Index | index by Group | index by Distribution | index by Vendor | index by creation date | index by Name | Mirrors | Help | Search |
Name: tensorflow-lite | Distribution: openSUSE Tumbleweed |
Version: 2.10.0 | Vendor: openSUSE |
Release: 3.5 | Build date: Thu Oct 19 02:00:00 2023 |
Group: Development/Languages/Python | Build host: reproducible |
Size: 7749851 | Source RPM: tensorflow-lite-2.10.0-3.5.src.rpm |
Packager: https://bugs.opensuse.org | |
Url: https://www.tensorflow.org/ | |
Summary: A framework used for deep learning for mobile and embedded devices |
TensorFlow is an end-to-end open source platform for machine learning. The Tensorflow Lite package is a fraction the size of the full tensorflow package and includes the bare minimum code required to run inferences with TensorFlow Lite — primarily the Interpreter Python class. This small package is for when all you want to do is execute .tflite models and avoid wasting disk space with the large TensorFlow library.
Apache-2.0 AND BSD-2-Clause AND BSD-3-Clause AND MIT AND MPL-2.0
* Thu Oct 19 2023 Daniel Garcia Moreno <daniel.garcia@suse.com> - Don't use `=` in %python3_install macro parameters to avoid parsing problems with future changes of the macro expasion. See gh#openSUSE/python-rpm-macros#164 * Mon Jun 05 2023 Guillaume GARDET <guillaume.gardet@opensuse.org> - Use gcc12 to build since build fails with default gcc (13) * Tue Sep 20 2022 Ben Greiner <code@bnavigator.de> - Update to 2.10.0 * boo#1203507 (CVE-2022-35934) - Breaking Changes * Causal attention in keras.layers.Attention and keras.layers.AdditiveAttention is now specified in the call() method via the use_causal_mask argument (rather than in the constructor), for consistency with other layers. * Some files in tensorflow/python/training have been moved to tensorflow/python/tracking and tensorflow/python/checkpoint. Please update your imports accordingly, the old files will be removed in Release 2.11. * tf.keras.optimizers.experimental.Optimizer will graduate in Release 2.11, which means tf.keras.optimizers.Optimizer will be an alias of tf.keras.optimizers.experimental.Optimizer. The current tf.keras.optimizers.Optimizer will continue to be supported as tf.keras.optimizers.legacy.Optimizer, e.g.,tf.keras.optimizers.legacy.Adam. Most users won't be affected by this change, but please check the API doc if any API used in your workflow is changed or deprecated, and make adaptions. If you decide to keep using the old optimizer, please explicitly change your optimizer to tf.keras.optimizers.legacy.Optimizer. * RNG behavior change for tf.keras.initializers. Keras initializers will now use stateless random ops to generate random numbers. - Both seeded and unseeded initializers will always generate the same values every time they are called (for a given variable shape). For unseeded initializers (seed=None), a random seed will be created and assigned at initializer creation (different initializer instances get different seeds). - An unseeded initializer will raise a warning if it is reused (called) multiple times. This is because it would produce the same values each time, which may not be intended. - Deprecations * The C++ tensorflow::Code and tensorflow::Status will become aliases of respectively absl::StatusCode and absl::Status in some future release. - Use tensorflow::OkStatus() instead of tensorflow::Status::OK(). - Stop constructing Status objects from tensorflow::error::Code. - One MUST NOT access tensorflow::errors::Code fields. Accessing tensorflow::error::Code fields is fine. + Use the constructors such as tensorflow::errors:InvalidArgument to create status using an error code without accessing it. + Use the free functions such as tensorflow::errors::IsInvalidArgument if needed. + In