9. Feature Based Grammar

9.1 Introduction

9.2 Agreement in CFGs

9.2.1 The Problem

Consider the following contrasts:

(1a) this dog
(1b) *these dog
(2a) these dogs
(2b) *this dog

In English, nouns are usually morphologically marked as being singular or plural. The form of
the demonstrative also varies in a similar way; there is a singular form this and a plural form these.
Examples (1) and (2) show that there are constraints on the realization of demonstratives and nouns
within a noun phrase: either both are singular or both are plural. A similar kind of constraint is observed
with subjects and predicates:

(3a) the dog runs
(3b) *the dog run
(4a) the dogs run
(4b) *the dogs runs

Here again, we can see that morphological properties of the verb co-vary with morphological
properties of the subject noun phrase; this co-variance is usually termed agreement The element which
determines the agreement, here the subject noun phrase, is called the agreement controller, while the
element whose form is determined by agreement, here the verb, is called the target. If we look further
at verb agreement in English, we will see that present tense verbs typically have two inflected forms:
one for third person singular, and another for every other combination of person and number:

singular plural
1st per I run we run
2nd per you run you run
3rd per he/she/it runs they run
1

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

&)

We can make the role of morphological properties a bit more explicit as illustrated in (6) and (7).
These representations indicate that the verb agrees with its subject in person and number.

the dog run-s
dog.3.SG run-3.SG

(6)

the dog-s run
dog-3.PL. run.3.PL

(N

Despite the undoubted interest of agreement as a topic in its own right, we have introduced it here
for another reason: we want to look at what happens when we try encode agreement constraints in a
context-free grammar. Suppose we take as our starting point the very simple CFG in (8).

®) S »> NPVP
NP — DetN
VP - V

Det - "this’
N — "dog’
V — ’runs’

(8) allows us to generate the sentence this dog runs; however, what we really want to do is also
generate these dogs run while blocking unwanted strings such as *this dogs run and *these dog runs.
The most straightforward approach is to add new non-terminals and productions to the grammar which
reflect our number distinctions and agreement constraints (we ignore person for the time being):

(©)] S_SG — NP_SG VP_SG
S_PL - NP_PLVP_PL
NP_SG — Det_SG N_SG
NP_PL — Det PLN_PL
VP_SG — V_SG
VP_PL - V_PL

Det SG — ’this’
Det PL — ’"these’
N SG — ’dog’

N PL — ’dogs’

V SG — ’runs’
V_PL - "run’

It should be clear that this grammar will do the required task, but only at the cost of duplicating
our previous set of rules. Rule multiplication is of course more severe if we add in person agreement
constraints.

Bird, Curran, Klein & Loper 9-2 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

9.2.2 Exercises

1. Augment (9) so that it will generate strings like I am happy and she is happy but not *you
is happy or *they am happy.

2. Augment (9) so that it will correctly describe the following Spanish noun phrases:

un cuadro hermos-o
INDEF.SG.MASC picture beautiful-SG.MASC
"a beautiful picture’

(10a)
un-os cuadro-s hermos-os
INDEF-PL.MASC picture-PL beautiful-PL.MASC
’beautiful pictures’

(10b)
un-a cortina hermos-a
INDEF-SG.FEM curtain beautiful-SG.FEM

’a beautiful curtain’

(10c)
un-as cortina-s hermos-as
INDEF-PL.FEM curtain-PL beautiful-SG.FEM

’beautiful curtains’

(10d)

9.2.3 Using Attributes and Constraints

We spoke informally of linguistic categories having properties; for example, that a verb has the property
of being plural. Let’s try to make this more explicit:

(11) Ninom = pl]

In (11), we have introduced some new notation which says that the category N has a feature called
NUM (short for 'number’) and that the value of this feature is pl (short for *plural’). We can add similar
annotations to other categories, and use them in lexical entries:

(12) Det[nuM = sg] — ’"this’
Det[nuM = pl] — ’"these’

Bird, Curran, Klein & Loper 9-3 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

N[numM = sg] — ’‘dog’
N[nuM = pl] — ’‘dogs’
VinuM = sg] — ’runs’
VinuM = pl] — ‘run’

Does this help at all? So far, it looks just like a slightly more verbose alternative to what was
specified in (9). Things become more interesting when we allow variables over feature values, and use
these to state constraints. This is illustrated in (13).

