7. Grammars and Parsing

7.1 Introduction

Early experiences with the kind of grammar taught in school are often confusing. Written work may
be graded by a teacher who red-lines all the grammar errors they won’t put up with. Like the dangling
preposition in the last sentence, or sentences like this one which lack a main verb. Learning English as
a second language, it may be difficult to discover which of these errors need to be fixed (or needs to
be fixed?). Correct punctuation is something of an obsession for many writers and editors (as our own
students have observed). Of course, it is all in the name of effective communication. In the following
example, the interpretation of a relative clause as restrictive or non-restrictive depends on the presence
of commas alone:

(1a) The presidential candidate, who was extremely popular, smiled broadly.
(1b) The presidential candidate who was extremely popular smiled broadly.

In (1a), we assume there is just one presidential candidate, and say two things about her: that she
was popular and that she smiled. In (1b), on the other hand, we use the description who was extremely
popular as a means of identifying for the hearer which of several candidates we are referring to.

It is clear that some of these rules are important. Others seem to be vestiges of antiquated style that
preoccupies only the most crusty curmudgeons. As an example, consider the injunction that however —
when used to mean nevertheless — must not appear at the start of a sentence. Pullum argues that Strunk
and White were merely insisting that English usage should conform to “an utterly unimportant minor
statistical detail of style concerning adverb placement in the literature they knew” [languagelog.org].

When reading, we sometimes find that we have to stop and re-read a sentence in order to resolve an
ambiguity. Curiously, it seems possible to combine unambiguous words to create ambiguous sentences:

(2a) Fighting animals could be dangerous.

(2b) Visiting relatives can be tiresome.

Perhaps another kind of syntactic variation, word order, is easier to understand. We know that the
two sentences Kim likes Sandy and Sandy likes Kim have different meanings, and that likes Sandy Kim
is simply ungrammatical. Similarly, we know that the following two sentences are equivalent:

(3a) The farmer loaded the cart with sand
(3b) The farmer loaded sand into the cart

However, consider the semantically similar verbs filled and dumped. Now the word order cannot
be altered (ungrammatical sentences are prefixed with an asterisk.)

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

(4a) The farmer filled the cart with sand
(4b) *The farmer filled sand into the cart
(4c) *The farmer dumped the cart with sand
(4d) The farmer dumped sand into the cart

A further curious fact is that we are able to access the meaning of sentences we have not encoun-
tered. It is not difficult to concoct an entirely novel sentence, one that has probably never been used
before in the history of the language, and yet all speakers of the language will agree about its meaning.
In fact, the set of possible sentences is infinite, given that there is no upper bound on length. Consider
the following passage from a children’s story, containing a rather impressive sentence:

You can imagine Piglet’s joy when at last the ship came in sight of him. In after-years he
liked to think that he had been in Very Great Danger during the Terrible Flood, but the only
danger he had really been in was the last half-hour of his imprisonment, when Owl, who
had just flown up, sat on a branch of his tree to comfort him, and told him a very long story
about an aunt who had once laid a seagull’s egg by mistake, and the story went on and on,
rather like this sentence, until Piglet who was listening out of his window without much
hope, went to sleep quietly and naturally, slipping slowly out of the window towards the
water until he was only hanging on by his toes, at which moment, luckily, a sudden loud
squawk from Owl, which was really part of the story, being what his aunt said, woke the
Piglet up and just gave him time to jerk himself back into safety and say, “How interesting,
and did she?” when -- well, you can imagine his joy when at last he saw the good ship,
Brain of Pooh (Captain, C. Robin; 1st Mate, P. Bear) coming over the sea to rescue him...
(from A.A. Milne In which Piglet is Entirely Surrounded by Water)

Our ability to produce and understand entirely new sentences, of arbitrary length, demonstrates
that the set of well-formed sentences in English is infinite. The same case can be made for any human
language.

This chapter presents grammars and parsing, as the formal and computational methods for inves-
tigating and modelling the linguistic phenomena we have been touching on (or tripping over). As we
shall see, patterns of well-formedness and ill-formedness in a sequence of words can be understood with
respect to the underlying phrase structure of the sentences. We can develop formal models of these
structures using grammars and parsers. As before, the motivation is natural language understanding.
How much more of the meaning of a text can we access when we can reliably recognize the linguistic
structures it contains? Having read in a text, can a program ’understand’ it enough to be able to answer
simple questions about “what happened?” or “who did what to whom?” Also as before, we will develop
simple programs to process annotated corpora and perform useful tasks.

7.2 What’s the Use of Syntax?

Earlier chapters focussed on words: how to identify them, how to analyse their morphology, and how to
assign them to classes via part-of-speech tags. We have also seen how to identify recurring sequences of
words (i.e. n-grams). Nevertheless, there seem to be linguistic regularities which cannot be described
simply in terms of n-grams. In this section we will see why it is useful to have some kind of syntactic
representation of sentences. In particular, we will see that there are systematic aspects of meaning
which are much easier to capture once we have established a level of syntactic structure.

Bird, Curran, Klein & Loper 7-2 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

7.2.1 Syntactic Ambiguity

We have seen that sentences can be ambiguous. If we overheard someone say I went to the bank,
we wouldn’t know whether it was a river bank or a financial institution. This ambiguity concerns the
meaning of the word bank, and is a kind of lexical ambiguity.

However, other kinds of ambiguity cannot be explained in terms of ambiguity of specific words.
We can construct simple examples of syntactic ambiguity involving coordinating conjunctions like and
and or. Consider the following sentence:

(5) Kim left or Dana arrived and everyone cheered.

It should be obvious to you that there are two distinct interpretations of this sentence. How should
we account for the difference? If you are familiar with propositional logic, you will not be surprised at
the idea of using brackets to represent semantic structure:

(6a) Kim arrived or (Dana left and everyone cheered)
(6b) (Kim arrived or Dana left) and everyone cheered

We can describe this ambiguity in terms of the semantic scope of or and and: in the reading
represented by (6a), the operator or takes the conjoined sentence Dana arrived and everyone cheered
as one of its arguments, and therefore is said to have wider scope than and. Conversely, in (6b), the
operator and has wider scope than or. One convenient way of representing this scope difference at a
structural level is by means of a tree diagram.

(7a)
S
Y
S conj S
Y
Kim arrived o| r S conj S
—
Dana left ar|1d everyone cheered
(7b)
S
_— N —
S conj S
_— \
S conj S ar|1d everyone cheered
—
Kim arrived o|r Dana left

Note that linguistic trees grow upside down: the node labeled S is the root of the tree, while the
leaves of the tree are labeled with the words.
In NLTK-Lite, you can easily produce trees like this yourself with the following commands:

>>> from nltk_lite.parse import bracket_parse

>>> sent = ' (S (S Kim arrived) (conj or) (S Dana left))’
>>> tree = bracket_parse(sent)

>>> tree.draw()

Bird, Curran, Klein & Loper 7-3 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

Conveniently, the resulting tree object supports Python’s standard array operations for accessing its
children:

>>> tree[0]
(S: '"Kim’ ’arrived’)

A second example of scope ambiguity involves adjectives: old men and women. Does old have
wider scope than and, or is it the other way round? In fact, both interpretations are possible.

