets defines four regions: the true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). Two standard measures are precision, the fraction of
guessed chunks that were correct TP/(TP+FP), and recall, the fraction of correct chunks that were
identified TP/(TP+FN). A third measure, the F measure, is the harmonic mean of precision and recall,
i.e. 1/(0.5/Precision + 0.5/Recall).

During evaluation of a chunk parser, it is useful to flatten a chunk structure into a tree consisting
only of a root node and leaves:

>>> correct = tree.chunk(
... "[ the/DT little/JJ cat/NN ] sat/VBD on/IN [ the/DT mat/NN ]")
>>> correct.flatten()
(S: (’the’, ’DT’) (’little’, ’JJ’) (’cat’, ’NN’) (’sat’, ’VBD’)
(’on’, ’IN’) (’the’, ’DT’) (’mat’, ’NN’))
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We run a chunker over this flattened data, and compare the resulting chunked sentences with the
originals, as follows:

>>> from nltk_lite import parse
>>> chunkscore = parse.ChunkScore()
>>> rule = parse.ChunkRule(’<PRP|DT|POS|JJ|CD|N.*>+’,
... "Chunk items that often occur in NPs")
>>> chunkparser = parse.RegexpChunk([rule], chunk_node=’NP’)
>>> guess = chunkparser.parse(correct.flatten())
>>> chunkscore.score(correct, guess)
>>> print chunkscore
ChunkParse score:

Precision: 100.0%
Recall: 100.0%
F-Measure: 100.0%

ChunkScore is a class for scoring chunk parsers. It can be used to evaluate the output of a chunk
parser, using precision, recall, f-measure, missed chunks, and incorrect chunks. It can also be used to
combine the scores from the parsing of multiple texts. This is quite useful if we are parsing a text one
sentence at a time. The following program listing shows a typical use of the ChunkScore class. In this
example, chunkparser is being tested on each sentence from the Wall Street Journal tagged files.

>>> from itertools import islice
>>> rule = parse.ChunkRule(’<DT|JJ|NN>+’, "Chunk sequences of DT, JJ, and NN")
>>> chunkparser = parse.RegexpChunk([rule], chunk_node=’NP’)
>>> chunkscore = parse.ChunkScore()
>>> for chunk_struct in islice(treebank.chunked(), 10):
... test_sent = chunkparser.parse(chunk_struct.flatten())
... chunkscore.score(chunk_struct, test_sent)
>>> print chunkscore
ChunkParse score:

Precision: 48.6%
Recall: 34.0%
F-Measure: 40.0%

The overall results of the evaluation can be viewed by printing the ChunkScore. Each evaluation
metric is also returned by an accessor method: precision(), recall, f_measure, missed, and
incorrect. The missed and incorrect methods can be especially useful when trying to improve
the performance of a chunk parser. Here are the missed chunks:

>>> from random import shuffle
>>> missed = chunkscore.missed()
>>> shuffle(missed)
>>> print missed[:10]
[((’A’, ’DT’), (’Lorillard’, ’NNP’), (’spokeswoman’, ’NN’)),
((’even’, ’RB’), (’brief’, ’JJ’), (’exposures’, ’NNS’)),
((’its’, ’PRP$’), (’Micronite’, ’NN’), (’cigarette’, ’NN’), (’filters’, ’NNS’)),
((’30’, ’CD’), (’years’, ’NNS’)),
((’workers’, ’NNS’),),
((’preliminary’, ’JJ’), (’findings’, ’NNS’)),
((’Medicine’, ’NNP’),),
((’Consolidated’, ’NNP’), (’Gold’, ’NNP’), (’Fields’, ’NNP’), (’PLC’, ’NNP’)),
((’its’, ’PRP$’), (’Micronite’, ’NN’), (’cigarette’, ’NN’), (’filters’, ’NNS’)),
((’researchers’, ’NNS’),)]
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Here are the incorrect chunks:

>>> incorrect = chunkscore.incorrect()
>>> shuffle(incorrect)
>> print incorrect[:10]
[((’New’, ’JJ’), (’York-based’, ’JJ’)),
((’Micronite’, ’NN’), (’cigarette’, ’NN’)),
((’a’, ’DT’), (’forum’, ’NN’), (’likely’, ’JJ’)),
((’later’, ’JJ’),),
((’preliminary’, ’JJ’),),
((’New’, ’JJ’), (’York-based’, ’JJ’)),
((’resilient’, ’JJ’),),
((’group’, ’NN’),),
((’the’, ’DT’),),
((’Micronite’, ’NN’), (’cigarette’, ’NN’))]

