10. Probabilistic Parsing

10.1 Introduction

As we have seen, parsing builds trees over sentences, according to a phrase structure grammar. How-
ever, as the coverage of the grammar increases and the length of the input sentence grows, the number
of parse trees grows rapidly. In fact, it grows at an astronomical rate.

Let’s explore this issue with the help of a simple example. The word fish is both a noun and a verb.
We can make up the nonsense sentence fish fish fish, meaning fish like to fish for other fish. (Try this
with police if you prefer something more sensible.) Here is a toy grammar for the ’fish’ sentences.

>>> nltk_lite.parse cfg, chart
>>> grammar = cfg.parse_grammar ("""
S -> NP V NP
. NP -> NP Sbar
. Sbar -=> NP V | V NP
. NP -> ’fish’
. V -> ’'fish’

wn H)

Now we can try parsing a longer sentence, fish fish fish fish fish, which amongst other things, means
fish that are fished by other fish are in the habit of fishing fish themselves.

>>> tokens = ["fish"] * 5
>>> cp = chart.ChartParse (grammar, chart.TD_STRATEGY)
>>> tree cp.get_parse_list (tokens):
. tree
(s:
(NP: (NP: ’"fish’) (Sbar: (V: ’"fish’) (NP: ’'fish’)))
(V: "fish’)
(NP: "fish’))
(S:
(NP: (NP: ’"fish’) (Sbar: (NP: ’'fish’) (V: ’'fish’)))
(V: "fish’)
(NP: "fish’))
(S:
(NP: "fish’)
(V: "fish’)
(NP: (NP: ’"fish’) (Sbar: (V: ’'fish’) (NP: ’'fish’))))
(s:
(NP: ’"fish’)
(V: "fish’)

(NP: (NP: ’'fish’) (Sbar: (NP: ’'fish’) (V: "fish’))))



Introduction to Natural Language Processing (DRAFT) 10. Probabilistic Parsing

As the length of this sentence goes up (3, 5, 7, ...) we get the following numbers of parse trees: 1;
4; 20; 112; 672; 4,224, 27,456; 183,040; 1,244,672; 8,599,552; 60,196,864; 426,008,576. The last of
these — a figure of the order of 108 — is for a sentence of length 23, the average length of sentences in
the WSJ section of Penn Treebank. (This growth is super-exponential (equal to 2".C(n+1), where C(n)
is the nth Catalan number, (2n)!/(n!(n+1)!).) No practical NLP system could construct 108 trees for a
typical sentence, much less choose the appropriate one in the context. Its clear that humans don’t do
this either!

Note that the problem is not with our choice of example. As soon as we try to construct a broad-
coverage grammar, we are forced to make lexical entries highly ambiguous for their part of speech.
In a toy grammar, a is only a determiner, dog is only a noun, and runs is only a verb. However, in a
broad-coverage grammar, a is also a noun (e.g. part a), dog is also a verb (meaning to follow closely),
and runs is also a noun (e.g. ski runs). In fact, all words can be referred to by name: e.g. the verb ’ate’
is spelled with three letters; in speech we do not need to supply quotation marks. Furthermore, it is
possible to verb most nouns. Thus a parser for a broad-coverage grammar will be overwhelmed with
ambiguity. Even complete gibberish will often have a reading, e.g. the a are of I. As Abney (1996) has
pointed out, this is not word salad but a grammatical noun phrase, in which are is a noun meaning a
hundredth of a hectare (or 100 sq m), and a and / are nouns designating coordinates:

a .

A B C D E F G H I

Figure 1: The a are of |

Given this unlikely phrase, a broad-coverage parser should find this surprising reading. Similarly,
sentences which seem to be unambiguous, such as John saw Mary, turn out to have other readings we
would not have anticipated (as Abney explains). This ambiguity is unavoidable, and leads to horrendous
inefficiency in parsing seemingly inoccuous sentences. As we will see in this chapter, probabilistic
parsing solves these twin problems of ambiguity and efficiency. However, before we deal with these
parsing problems, we must first back up and introduce weighted grammars.

10.2 Weighted Grammars

We begin by considering the verb give. This verb requires both a direct object (the thing being given)
and an indirect object (the recipient). These complements can be given in either order, as illustrated
in example (1). In the “prepositional dative” form, the indirect object appears last, and inside a
prepositional phrase, while in the “double object” form, the indirect object comes first:

(la) Kim gave a bone to the dog
(1b) Kim gave the dog a bone

Using the Penn Treebank sample, we can examine all instances of prepositional dative and double
object constructions involving give, as shown below:

Bird, Curran, Klein & Loper 10-2 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 10. Probabilistic Parsing