For our third illustration of ambiguity, we look at prepositional phrases. Consider a sentence like:
I saw the man with a telescope. Who has the telescope? To clarify what is going on here, consider the
following pair of sentences:

(8a) The policeman saw a burglar with a gun. (not some other burglar)
(8b) The policeman saw a burglar with a telescope. (not with his naked eye)

In both cases, there is a prepositional phrase introduced by with. In the first case this phrase modifies
the noun burglar, and in the second case it modifies the verb saw. We could again think of this in terms
of scope: does the prepositional phrase (PP) just have scope over the NP a burglar, or does it have
scope over the whole verb phrase? Again, we can represent the difference in terms of tree structure:

(9a)
S
/\
NP VP
/\
the policeman Vv NP
/\
seEw NP PP
the burglar with a gun
(9b)
S
/\
NP VP
Y T
the policeman \" NP PP
se!w the burglar with a telescope

We can generate these trees in Python as follows:

>>> sl

"(S (NP the policeman) (VP (V saw) (NP (NP the burglar) (PP with a gun))))

>>> s2 = ' (S (NP the policeman) (VP (V saw) (NP the burglar) (PP with a telescope))

>>> treel = bracket_parse(sl)
>>> tree2 = bracket_parse(s2)

We can see that they are trees over the same sequence of words (that is, the two trees have the same
leaves):

Bird, Curran, Klein & Loper 7-4 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

>>> treel.leaves() == tree2.leaves
True

On the other hand, they have different heights (given by the number of nodes in the longest branch
of the tree, starting at S and descending to the words):

>>> treel.height () == tree2.height ()
False

In general, how can we determine whether a prepositional phrase modifies the preceding noun
or verb? This problem is often described with the label PP attachment. The Prepositional Phrase
Attachment Corpus, included with NLTK-Lite as ppattach, makes it possible for us to study this
question systematically. The corpus is derived from the IBM-Lancaster Treebank of Computer Manuals
and from the Penn Treebank, and distills out only the essential information about PP attachment.
Consider the following sentence from the WSJ:

(10) Four of the five surviving workers have asbestos-related diseases, including three with recently
diagnosed cancer.

The corresponding line in the ppattach corpus is this:
(11 16 including three with cancer N

That is, it includes an identifier for the original sentence, the head of the relevant verb phrase (i.e.,
including), the head of the verb’s NP object (three), the preposition (with), and the head noun within the
prepositional phrase (cancer). Finally, it contains an ’attachment’ feature (N or V) to indicate whether
the prepositional phrase attaches to (modifies) the noun phrase or the verb phrase. Here are some
further examples:

(12) 47830 allow visits between families N
47830 allow visits on peninsula V
42457 acquired interest in firm N

42457 acquired interest in 1986 V

The attachments in the above examples can also be made explicit by using phrase groupings as
follows:

(13) allow (NP visits (PP between families))
allow (NP visits) (PP on peninsula)
acquired (NP interest (PP in firm))
acquired (NP interest) (PP in 1986)

Observe in each case that the argument of the verb is either a single complex expression (visits
(between families)) or a pair of simpler expressions (visits) (on peninsula). We can
access this corpus from NLTK-Lite as follows:

>>> nltk_lite.corpora ppattach, extract
>>> pprint pprint
>>> jitem = extract (16, ppattach.dictionary(’devset’))
>>> pprint (item)

{"attachment’: 'N’,

"nounl’: ’'three’,

"noun2’ : ’cancer’,

"prep’: ’'with’,

"sent’: ’"16’,

"verb’ : ’'including’}

Bird, Curran, Klein & Loper 7-5 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

If we go back to our first examples of PP attachment ambiguity, it appears as though it is the
PP itself (e.g., with a gun versus with a telescope) that determines the attachment. However, we can
use this corpus to find examples where other factors come in to play. The following program uses
MinimalSet to find pairs of entries in the corpus which have different attachments based on the verb
only.

>>> nltk lite.utilities MinimalSet

>>> ms = MinimalSet ()

>>> entry ppattach.dictionary (' training’) :
target = entry[’attachment’]

context (entry['nounl’], entry[’'prep’], entry[’'noun2’])
display = (target, entry[’verb’])
.. ms.add (context, target, display)
>>> context ms.contexts () :
context, ms.display all (context)

Here is one of the pairs found by the program.

(14) received (NP offer) (PP from group)
rejected (NP offer (PP from group))

This finding gives us clues to a structural difference: the verb receive usually comes with two
following arguments; we receive something from someone. In contrast, the verb reject only needs a
single following argument; we can reject something without needing to say where it originated from.
We expect that if you look at the data, you will be able to come up with further ideas about the factors
that influence PP attachment.

7.2.2 Constituency

We claimed earlier that one of the motivations for building syntactic structure was to help make explicit
how a sentence says “who did what to whom”. Let’s just focus for a while on the “who” part of this
story: in other words, how can syntax tell us what the subject of a sentence is? At first, you might think
this task is rather simple — so simple indeed that we don’t need to bother with syntax. In a sentence
such as

(15) The fierce dog bit the man.

we know that it is the dog that is doing the biting. So we could say that the noun phrase immediately
preceding the verb is the subject of the sentence. And we might try to make this more explicit in terms
of sequences part-of-speech tags. Let’s try to come up with a simple definition of noun phrase; we
might start off with something like this:

(16) DT JJ* NN

We’re using regular expression notation here in the form of JJ* to indicate a sequence of zero or
more JJs. So this is intended to say that a noun phrase can consist of a determiner, possibly followed
by some adjectives, followed by a noun. Then we can go on to say that if we can find a sequence of
tagged words like this that precedes a word tagged as a verb, then we’ve identified the subject. But now
think about this sentence:

(17) The child with a fierce dog bit the man.

Bird, Curran, Klein & Loper 7-6 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

This time, it’s the child that is doing the biting. But the tag sequence preceding the verb is:
(18) DT NN IN DT JJ NN

Our previous attempt at identifying the subject would have incorrectly come up with the fierce dog
as the subject.

So our next hypothesis would have to be a bit more complex. For example, we might say that the
subject can be identified as any string matching the following pattern before the verb:

(19) DT JJ* NN (IN DT JJ* NN)

In other words, we need to find a noun phrase followed by zero or more sequences consisting of a
preposition followed by a noun phrase. Now there are two unpleasant aspects to this proposed solution.
The first is aesthetic: we are forced into repeating the sequence of tags (DT JJ* NN) that constituted
our initial notion of noun phrase, and our initial notion was in any case a drastic simplification. More
worrying, this approach still doesn’t work! For consider the following example:

(20) The seagull that attacked the child with the fierce dog bit the man.