the last resort, use e.g.static_cast<tensorflow::errors::Code>(error::Code::INVALID_ARGUMENT) or static_cast<int>(code) for comparisons. * tensorflow::StatusOr will also become in the future alias to absl::StatusOr, so use StatusOr::value instead of StatusOr::ConsumeValueOrDie. - Major Features and Improvements * tf.lite: - New operations supported: + tflite SelectV2 now supports 5D. + tf.einsum is supported with multiple unknown shapes. + tf.unsortedsegmentprod op is supported. + tf.unsortedsegmentmax op is supported. + tf.unsortedsegmentsum op is supported. - Updates to existing operations: + tfl.scatter_nd now supports I1 for update arg. - Upgrade Flatbuffers v2.0.5 from v1.12.0 * tf.keras: - EinsumDense layer is moved from experimental to core. Its import path is moved from tf.keras.layers.experimental.EinsumDense to tf.keras.layers.EinsumDense. - Added tf.keras.utils.audio_dataset_from_directory utility to easily generate audio classification datasets from directories of .wav files. - Added subset="both" support in tf.keras.utils.image_dataset_from_directory,tf.keras.utils.text_dataset_from_directory, and audio_dataset_from_directory, to be used with the validation_split argument, for returning both dataset splits at once, as a tuple. - Added tf.keras.utils.split_dataset utility to split a Dataset object or a list/tuple of arrays into two Dataset objects (e.g. train/test). - Added step granularity to BackupAndRestore callback for handling distributed training failures & restarts. The training state can now be restored at the exact epoch and step at which it was previously saved before failing. - Added tf.keras.dtensor.experimental.optimizers.AdamW. This optimizer is similar as the existing keras.optimizers.experimental.AdamW, and works in the DTensor training use case. - Improved masking support for tf.keras.layers.MultiHeadAttention. + Implicit masks for query, key and value inputs will automatically be used to compute a correct attention mask for the layer. These padding masks will be combined with any attention_mask passed in directly when calling the layer. This can be used with tf.keras.layers.Embedding with mask_zero=True to automatically infer a correct padding mask. + Added a use_causal_mask call time arugment to the layer. Passing use_causal_mask=True will compute a causal attention mask, and optionally combine it with any attention_mask passed in directly when calling the layer. - Added ignore_class argument in the loss SparseCategoricalCrossentropy and metrics IoU and MeanIoU, to specify a class index to be ignored during loss/metric computation (e.g. a background/void class). - Added tf.keras.models.experimental.SharpnessAwareMinimization. This class implements the sharpness-aware minimization technique, which boosts model performance on various tasks, e.g., ResNet on image classification. * tf.data: - Added support for cross-trainer data caching in tf.data service. This saves computation resources when concurrent training jobs train from the same dataset. See (https://www.tensorflow.org/api_docs/python/tf/data/experimental/service#sharing_tfdata_service_with_concurrent_trainers) for more details. - Added dataset_id to tf.data.experimental.service.register_dataset. If provided, tf.data service will use the provided ID for the dataset. If the dataset ID already exists, no new dataset will be registered. This is useful if multiple training jobs need to use the same dataset for training. In this case, users should call register_dataset with the same dataset_id. - Added a new field, inject_prefetch, to tf.data.experimental.OptimizationOptions. If it is set to True,tf.data will now automatically add a prefetch transformation to datasets that end in synchronous transformations. This enables