(13a) S - NP[num = ?n] VP[nuM = ?2n]
(13b) NP[nuMm = ?n] — Det[num = ?n] N[numM = ?n]
(13¢) VP[nuM = ?n] — VI[nuM = ?n]

We are using *?n’ as a variable over values of NUM; it can be instantiated either to sg or pl. Its
scope is limited to individual rules. That is, within (13a), for example, ?n must be instantiated to the
same constant value; we can read the rule as saying that whatever value NP takes for the feature NUM,
VP must take the same value.

In order to understand how these feature constraints work, it’s helpful to think about how one would
go about building a tree. Lexical rules will admit the following local trees (trees of depth one):

(14a)
Det[num=sg]

|

this

(14b)
Det[num=pl]

these

(15a)
N[num=sg]

dog

(15b)
N[num=pl]

dogs

Now (13b) says that whatever the NUM values of N and Det are, they have to be the same.
Consequently, (13b) will permit (14a) and (15a) to be combined into an NP as shown in (16a) and it
will also allow (14b) and (15b) to be combined, as in (16b). By contrast, (17a) and (17b) are prohibited
because the roots of their constituent local trees differ in their values for the NUM feature.

(16a)
NP[num=pl]

/\

Det[num=sg] N[num=sg]

l |

this dog

Bird, Curran, Klein & Loper 9-4 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

(16b)
NP[num=pl]
/\
Det[num=pl] N[nhum=pl]
| |
these dogs
(17a)
NP[num-=...]
///////\\\\\\\
Det[num=sq] N[nhum=pl]
l |
this dogs
(17b)
NP[num-=...]
///////\\\\\\\
Det[num=pl] N[hum=sg]
| |
these dog

Rule (13c) can be thought of as saying that NUM value of the head verb has to be the same as the
NUM value of the VP mother. Combined with (13a), we derive the consequence that if the NUM value
of the subject head noun is pl, then so is the NUM value of the VP’s head verb.

(18)

S
NP[num=pl] VP[num=pl]
//////A\\\\\\ |
Det[num=pl] N[num=pl] V[hum=pl]
| | l
these dogs run

Grammar (19) illustrates most of the ideas we have introduced so far in this chapter, plus a couple
of new ones.

0 0000000000000000000000000000
(19) 5 %5%5%5%%5%%5%%5%%5%%5%%5%%5%5%5%5%5%%%%%

o

% Grammar Rules

00000000000000000000000000000

© 0000000000000 000000000000000

S —> NP [num=?n] VP [num=?n]

% NP expansion rules

NP [num=?n] —-> N[num=7?n]

NP [num=?n] -> PropN[num=?n]

NP [num=?n] -> Det [num=?n] N[num=2?n]
NP [num=pl] -> N[num=pl]

Bird, Curran, Klein & Loper 9-5 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

Q

% VP expansion rules
VP [tense=?t, num=?n] -> IV[tense=?t, num=?n]
VP [tense=?t, num=?n] —-> TV[tense=?t, num=2?n] NP

8990090090090 0

Det [num=sg] —-> ’"this’ | every’
Det [num=pl] -> "these’ | "all’
Det [num=?n] -> ’'the’ | ’'some’

PropN[num=sg]-> "Kim’ | "Jody’

N[num=sg] -> ’"dog’ | ’'girl’ | 'car’ | ’'child’
N[num=pl] -> ’'dogs’ | ’'girls’ | ’'cars’ | ’"children’
IV[tense=pres, num=sg] —-> ’'disappears’ | ’"walks’
TV[tense=pres, num=sg] —-> ’'sees’ | ’'likes’
IV([tense=pres, num=pl] -> ’disappear’ | ’'walk’
TV[tense=pres, num=pl] -> ’'see’ | ’'like’
IV[tense=past, num=?n] -> ’'disappeared’ | ’"walked’
TV[tense=past, num=?n] -> ’'saw’ | ’'liked’

First, you will notice that a feature annotation on a syntactic category can contain more than one
specification; for example, V[TENSE = pres, NUM = pl]. In general, there is no upper bound on the
number of features we specify as part of our syntactic categories.

