|
def | sort (self) |
|
def | size (self) |
|
def | __add__ (self, other) |
|
def | __radd__ (self, other) |
|
def | __mul__ (self, other) |
|
def | __rmul__ (self, other) |
|
def | __sub__ (self, other) |
|
def | __rsub__ (self, other) |
|
def | __or__ (self, other) |
|
def | __ror__ (self, other) |
|
def | __and__ (self, other) |
|
def | __rand__ (self, other) |
|
def | __xor__ (self, other) |
|
def | __rxor__ (self, other) |
|
def | __pos__ (self) |
|
def | __neg__ (self) |
|
def | __invert__ (self) |
|
def | __div__ (self, other) |
|
def | __truediv__ (self, other) |
|
def | __rdiv__ (self, other) |
|
def | __rtruediv__ (self, other) |
|
def | __mod__ (self, other) |
|
def | __rmod__ (self, other) |
|
def | __le__ (self, other) |
|
def | __lt__ (self, other) |
|
def | __gt__ (self, other) |
|
def | __ge__ (self, other) |
|
def | __rshift__ (self, other) |
|
def | __lshift__ (self, other) |
|
def | __rrshift__ (self, other) |
|
def | __rlshift__ (self, other) |
|
def | as_ast (self) |
|
def | get_id (self) |
|
def | sort (self) |
|
def | sort_kind (self) |
|
def | __eq__ (self, other) |
|
def | __hash__ (self) |
|
def | __ne__ (self, other) |
|
def | params (self) |
|
def | decl (self) |
|
def | num_args (self) |
|
def | arg (self, idx) |
|
def | children (self) |
|
def | from_string (self, s) |
|
def | serialize (self) |
|
def | __init__ (self, ast, ctx=None) |
|
def | __del__ (self) |
|
def | __deepcopy__ (self, memo={}) |
|
def | __str__ (self) |
|
def | __repr__ (self) |
|
def | __eq__ (self, other) |
|
def | __hash__ (self) |
|
def | __nonzero__ (self) |
|
def | __bool__ (self) |
|
def | sexpr (self) |
|
def | as_ast (self) |
|
def | get_id (self) |
|
def | ctx_ref (self) |
|
def | eq (self, other) |
|
def | translate (self, target) |
|
def | __copy__ (self) |
|
def | hash (self) |
|
def | use_pp (self) |
|
Bit-vector expressions.
Definition at line 3478 of file z3py.py.
◆ __add__()
def __add__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression `self + other`.
>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x + y
x + y
>>> (x + y).sort()
BitVec(32)
Definition at line 3503 of file z3py.py.
3503 def __add__(self, other):
3504 """Create the Z3 expression `self + other`.
3505
3508 >>> x + y
3509 x + y
3510 >>> (x + y).sort()
3512 """
3513 a, b = _coerce_exprs(self, other)
3514 return BitVecRef(
Z3_mk_bvadd(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3515
Z3_ast Z3_API Z3_mk_bvadd(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement addition.
def BitVec(name, bv, ctx=None)
◆ __and__()
def __and__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression bitwise-and `self & other`.
>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x & y
x & y
>>> (x & y).sort()
BitVec(32)
Definition at line 3595 of file z3py.py.
3595 def __and__(self, other):
3596 """Create the Z3 expression bitwise-and `self & other`.
3597
3600 >>> x & y
3601 x & y
3602 >>> (x & y).sort()
3604 """
3605 a, b = _coerce_exprs(self, other)
3606 return BitVecRef(
Z3_mk_bvand(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3607
Z3_ast Z3_API Z3_mk_bvand(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise and.
◆ __div__()
def __div__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression (signed) division `self / other`.
Use the function UDiv() for unsigned division.
>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x / y
x/y
>>> (x / y).sort()
BitVec(32)
>>> (x / y).sexpr()
'(bvsdiv x y)'
>>> UDiv(x, y).sexpr()
'(bvudiv x y)'
Definition at line 3672 of file z3py.py.
3672 def __div__(self, other):
3673 """Create the Z3 expression (signed) division `self / other`.
3674
3675 Use the function UDiv() for unsigned division.
3676
3679 >>> x / y
3680 x/y
3681 >>> (x / y).sort()
3683 >>> (x / y).sexpr()
3684 '(bvsdiv x y)'
3685 >>>
UDiv(x, y).sexpr()
3686 '(bvudiv x y)'
3687 """
3688 a, b = _coerce_exprs(self, other)
3689 return BitVecRef(
Z3_mk_bvsdiv(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3690
Z3_ast Z3_API Z3_mk_bvsdiv(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed division.