data generation to be overlapped with data consumption. This may cause a small increase in memory usage due to buffering. To enable this behavior, set inject_prefetch=True in tf.data.experimental.OptimizationOptions. - Added a new value to tf.data.Options.autotune.autotune_algorithm: STAGE_BASED. If the autotune algorithm is set to STAGE_BASED, then it runs a new algorithm that can get the same performance with lower CPU/memory usage. - Added tf.data.experimental.from_list, a new API for creating Datasets from lists of elements. * tf.distribute: - Added tf.distribute.experimental.PreemptionCheckpointHandler to handle worker preemption/maintenance and cluster-wise consistent error reporting for tf.distribute.MultiWorkerMirroredStrategy. Specifically, for the type of interruption with advance notice, it automatically saves a checkpoint, exits the program without raising an unrecoverable error, and restores the progress when training restarts. * tf.math: - Added tf.math.approx_max_k and tf.math.approx_min_k which are the optimized alternatives to tf.math.top_k on TPU. The performance difference range from 8 to 100 times depending on the size of k. When running on CPU and GPU, a non-optimized XLA kernel is used. * tf.train: - Added tf.train.TrackableView which allows users to inspect the TensorFlow Trackable object (e.g. tf.Module, Keras Layers and models). * tf.vectorized_map: - Added an optional parameter: warn. This parameter controls whether or not warnings will be printed when operations in the provided fn fall back to a while loop. * XLA: - MWMS is now compilable with XLA. - Compute Library for the Arm® Architecture (ACL) is supported for aarch64 CPU XLA runtime * CPU performance optimizations: - x86 CPUs: oneDNN bfloat16 auto-mixed precision grappler graph optimization pass has been renamed from auto_mixed_precision_mkl to auto_mixed_precision_onednn_bfloat16. See example usage here. - aarch64 CPUs: Experimental performance optimizations from Compute Library for the Arm® Architecture (ACL) are available through oneDNN in the default Linux aarch64 package (pip install tensorflow). + The optimizations are disabled by default. + Set the environment variable TF_ENABLE_ONEDNN_OPTS=1 to enable the optimizations. Setting the variable to 0 or unsetting it will disable the optimizations. + These optimizations can yield slightly different numerical results from when they are off due to floating-point round-off errors from different computation approaches and orders. + To verify that the optimizations are on, look for a message with "oneDNN custom operations are on" in the log. If the exact phrase is not there, it means they are off. - Bug Fixes and Other Changes * New argument experimental_device_ordinal in LogicalDeviceConfiguration to control the order of logical devices. (GPU only) * tf.keras: - Changed the TensorBoard tag names produced by the tf.keras.callbacks.TensorBoard callback, so that summaries logged automatically for model weights now include either a /histogram or /image suffix in their tag names, in order to prevent tag name collisions across summary type * When running on GPU (with cuDNN version 7.6.3 or later),tf.nn.depthwise_conv2d backprop to filter (and therefore also tf.keras.layers.DepthwiseConv2D) now operate deterministically (and tf.errors.UnimplementedError is no longer thrown) when op-determinism has been enabled via tf.config.experimental.enable_op_determinism. This closes issue 47174. * tf.random - Added tf.random.experimental.stateless_shuffle, a stateless version of tf.random.shuffle. - Security * Fixes a CHECK failure in tf.reshape caused by overflows (CVE-2022-35934) * Fixes a CHECK failure in SobolSample caused by missing validation (CVE-2022-35935) * Fixes an OOB read in Gather_nd