
8. Chart Parsing

8.1 Introduction

The simple parsers discussed in the parsing tutorial have significant limitations. The bottom-up shift-
reduce parser can only find one parse, and it often fails to find a parse even if one exits. The top-down
recursive-descent parser can be very inefficient, since it often builds and discards the same sub-structure
many times over; and if the grammar contains left-recursive rules, it can enter into an infinite loop.

These completeness and efficiency problems can be addressed by employing a technique called
dynamic programming, which stores intermediate results, and re-uses them when appropriate.

In general, a parser hypothesizes constituents based on the grammar and its current knowledge
about the tokens it has seen and the constituents it has already found. Any constituent that is consistent
with the current knowledge can be hypothesized; but many of these hypothesized constituents may not
be used in complete parses.

A chart parser uses a structure called a chart to record the hypothesized constituents in a sentence.
One way to envision this chart is as a graph whose nodes are the word boundaries in a sentence. For
example, an empty chart for the sentence “John likes Mary” can be drawn as follows:

Each hypothesized constituent is drawn as an edge in this graph. For example, the following chart
hypothesizes that “likes” is a V and “Mary” is an NP:

And the following chart also hypothesizes that “likes Mary” is a VP:

In addition to recording a constituent’s type, it is also useful to record the types of its children. In
other words, we can associate a single CFG production with an edge, rather than just its nonterminal
type:

1

Introduction to Natural Language Processing (DRAFT) 8. Chart Parsing

All of the edges that we’ve seen so far represent complete constituents. However, it can also be
helpful to hypothesize incomplete constituents. For example, we might want to record the hypothesis
that “the V constituent likes forms the beginning of a VP.” We can record hypotheses of this form by
adding a dot to the edge’s right hand side. The children to the left of the dot specify what children the
constituent starts with; and the children to the right of the dot specify what children still need to be
found in order to form a complete constituent. For example, the edge in the following chart records the
hypothesis that “a VP starts with the V likes, but still needs an NP to become complete”:

These dotted edges are used to record all of the hypotheses that a chart parser makes about
constituents in a sentence. Formally, we can define a dotted edge as follows:

A dotted edge [A → c1 ... cd; • cd+1 ... cn]@[i:j] records the hypothesis that a constituent
of type A starts with children c1...cd covering words wi...wj, but still needs children
cd+1...cn to be complete (where both c1...cd and cd+1...cn may be empty.)

If d=n (i.e., if cd+1...cn is empty) then the edge represents a complete constituent, and is called a
complete edge. Otherwise, the edge represents an incomplete constituent, and is called an incomplete
edge. In the following chart, [VP → V NP •]@[1:3] is a complete edge, and [VP → V • NP]@[1:2] is
an incomplete edge.

If n=0 (i.e., if c1...cn is empty), then the edge is called a self-loop edge. In the following chart, [VP
→ • V NP]@[1:1] is a self-loop edge.

If a complete edge spans the entire sentence, and has the grammars’ start symbol as its left-hand
side, then the edge is called a parse edge, and it encodes one or more parse trees for the sentence. In
the following chart, [S → NP VP •]@[0:3] is a parse edge.

Bird, Curran, Klein & Loper 8-2 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 8. Chart Parsing

8.2 Chart Parsing

To parse a sentence, a chart parser first creates an empty chart spanning the sentence. It then finds
edges that are licensed by its knowledge about the sentence, and adds them to the chart one at a time
until one or more parse edges are found. The edges that it adds can be licensed in one of three ways:

1. The sentence can license an edge. In particular, each word wi in the sentence licenses the
complete edge [wi → •]@[i:i+1].

2. The grammar can license an edge. In particular, each grammar production A → α licenses
the self-loop edge [A → • α]@[i:i] for every i, 0≤i<n.

3. The current chart contents can license an edge.

However, it is not wise to add all licensed edges to the chart, since many of them will not be used
in any complete parse. For example, even though the edge in the following chart is licensed (by the
grammar), it will never be used in a complete parse:

Chart parsers therefore use a set of rules to heuristically decide when an edge should be added to a
chart. This set of rules, along with a specification of when they should be applied, forms a strategy.