Referenced by ArithRef.__truediv__(), BitVecRef.__truediv__(), and FPRef.__truediv__().
◆ __ge__()
def __ge__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression (signed) `other >= self`.
Use the function UGE() for unsigned greater than or equal to.
>>> x, y = BitVecs('x y', 32)
>>> x >= y
x >= y
>>> (x >= y).sexpr()
'(bvsge x y)'
>>> UGE(x, y).sexpr()
'(bvuge x y)'
Definition at line 3802 of file z3py.py.
3802 def __ge__(self, other):
3803 """Create the Z3 expression (signed) `other >= self`.
3804
3805 Use the function UGE() for unsigned greater than
or equal to.
3806
3808 >>> x >= y
3809 x >= y
3810 >>> (x >= y).sexpr()
3811 '(bvsge x y)'
3812 >>>
UGE(x, y).sexpr()
3813 '(bvuge x y)'
3814 """
3815 a, b = _coerce_exprs(self, other)
3816 return BoolRef(
Z3_mk_bvsge(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3817
Z3_ast Z3_API Z3_mk_bvsge(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than or equal to.
def BitVecs(names, bv, ctx=None)
◆ __gt__()
def __gt__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression (signed) `other > self`.
Use the function UGT() for unsigned greater than.
>>> x, y = BitVecs('x y', 32)
>>> x > y
x > y
>>> (x > y).sexpr()
'(bvsgt x y)'
>>> UGT(x, y).sexpr()
'(bvugt x y)'
Definition at line 3786 of file z3py.py.
3786 def __gt__(self, other):
3787 """Create the Z3 expression (signed) `other > self`.
3788
3789 Use the function UGT() for unsigned greater than.
3790
3792 >>> x > y
3793 x > y
3794 >>> (x > y).sexpr()
3795 '(bvsgt x y)'
3796 >>>
UGT(x, y).sexpr()
3797 '(bvugt x y)'
3798 """
3799 a, b = _coerce_exprs(self, other)
3800 return BoolRef(
Z3_mk_bvsgt(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3801
Z3_ast Z3_API Z3_mk_bvsgt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed greater than.
◆ __invert__()
Create the Z3 expression bitwise-not `~self`.
>>> x = BitVec('x', 32)
>>> ~x
~x
>>> simplify(~(~x))
x
Definition at line 3661 of file z3py.py.
3661 def __invert__(self):
3662 """Create the Z3 expression bitwise-not `~self`.
3663
3665 >>> ~x
3666 ~x
3668 x
3669 """
3670 return BitVecRef(
Z3_mk_bvnot(self.ctx_ref(), self.as_ast()), self.ctx)
3671
Z3_ast Z3_API Z3_mk_bvnot(Z3_context c, Z3_ast t1)
Bitwise negation.
def simplify(a, *arguments, **keywords)
Utils.
◆ __le__()
def __le__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression (signed) `other <= self`.
Use the function ULE() for unsigned less than or equal to.
>>> x, y = BitVecs('x y', 32)
>>> x <= y
x <= y
>>> (x <= y).sexpr()
'(bvsle x y)'
>>> ULE(x, y).sexpr()
'(bvule x y)'
Definition at line 3754 of file z3py.py.
3754 def __le__(self, other):
3755 """Create the Z3 expression (signed) `other <= self`.
3756
3757 Use the function ULE() for unsigned less than
or equal to.
3758
3760 >>> x <= y
3761 x <= y
3762 >>> (x <= y).sexpr()
3763 '(bvsle x y)'
3764 >>>
ULE(x, y).sexpr()
3765 '(bvule x y)'
3766 """
3767 a, b = _coerce_exprs(self, other)
3768 return BoolRef(
Z3_mk_bvsle(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3769
Z3_ast Z3_API Z3_mk_bvsle(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than or equal to.
◆ __lshift__()
def __lshift__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression left shift `self << other`
>>> x, y = BitVecs('x y', 32)
>>> x << y
x << y
>>> (x << y).sexpr()
'(bvshl x y)'
>>> simplify(BitVecVal(2, 3) << 1)
4
Definition at line 3848 of file z3py.py.