>>> from nltk_lite.corpora import treebank
>>> from string import join
>>> give = lambda t: t.node == 'VP’ and len(t) > 2 and t[l].node == ’'NP’\
and (t[2] .node == 'PP-DTV’ or t[2].node == 'NP’)\
.. and ('give’ in t[0].leaves() or ’'gave’ in t[0].leaves())
>>> for tree in treebank.parsed():
for t in tree.subtrees(give):
print "%s [%s: %s] [%s: %s]" %\
(join(t[0] .leaves()),
t[1] .node, join(t[1l].leaves()),
C.. t[2] .node, join(t[2].leaves()))
gave [NP: the chefs] [NP: a standing ovation]

give [NP: advertisers] [NP: discounts for * maintaining or increasing ad spending]

give [NP: it] [PP-DTV: to the politicians]
gave [NP: them] [NP: similar help]
give [NP: them] [NP: xTx-1]

give [NP: only French history questions] [PP-DTV: to students in a European histor;

give [NP: federal judges] [NP: a raise]

give [NP: consumers] [NP: the straight scoop on the U.S. waste crisis]
gave [NP: Mitsui] [NP: access to a high-tech medical product]

give [NP: Mitsubishi] [NP: a window on the U.S. glass industry]

give [NP: much thought] [PP-DTV: to the rates 0 she was receiving *T*-2 , nor to t!

she was paying *Tx-3]

give [NP: your Foster Savings Institution] [NP: the gift of hope and freedom from t

regulators who *Tx-206 want *—1 to close its doors —— for good]

give [NP: market operators] [NP: the authority * to suspend trading in futures at :
gave [NP: quick approval] [PP-DTV: to $ 3.18 billion *Ux in supplemental appropriat

law enforcement and anti-drug programs in fiscal 1990]

give [NP: the Transportation Department] [NP: up to 50 days 0 * to review any purcl

15 % or more of the stock in an airline *Tx-1]
give [NP: the president] [NP: such power]
give [NP: me] [NP: the heebie-jeebies]
give [NP: holders] [NP: the right *RNRx-1 , but not the obligation *RNRx-1 ,

* to k

a call -RRB- or sell -LRB- a put -RRB- a specified amount of an underlying invest

a certain date at a preset price , known * as the strike price]

gave [NP: Mr. Thomas] [NP: only a ‘' qualified '’ rating , rather than ‘' well qual

give [NP: the president] [NP: line-item veto power]

We can observe a strong tendency for the shortest complement to appear first. However, this does
not account for a form like give [NP: federal judges] [NP: a raise], where animacy may
be playing a role. In fact there turn out to be a large number of contributing factors, as surveyed by
Bresnan and Hay (2006).

How can such tendencies be expressed in a conventional context free grammar? It turns out that they
cannot. However, we can address the problem by adding weights, or probabilities, to the productions
of a grammar.

A probabilistic context free grammar (or PCFG) is a context free grammar that associates a proba-
bility with each of its productions. It generates the same set of parses for a text that the corresponding
context free grammar does, and assigns a probability to each parse. The probability of a parse generated
by a PCFG is simply the product of the probabilities of the productions used to generate it.

Probabilistic context free grammars are implemented by the nltk_lite.parse.pcfg.Grammar
class. Like CFGs, each PCFG consists of a start state and a list of productions. But the productions

Bird, Curran, Klein & Loper 10-3 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 10. Probabilistic Parsing

are represented by pcfg.Production, a subclass of cfg.Production that associates a probability
with a context free grammar production.

10.2.1 PCFG Productions

Each PCFG production specifies that a nonterminal (the left-hand side) can be expanded to a sequence
of terminals and nonterminals (the right-hand side). In addition, each production has a probability asso-
ciated with it. Productions are created using the nltk_lite.parse.pcfg.Production constructor,
which takes a probability, a nonterminal left-hand side, and zero or more terminals and nonterminals
for the right-hand side.

>>> from nltk _lite.parse import cfg
>>> S, VP, V, NP = cfg.nonterminals(’S, VP, V, NP’)

>>> from nltk _lite.parse import pcfg

>>> prodl = pcfg.Production(VP, [V, NP], prob=0.23)
>>> prodl

VP -> V NP (p=0.23)

>>> prod2 = pcfg.Production(V, ['saw’], prob=0.12)
>>> prod2
V -> ’'saw’ (p=0.12)

>>> prod3 = pcfg.Production (NP, [’'cookie’], prob=0.04)
>>> prod3
NP -> ’cookie’ (p=0.04)

The probability associated with a production is returned by the prob method:

>>> print prodl.prob(), prod2.prob(), prod3.prob()
0.23 0.12 0.04

As with CFG productions, the left-hand side of a PCFG production is returned by the 1hs method;
and the right-hand side is returned by the rhs method:

>>> prodl.lhs ()
<VP>

>>> prodl.rhs()
(<V>, <NP>)

10.2.2 PCFGs

PCFGs are created using the pcfg.Grammar constructor, which takes a start symbol and a list of
productions:

>>> prods = [pcfg.Production(S, [NP, VP], prob=1.0),
pcfg.Production(VP, ['saw’, NP], prob=0.4),
pcfg.Production(VP, ['ate’], prob=0.3),
pcfg.Production(VP, ['gave’, NP, NP], prob=0.3),
pcfg.Production (NP, [’'the’, ’'cookie’], prob=0.8),
pcfg.Production (NP, [’Jack’], prob=0.2)]

Bird, Curran, Klein & Loper 10-4 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 10. Probabilistic Parsing

>>> grammar = pcfg.Grammar (S, prods)
>>> grammar
Grammar with 6 productions (start state = S)
S -> NP VP (p=1.0)
VP —> ’'saw’ NP (p=0.4)
VP -> ’"ate’ (p=0.3)
VP -> ’‘gave’ NP NP (p=0.3)
NP -> ’‘the’ ’'cookie’ (p=0.8)
NP -> ’'Jack’ (p=0.2)

In order to ensure that the trees generated by the grammar form a proper probability distribution,
PCFG grammars impose the constraint that all productions with a given left-hand side must have
probabilities that sum to one:

for all [hs: SIGMA ;5 P(lhs — rhs) =1

The example grammar given above obeys this constraint: for S, there is only one production, with
a probability of 1.0; for vP, 0.4+0.34+0.3=1.0; and for NP, 0.8+0.2=1.0.

As with CFGs, the start state of a PCFG is returned by the start method; and the productions are
returned by the productions method:

>>> grammar.start ()

<S>

>>> pprint pprint
>>> pprint (grammar.productions())
(S => NP VP (p=1.0),

VP -> ’'saw’ NP (p=0.4),

VP -> ’"ate’ (p=0.3),

VP -> ’'gave’ NP NP (p=0.3),

NP -> ’'the’ ’cookie’ (p=0.8),

NP -> ’'Jack’ (p=0.2))

10.3 Probabilistic Parsers

10.3.1 The Probabilistic Parser Interface
The parse trees returned by parse and get_parse_1list include probabilities:

>>> nltk_lite.parse ViterbiParse

>>> nltk lite tokenize

>>> viterbi_parser = ViterbiParse (grammar)

>>> sent = list (tokenize.whitespace(’' Jack saw the cookie’))

>>> viterbi_parser.get_parse (sent)

(S: (NP: ’'Jack’) (p=0.2) (VP: ’'saw’ (NP: 'the’ ’'cookie’) (p=0.8)) (p=0.32))

>>> viterbi_parser.get_parse_list (sent)
[(S: (NP: "Jack’) (p=0.2) (VP: 'saw’ (NP: 'the’ ’'cookie’) (p=0.8)) (p=0.32))

Bird, Curran, Klein & Loper 10-5 July 9, 2006

(p=0.0¢

(p=0.



Introduction to Natural Language Processing (DRAFT) 10. Probabilistic Parsing

10.3.2 Probabilistic Parser Implementations

The next two sections introduce two probabilistic parsing algorithms for PCFGs. The first is a Viterbi-
style algorithm that uses dynamic programming to find the single most likely parse for a given text.
Whenever it finds multiple possible parses for a subtree, it discards all but the most likely parse.
The second is a bottom-up chart parser that maintains a queue of edges, and adds them to the chart
one at a time. The ordering of this queue is based on the probabilities associated with the edges,
allowing the parser to expand more likely edges before less likely ones. Different queue orderings are
used to implement a variety of different search strategies. These algorithms are implemented in the
nltk_lite.parse.viterbi and nltk_lite.parse.pchart modules.

10.3.3 A Viterbi-Style PCFG Parser

The ViterbiParse PCFG parser is a bottom-up parser that uses dynamic programming to find the
single most likely parse for a text. It parses texts by iteratively filling in a most likely constituents table.
This table records the most likely tree structure for each span and node value. In particular, it has an
entry for every start index, end index, and node value, recording the most likely subtree that spans from
the start index to the end index, and has the given node value. For example, after parsing the sentence
“I saw John with my cookie” with a simple grammar, the most likely constituents table might be as
follows:

Most Likely Constituents Table

Span Node | Tree Prob
[0:1] NP (NP: D) 0.3
[2:3] NP (NP: John) 0.3
[4:6] NP (NP: my cookie) 0.2
[3:6] PP (PP: with (NP: my cookie)) 0.1
[2:6] NP (NP: (NP: John) (PP: with (NP: my cookie))) 0.01
[1:3] VP (VP: saw (NP: John))) 0.03
[1:6] VP (VP: saw (NP: (NP: John) (PP: with (NP: my cookie)))) 0.001
[0:6] S (S: (NP: I) (VP: saw (NP: (NP: John) (PP: with (NP: my cookie))))) 0.0001

Once the table has been completely filled in, the parser simply returns the entry for the most likely
constituent that spans the entire text, and whose node value is the start symbol. For this example, it
would return the entry with a span of [0:6] and a node value of “S”.