op in TF Lite (CVE-2022-35937) * Fixes a CHECK failure in TensorListReserve caused by missing validation (CVE-2022-35960) * Fixes an OOB write in Scatter_nd op in TF Lite (CVE-2022-35939) * Fixes an integer overflow in RaggedRangeOp (CVE-2022-35940) * Fixes a CHECK failure in AvgPoolOp (CVE-2022-35941) * Fixes a CHECK failures in UnbatchGradOp (CVE-2022-35952) * Fixes a segfault TFLite converter on per-channel quantized transposed convolutions (CVE-2022-36027) * Fixes a CHECK failures in AvgPool3DGrad (CVE-2022-35959) * Fixes a CHECK failures in FractionalAvgPoolGrad (CVE-2022-35963) * Fixes a segfault in BlockLSTMGradV2 (CVE-2022-35964) * Fixes a segfault in LowerBound and UpperBound (CVE-2022-35965) * Fixes a segfault in QuantizedAvgPool (CVE-2022-35966) * Fixes a segfault in QuantizedAdd (CVE-2022-35967) * Fixes a CHECK fail in AvgPoolGrad (CVE-2022-35968) * Fixes a CHECK fail in Conv2DBackpropInput (CVE-2022-35969) * Fixes a segfault in QuantizedInstanceNorm (CVE-2022-35970) * Fixes a CHECK fail in FakeQuantWithMinMaxVars (CVE-2022-35971) * Fixes a segfault in Requantize (CVE-2022-36017) * Fixes a segfault in QuantizedBiasAdd (CVE-2022-35972) * Fixes a CHECK fail in FakeQuantWithMinMaxVarsPerChannel (CVE-2022-36019) * Fixes a segfault in QuantizedMatMul (CVE-2022-35973) * Fixes a segfault in QuantizeDownAndShrinkRange (CVE-2022-35974) * Fixes segfaults in QuantizedRelu and QuantizedRelu6 (CVE-2022-35979) * Fixes a CHECK fail in FractionalMaxPoolGrad (CVE-2022-35981) * Fixes a CHECK fail in RaggedTensorToVariant (CVE-2022-36018) * Fixes a CHECK fail in QuantizeAndDequantizeV3 (CVE-2022-36026) * Fixes a segfault in SparseBincount (CVE-2022-35982) * Fixes a CHECK fail in Save and SaveSlices (CVE-2022-35983) * Fixes a CHECK fail in ParameterizedTruncatedNormal (CVE-2022-35984) * Fixes a CHECK fail in LRNGrad (CVE-2022-35985) * Fixes a segfault in RaggedBincount (CVE-2022-35986) * Fixes a CHECK fail in DenseBincount (CVE-2022-35987) * Fixes a CHECK fail in tf.linalg.matrix_rank (CVE-2022-35988) * Fixes a CHECK fail in MaxPool (CVE-2022-35989) * Fixes a CHECK fail in Conv2DBackpropInput (CVE-2022-35999) * Fixes a CHECK fail in EmptyTensorList (CVE-2022-35998) * Fixes a CHECK fail in tf.sparse.cross (CVE-2022-35997) * Fixes a floating point exception in Conv2D (CVE-2022-35996) * Fixes a CHECK fail in AudioSummaryV2 (CVE-2022-35995) * Fixes a CHECK fail in CollectiveGather (CVE-2022-35994) * Fixes a CHECK fail in SetSize (CVE-2022-35993) * Fixes a CHECK fail in TensorListFromTensor (CVE-2022-35992) * Fixes a CHECK fail in TensorListScatter and TensorListScatterV2 (CVE-2022-35991) * Fixes a CHECK fail in FakeQuantWithMinMaxVarsPerChannelGradient (CVE-2022-35990) * Fixes a CHECK fail in FakeQuantWithMinMaxVarsGradient (CVE-2022-36005) * Fixes a CHECK fail in tf.random.gamma (CVE-2022-36004) * Fixes a CHECK fail in RandomPoissonV2 (CVE-2022-36003) * Fixes a CHECK fail in Unbatch (CVE-2022-36002) * Fixes a CHECK fail in DrawBoundingBoxes (CVE-2022-36001) * Fixes a CHECK fail in Eig (CVE-2022-36000) * Fixes a null dereference on MLIR on empty function attributes (CVE-2022-36011) * Fixes an assertion failure on MLIR empty edge names (CVE-2022-36012) * Fixes a null-dereference in mlir::tfg::GraphDefImporter::ConvertNodeDef (CVE-2022-36013) * Fixes a null-dereference in mlir::tfg::TFOp::nameAttr (CVE-2022-36014) * Fixes an integer overflow in math ops (CVE-2022-36015) * Fixes a CHECK-fail in tensorflow::full_type::SubstituteFromAttrs (CVE-2022-36016) * Fixes an OOB read in Gather_nd op in TF Lite Micro (CVE-2022-35938) * Fri May 27 2022 Ben Greiner <code@bnavigator.de> - tensorflow2 has been removed from Tumbleweed. Provide a separate Tensorflow Lite package in version 2.9.1 - Now includes the tflite_runtime