8.2.1 The Fundamental Rule

One rule is particularly important, since it is used by every chart parser: the fundamental rule. This
rule is used to combine an incomplete edge that’s expecting a nonterminal B with a complete edge
immediately following it whose left hand side is B. Formally, it states that if the chart contains the
edges:

1. [A → α • B β]@[i:j]

2. [B → γ •]@[j:k]

Then the parser should add the edge:

3. [A → α B • β]@[i:k]

Bird, Curran, Klein & Loper 8-3 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 8. Chart Parsing

8.2.2 Bottom Up Parsing

To create a bottom-up parser, we need to add two rules: the Bottom-Up Initialization Rule; and the
Bottom-Up Predict Rule.

The Bottom-Up Initialization Rule says to add all edges licensed by the sentence. In particular, it
states that for every word wi, the parser should add the edge:

1. [wi; → •]@[i:i+1]

The Bottom-Up Predict Rule says that if the chart contains a complete edge, then the parser add
a self-loop edge at the complete edge’s left boundary for each grammar production whose right-hand
side begins with the completed edge’s left-hand side. In other words, it states that if the chart contains
the complete edge:

1. [A → α •]@[i:j]

And the grammar contains the production:

2. B → A β

Then the parser should add the self-loop edge:

3. [B → • β]@[i:i]

Using these three rules, we can parse a sentence as follows:

1. Create an empty chart spanning the sentence.

2. Apply the Bottom-Up Initialization Rule to each word.

3. Until no more edges are added:

a) Apply the Bottom-Up Predict Rule everywhere it applies.

b) Apply the Fundamental Rule everywhere it applies.

1. Return all of the parse trees corresponding to the parse edges in the chart.

Bird, Curran, Klein & Loper 8-4 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 8. Chart Parsing

For example, the following diagram shows the order in which get added when applying bottom-up
parsing to a simple example sentence:

8.2.3 Top-Down Parsing

To create a bottom-up parser, we need to use the Fundamental Rule plus three other rules: the Top-Down
Initialization Rule, the Top-Down Expand Rule, and the Top-Down Match Rule.

The top-down initialization rule captures the fact that root of any parse must be the start symbol. It
states that for every grammar production:

Bird, Curran, Klein & Loper 8-5 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 8. Chart Parsing

1. S → α

The parser should add the self-loop edge:

2. [S → • α]@[0:0]

The top-down expand rule says that if the chart contains an incomplete edge whose dot is followed
by a nonterminal B, then the parser should add any self-loop edges licensed by the grammar whose
left-hand side is B. In particular, if the chart contains the incomplete edge:

1. [A → α • B β]@[i:j]

Then for each grammar production:

2. B → γ

The parser should add the edge:

3. [B → • γ]@[j:j]

The top-down match rule says that if the chart contains an incomplete edge whose dot is followed
by a terminal w, then the parser should add an edge if the terminal corresponds to the text. In particular,
if the chart contains the incomplete edge:

Alternative image:

1. [A → α • w j β]@[i:j]

Then the parser should add the complete edge:

2. [w j; → •]@[j:j+1]

Bird, Curran, Klein & Loper 8-6 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 8. Chart Parsing

Using these four rules, we can parse a sentence as follows:

1. Create an empty chart spanning the sentence.

2. Apply the Top-Down Initialization Rule to each word.

3. Until no more edges are added:

a) Apply the Top-Down Expand Rule everywhere it applies.

b) Apply the Top-Down Match Rule everywhere it applies.

c) Apply the Fundamental Rule everywhere it applies.