Note that we only record the most likely constituent for any given span and node value. For example,
in the table above, there are actually two possible constituents that cover the span [1:6] and have “VP”
node values.

1. “saw John, who has my cookie’:
(VP: saw (NP: (NP: John) (PP: with (NP: my cookie))))
2. “used my cookie to see John:

(VP: saw (NP: John) (PP: with (NP: my cookie)))

Bird, Curran, Klein & Loper 10-6 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 10. Probabilistic Parsing

Since the grammar we are using to parse the text indicates that the first of these tree structures has
a higher probability, the parser discards the second one.

Filling in the Most Likely Constituents Table: Because the grammar used by ViterbiParse
is a PCFG, the probability of each constituent can be calculated from the probabilities of its children.
Since a constituent’s children can never cover a larger span than the constituent itself, each entry of
the most likely constituents table depends only on entries for constituents with shorter spans (or equal
spans, in the case of unary and epsilon productions).

ViterbiParse takes advantage of this fact, and fills in the most likely constituent table incremen-
tally. It starts by filling in the entries for all constituents that span a single element of text. After it
has filled in all the table entries for constituents that span one element of text, it fills in the entries for
constituents that span two elements of text. It continues filling in the entries for constituents spanning
larger and larger portions of the text, until the entire table has been filled.

To find the most likely constituent with a given span and node value, ViterbiParse considers
all productions that could produce that node value. For each production, it checks the most likely
constituents table for sequences of children that collectively cover the span and that have the node
values specified by the production’s right hand side. If the tree formed by applying the production
to the children has a higher probability than the current table entry, then it updates the most likely
constituents table with the new tree.

Handling Unary Productions and Epsilon Productions: A minor difficulty is introduced by
unary productions and epsilon productions: an entry of the most likely constituents table might depend
on another entry with the same span. For example, if the grammar contains the production v — VP,
then the table entries for VP depend on the entries for v with the same span. This can be a problem if
the constituents are checked in the wrong order. For example, if the parser tries to find the most likely
constituent for a VP spanning [1:3] before it finds the most likely constituents for v spanning [1:3], then
it can’t apply the v — VP production.

To solve this problem, ViterbiParse repeatedly checks each span until it finds no new table
entries. Note that cyclic grammar productions (e.g. V — V) will not cause this procedure to enter an
infinite loop. Since all production probabilities are less than or equal to 1, any constituent generated by
a cycle in the grammar will have a probability that is less than or equal to the original constituent; so
ViterbiParse will discard it.

10.3.4 Using viterbiParse
Viterbi parsers are created using the ViterbiParse constructor:

>>> from nltk_lite.parse.viterbi import *
>>> ViterbiParse (grammar)
<ViterbiParser for <Grammar with 6 productions>>

Note that since ViterbiParse only finds the single most likely parse, that get_parse_list
will never return more than one parse.

>>> viterbi_ parserl = ViterbiParse (pcfg.toyl)
>>> sentl = list (tokenize.whitespace('I saw John with my cookie’))
>>> treel = viterbi_parserl.parse(sentl)
>>> print treel
(S:
(NP: 'I’)
(VP:

Bird, Curran, Klein & Loper 10-7 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 10. Probabilistic Parsing

(V: 'saw’)
(NP :
(NP: ’"John’)
(PP: (P: 'with’) (NP: (Det: 'my’) (N: ’'cookie’)))))) (p=5.2040625e-05)

>>> viterbi_parser2 = ViterbiParse (pcfg.toy2)

>>> sent2 = list (tokenize.whitespace(’'the boy saw Jack with Bob under the table wit
>>> trees = viterbi_parser2.get_parse_list (sent2)

>>> for tree in trees:

ce print tree

(S:

(NP: (Det: ’"the’) (N: ’'boy’))
(VP:
(V: 'saw’)
(NP :
(NP: (Name: ’"Jack’))
(PP:
(P: 'with’)
(NP :
(NP :
(NP: (Name: 'Bob’))
(PP:
(P: 'under’)
(NP: (Det: 'the’) (N: 'table’))))
(PP:
(P: "with’)
(NP: (Det: 'a’) (N: ’'telescope’)))))))) (p=7.53678903935e-11)

The trace method can be used to set the level of tracing output that is generated when parsing a
text. Trace output displays the constituents that are considered, and indicates which ones are added to
the most likely constituent table. It also indicates the likelihood for each constituent.

>>> viterbi_parserl.trace (3)
>>> tree = viterbi_parserl.parse(sentl)
Inserting tokens into the most likely constituents table...