Second, we have used feature variables in lexical entries as well as grammatical rules. For example,
the has been assigned the category Det[NUM = ?n]. Why is this? Well, you know that the definite article
the can combine with both singular and plural nouns. One way of describing this would be to add two
lexical entries to the grammar, one each for the singular and plural versions of the. However, a more
elegant solution is to leave the NUM value underspecified and letting it agree in number with whatever
noun it combines with.

A final point to note about (19) is that we have used % as an escape symbol in order to add comments
to the grammar.

In general, when we are trying to develop even a very small grammar, it is convenient to put the
rules in a file where they can be edited, tested and revised. Assuming we have saved (19) as a file
named ’featO.cfg’, the function GrammarFile.read file () allows us to read the grammar into
NLTK, ready for use in parsing.

>>> from nltk_lite.contrib.grammarfile import GrammarFile
>>> from pprint import pprint

>>> from nltk_1lite import tokenize

>>> g = GrammarFile.read file(’' featO.cfg’)

>>>

We can inspect the rules and the lexicon.

>>> print g.earley_grammar ()
Grammar with 7 productions (start state = Start][])
Start -> S

Bird, Curran, Klein & Loper 9-6 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

S => NP[num=?n] VP [num=7?n]
NP [num=?n] -> N[num=?n]
NP [num=?n] —> PropN[num=7?n]
NP [num=?n] —-> Det[num=?n] N[num=?n]
NP [num=pl] -> N[num=pl]
VP [num=?n, tense=?t] —-> IV[num=?n, tense=7?t]
VP [num=?n, tense=?t] -> TV[num=?n, tense=?t] NP
>>> pprint (g.earley_ lexicon())
{’Jody’ : [PropN[num=sg]],
"Kim’ : [PropN[num=sg]],
"all’: [Det[num=pl]],
"car’: [N[num=sg]],
"cars’: [N[num=pl]],
"child’: [N[num=sg]],
"children’: [N[num=pl]],

"disappear’: [IV[num=pl, tense=pres]],
"disappeared’: [IV[num=?n, tense=past]],
"disappears’: [IV[num=sg, tense=pres]],

dog’ : [N[num=sg]],

"dogs’ : [N[num=pl]],

"every’: [Det[num=sg]],

"girl’: [N[num=sg]],

"girls’: [N[num=pl]],

"like’ : [TV[num=pl, tense=pres]],
"liked’ : [TV[num=?n, tense=past]],

"likes’: [TV[num=sg, tense=pres]],
"saw’: [TV[num=?n, tense=past]],
"see’: [TV[num=pl, tense=pres]],
"sees’ : [TV[num=sg, tense=pres]],

"some’ : [Det[num=?n]],

"the’ : [Det[num=?n]],

"these’: [Det[num=pl]],

"this’: [Det[num=sg]],

"walk’: [IV[num=pl, tense=pres]],

"walked’: [IV[num=?n, tense=past]],

"walks’: [IV[num=sg, tense=pres]]}
>>>

Now we can tokenize a sentence and use the parse_n () function to invoke the Earley chart parser.

>>> from nltk_1lite import tokenize

>>> sent = 'Kim likes children’

>>> tokens = list (tokenize.whitespace(sent))

>>> tokens

["Kim’, ’'likes’, ’'children’]

>>> cp = g.earley_ parser()

>>> trees = cp.parse_n (tokens)

| .K.1.c.|

Predictor |> | Start -> % S

Predictor |> | S => % NP[num=?n] VP [num=?n]
Predictor |> . . .| NP[num=?n] -> *x N[num=2?n]
Predictor |> | NP[num=?n] -> % PropN[num=7?n]
Predictor |> | NP[num=?n] -> % Det[num=?n] N[num=7?n]
Predictor |> | NP[num=pl] -> * N[num=pl]

Bird, Curran, Klein & Loper 9-7 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

Scanner | [-1 | PropN[num=sg] -> 'Kim’' =«

Completer |[-] | NP[num=sg] —> PropN[num=sg] =*

Completer |[-> | S —> NP[num=sg] * VP [num=sg]

Predictor |. > | VP[num=?n, tense=?t] -> *x IV[num=?n, tense=7?t]
Predictor |. > . | VP[num=?n, tense=?t] -> *x TV[num=?n, tense=?t] NP
Scanner | [-1 | TV[num=sg, tense=pres] -> ’likes’ *