1. Return all of the parse trees corresponding to the parse edges in the chart.

For example, the following diagram shows the order in which get added when applying top-down
parsing to a simple example sentence:

Bird, Curran, Klein & Loper 8-7 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 8. Chart Parsing

8.3 Chart Parsing in NLTK-Lite

8.3.1 Edges

NLTK defines two classes for encoding edges:

1. LeafEdge is used to encode edges of the form [wi → •]@[i:i+1].

Bird, Curran, Klein & Loper 8-8 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 8. Chart Parsing

2. TokenEdge is used to encode edges of the form [A → α • β]@[i:j].

LeafEdges are constructed from a leaf terminal and an index:

>>> from nltk_lite.parse.chart import *
>>> edge2=LeafEdge(’dog’, 3)
>>> edge2
[Edge: [3:4] ’dog’]

TreeEdges are constructed from a span, a left-hand side, a right-hand side, and a dot position:

>>> from nltk_lite.parse import cfg
>>> V, VP, NP, PP = cfg.nonterminals(’V VP NP PP’)
>>> edge1=TreeEdge((3,7), VP, [V,NP,PP], 2)
>>> edge1
[Edge: [3:7] VP -> V NP * PP]

The convenience function TreeEdge.from_production creates the TreeEdge licensed by a
given CFG production:

>>> prod = cfg.parse_production(’S->NP VP’)[0]
>>> index = 3
>>> edge3 = TreeEdge.from_production(prod, 3)
>>> edge3
[Edge: [3:3] S -> * NP VP]

Both TreeEdge and LeafEdge implement the EdgeI interface, which defines the methods that
all edges should support:

The edge’s span, start, end, and length >>> edge1.span() (3, 7) >>> edge1.start() 3 >>>
edge1.end() 7 >>> edge1.length() 4

The edge’s left-hand side and right-hand side. >>> edge1.lhs() <VP> >>> edge1.rhs()
(<V>, <NP>, <PP>)

The edge’s dot position. >>> edge1.dot() 2

Is it a complete edge? >>> edge1.is_complete() False >>> edge1.is_incomplete() True

The next RHS element after the dot >>> edge1.next() <PP> >>> edge2.next() None

8.3.2 Charts

Charts are encoded using the Chart class. To create an empty chart spanning a given sentence, use the
Chart constructor:

>>> from nltk_lite import tokenize
>>> text = ’James wears a hat’
>>> chart = Chart(tokenize.whitespace(text))

New edges are added to the chart using the insert method, which takes an edge and a child pointer
list. A child pointer list is a list of edges e1 · · · ed, specifying the edges that licensed each child to the
left of the dot. It is used to reconstruct the parse trees once parsing is finished.

Bird, Curran, Klein & Loper 8-9 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 8. Chart Parsing

>>> NP, N = cfg.nonterminals(’NP N’)
>>> edge1 = LeafEdge(’hat’, 3)
>>> edge2 = TreeEdge((3,3), NP, [N], 0)
>>> edge3 = TreeEdge((3,4), NP, [N], 1)
>>> chart.insert(edge1, [])
True
>>> chart.insert(edge2, [])
True
>>> chart.insert(edge3, [edge1])
True

Finally, we can pretty-print the chart with chart.pp() to get:

|. James . wears . a . hat .|
|. . . > .| [3:3] NP -> * N
|. . . [---------]| [3:4] NP -> N *
|. . . [---------]| [3:4] ’hat’

The leaves of the chart’s token can be accessed with the methods num_leaves, leaf, and leaves.
Note that this methods return the leaf properties of the words, and not the word tokens themselves:

>>> chart.num_leaves()
4
>>> chart.leaf(1)
’wears’
>>> chart.leaves()
[’James’, ’wears’, ’a’, ’hat’]

The chart’s edges can be accessed with the methods num_edges and edges:

>>> chart.num_edges()
3
>>> for edge in chart.edges(): print edge
[3:4] ’hat’
[3:3] NP -> * N
[3:4] NP -> N *

The selectmethod can be used to efficiently retrieve all edges that satisfy one or more restrictions:

>>> for edge in chart.select(start=3): print edge
[3:4] ’hat’
[3:3] NP -> * N
[3:4] NP -> N *
>>> for edge in chart.select(lhs=NP): print edge
[3:3] NP -> * N
[3:4] NP -> N *
>>> for edge in chart.select(length=1): print edge
[3:4] ’hat’
[3:4] NP -> N *
>>> for edge in chart.select(lhs=NP, length=1): print edge
[3:4] NP -> N *

The following attributes can be given as restrictions to select: span, start end, length, lhs,
rhs, next, dot, is_complete, is_incomplete.