Insert: |=..... | I
Insert: |.=....| saw
Insert: |..=...| John
Insert: |...=..] with
Insert: |....=.| my
Insert: |..... =| cookie

Finding the most likely constituents spanning 1 text elements...
Insert: |=..... | NP => "I’ (p=0.15) 0.1500000000
Insert: |.=....| V => ’"saw’ (p=0.65) 0.6500000000
Insert: |.=....| VP => V (p=0.2) 0.1300000000
Insert: |..=...| NP —> ’"John’ (p=0.1) 0.1000000000
Insert: | .=..| P => 'with’ (p=0.61) 0.6100000000
Insert: | .=.| Det -> 'my’ (p=0.2) 0.2000000000
Insert: |..... =| N -> ’'cookie’ (p=0.5) 0.5000000000

Finding the most likely constituents spanning 2 text elements...
Insert: S -> NP VP (p=1.0) 0.0195000000
Insert: |.==...| VP => V NP (p=0.7) 0.0455000000

Bird, Curran, Klein & Loper 10-8 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 10. Probabilistic Parsing

Insert: |....==| NP —> Det N (p=0.5) 0.0500000000
Finding the most likely constituents spanning 3 text elements...
Insert: |===...| S —> NP VP (p=1.0) 0.0068250000
Insert: |...===| PP —> P NP (p=1.0) 0.0305000000
Finding the most likely constituents spanning 4 text elements...
Insert: |..====| NP -> NP PP (p=0.25) 0.0007625000
Finding the most likely constituents spanning 5 text elements...
Insert: |.=====| VP —> VP PP (p=0.1) 0.0001387750
Insert: |.=====| VP -> V NP (p=0.7) 0.0003469375
Discard: |.=====| VP -> VP PP (p=0.1) 0.0001387750
Finding the most likely constituents spanning 6 text elements...
Insert: |======| S -> NP VP (p=1.0) 0.0000520406

The level of tracing output can also be set with an optional argument to the ViterbiParse
constructor. By default, no tracing output is generated. Tracing output can be turned off by calling
trace with a value of 0.

10.4 A Bottom-Up PCFG Chart Parser

10.4.1 Introduction

The Viterbi-style algorithm described in the previous section finds the single most likely parse for a
given text. But for many applications, it is useful to produce several alternative parses. This is often
the case when probabilistic parsers are combined with other probabilistic systems. In particular, the
most probable parse may be assigned a low probability by other systems; and a parse that is given a
low probability by the parser might have a better overall probability.

For example, a probabilistic parser might decide that the most likely parse for “I saw John with
the cookie” is is the structure with the interpretation “I used my cookie to see John”; but that parse
would be assigned a low probability by a semantic system. Combining the probability estimates from
the parser and the semantic system, the parse with the interpretation “I saw John, who had my cookie”
would be given a higher overall probability.

This section describes Bot tomUpChartParser, a parser for PCFGs that can find multiple parses
for a text. It assumes that you have already read the chart parsing tutorial, and are familiar with the data
structures and productions used for chart parsing.

10.4.2 The Basic Algorithm

BottomUpChartParser is a bottom-up parser for PCFGs that uses a Chart to record partial results.
It maintains a queue of edges, and adds them to the chart one at a time. The ordering of this queue
is based on the probabilities associated with the edges, allowing the parser to insert more likely edges
before exploring less likely ones. For each edge that the parser adds to the chart, it may become possible
to insert new edges into the chart; these are added to the queue. BottomUpChartParser continues
adding the edges in the queue to the chart until enough complete parses have been found, or until the
edge queue is empty.

10.4.3 Probabilistic Edges

An Edge associates a dotted production and a location with a (partial) parse tree. A probabilistic edge
can be formed by using a ProbabilisticTree to encode an edge’s parse tree. The probability of

Bird, Curran, Klein & Loper 10-9 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 10. Probabilistic Parsing

this tree is the product of the probability of the production that generated it and the probabilities of its
children. For example, the probability associated with an edge [Edge: S — NP ® VP]Q[0:2] is
the probability of its NP child times the probability of the PCFG production S — NP VP. Note that an
edge’s tree only includes children for elements to the left of the edge’s dot. Thus, the edge’s probability
does not include any probabilities for the elements to the right of the edge’s dot.

10.4.4 The Edge Queue

The edge queue is a sorted list of edges that can be added to the chart. It is initialized with a single
edge for each token in the text. These token edges have the form [Edge: token — ®] where foken is the
word.

As each edge from the queue is added to the chart, it may become possible to insert new edges into
the chart; these new edges are added to the queue. There are two ways that it can become possible to
insert new edges into the chart:

1. The bottom-up initialization production can be used to add a self-loop edge whenever an
edge whose dot is in position 0 is added to the chart.

2. The fundamental production can be used to combine a new edge with edges already present
in the chart.

The edge queue is implemented using a 1ist. For efficiency reasons, BottomUpChartParser
uses pop to remove edges from the queue. Thus, the front of the queue is the end of the list. This needs
to be kept in mind when implementing sorting orders for the queue: edges that should be tried first
should be placed at the end of the list.