3848 def __lshift__(self, other):
3849 """Create the Z3 expression left shift `self << other`
3850
3852 >>> x << y
3853 x << y
3854 >>> (x << y).sexpr()
3855 '(bvshl x y)'
3857 4
3858 """
3859 a, b = _coerce_exprs(self, other)
3860 return BitVecRef(
Z3_mk_bvshl(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3861
Z3_ast Z3_API Z3_mk_bvshl(Z3_context c, Z3_ast t1, Z3_ast t2)
Shift left.
def BitVecVal(val, bv, ctx=None)
◆ __lt__()
def __lt__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression (signed) `other < self`.
Use the function ULT() for unsigned less than.
>>> x, y = BitVecs('x y', 32)
>>> x < y
x < y
>>> (x < y).sexpr()
'(bvslt x y)'
>>> ULT(x, y).sexpr()
'(bvult x y)'
Definition at line 3770 of file z3py.py.
3770 def __lt__(self, other):
3771 """Create the Z3 expression (signed) `other < self`.
3772
3773 Use the function ULT() for unsigned less than.
3774
3776 >>> x < y
3777 x < y
3778 >>> (x < y).sexpr()
3779 '(bvslt x y)'
3780 >>>
ULT(x, y).sexpr()
3781 '(bvult x y)'
3782 """
3783 a, b = _coerce_exprs(self, other)
3784 return BoolRef(
Z3_mk_bvslt(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3785
Z3_ast Z3_API Z3_mk_bvslt(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed less than.
◆ __mod__()
def __mod__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression (signed) mod `self % other`.
Use the function URem() for unsigned remainder, and SRem() for signed remainder.
>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x % y
x%y
>>> (x % y).sort()
BitVec(32)
>>> (x % y).sexpr()
'(bvsmod x y)'
>>> URem(x, y).sexpr()
'(bvurem x y)'
>>> SRem(x, y).sexpr()
'(bvsrem x y)'
Definition at line 3715 of file z3py.py.
3715 def __mod__(self, other):
3716 """Create the Z3 expression (signed) mod `self % other`.
3717
3718 Use the function URem() for unsigned remainder,
and SRem()
for signed remainder.
3719
3722 >>> x % y
3723 x%y
3724 >>> (x % y).sort()
3726 >>> (x % y).sexpr()
3727 '(bvsmod x y)'
3728 >>>
URem(x, y).sexpr()
3729 '(bvurem x y)'
3730 >>>
SRem(x, y).sexpr()
3731 '(bvsrem x y)'
3732 """
3733 a, b = _coerce_exprs(self, other)
3734 return BitVecRef(
Z3_mk_bvsmod(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3735
Z3_ast Z3_API Z3_mk_bvsmod(Z3_context c, Z3_ast t1, Z3_ast t2)
Two's complement signed remainder (sign follows divisor).
◆ __mul__()
def __mul__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression `self * other`.
>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x * y
x*y
>>> (x * y).sort()
BitVec(32)
Definition at line 3526 of file z3py.py.
3526 def __mul__(self, other):
3527 """Create the Z3 expression `self * other`.
3528
3531 >>> x * y
3532 x*y
3533 >>> (x * y).sort()
3535 """
3536 a, b = _coerce_exprs(self, other)
3537 return BitVecRef(
Z3_mk_bvmul(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3538
Z3_ast Z3_API Z3_mk_bvmul(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement multiplication.
◆ __neg__()
Return an expression representing `-self`.
>>> x = BitVec('x', 32)
>>> -x
-x
>>> simplify(-(-x))
x
Definition at line 3650 of file z3py.py.
3650 def __neg__(self):
3651 """Return an expression representing `-self`.
3652
3654 >>> -x
3655 -x
3657 x
3658 """
3659 return BitVecRef(
Z3_mk_bvneg(self.ctx_ref(), self.as_ast()), self.ctx)
3660
Z3_ast Z3_API Z3_mk_bvneg(Z3_context c, Z3_ast t1)
Standard two's complement unary minus.
◆ __or__()
def __or__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression bitwise-or `self | other`.
>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x | y
x | y
>>> (x | y).sort()
BitVec(32)
Definition at line 3572 of file z3py.py.
3572 def __or__(self, other):
3573 """Create the Z3 expression bitwise-or `self | other`.