The trees method returns a list of the trees that are associated with a given edge:

Bird, Curran, Klein & Loper 8-10 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 8. Chart Parsing

>>> chart.trees(edge3)
[(NP: ’hat’)]

The parses method returns a list of the parse trees for a given start symbol. E.g. after having
added many more edges, we could ask for the complete edges which span the entire chart, and which
are based on a production from S, using chart.parses(’S’):

(S: (NP: <James>) (VP: (V: <wears>) (NP: (Det: <a>) (N: <hat>))))

8.3.3 Chart Rules

The ChartRuleI class defines a standard interface for chart rules. Each chart rule must define the class
variable NUM_EDGES, which specifies how many edges the rule applies to (e.g., two for the Fundamental
Rule; one for the Top-Down Expand Rule; and none for the Top-Down Init Rule). Each chart rule must
also define four methods:

1. apply adds all edges licensed by the rule and a given set of edges to the chart; and returns
a list of the added edges.

2. apply_everywhere adds all edges licensed by the rule and the edges in the chart to the
chart; and returns a list of the added edges.

3. apply_iter is a generator function that adds the edges licensed by the rule and a given
set of edges to the chart, one at a time. Each time the generator is resumed, it adds a new
edge and yields that edge; or returns.

4. apply_everywhere_iter is a generator function that adds the edges licensed by the
rule and the edges in the chart to the chart, one at a time. Each time the generator is
resumed, it adds a new edge and yields that edge; or returns.

To simplify chart rule construction, nltk_lite.parse.chart defines an abstract base class.
AbstractChartRule provides default implementations for every method but apply_iter.

Currently, nltk_lite.parse.chart defines the following chart rules:

1. FundamentalRule: The Fundamental Rule.

2. TopDownInitRule: The Top Down Initialization Rule.

3. TopDownExpandRule: The Top Down Expand Rule.

4. TopDownMatchRule: The Top Down Match Rule.

5. BottomUpInit: The Bottom Up Initialization Rule.

6. BottomUpPredictRule: The Bottom Up Predict Rule.

7. CachedTopDownInitRule: A cached version of the Top Down Initialization Rule, to
avoid recomputing edges for the same configuration

8. CachedTopDownExpandRule: A cached version of the Top Down Expand Rule, to avoid
recomputing edges for the same configuration

Bird, Curran, Klein & Loper 8-11 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 8. Chart Parsing

9. SingleEdgeFundamentalRule: A single-edged version of the Fundamental Rule, that
finds edges to combine with from the chart

10. CompleterRule: A single-edged version of FundamentalRule used by Earley’s algo-
rithm.

11. ScannerRule: A lexicon-based version of TopDownMatchRule, used by Earley’s algo-
rithm.

12. PredictorRule: Another name for TopDownExpandRule, used by Earley’s algorithm.

8.3.4 ChartParser

nltk_lite.parse.chart defines a simple yet flexible chart parser, ChartParse. A new chart
parser is constructed from a grammar and a list of chart rules (also known as a strategy). These rules
will be applied, on order, until no new edges are added to the chart. In particular, ChartParse uses
the following algorithm:

Until no new edges are added:
For each chart rule $:

Apply R to any applicable edges in the chart.
Return any complete parses in the chart.

nltk_lite.parse.chart defines two pre-made strategies: TD_STRATEGY, a basic top-down
strategy; and BU_STRATEGY, a basic bottom-up strategy. When constructing a chart parser, you can
use either of these strategies, or create your own.

The following example illustrates the use of the chart parser. We start by defining a simple
grammar:

>>> grammar = cfg.parse_grammar(’’’
... S -> NP VP
... VP -> V NP | VP PP
... V -> "saw" | "ate"
... NP -> "John" | "Mary" | "Bob" | Det N | NP PP
... Det -> "a" | "an" | "the" | "my"
... N -> "dog" | "cat" | "cookie"
... PP -> P NP
... P -> "on" | "by" | "with"
... ’’’)

Next we tokenize a sentence. We make sure it is a list (not an iterator), since we wish to use the
same tokenized sentence several times.