python3 package - Add tensorflow-lite-cmake-find-python.patch * Fri Feb 04 2022 Ben Greiner <code@bnavigator.de> - restore larger memory per job constraint * Fri Feb 04 2022 Ben Greiner <code@bnavigator.de> - Update to 2.7.1 -- boo#1195545 security update * Fixes a floating point division by 0 when executing convolution operators (CVE-2022-21725) * Fixes a heap OOB read in shape inference for ReverseSequence (CVE-2022-21728) * Fixes a heap OOB access in Dequantize (CVE-2022-21726) * Fixes an integer overflow in shape inference for Dequantize (CVE-2022-21727) * Fixes a heap OOB access in FractionalAvgPoolGrad (CVE-2022-21730) * Fixes an overflow and divide by zero in UnravelIndex (CVE-2022-21729) * Fixes a type confusion in shape inference for ConcatV2 (CVE-2022-21731) * Fixes an OOM in ThreadPoolHandle (CVE-2022-21732) * Fixes an OOM due to integer overflow in StringNGrams (CVE-2022-21733) * Fixes more issues caused by incomplete validation in boosted trees code (CVE-2021-41208) * Fixes an integer overflows in most sparse component-wise ops (CVE-2022-23567) * Fixes an integer overflows in AddManySparseToTensorsMap (CVE-2022-23568) * Fixes a number of CHECK-failures in MapStage (CVE-2022-21734) * Fixes a division by zero in FractionalMaxPool (CVE-2022-21735) * Fixes a number of CHECK-fails when building invalid/overflowing tensor shapes (CVE-2022-23569) * Fixes an undefined behavior in SparseTensorSliceDataset (CVE-2022-21736) * Fixes an assertion failure based denial of service via faulty bin count operations (CVE-2022-21737) * Fixes a reference binding to null pointer in QuantizedMaxPool (CVE-2022-21739) * Fixes an integer overflow leading to crash in SparseCountSparseOutput (CVE-2022-21738) * Fixes a heap overflow in SparseCountSparseOutput (CVE-2022-21740) * Fixes an FPE in BiasAndClamp in TFLite (CVE-2022-23557) * Fixes an FPE in depthwise convolutions in TFLite (CVE-2022-21741) * Fixes an integer overflow in TFLite array creation (CVE-2022-23558) * Fixes an integer overflow in TFLite (CVE-2022-23559) * Fixes a dangerous OOB write in TFLite (CVE-2022-23561) * Fixes a vulnerability leading to read and write outside of bounds in TFLite (CVE-2022-23560) * Fixes a set of vulnerabilities caused by using insecure temporary files (CVE-2022-23563) * Fixes an integer overflow in Range resulting in undefined behavior and OOM (CVE-2022-23562) * Fixes a vulnerability where missing validation causes tf.sparse.split to crash when axis is a tuple (CVE-2021-41206) * Fixes a CHECK-fail when decoding resource handles from proto (CVE-2022-23564) * Fixes a CHECK-fail with repeated AttrDef (CVE-2022-23565) * Fixes a heap OOB write in Grappler (CVE-2022-23566) * Fixes a CHECK-fail when decoding invalid tensors from proto (CVE-2022-23571) * Fixes a null-dereference when specializing tensor type (CVE-2022-23570) * Fixes a crash when type cannot be specialized (CVE-2022-23572) * Fixes a heap OOB read/write in SpecializeType (CVE-2022-23574) * Fixes an unitialized variable access in AssignOp (CVE-2022-23573) * Fixes an integer overflow in OpLevelCostEstimator::CalculateTensorSize (CVE-2022-23575) * Fixes an integer overflow in OpLevelCostEstimator::CalculateOutputSize (CVE-2022-23576) * Fixes a null dereference in GetInitOp (CVE-2022-23577) * Fixes a memory leak when a graph node is invalid (CVE-2022-23578) * Fixes an abort caused by allocating a vector that is too large (CVE-2022-23580) * Fixes multiple CHECK-failures during Grappler's IsSimplifiableReshape (CVE-2022-23581) * Fixes multiple CHECK-failures during Grappler's SafeToRemoveIdentity (CVE-2022-23579) * Fixes multiple CHECK-failures in TensorByteSize (CVE-2022-23582) * Fixes multiple CHECK-failures in binary ops due to type confusion (CVE-2022-23583) * Fixes a use after