Completer | [-> .| VP[num=sg, tense=pres] —-> TV[num=sg, tense=pres] x NP
Predictor |. > .| NP[num=?n] -> * N[num=?n]

Predictor |. > .| NP[num=?n] —-> % PropN[num=?n]

Predictor | > .| NP[num=?n] -> * Det[num=?n] N[num=?n]

Predictor | > .| NP[num=pl] -> * N[num=pl]

Scanner | [-]1] N[num=pl] -> ’‘children’ «*

Completer | . [-]1] NP[num=pl] —> N[num=pl] =*

Completer |. [-—-]| VP[num=sg, tense=pres] -> TV[num=sg, tense=pres] NP =*
Completer |[=====]| S —> NP[num=sg] VP [num=sg] =*

Completer |[=====]| Start -> S *

Completer |[=====]| [INIT] -> Start =*

>>>

Finally, we can inspect the resulting parse trees (in this case, a single one).

>>> tree trees: tree

([INIT]:
(Start:
(S:
(NP [num=sg]: (PropN[num=sg]: ’'Kim’))
(VP [num=sg, tense=pres]:
(TV[num=sg, tense=pres]: ’'likes’)
(NP [num=pl]: (N[num=pl]: ’'children’))))))
>>>

9.2.4 Exercises

1. Redo the previous two exercises, but using (19) as your starting point.

9.2.5 Terminology

So far, we have only seen feature values like sg and pl:fval. These simple values are usually called
atomic — that is, they can’t be decomposed into subparts. A special case of atomic values are boolean
values, that is, values which just specify whether a property is true or false of a category. For example,
we might want to distinguish auxiliary verbs such as can, may, will and do with the boolean feature
AUX. Thus, our lexicon for verbs might include entries such as the following:

(20) V[TENSE = pres, AUX = +] — ’can’
V[TENSE = pres, AUX = +] — ’'may’
V[TENSE = pres, AUX = -] — ’walks’
V[TENSE = pres, aUX = -] — ’likes’

A frequently used abbreviation for boolean features allows the value to be prepended to the feature:

Bird, Curran, Klein & Loper 9-8 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

21 V[TENSE

V[TENSE

pres, +AUx] — ’can’

pres, —-AUx] — ’'walks’

We have spoken informally of attaching ’feature annotations’ to syntactic categories. A more
general approach is to treat the whole category — that is, the non-terminal symbol plus the annotation
— as a bundle of features. Consider, for example, the object we have written as (22).

(22) N[numM = sg]

The syntactic category N, as we have seen before, provides part of speech information. This
information can itself be captured as a feature specification, as shown in (23).

(23) [pPos = N, NUM = sg]

In fact, we regard (23) as our ’official’ representation of a feature-based linguistic category, and
(22) as a convenient abbreviation. A bundle of feature-value pairs is called a feature structure or an
attribute value matrix (AVM). A feature structure which contains a specification for the feature POS
is a linguistic category.

In addition to atomic-valued features, we allow features whose values are themselves feature
structures. For example, we might want to group together agreement features (e.g., person, number
and gender) as a distinguished part of a category, as shown in (24).

24) [pos: N
agr: [per: 3
num: pl
gend: fem]]

In this case, we say that the feature AGR has a complex value.

There is no particular significance to the order of features in a feature structure. So (24) is
equivalent to (24).

25) [agr: [num: pl
per: 3
gend: fem]

pos: N]

9.2.6 Feature Structures in NLTK and Unification

Feature structures in NLTK are declared with the FeatureStructure () constructor. Atomic feature
values can be strings or integers.

>>> nltk_lite.parse.featurestructure *
>>> fsl = FeatureStructure (tense='past’, num='sg’)
>>> fsl

[num = "sg’ 1

[tense = "past’]

>>>

We can think of a feature structure as being like a Python dictionary, and access its values by
indexing in the usual way.

Bird, Curran, Klein & Loper 9-9 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

>>> fsl = FeatureStructure (per=3, num='pl’, gend='fem’)
>>> print £sl[’gend’]

fem

>>>

However, we cannot use this syntax to assign values to features:

>>> fsl[case] = 'acc’

Traceback (most recent call last):
File "<stdin>", line 1, in ?

NameError: name ’'case’ is not defined

>>>

We can also define feature structures which have complex values, as discussed earlier.