>>> sent = list(tokenize.whitespace(’John saw a cat with my cookie’))
>>> parser = ChartParse(grammar, BU_STRATEGY)
>>> for tree in parser.get_parse_list(sent):
... print tree
(S:

(NP: ’John’)
(VP:

Bird, Curran, Klein & Loper 8-12 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 8. Chart Parsing

(VP: (V: ’saw’) (NP: (Det: ’a’) (N: ’cat’)))
(PP: (P: ’with’) (NP: (Det: ’my’) (N: ’cookie’)))))

(S:
(NP: ’John’)
(VP:

(V: ’saw’)
(NP:

(NP: (Det: ’a’) (N: ’cat’))
(PP: (P: ’with’) (NP: (Det: ’my’) (N: ’cookie’))))))

The trace parameter can be specified when creating a parser, to turn on tracing (higher trace
levels produce more verbose output). The following examples show the trace output for parsing the
same sentence with both the bottom-up and top-down strategies:

Parse the sentence, bottom-up, with tracing turned on.
>>> parser = ChartParse(grammar, BU_STRATEGY, trace=2)
>>> parser.get_parse(sent)
|. John. saw . a . cat . with. my .cooki.|
Bottom Up Init Rule:
|[-----]| [0:1] ’John’
|. [-----]| [1:2] ’saw’
|. . [-----]| [2:3] ’a’
|. . . [-----] . . .| [3:4] ’cat’
|. . . . [-----] . .| [4:5] ’with’
|. [-----] .| [5:6] ’my’
|. [-----]| [6:7] ’cookie’
Bottom Up Predict Rule:
|>| [0:0] NP -> * ’John’
|. >| [1:1] V -> * ’saw’
|. . >| [2:2] Det -> * ’a’
|. . . >| [3:3] N -> * ’cat’
|. . . . > . . .| [4:4] P -> * ’with’
|. > . .| [5:5] Det -> * ’my’
|. > .| [6:6] N -> * ’cookie’
Fundamental Rule:
|[-----]| [0:1] NP -> ’John’ *
|. [-----]| [1:2] V -> ’saw’ *
|. . [-----]| [2:3] Det -> ’a’ *
|. . . [-----] . . .| [3:4] N -> ’cat’ *
|. . . . [-----] . .| [4:5] P -> ’with’ *
|. [-----] .| [5:6] Det -> ’my’ *
|. [-----]| [6:7] N -> ’cookie’ *
Bottom Up Predict Rule:
|>| [0:0] S -> * NP VP
|>| [0:0] NP -> * NP PP
|. >| [1:1] VP -> * V NP
|. . >| [2:2] NP -> * Det N
|. . . . > . . .| [4:4] PP -> * P NP
|. > . .| [5:5] NP -> * Det N
Fundamental Rule:
|[----->| [0:1] S -> NP * VP
|[----->| [0:1] NP -> NP * PP
|. [----->| [1:2] VP -> V * NP

Bird, Curran, Klein & Loper 8-13 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 8. Chart Parsing