As we saw with tagging, we need to interpret the performance scores for a chunker relative to a
baseline. Perhaps the most naive chunking method is to classify every tag in the training data as to
whether it occurs inside or outside a chunk more often. We can do this easily using a chunked corpus
and a conditional frequency distribution as shown below:

>>> from nltk_lite.probability import ConditionalFreqDist
>>> from nltk_lite.parse import Tree
>>> import re
>>> cfdist = ConditionalFreqDist()
>>> chunk_data = list(treebank.chunked())
>>> split = len(chunk_data)*9/10
>>> train, test = chunk_data[:split], chunk_data[split:]
>>> for chunk_struct in train:
... for constituent in chunk_struct:
... if isinstance(constituent, Tree):
... for (word, tag) in constituent.leaves():
... cfdist[tag].inc(True)
... else:
... (word, tag) = constituent
... cfdist[tag].inc(False)

>>> chunk_tags = [tag for tag in cfdist.conditions() if cfdist[tag].max() == True]
>>> chunk_tags = [re.sub(r’(\W)’, r’\\\1’, tag) for tag in chunk_tags]
>>> tag_pattern = ’<’ + ’|’.join(chunk_tags) + ’>+’
>>> print ’Chunking:’, tag_pattern
Chunking: <PRP\$|VBG\|NN|POS|WDT|JJ|WP|DT|\#|\$|NN|FW|PRP|NNS|NNP|LS|PDT|RBS|CD|EX|WP\$|NNPS|JJS|JJR>+

Now, in the evaluation phase we chunk any sequence of those tags:

>>> rule = parse.ChunkRule(tag_pattern, ’Chunk any sequence involving commonly chunked tags’)
>>> chunkparser = parse.RegexpChunk([rule], chunk_node=’NP’)
>>> chunkscore = parse.ChunkScore()
>>> for chunk_struct in test:
... test_sent = chunkparser.parse(chunk_struct.flatten())
... chunkscore.score(chunk_struct, test_sent)
>>> print chunkscore
ChunkParse score:
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Precision: 90.7%
Recall: 94.0%
F-Measure: 92.3%

5.5 Cascaded Chunking

So far, our chunk structures have been relatively flat: trees consisting of tagged tokens, optionally
grouped under a chunk node such as NP. As of NLTK-Lite version 0.6.4, it is possible to build chunk
structures of arbitrary depth, simply by connecting the output of one chunker to the input of another.

First we define several chunkers, e.g. for noun phrases, prepositional phrases, verb phrases, and
sentences.

>>> np_chunk = parse.ChunkRule(r’<DT|JJ|NN.*>+’, ’Chunk sequences of DT, JJ, NN’)
>>> np_parse = parse.RegexpChunk([np_chunk], chunk_node=’NP’)
>>> pp_chunk = parse.ChunkRule(r’<IN><NP>’, ’Chunk prepositions followed by NP’)
>>> pp_parse = parse.RegexpChunk([pp_chunk], chunk_node=’PP’)
>>> vp_chunk = parse.ChunkRule(r’<VB.*><NP|PP|S>+$’, ’Chunk verbs and arguments/adjuncts’)
>>> vp_parse = parse.RegexpChunk([vp_chunk], chunk_node=’VP’)
>>> s_chunk = parse.ChunkRule(r’<NP><VP>$’, ’Chunk NP, VP’)
>>> s_parse = parse.RegexpChunk([s_chunk], chunk_node=’S’)
>>> chunkparsers = [np_parse, pp_parse, vp_parse, s_parse, vp_parse, s_parse]

Next, we create some tagged data and chunk it:

>>> text = ’’’John/NNP thinks/VBZ Mary/NN saw/VBD the/DT cat/NN
... sit/VB on/IN the/DT mat/NN’’’
>>> ttoks = string2tags(text)
>>> sent = Tree(’S’, ttoks)
>>> for chunkparser in chunkparsers:
... sent = chunkparser.parse(sent)
>>> print sent
(S:

(NP: (’John’, ’NNP’))
(’thinks’, ’VBZ’)
(S:

(NP: (’Mary’, ’NN’))
(VP:

(’saw’, ’VBD’)
(S:

(NP: (’the’, ’DT’) (’cat’, ’NN’))
(VP:

(’sit’, ’VB’)
(PP: (’on’, ’IN’) (NP: (’the’, ’DT’) (’mat’, ’NN’))))))))

Note

At present there is no systematic way of evaluating these cascading chunkers in
NLTK.
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5.6 Conclusion

In this chapter we have explored a robust method for identifying structure in text using chunk parsers.
There are a surprising number of different ways to chunk a sentence. The chunk rules can add, shift
and remove chunk delimiters in many ways, and the chunk rules can be combined in many ways. One
can use a small number of very complex rules, or a long sequence of much simpler rules. One can
hand-craft a collection of rules, or train up a brute-force method using existing chunked text.