3574
3577 >>> x | y
3578 x | y
3579 >>> (x | y).sort()
3581 """
3582 a, b = _coerce_exprs(self, other)
3583 return BitVecRef(
Z3_mk_bvor(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3584
Z3_ast Z3_API Z3_mk_bvor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise or.
◆ __pos__()
Return `self`.
>>> x = BitVec('x', 32)
>>> +x
x
Definition at line 3641 of file z3py.py.
3641 def __pos__(self):
3642 """Return `self`.
3643
3645 >>> +x
3646 x
3647 """
3648 return self
3649
◆ __radd__()
def __radd__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression `other + self`.
>>> x = BitVec('x', 32)
>>> 10 + x
10 + x
Definition at line 3516 of file z3py.py.
3516 def __radd__(self, other):
3517 """Create the Z3 expression `other + self`.
3518
3520 >>> 10 + x
3521 10 + x
3522 """
3523 a, b = _coerce_exprs(self, other)
3524 return BitVecRef(
Z3_mk_bvadd(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3525
◆ __rand__()
def __rand__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression bitwise-or `other & self`.
>>> x = BitVec('x', 32)
>>> 10 & x
10 & x
Definition at line 3608 of file z3py.py.
3608 def __rand__(self, other):
3609 """Create the Z3 expression bitwise-or `other & self`.
3610
3612 >>> 10 & x
3613 10 & x
3614 """
3615 a, b = _coerce_exprs(self, other)
3616 return BitVecRef(
Z3_mk_bvand(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3617
◆ __rdiv__()
def __rdiv__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression (signed) division `other / self`.
Use the function UDiv() for unsigned division.
>>> x = BitVec('x', 32)
>>> 10 / x
10/x
>>> (10 / x).sexpr()
'(bvsdiv #x0000000a x)'
>>> UDiv(10, x).sexpr()
'(bvudiv #x0000000a x)'
Definition at line 3695 of file z3py.py.
3695 def __rdiv__(self, other):
3696 """Create the Z3 expression (signed) division `other / self`.
3697
3698 Use the function UDiv() for unsigned division.
3699
3701 >>> 10 / x
3702 10/x
3703 >>> (10 / x).sexpr()
3704 '(bvsdiv #x0000000a x)'
3705 >>>
UDiv(10, x).sexpr()
3706 '(bvudiv #x0000000a x)'
3707 """
3708 a, b = _coerce_exprs(self, other)
3709 return BitVecRef(
Z3_mk_bvsdiv(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3710
Referenced by ArithRef.__rtruediv__(), BitVecRef.__rtruediv__(), and FPRef.__rtruediv__().
◆ __rlshift__()
def __rlshift__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression left shift `other << self`.
Use the function LShR() for the right logical shift
>>> x = BitVec('x', 32)
>>> 10 << x
10 << x
>>> (10 << x).sexpr()
'(bvshl #x0000000a x)'
Definition at line 3876 of file z3py.py.
3876 def __rlshift__(self, other):
3877 """Create the Z3 expression left shift `other << self`.
3878
3879 Use the function LShR() for the right logical shift
3880
3882 >>> 10 << x
3883 10 << x
3884 >>> (10 << x).sexpr()
3885 '(bvshl #x0000000a x)'
3886 """
3887 a, b = _coerce_exprs(self, other)
3888 return BitVecRef(
Z3_mk_bvshl(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3889
3890
◆ __rmod__()
def __rmod__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression (signed) mod `other % self`.
Use the function URem() for unsigned remainder, and SRem() for signed remainder.
>>> x = BitVec('x', 32)
>>> 10 % x
10%x
>>> (10 % x).sexpr()
'(bvsmod #x0000000a x)'
>>> URem(10, x).sexpr()
'(bvurem #x0000000a x)'
>>> SRem(10, x).sexpr()
'(bvsrem #x0000000a x)'
Definition at line 3736 of file z3py.py.
3736 def __rmod__(self, other):
3737 """Create the Z3 expression (signed) mod `other % self`.
3738
3739 Use the function URem() for unsigned remainder,
and SRem()
for signed remainder.
3740
3742 >>> 10 % x
3743 10%x
3744 >>> (10 % x).sexpr()
3745 '(bvsmod #x0000000a x)'
3746 >>>
URem(10, x).sexpr()
3747 '(bvurem #x0000000a x)'
3748 >>>
SRem(10, x).sexpr()
3749 '(bvsrem #x0000000a x)'
3750 """
3751 a, b = _coerce_exprs(self, other)
3752 return BitVecRef(
Z3_mk_bvsmod(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3753
◆ __rmul__()
def __rmul__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression `other * self`.