|. . [----->| [2:3] NP -> Det * N
|. . [-----------] . . .| [2:4] NP -> Det N *
|. . . . [-----> . .| [4:5] PP -> P * NP
|. [-----> .| [5:6] NP -> Det * N
|. [-----------]| [5:7] NP -> Det N *
|. [-----------------] . . .| [1:4] VP -> V NP *
|. . . . [-----------------]| [4:7] PP -> P NP *
|[-----------------------] . . .| [0:4] S -> NP VP *
Bottom Up Predict Rule:
|. . >| [2:2] S -> * NP VP
|. . >| [2:2] NP -> * NP PP
|. > . .| [5:5] S -> * NP VP
|. > . .| [5:5] NP -> * NP PP
|. >| [1:1] VP -> * VP PP
Fundamental Rule:
|. . [-----------> . . .| [2:4] S -> NP * VP
|. . [-----------> . . .| [2:4] NP -> NP * PP
|. [----------->| [5:7] S -> NP * VP
|. [----------->| [5:7] NP -> NP * PP
|. [-----------------> . . .| [1:4] VP -> VP * PP
|. . [-----------------------------]| [2:7] NP -> NP PP *
|. [-----------------------------------]| [1:7] VP -> VP PP *
|. . [----------------------------->| [2:7] S -> NP * VP
|. . [----------------------------->| [2:7] NP -> NP * PP
|. [----------------------------------->| [1:7] VP -> VP * PP
|. [-----------------------------------]| [1:7] VP -> V NP *
|[===]| [0:7] S -> NP VP *
|[===]| [0:7] S -> NP VP *
|. [----------------------------------->| [1:7] VP -> VP * PP

(S: (NP: ’John’) (VP: (VP: (V: ’saw’) (NP: (Det: ’a’) (N: ’cat’))) (PP: (P: ’with’) (NP: (Det: ’my’) (N: ’cookie’)))))

Next we parse the same sentence, top-down, with tracing turned on:

>>> parser = ChartParse(grammar, TD_STRATEGY, trace=2)
>>> parser.get_parse(sent)
|. John. saw . a . cat . with. my .cooki.|
Top Down Init Rule:
|>| [0:0] S -> * NP VP
Top Down Expand Rule:
|>| [0:0] NP -> * ’John’
|>| [0:0] NP -> * ’Mary’
|>| [0:0] NP -> * ’Bob’
|>| [0:0] NP -> * Det N
|>| [0:0] NP -> * NP PP
|>| [0:0] Det -> * ’a’
|>| [0:0] Det -> * ’an’
|>| [0:0] Det -> * ’the’
|>| [0:0] Det -> * ’my’
Top Down Match Rule:
|[-----]| [0:1] ’John’
Fundamental Rule:
|[-----]| [0:1] NP -> ’John’ *
|[----->| [0:1] NP -> NP * PP

Bird, Curran, Klein & Loper 8-14 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 8. Chart Parsing

|[----->| [0:1] S -> NP * VP
Top Down Expand Rule:
|. >| [1:1] PP -> * P NP
|. >| [1:1] VP -> * V NP
|. >| [1:1] VP -> * VP PP
|. >| [1:1] P -> * ’on’
|. >| [1:1] P -> * ’by’
|. >| [1:1] P -> * ’with’
|. >| [1:1] V -> * ’saw’
|. >| [1:1] V -> * ’ate’
Top Down Match Rule:
|. [-----]| [1:2] ’saw’
Fundamental Rule:
|. [-----]| [1:2] V -> ’saw’ *
|. [----->| [1:2] VP -> V * NP
Top Down Expand Rule:
|. . >| [2:2] NP -> * ’John’
|. . >| [2:2] NP -> * ’Mary’
|. . >| [2:2] NP -> * ’Bob’
|. . >| [2:2] NP -> * Det N
|. . >| [2:2] NP -> * NP PP
|. . >| [2:2] Det -> * ’a’
|. . >| [2:2] Det -> * ’an’
|. . >| [2:2] Det -> * ’the’
|. . >| [2:2] Det -> * ’my’
Top Down Match Rule:
|. . [-----]| [2:3] ’a’
Fundamental Rule:
|. . [-----]| [2:3] Det -> ’a’ *
|. . [----->| [2:3] NP -> Det * N
Top Down Expand Rule:
|. . . >| [3:3] N -> * ’dog’
|. . . >| [3:3] N -> * ’cat’
|. . . >| [3:3] N -> * ’cookie’
Top Down Match Rule:
|. . . [-----] . . .| [3:4] ’cat’
Fundamental Rule:
|. . . [-----] . . .| [3:4] N -> ’cat’ *
|. . [-----------] . . .| [2:4] NP -> Det N *
|. [-----------------] . . .| [1:4] VP -> V NP *
|. . [-----------> . . .| [2:4] NP -> NP * PP
|[-----------------------] . . .| [0:4] S -> NP VP *
|. [-----------------> . . .| [1:4] VP -> VP * PP
Top Down Expand Rule:
|. . . . > . . .| [4:4] PP -> * P NP
|. . . . > . . .| [4:4] P -> * ’on’
|. . . . > . . .| [4:4] P -> * ’by’
|. . . . > . . .| [4:4] P -> * ’with’
Top Down Match Rule:
|. . . . [-----] . .| [4:5] ’with’
Fundamental Rule:
|. . . . [-----] . .| [4:5] P -> ’with’ *
|. . . . [-----> . .| [4:5] PP -> P * NP