10.4.5 Sorting The Edge Queue

By changing the sorting order used by the queue, we can control the strategy that the parser uses
to search for parses of a text. Since there are a wide variety of reasonable search strategies,
BottomUpChartParser does not define the sorting order for the queue. Instead, Bot t omUpPCFGChartParser
is defined as an abstract class; and subclasses are used to implement a variety of different queue
orderings. Each subclass is required to define the sort_queue method, which sorts a given queue.
The remainder of this section describes four different subclasses of BottomUpChartParser that are
defined in the nltk_lite.parse.pchart module.

InsideParse:

The simplest way to order the queue is to sort the edges by the probabilities of their trees. This
ordering concentrates the efforts of the parser on edges that are more likely to be correct descriptions
of the texts that they span. This approach is implemented by the InsideParse class.

The probability of an edge’s tree provides an upper bound on the probability of any parse produced
using that edge. The probabilistic “cost” of using an edge to form a parse is one minus its tree’s
probability. Thus, inserting the edges with the most likely trees first results in a lowest-cost-first search
strategy. Lowest-cost-first search is an optimal search strategy: the first solution it finds is guaranteed
to be the best solution.

However, lowest-cost-first search can be rather inefficient. Since a tree’s probability is the product
of the probabilities of all the productions used to generate it, smaller trees tend to have higher prob-
abilities than larger ones. Thus, lowest-cost-first search tends to insert edges with small trees before
moving on to edges with larger ones. But any complete parse of the text will necessarily have a large
tree; so complete parses will tend to be inserted after nearly all other edges.

Bird, Curran, Klein & Loper 10-10 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 10. Probabilistic Parsing

The basic problem with lowest-cost-first search is that it ignores the probability that an edge’s tree
is part of a complete parse. It will try parses that are locally coherent, even if they are unlikely to form
part of a complete parse. Unfortunately, it can be quite difficult to calculate the probability that a tree is
part of a complete parse. However, we can use a variety of techniques to approximate that probability.

Since InsideParse is a subclass of Bot tomUpChartParse, it only needs to define a sort_queue
method. Thus, the implementation of InsideParse class is quite simple:

class InsideParse (BottomUpChartParse) :
def sort_queue(self, queue, chart):
# Sort the edges by the probabilities of their trees.

queue.sort (lambda el,e2:cmp(el.tree() .prob (), e2.tree() .prob()))

LongestParse: LongestParse sorts its queue in descending order of the edges’ lengths. These
lengths (properly normalized) provide a crude approximations to the probabilities that trees are part of
complete parses. Thus, LongestParse employs a best-first search strategy, where it inserts the edges
that are closest to producing complete parses before trying any other edges. Best-first search is not an
optimal search strategy: the first solution it finds is not guaranteed to be the best solution. However, it
will usually find a complete parse much more quickly than lowest-cost-first search.

Since LongestParse is a subclass of BottomUpChartParse, its implementation simply defines
a sort_queue method

class LongestParse (BottomUpChartParse) :
def sort_queue(self, queue, chart):
# Sort the edges by the lengths of their trees.

queue.sort (lambda el,e2: cmp(len(el.loc()), len(e2.loc())))

BeamParse: When large grammars are used to parse a text, the edge queue can grow quite long.
The edges at the end of a large well-sorted queue are unlikely to be used. Therefore, it is reasonable to
remove (or prune) these edges from the queue.

BeamParse provides a simple implementation of a pruning PCFG parser. It uses the same sorting
order as InsideParse. But whenever the edge queue grows beyond a pre-defined maximum length,
BeamParse truncates it. The resulting search strategy, lowest-cost-first search with pruning, is a type
of beam search. (A beam search is a search strategy that only keeps the best partial results.) The
queue’s predefined maximum length is called the beam size (or simply the beam). The parser’s beam
size is set by the first argument to its constructor.

Beam search reduces the space requirements for lowest-cost-first search, by discarding edges that
are not likely to be used. But beam search also loses many of lowest-cost-first search’s more useful
properties. Beam search is not optimal: it is not guaranteed to find the best parse first. In fact, since it
might prune a necessary edge, beam search is not even complete: it is not guaranteed to return a parse
if one exists.

The implementation for BeamParse defines two methods. First, it overrides the constructor, since
it needs to record the beam size. And second, it defines the sort_queue method, which sorts the
queue and discards any excess edges:

class BeamParse (BottomUpChartParse) :
def __init__ (self, beam_size, grammar, trace=0):
BottomUpChartParse._ _init_ (self, grammar, trace)
self._beam_size = beam_size

def sort_queue(self, queue, chart):

Bird, Curran, Klein & Loper 10-11 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 10. Probabilistic Parsing

# Sort the queue.

queue.sort (lambda el,e2:cmp(el.tree() .prob(), e2.tree() .prob()))
# Truncate the queue, if necessary.

if len(queue) > self._beam_size:

queue[:] = queue[len(queue)-self._beam size:]

Note that when truncating the queue, sort_queue uses the expression queue[:] to change the
contents of the queue variable. In particular, compare it to the following code, which reassigns the
local variable queue, but does not modify the contents of the given list:

# WRONG: This does not change the contents of the edge queue.
if len(queue) > self._beam_size:
queue = queue[len(queue) - self._beam size:]

# WRONG: The sort method returns None.
return gqueue.sort (lambda el,e2:cmp(el.tree() .prob (), e2.tree() .prob()))

10.4.6 Using BottomUpChartParser

These parsers are created using the BottomUpChartParse subclasses’s constructors. These include:
InsideParse, LongestParse, BeamParser, and RandomParse.