This time the seagull is the culprit, but it won’t be detected as subject by our attempt to match
sequences of tags. So it seems that we need a richer account of how words are grouped together into
patterns, and a way of referring to these groupings at different points in the sentence structure. This
idea of grouping is often called syntactic constituency.

As we have just seen, a well-formed sentence of a language is more than an arbitrary sequence of
words from the language. Certain kinds of words usually go together. For instance, determiners like
the are typically followed by adjectives or nouns, but not by verbs. Groups of words form intermediate
structures called phrases or constituents. These constituents can be identified using standard syntactic
tests, such as substitution, movement and coordination. For example, if a sequence of words can be
replaced with a pronoun, then that sequence is likely to be a constituent. According to this test, we can
infer that the italicised string in the following example is a constituent, since it can be replaced by they:

(21a) Ordinary daily multivitamin and mineral supplements could help adults with diabetes fight off
some minor infections.

(21b) They could help adults with diabetes fight off some minor infections.

In order to identify whether a phrase is the subject of a sentence, we can use the construction
called Subject-Auxiliary Inversion in English. This construction allows us to form so-called Yes-No
Questions. That is, corresponding to the statement in (22a), we have the question in (22b):

(22a) All the cakes have been eaten.
(22b) Have all the cakes been eaten?

Roughly speaking, if a sentence already contains an auxiliary verb, such as has in (22a), then we
can turn it into a Yes-No Question by moving the auxiliary verb ’over’ the subject noun phrase to the
front of the sentence. If there is no auxiliary in the statement, then we insert the appropriate form of do
as the fronted auxiliary and replace the tensed main verb by its base form:

(23a) The fierce dog bit the man.

Bird, Curran, Klein & Loper 7-7 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

(23b) Did the fierce dog bite the man?

As we would hope, this test also confirms our earlier claim about the subject constituent of (20):
(24) Did the seagull that attacked the child with the fierce dog bite the man?

To sum up then, we have seen that the notion of constituent brings a number of benefits. By having
a constituent labeled noun phrase, we can provide a unified statement of the classes of word that
constitute that phrase, and reuse this statement in describing noun phrases wherever they occur in the
sentence. Second, we can use the notion of a noun phrase in defining the subject of sentence, which in
turn is a crucial ingredient in determining the “who does what to whom” aspect of meaning.

7.2.3 More on NLTK’s Trees

We have been discussing structural differences between sentences, and we have been probing these

structures by substituting words and phrases. We have informally shown how sentence structures can

be represented using syntactic trees, and we will now look at these structures in a bit more detail.
Consider the following example:

(25)
S
/\
NP VP
I N
Lee \' NP

PN

saw the dog

Terminology: A tree is a set of connected nodes, each of which is labeled with a category. It
common to use a “family” metaphor to talk about the relationships of nodes in a tree: for example, S
is the parent of VP; conversely VP is a daughter (or child) of S. Also, since NP and VP are both
daughters of S, they are also sisters.

Each production in a CFG corresponds to a tree of depth one; we call these local:dt:* trees.

Although it is helpful to represent trees in a graphical format, for computational purposes we
usually need a more text-oriented representation. One standard method is to use a combination of
bracket and labels to indicate the structure, as shown here:

(s
(NP 'Lee’)
(VP
(V "saw’)
(NP
(Det ’"the’)

(N ’"dog’))))
The conventions for displaying trees in NLTK are similar:

(S: (NP: '"Lee’) (VP: (V: ’"saw’) (NP: 'the’ ’'dog’)))

Bird, Curran, Klein & Loper 7-8 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

In such trees, the node value is a string containing the tree’s constituent type (e.g., NP or VP),
while the children encode the hierarchical contents of the tree!.

Trees are created with the Tree constructor, which takes a node value and a list of zero or more
children. Here’s an example of a simple NLTK-Lite tree with a single child node, where the latter is a
token:

>>> nltk_lite.parse.tree Tree
>>> treel = Tree('NP’, [’'John’])

>>> treel

(NP: ’"John’)

Here is an example with two children:

>>> tree2 = Tree('NP’, [’'the’, ’'man’])
>>> tree2
(NP: "the’ 'man’)

Finally, here is a more complex example, where one of the children is itself a tree:

>>> tree3 = Tree('VP’', ['saw’, tree2])
>>> tree3
(VP: '"saw’ (NP: 'the’ 'man’))

A tree’s root node value is accessed with the node property, and its leaves are accessed with the
leaves () method:

>>> tree3.node

IVPV

>>> tree3.leaves ()
["saw’, ’"the’, ’'man’]

One common way of defining the subject of a sentence S in English is as the noun phrase that is
the daughter of S and the sister of VP. Although we cannot access subjects directly, in practice we
can get something similar by using tree positions. Consider tree4 defined as follows:

>>> treed = Tree(’'S’, [treel, tree3])
>>> treed
(S: (NP: 'John’) (VP: 'saw’ (NP: 'the’ 'man’)))

Now we can just use indexing to access the subtrees of this tree:

>>> treed[0]
(NP: ’"John’)
>>> tree4d[1l]
(VP: "saw’ (NP: ’'the’ 'man’))

Since the value of tree4d[1] is itself a tree, we can index into that as well:

>>> treed[1][0]
" saw
>>> treed[1][1]

(NP: "the’ 'man’)

4

! Although the Tree class is usually used for encoding syntax trees, it can be used to encode any homogeneous
hierarchical structure that spans a text (such as morphological structure or discourse structure). In the general case, leaves
and node values do not have to be strings.

Bird, Curran, Klein & Loper 7-9 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

The printed representation for complex trees can be difficult to read. In these cases, the draw
method can be very useful.

>>> tree3.draw()

This method opens a new window, containing a graphical representation of the tree:

‘Be 6 x| NLTK

Fle Zoom |

VP
/\
saw NP
the man
S — P

The tree display window allows you to zoom in and out; to collapse and expand subtrees; and to
print the graphical representation to a postscript file (for inclusion in a document).
To compare multiple trees in a single window, we can use the draw_trees () method:

>>> nltk_lite.draw.tree draw_trees
>>> draw_trees(treel, tree2, tree3)

The Tree class implements a number of other useful methods. See the Tree reference documen-
tation for more information about these methods.

The nltk_lite.corpora module defines the treebank corpus, which contains a collection of
hand-annotated parse trees for English text, derived from the Penn Treebank.

>>> nltk_lite.corpora treebank, extract
>>> extract (0, treebank.parsed())
(S:

(NP-SBJ':

(NP: (NNP: ’'Pierre’) (NNP: ’'Vinken’))
(I: ’I,)
(ADJP: (NP: (CD: ’'61’) (NNS: ’'years’)) (JJ: ’'old’))
G: "))
(VP:
(MD: 'will’)
(VP:
(VB: ’join’)
(NP: (DT: ’"the’) (NN: ’'board’))
(PP-CLR:
(IN: "as’)
(NP: (DT: ’'a’) (JJ: ’'nonexecutive’) (NN: ’'director’)))
(NP-TMP: (NNP: ’'Nov.’) (CD: '297))))
(.:"7."))