We have seen that the same light-weight methods that were successful in tagging can be applied
in the recognition of simple linguistic structure. The resulting structured information is useful in
information extraction tasks and in the description of the syntactic environments of words. The latter
will be invaluable as we move to full parsing.

A recurring theme of this chapter has been diagnosis. The simplest kind is manual, when we inspect
the output of a chunker and observe some undesirable behavior that we would like to fix. We have also
seen three objective approaches to diagnosis. The first approach is to write utility programs to analyze
the training data, such as counting the number of times a given part-of-speech tag occurs inside and
outside an NP chunk. The second approach is to perform error analysis on the missed and incorrect
chunks produced by the chunk parser. Sometimes those errors can be fixed. In other cases we may
observe shortcomings in the methodology itself, cases where we cannot hope to get the correct answer
because the system simply does not have access to the necessary information. The third approach is
to evaluate the system against some gold standard data to obtain an overall performance score; we can
use this diagnostically by parameterising the system, specifying which chunk rules are used on a given
run, and tabulating performance for different parameter combinations. Careful use of these diagnostic
methods permits us to tune the performance of our system. We will see this theme emerge again later
in chapters dealing with other topics in natural language processing.

5.7 Further Reading

Abney, Steven (1996). Tagging and Partial Parsing. In: Ken Church, Steve Young, and Gerrit
Bloothooft (eds.), Corpus-Based Methods in Language and Speech. Kluwer Academic Publishers,
Dordrecht. http://www.vinartus.net/spa/95a.pdf

Abney’s Cass system: http://www.vinartus.net/spa/97a.pdf

5.8 Exercises

1. Chunking Demonstration: Run the chunking demonstration:

from nltk_lite.parse import chunk

chunk.demo() # the chunk parser

2. Chunker Evaluation: Carry out the following evaluation tasks for any of the chunkers
you have developed earlier. (Note that most chunking corpora contain some internal
inconsistencies, such that any reasonable rule-based approach will produce errors.)

a) Evaluate your chunker on 100 sentences from a chunked corpus, and report the
precision, recall and F-measure.
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b) Use the chunkscore.missed() and chunkscore.incorrect() methods
to identify the errors made by your chunker. Discuss.

c) Compare the performance of your chunker to the baseline chunker discussed in
the evaluation section of this chapter.

3. Baseline NP Chunker: The baseline chunker presented in the evaluation section tends
to create larger chunks than it should. For example, the phrase: [every/DT time/NN]
[she/PRP] sees/VBZ [a/DT newspaper/NN] contains two consecutive chunks, and
our baseline chunker will incorrectly combine the first two: [every/DT time/NN she/PRP].
Write a program that finds which of these chunk-internal tags typically occur at the start of
a chunk, then devise a SplitRule that will split up these chunks. Combine this rule with
the existing baseline chunker and re-evaluate it, to see if you have discovered an improved
baseline.

4. Predicate structure: Develop an NP chunker which converts POS-tagged text into a list
of tuples, where each tuple consists of a verb followed by a sequence of noun phrases
and prepositions, e.g. the little cat sat on the mat becomes (’sat’, ’on’,
’NP’)...

5. (Advanced) Transformation-Based Chunking: Apply the n-gram and Brill tagging
methods to IOB chunk tagging. Instead of assigning POS tags to words, here we will
assign IOB tags to the POS tags. E.g. if the tag DT (determiner) often occurs at the start of
a chunk, it will be tagged B (begin). Evaluate the performance of these chunking methods
relative to the regular expression chunking methods covered in this chapter.

6. (Advanced) Modularity: Consider the way an n-gram tagger uses recent tags to inform
its tagging choice. Now observe how a chunker may re-use this sequence information. For
example, both tasks will make use of the information that nouns tend to follow adjectives
(in English). It would appear that the same information is being maintained in two places.
Is this likely to become a problem as the size of the rule sets grows? If so, speculate about
any ways that this problem might be addressed.

About this document...
This chapter is a draft from Introduction to Natural Language Processing,
by Steven Bird, James Curran, Ewan Klein and Edward Loper, Copyright
 2006 the authors. It is distributed with the Natural Language Toolkit
[http://nltk.sourceforge.net], under the terms of the Creative Commons Attribution-
ShareAlike License [http://creativecommons.org/licenses/by-sa/2.5/].
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