Index index by Group index by Distribution index by Vendor index by creation date index by Name Mirrors Help Search

ghc-random-1.2.1.2-1.fc41 RPM for x86_64

From Fedora Rawhide for x86_64 / g

Name: ghc-random Distribution: Fedora Project
Version: 1.2.1.2 Vendor: Fedora Project
Release: 1.fc41 Build date: Mon Aug 5 16:23:14 2024
Group: Unspecified Build host: buildvm-x86-30.iad2.fedoraproject.org
Size: 861184 Source RPM: ghc-random-1.2.1.2-1.fc41.src.rpm
Packager: Fedora Project
Url: https://hackage.haskell.org/package/random
Summary: Pseudo-random number generation
This package provides basic pseudo-random number generation, including the
ability to split random number generators.

== "System.Random": pure pseudo-random number interface

In pure code, use 'System.Random.uniform' and 'System.Random.uniformR' from
"System.Random" to generate pseudo-random numbers with a pure pseudo-random
number generator like 'System.Random.StdGen'.

As an example, here is how you can simulate rolls of a six-sided die using
'System.Random.uniformR':

>>> let roll = uniformR (1, 6) :: RandomGen g => g -> (Word, g) >>> let rolls =
unfoldr (Just . roll) :: RandomGen g => g -> [Word] >>> let pureGen = mkStdGen
42 >>> take 10 (rolls pureGen) :: [Word] [1,1,3,2,4,5,3,4,6,2]

See "System.Random" for more details.

== "System.Random.Stateful": monadic pseudo-random number interface

In monadic code, use 'System.Random.Stateful.uniformM' and
'System.Random.Stateful.uniformRM' from "System.Random.Stateful" to generate
pseudo-random numbers with a monadic pseudo-random number generator, or using a
monadic adapter.

As an example, here is how you can simulate rolls of a six-sided die using
'System.Random.Stateful.uniformRM':

>>> let rollM = uniformRM (1, 6) :: StatefulGen g m => g -> m Word >>> let
pureGen = mkStdGen 42 >>> runStateGen_ pureGen (replicateM 10 . rollM) ::
[Word] [1,1,3,2,4,5,3,4,6,2]

The monadic adapter 'System.Random.Stateful.runStateGen_' is used here to lift
the pure pseudo-random number generator 'pureGen' into the
'System.Random.Stateful.StatefulGen' context.

The monadic interface can also be used with existing monadic pseudo-random
number generators. In this example, we use the one provided in the
<https://hackage.haskell.org/package/mwc-random mwc-random> package:

>>> import System.Random.MWC as MWC >>> let rollM = uniformRM (1, 6) ::
StatefulGen g m => g -> m Word >>> monadicGen <- MWC.create >>> replicateM 10
(rollM monadicGen) :: IO [Word] [2,3,6,6,4,4,3,1,5,4]

See "System.Random.Stateful" for more details.

Provides

Requires

License

BSD-3-Clause

Changelog

* Sat Jul 20 2024 Jens Petersen <petersen@redhat.com> - 1.2.1.2-7
  - https://hackage.haskell.org/package/random-1.2.1.2/changelog
* Thu Jul 18 2024 Fedora Release Engineering <releng@fedoraproject.org> - 1.2.1.1-6
  - Rebuilt for https://fedoraproject.org/wiki/Fedora_41_Mass_Rebuild
* Wed Jan 24 2024 Fedora Release Engineering <releng@fedoraproject.org> - 1.2.1.1-5
  - Rebuilt for https://fedoraproject.org/wiki/Fedora_40_Mass_Rebuild
* Fri Jan 19 2024 Fedora Release Engineering <releng@fedoraproject.org> - 1.2.1.1-4
  - Rebuilt for https://fedoraproject.org/wiki/Fedora_40_Mass_Rebuild
* Sat Jul 29 2023 Jens Petersen <petersen@redhat.com> - 1.2.1.1-3
  - rebuild
* Wed Jul 19 2023 Fedora Release Engineering <releng@fedoraproject.org> - 1.2.1.1-2
  - Rebuilt for https://fedoraproject.org/wiki/Fedora_39_Mass_Rebuild
* Sun Jan 22 2023 Jens Petersen <petersen@redhat.com> - 1.2.1.1-5
  - https://hackage.haskell.org/package/random-1.2.1.1/changelog
  - refresh to cabal-rpm-2.1.0 with SPDX migration
* Thu Jul 21 2022 Fedora Release Engineering <releng@fedoraproject.org> - 1.2.0-4
  - Rebuilt for https://fedoraproject.org/wiki/Fedora_37_Mass_Rebuild

Files

/usr/lib/.build-id
/usr/lib/.build-id/8f
/usr/lib/.build-id/8f/0e0ad5e1214789a25041d098e64647e7d6f046
/usr/lib64/ghc-9.6.6/lib/libHSrandom-1.2.1.2-9nSipNyPzIK3OtGny4BWjI-ghc9.6.6.so
/usr/share/licenses/ghc-random
/usr/share/licenses/ghc-random/LICENSE


Generated by rpm2html 1.8.1

Fabrice Bellet, Tue Jan 21 23:58:52 2025