7.2.4 Exercises

1. a) Write code to produce two trees, one for each reading of the phrase old men
and women

b) Encode any of the trees presented in this chapter as a labeled bracketing and use
the nltk_lite.parse module’s bracket_parse () method to check that it
is well-formed. Now use the draw () to display the tree.

Bird, Curran, Klein & Loper 7-10 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

¢) Asin (a) above, draw a tree for The woman saw a man last Thursday.

2. Using tree positions, list the subjects of the first 100 sentences in the Penn treebank; to
make the results easier to view, limit the extracted subjects to subtrees whose height is 2.

7.3 Context Free Grammar

As we have seen, languages are infinite — there is no principled upper-bound on the length of a
sentence. Nevertheless, we would like to write programs that can process well-formed sentences.
It turns out that we can characterize what we mean by well-formedness using a grammar. The way
that finite grammars are able to describe an infinite set uses recursion. (We already came across this
idea when we looked at regular expressions: the finite expression a+ is able to describe the infinite set
{a, aa, aaa, aaaa, ...}). Apartfrom their compactness, grammars usually capture important
structural and distributional properties of the language, and can be used to map between sequences of
words and abstract representations of meaning. Even if we were to impose an upper bound on sentence
length to ensure the language was finite, we would probably still want to come up with a compact
representation in the form of a grammar.

A grammar is a formal system which specifies which sequences of words are well-formed in the
language, and which provides one or more phrase structures for well-formed sequences. We will be
looking at context-free grammar (CFG), which is a collection of productions of the form S — NP
VP. This says that a constituent S can consist of sub-constituents NP and VP. Similarly, the production
VB — "help’ means that the constituent VB can consist of the string help. For a phrase structure tree
to be well-formed relative to a grammar, each non-terminal node and its children must correspond to a
production in the grammar.

7.3.1 A Simple Grammar

Let’s start off by looking at a simple context-free grammar:

(26) S — NP VP
NP — Det N PP
NP — Det N
VP —> V NP PP
VP —> V NP
VP -V
PP — P NP

Det — ’the’
Det —’a’
N — ’man’ | ’park’ | ’dog’ | "telescope’
V — ’saw’ | "'walked’
P —’in’ | *with’
This grammar contains productions involving various syntactic categories, as laid out in the follow-
ing table:

Bird, Curran, Klein & Loper 7-11 July 9, 2006

Introduction to Natural Language Processing (DRAFT)

7. Grammars and Parsing

Table 1: Syntactic Categories

Symbol | Meaning Example

S sentence the man walked
NP noun phrase a dog

VP verb phrase saw a park

PP prepositional phrase with a telescope
Det determiner

N noun

\" verb

P preposition

Terminology: The grammar consists of productions, where each production involves a single non-
terminal (e.g. S, NP), an arrow, and one or more non-terminals and terminals (e.g. walked). The
productions are often divided into two main groups. The grammatical productions are those without
a terminal on the right-hand side. The lexical productions are those having a terminal on the right-
hand side. A special case of non-terminals are the pre-terminals, which appear on the left-hand side
of lexical productions.

In order to get started with developing simple grammars of your own, you will probably find it
convenient to play with the recursive descent parser demo, which is invoked as follows:

>>> from nltk_lite.draw import rdparser
>>> rdparser.demo ()

The demo opens a window which displays a list of grammar rules in the lefthand pane and the
current parse diagram in the central pane:

e06e X Recursive Descent Parser Demo

Hle Edit Apply MView Animate Help |

Available Expansions 5 Y
5 = NP WP [

MNP -= Det M PP NP vP

WP -> DetH [

VP -> ¥ NP PP Det 1 PP

VP -x Y NP
VP>

PP ->F NP

MNP -

Det-> 'the'
Det-='a'

M- 'man’

N -= 'park’
M- 'dog'

M ->'telescope’

oo ate!
Wo-nsaw’ the

F-=in o
P -= ‘under’
F > with’ = T

Last Operation: |Match. the

Step | autostep | Expand | Match | Backtrack | y

The demo comes with the grammar in (26) already loaded. We will discuss the parsing algorithm
in greater detail below, but for the time being you can get a rough idea of how it works by using the
autostep button.

If we parse the string The dog saw a man in the park using the grammar in (26), we end up with
two trees:

Bird, Curran, Klein & Loper 7-12 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

(27a)
S
/\
NP VP
RN] T
Det N \ NP PP
l | I l N
the dog saw NP P NP
Det N in Det N
| | | I
a man the park
(27b)
S
/\
NP VP
/\ /\
Det N \" NP
l l l 7 T~
the dog saw Det N PP
I N
a man P NP
AN
in Det N
I l
the park

Since our grammar assigns two distinct structures, the sentence is said to be structurally ambigu-
ous. The ambiguity in question is called a PP attachment ambiguity, as we saw earlier in this chapter.
As you may recall, it is an ambiguity about attachment since the PP in the park needs to be attached to
one of two places in the tree: either as a daughter of VP or else as a daughter of NP.

As we noted earlier, there is also a difference in interpretation: where the PP is attached to VP, the
intended interpretation is that the event of seeing took place in the park, while if the PP is attached to
NP, being in the park is a property of the NP referent; that is, the man was in the park, but the agent of
the seeing — the dog — might have been somewhere else (e.g., sitting on the balcony of an apartment
overlooking the park). As we will see, dealing with ambiguity is a key challenge in parsing.

7.3.2 Exercises

1. In the recursive descent parser demo, experiment with changing the sentence to be parsed
by selecting Edit Text in the Edit menu.

2. Can the grammar in (26) be used to describe sentences which are more than 20 words in
length?

Bird, Curran, Klein & Loper 7-13 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

3. You can modify the grammar in the recursive descent parser demo by selecting Edit
Grammar in the Edit menu. Change the first expansion rule, namely NP -> Det N PP,
toNP -> NP PP. Using the Step button, try to build a parse tree. What happens?