>>> fs2 = FeatureStructure (pos='N’, agr=£fsl)
>>> print £s2

[[gend = '"fem’]]
[agr = [num = "pl’]]
[[per =3 11
[1
[pos = 'N’ 1

>>> print £s2[’agr’]
[gend = ’'fem’]

[num = "pl’ 1

[per =3]

>>> print £s2[’agr’]['per’]
3

>>>

An alternative method of specifying feature structures in NLTK is to use the parse () method
of FeatureStructure. This gives us the facility to use square bracket notation for embedding one
feature structure within another.

>>> FeatureStructure.parse("[pos='N’, agr=[per=3, num='pl’, gend='fem’]]")
[agr=[gend='fem’, num='pl’, per=3], pos='N’]
>>>

Feature structures are not inherently tied to linguistic objects; they are general purpose structures
for representing knowledge. For example, we could encode information about a person in a feature
structure:

>>> person0l = FeatureStructure (name='Lee’, telno=’'01 27 86 42 96’ , age=33)
>>> >>> print personOl

[age = 33 1
[name = ’'Lee’ 1
[telno = 01 27 86 42 96’]

>>>

It is sometimes helpful to picture feature structures as graphs; more specifically, directed acyclic
graphs (DAGs). (26) is equivalent to the feature structure person01 just shown.

Bird, Curran, Klein & Loper 9-10 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

name
telno

33

'Lee’
(26) '01 27 86 42 96'

The feature names appear as labels on the directed arcs, and feature values appear as labels on the
nodes which are pointed to by the arcs.
Just as before, feature values can be complex:

A o
name \

address

.Lee X

number street

(27) 74 'rue Pascal'

When we look at such graphs, it is natural to think in terms of paths through the graph. A feature
path is a sequence of arcs that can be followed from the root node. We will represent paths in NLTK
as tuples. Thus, (’address’, ’street’) is a feature path whose value in (27) is the string ‘rue
Pascal’.

Now let’s consider a situation where Lee has a spouse named ’Kim’, and Kim’s address is the same
as Lee’s. We might represent this as (28).

spouse
e
name
address
name
address
Lee' 'Klm
number street street
number
74 'Rue Pascal' 'R b ;
ue Pasca
(28) 74

However, rather than repeating the address information in the feature structure, we can ’share’ the
same sub-graph between different arcs:

Bird, Curran, Klein & Loper 9-11 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

spouse
age
name
address

° name
33
P4 address A
Lee' Kim
number street
(29) 74 'Rue Pascal'

In other words, the value of the path (' address’) in (29) is identical to the value of the path
(' spouse’, ’"address’).DAGs such as (29) are said to involve structure sharing or reentrancy.
When two paths have the same value, they are said to be equivalent.

There are a number of notations for representing reentrancy in matrix-style representations of
feature structures. In NLTK, we adopt the following convention: the first occurrence of a shared feature
structure is prefixed with an integer in parentheses, such as (1), and any subsequent reference to that
structure uses the notation ' => (1) ’, as shown below.

>>> fs=FeatureStructure.parse (" [name='Lee’, address=(l) [number=74, street='rue Pasc
>>> print fs

[address = (1) [number = 74 1 1
[[street = "rue Pascal’]]
[1
[name = 'Lee’ 1
[1
[spouse = [address -> (1)] 1
[[name = "Kim’] 1
>>>

The bracketed integer is sometimes called a tag or a coindex. The choice of integer is not
significant. There can be any number of tags within a single feature structure.

>>> fs = FeatureStructure.parse("[A="a’, B=(1l) [C='c’], D->(1), E->(1)]1")
>>> print fs

[A="'a’]
[]
[B=(1) [C="'¢c 1]
[]
[D —> (1)]
[E —> (1)]

>>> fsl = FeatureStructure.parse("[A=(1)[], B=(2)[], C—> (1), D—>(2)1")
>>> print fs

[A= (1) []]
[1
[B=(2) []1]
[1
[C—> (1) 1
[D> (2) 1
>>>

Bird, Curran, Klein & Loper 9-12 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

It is standard to think of feature structures as providing partial information about some object, in
the sense that we can order feature structures according to how general they are. For example, (30a) is
more general (less specific) than (30b), which in turn is more general than (30c).