See the reference documentation for the BottomUpChartParse module for a complete list of
subclasses. Unless a subclass overrides the constructor, it takes a single PCFG:

>>> nltk_lite.parse.pchart *
>>> inside_parser = InsideParse (pcfg.toyl)
>>> longest_parser = LongestParse (pcfg.toyl)
>>> beam_parser = BeamParse (20, pcfg.toyl)

>>> inside_parser.parse (sentl)
(S:
(NP: ’I’)
(VP:
(V: 'saw’)
(NP :

(NP: ’"John’)
(PP: (P: 'with’) (NP: (Det: 'my’) (N: ’'cookie’)))))) (p=5.2040625e-05)

>>> tree inside_parser.get_parse_list (sentl):
R tree
(S:
(NP: 'I’)
(VP:
(V: 'saw’)
(NP:

(NP: ’"John’)
(PP: (P: ’'with’) (NP: (Det: 'my’) (N: ’'cookie’)))))) (p=5.2040625e-05)
(S:
(NP: "I’)
(VP:
(VP: (V: ’"saw’) (NP: 'John’))
(PP: (P: ’'with’) (NP: (Det: 'my’) (N: ’'cookie’))))) (p=2.081625e-05)

Bird, Curran, Klein & Loper 10-12 July 9, 2006



Introduction to Natural Language Processing (DRAFT)

10. Probabilistic Parsing

Warning

undefined.

BottomUpChartParse iS an abstract class; you should not directly instantiate it. If
you try to use it to parse a text, it will raise an exception, since sort_queue will be

The trace method can be used to set the level of tracing output that is generated when parsing
a text. Trace output displays edges as they are added to the chart, and shows the probability for each

edges’ tree.

>>> inside_parser.trace (3)

>>> trees = inside_parser.get_parse_list (sentl)

l. . . . . [-]1] [5:6] 'cookie’ prob=1.0

| . . [-1 .| [4:5] "my’ prob=1.0

| . . [-1 . | [3:4] 'with’ prob=1.0

| . -1 . . | [2:3] "John’ prob=1.0
. [-1 . | [1:2] ’'saw’ prob=1.0

I [-1 . | [0:1] "I’ prob=1.0
|. [-] | [1:2] V —-> ’'saw’ «* prob=0.65
. > . .| [1:1] VP => % V NP prob=0.7
|. > .. .l [1:1] V -=> * "saw’ prob=0.65
| . [-1 | [3:4] P -> 'with’ =* prob=0.61
| . > | [3:3] PP => * P NP prob=1.0

| . [-> | [3:4] PP -> P x NP prob=0.61
| . > . .| [3:3]1 P —-—> % 'with’ prob=0.61
| . [-1] [5:6] N -> ’'cookie’ =* prob=0.5

| . . > .| [5:5] N —-> % ’'cookie’ prob=0.5
|. [—> | [1:2] VP => V x NP prob=0.455
. > .. | [1:1] VP => % V prob=0.2

| . [-1 | [4:5] Det -=> 'my’ =« prob=0.2

| . > | [4:4] NP —> * Det N prob=0.5
l. . > | [4:4] Det -> * 'my’ prob=0.2

| [-1 | [0:1] NP -> "I’ * prob=0.15
| > | [0:0] S -> x NP VP prob=1.0
I>. . . . . .| [0:0] NP —> % NP PP prob=0.25
|[-> . . . . .] [0:1] S —-> NP * VP prob=0.15
|I> . . . .| [0:0] NP —> * "I’ prob=0.15
| [-] | [1:2] VP => V «* prob=0.13
. > | [1:1] VP -> % VP PP prob=0.1

| . . [-> .| [4:5] NP -> Det * N prob=0.1

| [-1 | [2:3] NP -> 'John’ =* prob=0.1

| > | [2:2] S —-> % NP VP prob=1.0

| > . | [2:2] NP -> x NP PP prob=0.25
| [-> | [2:3] S =-> NP % VP prob=0.1
l. . > . . . .| [2:2] NP -> % ’'John’ prob=0.1
|. . . . [-—=1] [4:6] NP -> Det N «* prob=0.05
l. . . . > | [4:4] S —-> % NP VP prob=1.0

| > . .| [4:4] NP -> x NP PP prob=0.25
| . . [-==>| [4:6] S -> NP * VP prob=0.05
| [——-1 .| [1:3] VP —> V NP * prob=0.0455
| [—> . .] [0:1] NP —> NP * PP prob=0.0375
| R 1| [3:6] PP —> P NP * prob=0.0305
| [—> . .| [2:3] NP —> NP * PP prob=0.025