7.3.3 Recursion
Observe that sentences can be nested within sentences, with no limit to the depth:

(28a) Jodie won the 100m freestyle

(28b) 'The Age’ reported that Jodie won the 100m freestyle

(28c) Sandy said "The Age’ reported that Jodie won the 100m freestyle

(28d) I think Sandy said "The Age’ reported that Jodie won the 100m freestyle

This nesting is explained in terms of recursion. A grammar is said to be recursive if a category
occurring on the lefthand side of a production (such as S in this case) also appears on the righthand side
of a production. If this dual occurrence takes place in one and the same production, then we have direct
recursion; otherwise we have indirect recursion. There is no recursion in (26). However, grammar
(29) below illustrates both kinds of recursive rule:

(29) S —> NP VP
NP — Det Nom
NP — Det Nom PP
NP — PropN
Nom — Adj Nom
Nom — N
VP — V NP PP
VP —» V NP
VP> VS
VP >V
PP — P NP

PropN — ’John’ | "Mary’

Det — ’the’

Det —’a’

N — man’ | 'woman’ | *park’ | ’dog’ | ’lead’ | *telescope’ | *butterfly’

Adj — ’fierce’ | *black’ | ’big’ | ’European’

V — ’saw’ | chased’ | *barked’ | "disappeared’ | ’said’ | "reported’

P —’in’ | "with’

Notice that the production Nom — Adj Nom (where Nom is the category of nominals) involves

direct recursion on the category Nom, whereas indirect recursion on S arises from the combination of

two productions, namely S — NP VP and VP — V S.
To illustrate recursion in this grammar, we show first of all a tree involving nested nominal phrases:

Bird, Curran, Klein & Loper 7-14 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

(30)
S
/\
NP VP
T~ T T~
Det Nom Vv NP
T T T~
z|1 Adj Nom cha|sed Det Nom
/\
fieloe Adj/\N thle Adj Nom
T
bIJck dclg b!g Adj N
Eurolpean butterIy
Next, observe how we can embed one S constituent into another:
(€20
S
/\
NP VP
/\
/\
thle an sa|id NP VP
/\
/\
tr!e worlnan repolrted NP VP
i N

I | I

the dog barked

If you did the exercises for the last section, you will have noticed that the recursive descent parser
fails to deal properly with the following rule:

32) NP — NP PP

From a linguistic point of view, this rule is perfectly respectable, and will allow us to derive trees
like this:

Bird, Curran, Klein & Loper 7-15 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

(33)
S
/\
NP VP
_— |
NP PP \'
NP PP P disappeared
Det N P NP in NP
l l | N SN
the man with Det N Det N
| l l l
a dog the park

More schematically, the trees will be of the following shape:

(34)
NP

N

NP PP

e
PN

PP
NP PP

/N

Det N

(34) is an example of a left recursive structure. Such structures seem to occur rather frequently in
analyses of English, and the failure of recursive descent parsers to deal adequately with left recursion
means that we will need to find alternative approaches, as we will discuss later in this chapter.

7.3.4 Heads, Complements and Modifiers

Let us take a closer look at verbs. The grammar (29) correctly generates examples like (35), corre-
sponding to the four productions with VP on the lefthand side:

(35a) The woman gave the telescope to the dog.
(35b) The woman saw a man.

(35¢c) A man said that the woman disappeared.
(35d) The dog barked.

That is, gave can occur with a following NP and PP; saw can occur with a following NP; said can
occur with a following S; and barked can occur with no following phrase. In these cases, NP, PP and
S are called complements of the respective verbs, and the verbs themselves are called heads of the
verb phrase.

However, there are fairly strong constraints on what verbs can occur with what complements. Thus,
we would like our grammars to mark the following examples as ungrammatical®:

Bird, Curran, Klein & Loper 7-16 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

(36a) *The woman disappeared the telescope to the dog.
(36b) *The dog barked a man.
(36c) *A man gave that the woman disappeared.

(36d) *A man said.

How can we ensure that our grammar correctly excludes the ungrammatical examples in (36)? We
need some way of constraining grammar productions which expand VP so that verbs only cooccur with
their correct complements. We do this by dividing the class of verbs into subcategories, each of which
is associated with a different set of complements. For example, transitive verbs such as saw, kissed
and hit require a following NP object complement. Borrowing from the terminology of chemistry, we
sometimes refer to the valency of a verb, that is, its capacity to combine with a sequence of arguments
and thereby compose a verb phrase.

Let’s introduce a new category label for such verbs, namely TV (for Transitive Verb), and use it in
the following productions:

37 VP — TV NP
TV — ’'saw’ | ’"kissed’ | ’'hit’

Now *the dog barked the man is excluded since we haven’t listed barked as a V_tr, but the woman
saw a man is still allowed. The following table provides more examples of labels for verb subcategories.

Verb Subcategories

Symbol | Meaning Example

v intransitive verb barked

TV transitive verb saw a man

DatV dative verb gave a dog to a man
SV sentential verb said that a dog barked

The revised grammar for VP will now look like this:

(38) VP — DatV NP PP
VP — TV NP
VP — SV S
VP — IV
DatV — ’'gave’ | ’'donated’ | ’presented’
TV = ’'saw’ | ’'kissed’ | "hit’ | ’'sang’
SV — ’'said’ | ’'knew’ | "alleged’
IV — ’'barked’ | ’'disappeared’ | ’'elapsed’ | ’sang’

Notice that according to (38), a given lexical item can belong to more than one subcategory. For
example, sang can occur both with and without a following NP complement.

21t should be borne in mind that it is possible to create examples which involve *non-standard’ but interpretable combina-
tions of verbs and complements. Thus, we can, at a stretch, interpret the man disappeared the dog as meaning that the man
made the dog disappear. We will ignore such examples here.

Bird, Curran, Klein & Loper 7-17 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

7.3.5 Lexical Acquisition

We have seen increasingly detailed grammars, e.g., identifying different kinds of verbs. How are we
to acquire this information in a scalable way? One method is to return to the chunking methods. For
example, we saw in the Chunking chapter that it is possible to collapse chunks down to the chunk label,
thus:

39) gave NP
gave up NP in NP
gave NP up
gave NP NP

gave NP to NP

We can use this as raw material to guide us as we manually construct more grammar productions.

7.3.6 Review of CFGs

We have seen that a CFG contains terminal and nonterminal symbols, and rules which dictate how
constituents are expanded into other constituents and words. In this section, we provide some formal
definitions.

A CFG is a 4-tuple (N, X, P, S), where:

Y is a set of terminal symbols (e.g., lexical items);

N is a set of non-terminal symbols (the category labels);

P is a set of productions of the form A — o, where

— A is a non-terminal, and

— o is a string of symbols from (N U X)* (i.e., strings of either terminals or non-terminals);
e Sis the start symbol.

A derivation of a string from a non-terminal A in grammar G is the result of successively applying
productions from G to A. For example, (40) is a derivation of the dog with a telescope for the grammar
in (26).

(40) NP
Det N PP
the N PP
the dog PP
the dog P NP
the dog with NP
the dog with Det N
the dog with a N

the dog with a telescope

Although we have chosen here to expand the leftmost non-terminal symbol at each stage, this is not
obligatory; productions can be applied in any order. Thus, derivation (40) could equally have started
off in the following manner:

Bird, Curran, Klein & Loper 7-18 July 9, 2006

file:chunk.html

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

41 NP
Det N PP
Det N P NP
Det N with NP

We can also write derivation (40) as:

(42) NP = Det N PP = the N PP = the dog PP = the dog P NP = the dog with NP = the dog
with a N = the dog with a telescope

where = means “derives in one step”. We use =* to mean “derives in zero or more steps’:
e o =* o for any string o, and
e ifaa=*PBand B = v, then o =* 7.

We write A =* o to indicate that o0 can be derived from A.