(30a) [number: 74]

(30b) [number: 74
street: 'rue Pascal’]

(30c) [number: 74
street: ’"rue Pascal’
city: ’"Paris’]

This ordering is called subsumption; a more general feature structure subsumes a less general
one. If F'Sy subsumes FS; (formally, we write FSy C FS7), then FS| must have all the paths and path
equivalences of FSp, and may have additional paths and equivalences as well. Thus, (28) subsumes
(29), since the latter has additional path equivalences.. It should be obvious that subsumption only
provides a partial ordering on feature structures, since some feature structures are incommensurable.
For example, (31) neither subsumes nor is subsumed by (30a).

(31) [telno = "0l 27 86 42 967]

So we have seen that some feature structures are more specific than others. How do we go about
specialising a given feature structure? For example, we might decide that addresses should consist of
not just a street number and a street name, but also a city. That is, we might want to merge graph (32b)
with (32a) to yield (32c¢).

number street

(32&) 74 ‘rue Pascal'

(32b) 'Paris'

number/I\Street\‘

city

74 ‘rue Pascal'

(32C) 'Paris'

Merging information from two feature structures is called unification and in NLTK is supported
by the unify () method defined in the FeatureStructure class.

Bird, Curran, Klein & Loper 9-13 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

>>> fsl = FeatureStructure (number=74, street='rue Pascal’)
>>> fs2 = FeatureStructure (city='Paris’)
>>> print fsl.unify(£s2)

[city = ’'Paris’]
[number = 74 1
[street = "rue Pascal’]
>>>

Unification is formally defined as a binary operation: FSp M FS;. Unification is symmetric, so
(33) FSo M FS; =FS; N FS.
The same is true in NLTK:

>>> print f£s2.unify(fsl)

[city = 'Paris’ 1
[number = 74 1
[street = "rue Pascal’]
>>>

If we unify two feature structures which stand in the subsumption relationship, then the result of
unification is the most specific of the two:

(34) If FSy C FSy, then FSy M FS; = FS,

For example, the result of unifying (30b) with (30c¢) is (30c).
Unification between FSy and FS; will fail if the two feature structures share a path w, but the value

of T in FSy is a distinct atom from the value of 7 in FS;. In NLTK, this is implemented by setting the
result of unification to be None.

>>> £s0 FeatureStructure (A='2a’)
>>> fsl = FeatureStructure(A='b’)
>>> fs2 = f£s0.unify(fsl)

>>> print £s2

None

>>>

Now, if we look at how unification interacts with structure-sharing, things become really interesting.
First, let’s define the NLTK version of (28).

>>> fsO=FeatureStructure.parse (" [name='Lee’, address=[number=74, street=’'rue Pascal
>>> print £s0

[address = [number = 74 1 1
[[street = "rue Pascal’] 1
[1
[name = ’Lee’ 1
[1
[[address = [number = 74 111
[spouse = [[street = "rue Pascal’]]]
[[11
[[name = "Kim’ 1 1
>>>

what happens when we augment Kim’s address with a specification for CITY? (Notice that £s1
includes the whole path from the root of the feature structure down to CITY.)

Bird, Curran, Klein & Loper 9-14 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

[

[name = "Kim’

>>> fsl=FeatureStructure.parse (" [spouse = [address = [city = 'Paris’]]]")
>>> print £s0.unify(fsl)

[address = [number = 74 1 1
[[street = "rue Pascal’] 1
[1
[name = ’'Lee’ 1
[1
[[[city = ’'Paris’ 1 1
[[address = [number = 74 1 1
[spouse = [[street = 'rue Pascal’] 1
[1
[1

[S R S S g —)

>>>

By contrast, the result is very different if £s1 is unified with the structure-sharing version, (29).

>>> fs2=FeatureStructure.parse (" [name='Lee’, address=(1l) [number=74, street='rue Pas
>>> print f£s2.unify(fsl)

[[city = ’'Paris’ 11
[address = (1) [number = 74 1 1
[[street = "rue Pascal’]]
[1
[name = 'Lee’ 1
[1
[spouse = [address -> (1)] 1
[1

[name = "Kim’]
>>>

Rather than just updating what was in effect Kim’s *copy’ of Lee’s address, we have now updated
both their addresses at the same time. More generally, if a unification involves specialising the value of
some path 7, then that unification simultaneously specialises the value of any path that is equivalent to
.

