D*C
C*D
Computes the intersection product of a ToricDivisor with a ToricCycle.
i1 : X = toricProjectiveSpace 4 o1 = X o1 : NormalToricVariety
i2 : D = X_0+2*X_1+3*X_2+4*X_3 o2 = X + 2*X + 3*X + 4*X 0 1 2 3 o2 : ToricDivisor on X
i3 : C = X_{2,3} o3 = X {2, 3} o3 : ToricCycle on X
i4 : D*C o4 = 10*X {1, 2, 3} o4 : ToricCycle on X
Self intersection of the exceptional divisor.
i5 : X = toricProjectiveSpace 2 o5 = X o5 : NormalToricVariety
i6 : Y = toricBlowup({0,1},X) o6 = Y o6 : NormalToricVariety
i7 : D = Y_3 o7 = Y 3 o7 : ToricDivisor on Y
i8 : C = Y_{3} o8 = Y {3} o8 : ToricCycle on Y
i9 : D*C o9 = - Y {1, 3} o9 : ToricCycle on Y