7.3.7 Context Free Grammars in NLTK-Lite

Context free grammars are encoded by the cfg.Grammar class. The easiest way to construct a
grammar object is from the standard string representation of grammars:

>>> productions = '’

S —> NP VP

VP -> V NP | V NP PP

V => "saw" | "ate"

NP -> "John" | "Mary" | "Bob" | Det N | Det N PP
Det -> "a" | "an" | "the" | "my"

N -> "dog" | "cat" | "cookie"

PP -> P NP

P -> "on" | "by" | "with"

rrr

Now we can convert this string into a grammar object:

>>> from nltk_lite import parse

>>> grammar = parse.cfg.parse_grammar (productions)
>>> grammar

<Grammar with 21 productions>

Next, we can build a parser for this grammar:

>>> from nltk_lite import parse
>>> rd_parser = parse.RecursiveDescent (grammar)

Finally, we can use the parser to parse a sentence:

>>> from nltk_lite import tokenize

>>> sent = list (tokenize.whitespace("Mary saw Bob"))
>>> for p in rd_parser.get_parse_list (sent):

ce print p

(S: (NP: "Mary’) (VP: (V: ’"saw’) (NP: 'Bob’)))

Bird, Curran, Klein & Loper 7-19 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

7.3.8 Exercises

1. Extend the grammar in (29) with productions which expand prepositions as intransitive,
transitive and requiring a PP complement. Based on these productions, use the method of
the preceding exercise to draw a tree for the sentence Lee ran away home.

2. Pick some common verbs.

a) Write a program to find those verbs in the PP Attachment Corpus included
with NLTK-Lite. Find any cases where the same verb exhibits two different
attachments, but where the first noun, or second noun, or preposition, stay
unchanged (as we saw in the PP Attachment Corpus example data above).

b) Devise CFG grammar productions to cover some of these cases.

3. Lexical Acquisition: Identify some English verbs that are near-synonyms, such as the
dumped/filled/loaded example from earlier in this chapter. Use the chunking method to
study the complementation patterns of these verbs. Create a grammar to cover these cases.
Can the verbs be freely substituted for each other, or are their constraints? Discuss your
findings.

7.4 Parsing

A parser is a computational system which processes input sentences according to the productions of
a grammar, and builds one or more constituent structures which conform to the grammar. While a
grammar is a declarative specification of well-formedness, a parser is a procedural interpretation of the
grammar. We can think of the parser as searching through the space of possible trees licensed by a
grammar, to find one that has the required sentence along its fringe. Following on from our description
of context free grammars, we will now describe some simple parsers that work with them.

Parsing is important in linguistics and natural language processing for a variety of reasons. A
parser permits a grammar to be evaluated against a potentially large collection of test sentences,
helping the linguist to identify shortcomings in their analysis. A parser can also be used as a model of
psycholinguistic processing, with the goal of explaining the processing difficulties that humans have
with certain syntactic constructions (e.g., the so-called ’garden path’ sentences). There are many NL
applications which involve parsing at some point; for example, we would expect the natural language
questions submitted to a question-answering system to undergo parsing as an initial step.

7.4.1 The Parser Interface

The parse module defines the ParseI interface, which in turn defines the two methods which all
parsers should support:

1. The parse method returns the single best parse for a given text. The text is represented as
a list of word tokens. If no parses are found for the given text, then parse returns None.

2. The get_parse_1list method returns a list of the parses for the given text.

For example, here is what the recursive descent parser generates for a simple sentence and grammar:

Bird, Curran, Klein & Loper 7-20 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

>>> nltk lite tokenize, parse
>>> sent = list (tokenize.whitespace('I saw a man in the park’))
>>> rd_parser = parse.RecursiveDescent (grammar)

>>> P rd _parser.get_parse_list (sent):
P
(S:
(NP: 'I’)
(VP:
(V: '"saw’)
(NP :
(Det: ’"a’)
(N: 'man’)
(PP: (P: ’"in’) (NP: (Det: ’'the’) (N: ’'park’))))))
(S:
(NP: 'I’)
(VP:
(V: 'saw’)
(NP: (Det: ’"a’) (N: 'man’))
(PP: (P: 'in’) (NP: (Det: ’"the’) (N: 'park’)))))

7.4.2 Recursive Descent Parsing

The simplest kind of parser interprets the grammar as a specification of how to break a high-level goal
into several lower-level subgoals. The top-level goal is to find an S. The S — NP VP production
permits the parser to replace this goal with two subgoals: find an NP, then find a VP. Each of these
subgoals can be replaced in turn by sub-sub-goals, using productions that have NP and VP on their left-
hand side. Eventually, this expansion process leads to subgoals such as: find the word telescope. Such
subgoals can be directly compared against the input string, and succeed if the next word is matched. If
there is no match the parser must back up and try a different alternative.

The recursive descent parser builds a parse tree during the above process. With the initial goal
(find an S), the S root node is created. As the above process recursively expands its goals using the
productions of the grammar, the parse tree is extended downwards (hence the name recursive descent).
We can see this in action using the parser demonstration nltk_lite.draw.rdparser. To run this
demonstration, use the following commands:

>>> nltk_lite.draw rdparser
>>> rdparser.demo ()

Six stages of the execution of this parser are shown below:

Bird, Curran, Klein & Loper 7-21 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

Six Stages of a Recursive Descent Parser

a. Initial stage b. After two produc- c. After matching
tions “the”
S
S S
NP VP NP VP
Det N Det H
"""""""""""""""""""""""""""""" the
.. T T
d. Failing to match e. Completed parse f. Backtracking
6‘man’,
S =]
s
NP VP NP VP
NI:‘-“-‘-\.‘FP |\\ h l\\ r""‘i""'-—--.....__
[\ Det N v NP PP Det N v NP PP
Det N r\\ I\\. r\\ I\\
I Det N P HP Det N P NP
man Det N Det N
the dog saw a man in the pak the dog saw a man in the
the " the dog saw a man in the park | the dog saw a man in the park
the

During this process, the parser sometimes must choose between several possible productions. For
example, in going from step ¢ to step d, it tries to find productions with N on the left-hand side. The
first of these is N — man. When this does not work it backtracks, and tries other N productions in order,
under it gets to N — dog, which matches the next word in the input sentence. Much later, as shown in
step e, it finds a complete parse. This is a tree which covers the entire sentence, without any dangling
edges. Once a parse has been found, we can get the parser to look for additional parses. Again it will
backtrack and explore other choices of production in case any of them result in a parse.

7.4.3 The Recursive Descent Parser in NLTK

The nltk_lite.parse module defines RecursiveDescent, a simple recursive implementation of
a top-down parser. Recursive descent parsers are created from Grammars by the RecursiveDescent
constructor.