Bird, Curran, Klein & Loper 8-15 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 8. Chart Parsing

Top Down Expand Rule:
|. > . .| [5:5] NP -> * ’John’
|. > . .| [5:5] NP -> * ’Mary’
|. > . .| [5:5] NP -> * ’Bob’
|. > . .| [5:5] NP -> * Det N
|. > . .| [5:5] NP -> * NP PP
|. > . .| [5:5] Det -> * ’a’
|. > . .| [5:5] Det -> * ’an’
|. > . .| [5:5] Det -> * ’the’
|. > . .| [5:5] Det -> * ’my’
Top Down Match Rule:
|. [-----] .| [5:6] ’my’
Fundamental Rule:
|. [-----] .| [5:6] Det -> ’my’ *
|. [-----> .| [5:6] NP -> Det * N
Top Down Expand Rule:
|. > .| [6:6] N -> * ’dog’
|. > .| [6:6] N -> * ’cat’
|. > .| [6:6] N -> * ’cookie’
Top Down Match Rule:
|. [-----]| [6:7] ’cookie’
Fundamental Rule:
|. [-----]| [6:7] N -> ’cookie’ *
|. [-----------]| [5:7] NP -> Det N *
|. . . . [-----------------]| [4:7] PP -> P NP *
|. [----------->| [5:7] NP -> NP * PP
|. . [-----------------------------]| [2:7] NP -> NP PP *
|. [-----------------------------------]| [1:7] VP -> VP PP *
|. [-----------------------------------]| [1:7] VP -> V NP *
|. . [----------------------------->| [2:7] NP -> NP * PP
|[===]| [0:7] S -> NP VP *
|. [----------------------------------->| [1:7] VP -> VP * PP
|[===]| [0:7] S -> NP VP *
|. [----------------------------------->| [1:7] VP -> VP * PP
Top Down Expand Rule:
|. >| [7:7] PP -> * P NP
|. >| [7:7] P -> * ’on’
|. >| [7:7] P -> * ’by’
|. >| [7:7] P -> * ’with’

(S: (NP: ’John’) (VP: (VP: (V: ’saw’) (NP: (Det: ’a’) (N: ’cat’))) (PP: (P: ’with’) (NP: (Det: ’my’) (N: ’cookie’)))))

8.4 Exercises

1. Use the graphical chart-parser interface to experiment with different rule invocation strate-
gies. Come up with your own strategy which you can execute manually using the graphical
interface. Describe the steps, and report any efficiency improvements it has (e.g. in terms
of the size of the resulting chart). Do these improvements depend on the structure of the
grammar? What do you think of the prospects for significant performance boosts from
cleverer rule invocation strategies?

Bird, Curran, Klein & Loper 8-16 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 8. Chart Parsing

About this document...
This chapter is a draft from Introduction to Natural Language Processing,
by Steven Bird, James Curran, Ewan Klein and Edward Loper, Copyright
 2006 the authors. It is distributed with the Natural Language Toolkit
[http://nltk.sourceforge.net], under the terms of the Creative Commons Attribution-
ShareAlike License [http://creativecommons.org/licenses/by-sa/2.5/].

Bird, Curran, Klein & Loper 8-17 July 9, 2006

http://www.csse.unimelb.edu.au/~sb/
http://www.it.usyd.edu.au/about/people/staff/james.shtml
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.sourceforge.net
http://creativecommons.org/licenses/by-sa/2.5/

