
11. Software Design for NLP

11.1 Object-Oriented Programming in Python

Object-Oriented Programming is a programming paradigm in which complex structures and processes
are decomposed into modules, each encapsulating a single data type and the legal operations on that
type.

11.1.1 Data Classes: Trees in NLTK

An important data type in language processing is the syntactic tree. Here we will review the parts of
the NLTK code which defines the Tree class.

The first line of a class definition is the class keyword followed by the class name, in this case
Tree. This class is derived from Python’s built-in list class, permitting us to use standard list
operations to access the children of a tree node.

>>> class Tree(list):

Next we define the initializer, also known as the constructor. It has a special name, starting and
ending with double underscores; Python knows to call this function when you asks for a new tree
object by writing t = Tree(node, children). The constructor’s first argument is special, and is
standardly called self, giving us a way to refer to the current object from inside the definition. This
constructor calls the list initializer (similar to calling self = list(children)), then defines the
node property of a tree.

... def __init__(self, node, children): ... list.__init__(self, children) ... self.node = node

Next we define another special function that Python knows to call when we index a Tree. The first
case is the simplest, when the index is an integer, e.g. t[2], we just ask for the list item in the obvious
way. The other cases are for handling slices, like t[1:2], or t[:].

... def __getitem__(self, index): ... if isinstance(index, int): ... return list.__getitem__(self,
index) ... else: ... if len(index) == 0: ... return self ... elif len(index) == 1: ... return
self[int(index[0])] ... else: ... return self[int(index[0])][index[1:]] ...

This method was for accessing a child node. Similar methods are provided for setting and deleting
a child (using __setitem__) and __delitem__).

Two other special member functions are __repr__() and __str__(). The __repr__() func-
tion produces a string representation of the object, one which can be executed to re-create the object,
and is accessed from the interpreter simply by typing the name of the object and pressing ’enter’. The
__str__() function produces a human-readable version of the object; here we call a pretty-printing
function we have defined called pp().

1



Introduction to Natural Language Processing (DRAFT) 11. Software Design for NLP

... def __repr__(self): ... childstr = ’ ’.join([repr(c) for c in self]) ... return ’(%s: %s)’ %
(self.node, childstr) ... def __str__(self): ... return self.pp()

Next we define some member functions that do other standard operations on trees. First, for
accessing the leaves:

... def leaves(self): ... leaves = [] ... for child in self: ... if isinstance(child, Tree): ...
leaves.extend(child.leaves()) ... else: ... leaves.append(child) ... return leaves

Next, for computing the height:

... def height(self): ... max_child_height = 0 ... for child in self: ... if isinstance(child,
Tree): ... max_child_height = max(max_child_height, child.height()) ... else: ... max_child_height
= max(max_child_height, 1) ... return 1 + max_child_height

And finally, for enumerating all the subtrees (optionally filtered):

... def subtrees(self, filter=None): ... if not filter or filter(self): ... yield self ... for child in
self: ... if isinstance(child, Tree): ... for subtree in child.subtrees(filter): ... yield subtree

11.1.2 Processing Classes: N-gram Taggers in NLTK

This section will discuss the tag.ngram module.

11.2 Algorithm Design

An algorithm is a “recipe” for solving a problem. For example, to multiply 16 by 12 we might use any
of the following methods:

1. Add 16 to itself 12 times over

2. Perform “long multiplication”, starting with the least-significant digits of both numbers

3. Look up a multiplication table

4. Repeatedly halve the first number and double the second, 16*12 = 8*24 = 4*48 = 2*96 =
192

5. Do 10*12 to get 120, then add 6*12

Each of these methods is a different algorithm, and requires different amounts of computation time
and different amounts of intermediate information to store. A similar situation holds for many other
superficially simple tasks, such as sorting a list of words. Now, as we saw above, Python provides a
built-in function sort() that performs this task efficiently. However, NLTK-Lite also provides several
algorithms for sorting lists, to illustrate the variety of possible methods. To illustrate the difference in
efficiency, we will create a list of 1000 numbers, randomize the list, then sort it, counting the number
of list manipulations required.

>>> from random import shuffle
>>> a = range(1000) # [0,1,2,...999]
>>> shuffle(a) # randomize

Bird, Curran, Klein & Loper 11-2 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 11. Software Design for NLP

Now we can try a simple sort method called bubble sort, which scans through the list many times,
exchanging adjacent items if they are out of order. It sorts the list a in-place, and returns the number of
times it modified the list:

>>> from nltk_lite.misc import sort
>>> sort.bubble(a)
250918

We can try the same task using various sorting algorithms. Evidently merge sort is much better
than bubble sort, and quicksort is better still.

>>> shuffle(a); sort.merge(a)
6175
>>> shuffle(a); sort.quick(a)
2378

Readers are encouraged to look at nltk_lite.misc.sort to see how these different methods
work. The collection of NLTK-Lite modules exemplify a variety of algorithm design techniques,
including brute-force, divide-and-conquer, dynamic programming, and greedy search. Readers who
would like a systematic introduction to algorithm design should consult the resources mentioned at the
end of this tutorial.

11.2.1 Exercises

1. Consider again the problem of hyphenation across linebreaks. Suppose that you have
successfully written a tokenizer that returns a list of strings, where some strings may
contain a hyphen followed by a newline character, e.g. long-\nterm. Write a function
which iterates over the tokens in a list, removing the newline character from each, in each
of the following ways:

a) Use doubly-nested for loops. The outer loop will iterate over each token in the
list, while the inner loop will iterate over each character of a string.

b) Replace the inner loop with a call to re.sub()

c) Finally, replace the outer loop with call to the map() function, to apply this
substitution to each token.

d) Discuss the clarity (or otherwise) of each of these approaches.

2. Develop a simple extractive summarization tool, which prints the sentences of a document
which contain the highest total word frequency. Use FreqDist to count word frequencies,
and use sum to sum the frequencies of the words in each sentence. Rank the sentences
according to their score. Finally, print the n highest-scoring sentences in document order.
Carefully review the design of your program, especially your approach to this double
sorting. Make sure the program is written as clearly as possible.

11.3 Further Reading

David Harel (2004). Algorithmics: The Spirit of Computing (Third Edition), Addison Wesley.
Anany Levitin (2004). The Design and Analysis of Algorithms, Addison Wesley.

Bird, Curran, Klein & Loper 11-3 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 11. Software Design for NLP

About this document...
This chapter is a draft from Introduction to Natural Language Processing,
by Steven Bird, James Curran, Ewan Klein and Edward Loper, Copyright
 2006 the authors. It is distributed with the Natural Language Toolkit
[http://nltk.sourceforge.net], under the terms of the Creative Commons Attribution-
ShareAlike License [http://creativecommons.org/licenses/by-sa/2.5/].

Bird, Curran, Klein & Loper 11-4 July 9, 2006

http://www.csse.unimelb.edu.au/~sb/
http://www.it.usyd.edu.au/about/people/staff/james.shtml
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.sourceforge.net
http://creativecommons.org/licenses/by-sa/2.5/