>>> nltk 1lite parse

Bird, Curran, Klein & Loper 7-22 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

>>> rd_parser = parse.RecursiveDescent (grammar)

>>> sent = list (tokenize.whitespace('I saw a man’))

>>> rd_parser.get_parse_list (sent)

[(S: (NP: "I’") (VP: (V: ’'saw’) (NP: (Det: 'a’) (N: 'man’))))]

The constructor takes an optional parameter trace. If trace is greater than zero, then the parser
will describe the steps that it takes as it parses a text.

7.4.4 Problems with Recursive Descent Parsing

Recursive descent parsing has three key shortcomings. First, left-recursive productions like NP —
NP PP send it into an infinite loop. Second, the parser wastes a lot of time considering words and
structures that do not correspond to the input sentence. Third, the backtracking process may discard
parsed constituents that will need to be rebuilt again later. For example, backtracking over VP — V
NP will discard the subtree created for the NP. If the parser then proceeds with VP — V NP PP, then
the NP subtree must be created all over again.

Recursive descent parsing is a kind of top-down parsing. Top-down parsers use a grammar to
predict what the input will be, before inspecting the input! However, since the input is available to the
parser all along, it would be more sensible to consider the input sentence from the very beginning. This
approach is called bottom-up parsing, and we will see an example in the next section.

7.4.5 Shift-Reduce Parsing

The simplest kind of bottom-up parsing is known as shift-reduce parsing. In common with all bottom-
up parsers, a shift-reduce parser tries to find sequences of words and phrases that correspond to the
right-hand side of a grammar production, and replace them with the left-hand side, until the whole
sentence is reduced to an S.

The shift-reduce parser repeatedly pushes the next input word onto a stack; this is the shift
operation. If the top n items on the stack match the n items on the right-hand side of some production,
then they are all popped off the stack, and the item on the left-hand side of the production is pushed on
the stack. This replacement of the top n items with a single item is the reduce operation. (This reduce
operation may only be applied to the top of the stack; reducing items lower in the stack must be done
before later items are pushed onto the stack.) The parser finishes when all the input is consumed and
there is only one item remaining on the stack, a parse tree with an S node as its root.

The shift-reduce parser builds a parse tree during the above process. If the top of stack holds the
word dog, and if the grammar has a production N — dog, then the reduce operation causes the word
to be replaced with the parse tree for this production. For convenience we will represent this tree as
N (dog) . At alater stage, if the top of the stack holds two items Det (the) N(dog) and if the grammar
has a production NP — Det N then the reduce operation causes these two items to be replaced with
NP (Det (the), N(dog)). This process continues until a parse tree for the entire sentence has been
constructed. We can see this in action using the parser demonstration nltk_lite.draw.srparser.
To run this demonstration, use the following commands:

>>> nltk_lite.draw srparser
>>> srparser.demo ()

Six stages of the execution of this parser are shown below:

Bird, Curran, Klein & Loper 7-23 July 9, 2006

Introduction to Natural Language Processing (DRAFT)

7. Grammars and Parsing

Six Stages of a Shift-Reduce Parser

Stack

Remaining Text

a. Initial State

the dog saw a man in the park

Stack

Remaining Text

the

b. After one shift

dog saw a man in the park

Stack Remaining Text
Det N _...5awa man in the park
]
the dog

c. After shift reduce shift

Stack Remaining Text
B . AU SSURN.. ... the park
TN
Det M saw Det N
[|
the dog a man

d. After recognizing the second NP

Bird, Curran, Klein & Loper

7-24

July 9, 2006

Introduction to Natural Language Processing (DRAFT)

7. Grammars and Parsing

Six Stages of a Shift-Reduce Parser

Stack |
BN U .- (U
NCLTTETTS
Det N saw P
the dog Det N P NP
| N BN
a man in Det N
I
the park

|| | m{"‘\~
the dog saw PP

Det H P NP
|
a man in Det N

the park

f. Final Step

7.4.6 The Shift Reduce Parser in NLTK

The nltk_lite.parse module defines ShiftReduce, a simple implementation of a shift-reduce
parser. This parser does not implement any backtracking, so it is not guaranteed to find a parse for a
text, even if one exists. Furthermore, it will only find at most one parse, even if more parses exist.

Shift reduce parsers are created from Grammars by the ShiftReduceParse constructor. The
constructor takes an optional parameter trace. As with the recursive descent parser, this value
specifies how verbosely the parser should describe the steps that it takes as it parses a text:

>>> sr_parse = parse.ShiftReduce (grammar,

The following example shows the trace output generated by sr_parser on a simple sentence:

>>> sent = list (tokenize.whitespace('I saw a man’))

>>> sr_parse.parse (sent)
Parsing 'I saw a man’

[* T saw a man]
["I’ * saw a man]
<NP> * saw a man]
<NP> ’'saw’ * a man]
<NP> <V> * a man]
<NP> <V> "a’ * man]
<NP> <V> <Det> * man]
<NP> <V> <Det> ’'man’ *]
<NP> <V> <Det> <N> *]

WnomnonEn

Bird, Curran, Klein & Loper 7-25

July 9, 2006

Introduction to Natural Language Processing (DRAFT)

7. Grammars and Parsing

R [<NP> <V> <NP> x*]
R [<NP> <VP> «x]
R [<S> x]

(S: (NP: '"I’') (VP: (V: ’'saw’) (NP:

(Det:

Ia’)

(N:

‘man’))))

NLTK also defines a graphical demonstration tool for the shift reduce parser:

>>> from nltk.draw.srparser import demo
>>> demo ()

7.4.7 Problems with Shift Reduce Parser

A shift-reduce parser may fail to parse the sentence, even though the sentence is well-formed according
to the grammar. In such cases, there are no remaining input words to shift, and there is no way to reduce
the remaining items on the stack, as exemplified in the left example below. The parser entered this blind
alley at an earlier stage shown in the middle example below, when it reduced instead of shifted. This
situation is called a shift-reduce conflict. At another possible stage of processing shown in the right
example below, the parser must choose between two possible reductions, both matching the top items
on the stack: V. — V NP PP or NP — NP PP. This situation is called a reduce-reduce conflict.

Conflict in Shift-Reduce Parsing
Stack | Remaining Text
__________] ______PP_________
Ni P mp
Det N v NP in Det N
I T T N .
the dog saw Det N the park
I
a man
Stack Remaining Text
NN, LAInthe park
N P
Det N v NP
[AN
the dog saw Det N
||
a man
Stack | Remaining Text
_NP v ____NF!________PP_________
De1/\ [s.:lu Dem mp
thle ckLa ._ll m.lm i||'1 Det N
thle park

Shift-reduce parsers may implement policies for resolving such conflicts. For example, they may
address shift-reduce conflicts by shifting only when no reductions are possible, and they may address

Bird, Curran, Klein & Loper 7-26

July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

reduce-reduce conflicts by favouring the reduction operation that removes the most items from the
stack. No such policies are failsafe however.

The advantages of shift-reduce parsers over recursive descent parsers is that they only build struc-
ture that corresponds to the words in the input. Furthermore, they only build each sub-structure once,
e.g. NP (Det (the), N(man)) is only built and pushed onto the stack a single time, regardless of
whether it will later be used by the V. — V NP PP reduction or the NP — NP PP reduction.