As we have already seen, structure sharing can also be stated in NLTK using variables such as ?x.

>>> fsl=FeatureStructure.parse (" [addressl=[number=74, street='rue Pascal’]]")
>>> fs2=FeatureStructure.parse (" [addressl=?x, address2=?x]")

>>> print £s2

[addressl = ?x]

[address2 = ?x]

>>> print f£s2.unify(fsl)

[addressl = (1) [number 74 1
[[street = ’"rue Pascal’]
[

[address2 -> (1)

>>>

—_ e

9.2.7 Exercises

1. List two feature structures which subsume [A=?x, B=7x].

2. Ignoring structure sharing, give an informal algorithm for unifying two feature structures.

Bird, Curran, Klein & Loper 9-15 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

9.3 Extending a Feature-Based Grammar

9.3.1 Subcatorization

In the chapter Parsing, we proposed to augment our category labels in order to represent different
subcategories of verb. More specifically, we introduced labels such as Vitr and Vir for intransitive and
transitive verbs respectively. This allowed us to write rules like the following:

35) VP — IV
VP — TVNP

Although it is tempting to think of IV and TV as two kinds of V, this is unjustified: from a formal
point of view, IV has no closer relationship with TV than it does, say, with NP. As it stands, IV and
TV are unanalyzable nonterminal symbols from a CFG. One unwelcome consequence is that we do not
seem able to say anything about the class of verbs in general. For example, we cannot say something
like “All lexical items of category V can be marked for tense”, since bark, say, is an item of category
IV, not V.

Using features gives us some useful room for manoeuvre but there is no obvious consensus on
how to model subcategorization information. One approach which has the merit of simplicity is due
to Generalized Phrase Structure Grammar (GPSG). GPSG stipulates that lexical categories may bear a
SUBCAT whose values are integers. This is illustrated in a modified portion of (19), shown in (36).

(36) VP [tense=?t, num=?n] -> V[subcat=0, tense=?t, num=2?n]
VP [tense=?t, num=?n] -> V[subcat=1l, tense=7?t, num=?n] NP
V[subcat=0, tense=pres, num=sg] —-> ’'disappears’ | ’'walks’
V[subcat=1l, tense=pres, num=sg] —-> ’'sees’ | ’'likes’
V[subcat=0, tense=pres, num=pl] -> ’disappear’ | ’'walk’
V[subcat=1, tense=pres, num=pl] -> ’‘see’ | ’like’
V[subcat=0, tense=past, num=?n] -> ’'disappeared’ | ’'walked’
V[subcat=1, tense=past, num=?n] -> ’'saw’ | ’'liked’

When we see a lexical category like V[SUBCAT = 1], we can interpret the SUBCAT specification as
a pointer to the rule in which V[SUBCAT = 1] is introduced as the head daughter in a VP expansion
rule. By convention, there is a one-to-one correspondence between SUBCAT values and rules which
introduce lexical heads. It’s worth noting that the choice of integer which acts as a value for SUBCAT
is completely arbitrary — we could equally well have chosen 3999 and 57 as our two values in (36).
On this approach, SUBCAT can only appear on lexical categories; it makes no sense, for example, to
specify a SUBCAT value on VP.

An alternative treatment of subcategorization, due originally to a framework known as categorial
grammar, is represented in feature-based frameworks such as PATR and Head-driven Phrase Structure
Grammar. Rather than using SUBCAT values as a way of indexing rules, the SUBCAT value directly
encodes the valency of a head (the list of arguments that it can combine with). For example, a verb like
put which takes NP and PP complements (put the book on the table:1x) might be represented as (37):

(37) V[SUBCAT = <NP, NP, PP>]

This says that the verb can combine with three arguments. The leftmost element in the list is
the subject NP, while everything else — an NP followed by a PP in this case — comprises the

Bird, Curran, Klein & Loper 9-16 July 9, 2006

file:parse.html

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

subcategorized-for complements. When a verb like put is combined with appropriate complements,
the requirements which are specified in the SUBCAT are discharged, and only a subject NP is needed.
This category, which corresponds to what is traditionally thought of as VP, might be represented as

follows.

