A, x, y[, trans='N'[, alpha=1.0[, beta=0.0]]]) |
'd'
or 'z'
). Complex values of alpha and beta are only
allowed if A is complex.
A, x, y[, uplo='L'[, alpha=1.0[, beta=0.0]]]) |
'd'
and alpha and beta must be real.
A, x, y[, uplo='L'[, alpha=1.0[, beta=0.0]]]) |
'd'
or 'z'
).
Complex values of alpha and beta are only
allowed if A is complex.
A, x[, uplo='L'[, trans='N'[, diag='N']]]) |
'd'
or 'z'
).
A, x[, uplo='L'[, trans='N'[, diag='N']]]) |
'd'
or 'z'
).
A, m, kl, x, y[, trans='N' [, alpha=1.0[, beta=0.0]]]) |
'd'
or 'z'
).
Complex values of alpha and beta are only allowed if A is
complex.
A, x, y[, uplo='L'[, alpha=1.0[, beta=0.0]]]) |
'd'
and
alpha and beta must be real.
A, x, y[, uplo='L'[, alpha=1.0[, beta=0.0]]]) |
'd'
or 'z'
).
Complex values of alpha and beta are only allowed if
A is complex.
A, x[, uplo='L'[, trans[, diag]]]) |
'd'
or 'z'
).
A, x[, uplo='L'[, trans[, diag]]]) |
'd'
or 'z'
).
x, y, A[, alpha=1.0]) |
'd'
or 'z'
).
Complex values of alpha are only allowed if A is complex.
x, y, A[, alpha=1.0]) |
'd'
or 'z'
).
Complex values of alpha are only allowed if A is complex.
x, A[, uplo='L'[, alpha=1.0]]) |
'd'
.
alpha must be a real number.
x, A[, uplo='L'[, alpha=1.0]]) |
'd'
or 'z'
).
alpha must be a real number.
x, y, A[, uplo='L'[, alpha=1.0]]) |
'd'
.
alpha must be real.
x, y, A[, uplo='L'[, alpha=1.0]]) |
'd'
or 'z'
).
Complex values of alpha are only allowed if A is complex.
As an example, the following code multiplies the tridiagonal matrix
>>> from cvxopt.base import matrix >>> from cvxopt.blas import gbmv >>> A = matrix([[0., 1., 2.], [6., -4., -3.], [3., -1., 0.], [1., 0., 0.]]) >>> x = matrix([1., -1., 2., -2.]) >>> y = matrix(0., (3,1)) >>> gbmv(A, 3, 1, x, y) >>> print y -5.0000e+00 1.2000e+01 -1.0000e+00
The following example illustrates the use of tbsv().
>>> from cvxopt.base import matrix >>> from cvxopt.blas import tbsv >>> A = matrix([-6., 5., -1., 2.], (1,4)) >>> x = matrix(1.0, (4,1)) >>> tbsv(A, x) # x := diag(A)^{-1}*x >>> print x -1.6667e-01 2.0000e-01 -1.0000e+00 5.0000e-01