free in DecodePng kernel (CVE-2022-23584) * Fixes a memory leak in decoding PNG images (CVE-2022-23585) * Fixes multiple CHECK-fails in function.cc (CVE-2022-23586) * Fixes multiple CHECK-fails due to attempting to build a reference tensor (CVE-2022-23588) * Fixes an integer overflow in Grappler cost estimation of crop and resize operation (CVE-2022-23587) * Fixes a null pointer dereference in Grappler's IsConstant (CVE-2022-23589) * Fixes a CHECK failure in constant folding (CVE-2021-41197) * Fixes a stack overflow due to self-recursive function in GraphDef (CVE-2022-23591) * Fixes a crash due to erroneous StatusOr (CVE-2022-23590) * Fixes multiple crashes and heap OOB accesses in TFG dialect (MLIR) (CVE-2022-23594) * Fixes a null pointer dereference in BuildXlaCompilationCache (XLA) (CVE-2022-23595) * Updates icu to 69.1 to handle CVE-2020-10531 * Tue Feb 01 2022 Ben Greiner <code@bnavigator.de> - Remove URLs from github zip archives for xnnpack transitive dependencies: The GitHub archiver produces unreliable files * Sat Jan 22 2022 Ben Greiner <code@bnavigator.de> - Update to 2.7.0 * Big changelog: at https://github.com/tensorflow/tensorflow/releases/tag/v2.7.0 - Security references: * Fixes a code injection issue in saved_model_cli (CVE-2021-41228) * Fixes a vulnerability due to use of uninitialized value in Tensorflow (CVE-2021-41225) * Fixes a heap OOB in FusedBatchNorm kernels (CVE-2021-41223) * Fixes an arbitrary memory read in ImmutableConst (CVE-2021-41227) * Fixes a heap OOB in SparseBinCount (CVE-2021-41226) * Fixes a heap OOB in SparseFillEmptyRows (CVE-2021-41224) * Fixes a segfault due to negative splits in SplitV (CVE-2021-41222) * Fixes segfaults and vulnerabilities caused by accesses to invalid memory during shape inference in Cudnn* ops (CVE-2021-41221) * Fixes a null pointer exception when Exit node is not preceded by Enter op (CVE-2021-41217) * Fixes an integer division by 0 in tf.raw_ops.AllToAll (CVE-2021-41218) * Fixes a use after free and a memory leak in CollectiveReduceV2 (CVE-2021-41220) * Fixes an undefined behavior via nullptr reference binding in sparse matrix multiplication (CVE-2021-41219) * Fixes a heap buffer overflow in Transpose (CVE-2021-41216) * Prevents deadlocks arising from mutually recursive tf.function objects (CVE-2021-41213) * Fixes a null pointer exception in DeserializeSparse (CVE-2021-41215) * Fixes an undefined behavior arising from reference binding to nullptr in tf.ragged.cross (CVE-2021-41214) * Fixes a heap OOB read in tf.ragged.cross (CVE-2021-41212) * Fixes a heap OOB in shape inference for QuantizeV2 (CVE-2021-41211) * Fixes a heap OOB read in all tf.raw_ops.QuantizeAndDequantizeV* ops (CVE-2021-41205) * Fixes an FPE in ParallelConcat (CVE-2021-41207) * Fixes FPE issues in convolutions with zero size filters (CVE-2021-41209) * Fixes a heap OOB read in tf.raw_ops.SparseCountSparseOutput (CVE-2021-41210) * Fixes vulnerabilities caused by incomplete validation in boosted trees code (CVE-2021-41208) * Fixes vulnerabilities caused by incomplete validation of shapes in multiple TF ops (CVE-2021-41206) * Fixes a segfault produced while copying constant resource tensor (CVE-2021-41204) * Fixes a vulnerability caused by unitialized access in EinsumHelper::ParseEquation (CVE-2021-41201) * Fixes several vulnerabilities and segfaults caused by missing validation during checkpoint loading (CVE-2021-41203) * Fixes an overflow producing a crash in tf.range (CVE-2021-41202) * Fixes an overflow producing a crash in tf.image.resize when size is large (CVE-2021-41199) * Fixes an overflow producing a crash in tf.tile when tiling tensor is large (CVE-2021-41198) * Fixes a vulnerability produced due to incomplete validation in tf.summary.create_file_writer (CVE-2021-41200) * Fixes multiple crashes due to overflow and CHECK-fail in ops with large tensor shapes (CVE-2021-41197) * Fixes a crash in max_pool3d when size argument is 0 or negative (CVE-2021-41196) * Fixes a crash in tf.math.segment_* operations (CVE-2021-41195) * Updates curl to 7.78.0 to handle CVE-2021-22922, CVE-2021-22923, CVE-2021-22924, CVE-2021-22925, and CVE-2021-22926. - This drops support for Python 3.6 and thus for SLE/Leap 15 See also https://code.opensuse.org/leap/features/issue/35 - Closes boo#1195295 * Note that tensorflow2 (non-lite) will be removed from Tumbleweed soon if there are no volunteers, see leap feature issue above. - Have to migrate tensorflow-lite build to CMake as old Makefile was dropped - Drop patches no longer necessary or applicable * tensorflow-2.6.0-remove-weakref.patch * tensorflow-2.6.0-fix-lite.patch * tensorflow-2.6.0-tf-keras-hdf5-3.patch * tensorflow-2.6.0-removed-clog-build-as-included-in-cpuinfo.patch * tensorflow-2.6.0-numpy-tensor-small.patch - fix double nested unpacking and refresh patches, migrate to -p1 * tensorflow-2.6.0-removed-external-toolchains.patch * tensorflow-2.6.0-compile-with-protobuf-3.16.patch - Add #tensorflow-2.7.0-fix-lite.patch * https://github.com/tensorflow/tensorflow/commit/fb1dcbd9 * gh#tensorflow/tensorflow#54216 - Have to use grpc and upb from bazelcache, pulls in go * Add tensorflow-2.7.0-go_host_sdk.patch -- use system SDK instead of downloading a binary blob * Tue Jan 11 2022 Guillaume GARDET <guillaume.gardet@opensuse.org> - Remove more python dependencies for tensorflow2-lite * Mon Jan 10 2022 Guillaume GARDET <guillaume.gardet@opensuse.org> - tensorflow2-lite version does not need all the python dependencies listed for tensorflow2 * Fri Jan 07 2022 Guillaume GARDET <guillaume.gardet@opensuse.org> - Leap 15.x / Backports: Do not build non-Lite versions since python3-numpy and python3-scipy are too old for Keras/TF2
/usr/bin/tflite_minimal /usr/lib64/python3.11/site-packages/tflite_runtime /usr/lib64/python3.11/site-packages/tflite_runtime-2.10.0-py3.11.egg-info /usr/lib64/python3.11/site-packages/tflite_runtime-2.10.0-py3.11.egg-info/PKG-INFO /usr/lib64/python3.11/site-packages/tflite_runtime-2.10.0-py3.11.egg-info/SOURCES.txt /usr/lib64/python3.11/site-packages/tflite_runtime-2.10.0-py3.11.egg-info/dependency_links.txt /usr/lib64/python3.11/site-packages/tflite_runtime-2.10.0-py3.11.egg-info/requires.txt /usr/lib64/python3.11/site-packages/tflite_runtime-2.10.0-py3.11.egg-info/top_level.txt /usr/lib64/python3.11/site-packages/tflite_runtime/__init__.py /usr/lib64/python3.11/site-packages/tflite_runtime/__pycache__ /usr/lib64/python3.11/site-packages/tflite_runtime/__pycache__/__init__.cpython-311.opt-1.pyc /usr/lib64/python3.11/site-packages/tflite_runtime/__pycache__/__init__.cpython-311.pyc /usr/lib64/python3.11/site-packages/tflite_runtime/__pycache__/interpreter.cpython-311.opt-1.pyc /usr/lib64/python3.11/site-packages/tflite_runtime/__pycache__/interpreter.cpython-311.pyc /usr/lib64/python3.11/site-packages/tflite_runtime/__pycache__/metrics_interface.cpython-311.opt-1.pyc /usr/lib64/python3.11/site-packages/tflite_runtime/__pycache__/metrics_interface.cpython-311.pyc /usr/lib64/python3.11/site-packages/tflite_runtime/__pycache__/metrics_portable.cpython-311.opt-1.pyc /usr/lib64/python3.11/site-packages/tflite_runtime/__pycache__/metrics_portable.cpython-311.pyc /usr/lib64/python3.11/site-packages/tflite_runtime/_pywrap_tensorflow_interpreter_wrapper.so /usr/lib64/python3.11/site-packages/tflite_runtime/interpreter.py /usr/lib64/python3.11/site-packages/tflite_runtime/metrics_interface.py /usr/lib64/python3.11/site-packages/tflite_runtime/metrics_portable.py
Generated by rpm2html 1.8.1
Fabrice Bellet, Sun Jan 12 01:37:12 2025