(38) V[SUBCAT = <NP>]

Finally, a sentence is a kind of verbal category which has no requirements for further arguments, and
hence has a SUBCAT whose value is the empty list. The tree (39) shows how these category assigments

combine in a parse of Kim put the book on the table.

(39)
V[subcat=<>]

//’\

NP V[subcat=<NP>]
Kim V[subcat=<NP, NP, VP>] NP PP
put the book on the table

9.3.2 Unbounded Dependency Constructions

Consider the following contrasts:

(40a) We liked the music.

(40b) *We liked.

(41a) We put the card into the slot.
(41b) *We put into the slot.

(41c) *We put the card.

(41d) *We put.

The verb like requires an NP complement, while put requires both a following NP and PP. Exam-
ples (40) and (41) show that these complements are obligatory: omitting them leads to ungrammatical-
ity. Yet there are contexts in which obligatory complements can be omitted, as (42) and (43) illustrate.

(42a) She knows which music we like.
(42b) This music, we really like.
(43a) Which card did you put into the slot?

(43b) Which slot did you put the card into?

Bird, Curran, Klein & Loper 9-17

July 9, 2006

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

9.4 Adding Compositional Semantics

94.1 Overview

One of the goals of linguistic theory is to provide a systematic correspondence between form and mean-
ing. One widely adopted approach to representing meaning — or at least, some aspects of meaning —
involves translating expressions of natural language in to first order logic. From a computational point
of view, a strong argument in favour of first order logic is that it strikes a reasonable balance between
expressiveness and logical tractability. On the one hand, it is flexible enough to represent many aspects
of the logical structure of natural language. On the other hand, automated theorem proving for first
order logic has received much attention, and although inference in first order logic is not decidable, in
practice many reasoning problems are efficiently solvable using modern theorem provers.

Standard textbooks on first order logic often contain exercises in which the reader is required to
translate between English and logic, as illustrated in (44) and (45).!

(44a) If all whales are mammals, then Moby Dick is not a fish.
(44b) Vx(whale(x) — mammal(x)) — —fish(MD)

(45a) There is a painting that all critics admire.

(45b) Fy(painting(y) A Vx(critic(x) — admire(x, y)))

Although there are numerous subtle and thorny issues about how this translation should be carried
out in particular cases, we will put these to one side. The main focus of our discussion will be on a
different problem: how can we systematically construct a semantic representation for a sentence which
proceeds in step with the process of parsing that sentence?

Unfortunately, it is not within the scope of this chapter to introduce the syntax and semantics of first
order logic, so if you don’t already have some familiarity with it, we suggest you consult an appropriate
source.

9.4.2 The A calculus

syntax of A calculus; functions; 3 conversion

9.4.3 Compositionality

Sample grammar
coordination
quantification and scope

9.4.4 Feature-based Semantics
9.5 Further Reading

Gerald Gazdar, Ewan Klein, Geoffrey Pullum and Ivan Sag (1985) Generalized Phrase Structure
Grammar, Basil Blackwell.

IThese examples come, respectively, from D. Kalish and R. Montague (1964) Logic: Techniques of Formal Reasoning,
Harcourt, Brace and World, p94, and W. v. Quine (1952) Methods of Logic, Routledge and Kegan Paul, p121.

Bird, Curran, Klein & Loper 9-18 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 9. Feature Based Grammar

Ivan A. Sag and Thomas Wasow (1999) Syntactic Theory: A Formal Introduction, CSLI Publica-
tions.

Patrick Blackburn and Johan Bos Representation and Inference for Natural Language: A First
Course in Computational Semantics, CSLI Publications

9.6 Exercises

1.

About this document...

This chapter is a draft from Introduction to Natural Language Processing,
by Steven Bird, James Curran, Ewan Klein and Edward Loper, Copyright
© 2006 the authors. It is distributed with the Natural Language Toolkit
[http://nltk.sourceforge.net], under the terms of the Creative Commons Attribution-
ShareAlike License [http://creativecommons.org/licenses/by-sa/2.5/].

Bird, Curran, Klein & Loper 9-19 July 9, 2006

http://www.csse.unimelb.edu.au/~sb/
http://www.it.usyd.edu.au/about/people/staff/james.shtml
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.sourceforge.net
http://creativecommons.org/licenses/by-sa/2.5/