7.4.8 The Left-Corner Parser

One of the problems with the recursive descent parser is that it can get into an infinite loop. This is

because it applies the grammar productions blindly, without considering the actual input sentence. A

left-corner parser is a hybrid between the bottom-up and top-down approaches we have seen.
Grammar (29) allows us to produce the following parse of John saw Mary:

(43)

S
/\
NP VP
l SN
John \ NP
I I
saw Mary

Recall that the grammar in (29) has the following rules for expanding NP:
(44a) NP — Det Nom

(44b) NP — Det Nom PP
(44c) NP — PropN

Suppose we ask you to first look at tree (43), and then decide which of the NP rules you’d want a
recursive descent parser to apply first — obviously, (44c) is the right choice! How do you know that it
would be pointless to apply (44a) or (44b) instead? Because neither of these rules will derive a string
whose first word is John. That is, we can easily tell that in a successful parse of John saw Mary, the
parser has to expand NP in such a way that NP derives the string John a.. More generally, we say that
a category B is a left-corner of a tree rooted in A if A =* B o.

(45)
A

N

B a

A left-corner parser is a top-down parser with bottom-up filtering. Unlike an ordinary recursive
descent parser, it does not get trapped in left recursive productions.

Before starting its work, a left-corner parser preprocesses the context-free grammar to build a
table where each row contains two cells, the first holding a non-terminal, and the second holding the
collection of possible left corners of that non-terminal. Table Ic illustrates this for the grammar from
(29).

Bird, Curran, Klein & Loper 7-27 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

Table 6: Left-Corners in (29)

Category | Left-Corners
S NP
NP Det, PropN
VP v
PP P

Each time a production is considered by the parser, it checks that the next input word is compatible
with at least one of the pre-terminal categories in the left-corner table.

7.4.9 Exercises

1. Left-corner parser: Develop a left-corner parser (inheriting from ParseI), based on the
recursive descent parser.

2. Compare the performance of the top-down, bottom-up, and left-corner parsers using the
same grammar and three grammatical test sentences. Use time.time () to log the amount
of time each parser takes on the same sentence. Write a function which runs all three
parsers on all three sentences, and prints a 3-by-3 grid of times, as well as row and column
totals. Discuss your findings.

3. Extend NLTK’s shift-reduce parser to incorporate backtracking, so that it is guaranteed to
find all parses that exist (i.e. it is complete).

7.5 Conclusion

We began this chapter talking about confusing encounters with grammar at school. We just wrote what
we wanted to say, and our work was handed back with red marks showing all our grammar mistakes.
If this kind of grammar’ seems like secret knowledge, the linguistic approach we have taken in this
chapter is quite the opposite: grammatical structures are made explicit as we build trees on top of
sentences. We can write down the grammar productions, and parsers can build the trees automatically.
This thoroughly objective approach is widely referred to as generative grammar.

Note that we have only considered 'toy grammars,” small grammars that illustrate the key aspects
of parsing. But there is an obvious question as to whether the general approach can be scaled up to
cover large corpora of natural languages. How hard would it be to construct such a set of productions
by hand? In general, the answer is: very hard. Even if we allow ourselves to use various formal devices
that give much more succinct representations of grammar productions (some of which will be discussed
in the next chapter), it is still extremely difficult to keep control of the complex interactions between
the many productions required to cover the major constructions of a language. In other words, it is hard
to modularize grammars so that one portion can be developed independently of the other parts. This
in turn means that it is difficult to distribute the task of grammar writing across a team of linguists.
Another difficulty is that as the grammar expands to cover a wider and wider range of constructions,
there is a corresponding increase in the number of analyses which are admitted for any one sentence.
In other words, ambiguity increases with coverage.

Bird, Curran, Klein & Loper 7-28 July 9, 2006

Introduction to Natural Language Processing (DRAFT) 7. Grammars and Parsing

Despite these problems, there are a number of large collaborative projects which have achieved in-
teresting and impressive results in developing rule-based grammars for several languages. Examples are
the Lexical Functional Grammar (LFG) Pargram project (http://www?2.parc.com/istl/groups/nltt/pargram/),
the Head-Driven Phrase Structure Grammar (HPSG) LinGO Matrix framework (http://www.delph-
in.net/matrix/), and the Lexicalized Tree Adjoining Grammar XTAG Project (http://www.cis.upenn.edu/~xtag/).

7.6 Further Reading

McCawley (1998) The Syntactic Phenomena of English. Chicago University Press.
Rodney D. Huddleston, Geoffrey K. Pullum (2002). The Cambridge Grammar of the English
Language. Cambridge University Press.

About this document...

This chapter is a draft from Introduction to Natural Language Processing,
by Steven Bird, James Curran, Ewan Klein and Edward Loper, Copyright
© 2006 the authors. It is distributed with the Natural Language Toolkit
[http://nltk.sourceforge.net], under the terms of the Creative Commons Attribution-
ShareAlike License [http://creativecommons.org/licenses/by-sa/2.5/].

Bird, Curran, Klein & Loper 7-29 July 9, 2006

http://www2.parc.com/istl/groups/nltt/pargram/
http://www.delph-in.net/matrix/
http://www.delph-in.net/matrix/
http://www.cis.upenn.edu/~xtag/
http://www.csse.unimelb.edu.au/~sb/
http://www.it.usyd.edu.au/about/people/staff/james.shtml
http://www.ltg.ed.ac.uk/~ewan/
http://www.cis.upenn.edu/~edloper/
http://nltk.sourceforge.net
http://creativecommons.org/licenses/by-sa/2.5/

	7.1[Please insert PrerenderUnicode {Â€} into preamble][Please insert PrerenderUnicode {Â€} into preamble][Please insert PrerenderUnicode {Â€} into preamble]Introduction
	7.2 What's the Use of Syntax?
	7.2.1 Syntactic Ambiguity
	7.2.2 Constituency
	7.2.3 More on NLTK's Trees
	7.2.4 Exercises

	7.3 Context Free Grammar
	7.3.1 A Simple Grammar
	7.3.2 Exercises
	7.3.3 Recursion
	7.3.4 Heads, Complements and Modifiers
	7.3.5 Lexical Acquisition
	7.3.6 Review of CFGs
	7.3.7 Context Free Grammars in NLTK-Lite
	7.3.8 Exercises

	7.4 Parsing
	7.4.1 The Parser Interface
	7.4.2 Recursive Descent Parsing
	7.4.3 The Recursive Descent Parser in NLTK
	7.4.4 Problems with Recursive Descent Parsing
	7.4.5 Shift-Reduce Parsing
	7.4.6 The Shift Reduce Parser in NLTK
	7.4.7 Problems with Shift Reduce Parser
	7.4.8 The Left-Corner Parser
	7.4.9 Exercises

	7.5 Conclusion
	7.6 Further Reading