Bird, Curran, Klein & Loper 10-13 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 10. Probabilistic Parsing

I[-———1 . . . .| [0:2] S —-> NP VP =« prob=0.0195

l. [=> . . . .| [1:2] VP -=> VP * PP prob=0.013

|. . [-—>]| [4:6] NP —> NP = PP prob=0.0125

| [-———- ] . . .] [0:3] S -> NP VP =* prob=0.006825

|. [-=——> . . .| [1:3] VP -> VP * PP prob=0.00455

|. . [-————— 1| [2:6] NP => NP PP =* prob=0.0007625

|[. . [-—=———— >| [2:6] S -> NP % VP prob=0.0007625

| [-————————- 11 [1:6] VP => V NP «* prob=0.0003469375
|. . [-—————- >| [2:6] NP -> NP * PP prob=0.000190625
|. [-—————— 11 [1:6] VP —> VP PP * prob=0.000138775
| [e==========]| [0:6] S -> NP VP * prob=5.2040625e-05
|. [-——————- >| [1:6] VP —> VP x PP prob=3.469375e-05
| [z==========]| [0:6] S -> NP VP «* prob=2.081625e-05
| [——————— >| [1:6] VP —> VP x PP prob=1.38775e-05

10.5 Grammar Induction

As we have seen, PCFG productions are just like CFG productions, adorned with probabilities. So far,
we have simply specified these probabilities in the grammar. However, it is more usual to estimate
these probabilities from training data, namely a collection of parse trees or treebank.

The simplest method uses Maximum Likelihood Estimation, so called because probabilities are
chosen in order to maximize the likelihood of the training data. The probability of a production vP —
v NP PP is p(VNPPP | VP). We calculate this as follows:

count (VP -> V NP PP)
P(V,NP,PP | VP) = ——————————

count (VP -=> ...)

Here is a simple program that induces a grammar from the first three parse trees in the Penn
Treebank corpus:

>>> nltk _lite.corpora treebank
>>> itertools islice

>>> productions = []

>>> tree islice (treebank.parsed(), 3):

productions += tree.productions/()
>>> grammar = pcfg.induce (S, productions)
>>> production grammar .productions () [:10]:
. production
PP —> IN NP (p=1.0)
NNP -> ’'Nov.’ (p=0.0714285714286)
NNP -> ’'Agnew’ (p=0.0714285714286)
JJ -> ’‘industrial’ (p=0.142857142857)
NP -> CD NNS (p=0.133333333333)
o= (P=1-0)
CC -> "and’ (p=1.0)
NNP -> ’'Pierre’ (p=0.0714285714286)
NP —> NNP NNP NNP NNP (p=0.0666666666667)
NNP -> ’'Rudolph’ (p=0.0714285714286)

Bird, Curran, Klein & Loper 10-14 July 9, 2006



Introduction to Natural Language Processing (DRAFT) 10. Probabilistic Parsing

Note

Grammar induction usually involves normalizing the grammar in various ways.
The nltk_lite.parse.treetransforms module supports binarization (Chomsky
Normal Form), parent annotation, Markov order-N smoothing, and unary col-
lapsing. This information can be accessed by importing treetransforms from
nltk lite.parse, then calling help (treetransforms).

10.6 Further Reading

Steven Abney (1996). Statistical Methods and Linguistics. In: Judith Klavans and Philip Resnik
(eds.), The Balancing Act: Combining Symbolic and Statistical Approaches to Language. MIT Press.
http://www.vinartus.net/spa/95c.pdf

Christopher Manning and Hinrich Schutze (1999). Foundations of Statistical Natural Language
Processing. MIT Press. (esp chapter 12).

Joan Bresnan and Jennifer Hay (2006). Gradient Grammar: An Effect of Animacy on the Syntax of
give in Varieties of English http://www-1fg.stanford.edu/bresnan/anim-spokensyntax-final.pdf

About this document...

This chapter is a draft from Introduction to Natural Language Processing,
by Steven Bird, James Curran, Ewan Klein and Edward Loper, Copyright
© 2006 the authors. It is distributed with the Natural Language Toolkit
[http://nltk.sourceforge.net], under the terms of the Creative Commons Attribution-
ShareAlike License [http://creativecommons.org/licenses/by-sa/2.5/].

Bird, Curran, Klein & Loper 10-15 July 9, 2006


http://www-lfg.stanford.edu/bresnan/anim-spokensyntax-final.pdf
http://www.csse.unimelb.edu.au/~sb/
http://www.it.usyd.edu.au/about/people/staff/james.shtml
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.sourceforge.net
http://creativecommons.org/licenses/by-sa/2.5/