>>> x = BitVec('x', 32)
>>> 10 * x
10*x
Definition at line 3539 of file z3py.py.
3539 def __rmul__(self, other):
3540 """Create the Z3 expression `other * self`.
3541
3543 >>> 10 * x
3544 10*x
3545 """
3546 a, b = _coerce_exprs(self, other)
3547 return BitVecRef(
Z3_mk_bvmul(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3548
◆ __ror__()
def __ror__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression bitwise-or `other | self`.
>>> x = BitVec('x', 32)
>>> 10 | x
10 | x
Definition at line 3585 of file z3py.py.
3585 def __ror__(self, other):
3586 """Create the Z3 expression bitwise-or `other | self`.
3587
3589 >>> 10 | x
3590 10 | x
3591 """
3592 a, b = _coerce_exprs(self, other)
3593 return BitVecRef(
Z3_mk_bvor(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3594
◆ __rrshift__()
def __rrshift__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression (arithmetical) right shift `other` >> `self`.
Use the function LShR() for the right logical shift
>>> x = BitVec('x', 32)
>>> 10 >> x
10 >> x
>>> (10 >> x).sexpr()
'(bvashr #x0000000a x)'
Definition at line 3862 of file z3py.py.
3862 def __rrshift__(self, other):
3863 """Create the Z3 expression (arithmetical) right shift `other` >> `self`.
3864
3865 Use the function LShR() for the right logical shift
3866
3868 >>> 10 >> x
3869 10 >> x
3870 >>> (10 >> x).sexpr()
3871 '(bvashr #x0000000a x)'
3872 """
3873 a, b = _coerce_exprs(self, other)
3874 return BitVecRef(
Z3_mk_bvashr(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3875
Z3_ast Z3_API Z3_mk_bvashr(Z3_context c, Z3_ast t1, Z3_ast t2)
Arithmetic shift right.
◆ __rshift__()
def __rshift__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression (arithmetical) right shift `self >> other`
Use the function LShR() for the right logical shift
>>> x, y = BitVecs('x y', 32)
>>> x >> y
x >> y
>>> (x >> y).sexpr()
'(bvashr x y)'
>>> LShR(x, y).sexpr()
'(bvlshr x y)'
>>> BitVecVal(4, 3)
4
>>> BitVecVal(4, 3).as_signed_long()
-4
>>> simplify(BitVecVal(4, 3) >> 1).as_signed_long()
-2
>>> simplify(BitVecVal(4, 3) >> 1)
6
>>> simplify(LShR(BitVecVal(4, 3), 1))
2
>>> simplify(BitVecVal(2, 3) >> 1)
1
>>> simplify(LShR(BitVecVal(2, 3), 1))
1
Definition at line 3818 of file z3py.py.
3818 def __rshift__(self, other):
3819 """Create the Z3 expression (arithmetical) right shift `self >> other`
3820
3821 Use the function LShR() for the right logical shift
3822
3824 >>> x >> y
3825 x >> y
3826 >>> (x >> y).sexpr()
3827 '(bvashr x y)'
3828 >>>
LShR(x, y).sexpr()
3829 '(bvlshr x y)'
3831 4
3833 -4
3835 -2
3837 6
3839 2
3841 1
3843 1
3844 """
3845 a, b = _coerce_exprs(self, other)
3846 return BitVecRef(
Z3_mk_bvashr(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3847
◆ __rsub__()
def __rsub__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression `other - self`.
>>> x = BitVec('x', 32)
>>> 10 - x
10 - x
Definition at line 3562 of file z3py.py.
3562 def __rsub__(self, other):
3563 """Create the Z3 expression `other - self`.
3564
3566 >>> 10 - x
3567 10 - x
3568 """
3569 a, b = _coerce_exprs(self, other)
3570 return BitVecRef(
Z3_mk_bvsub(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3571
Z3_ast Z3_API Z3_mk_bvsub(Z3_context c, Z3_ast t1, Z3_ast t2)
Standard two's complement subtraction.
◆ __rtruediv__()
def __rtruediv__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression (signed) division `other / self`.
Definition at line 3711 of file z3py.py.
3711 def __rtruediv__(self, other):
3712 """Create the Z3 expression (signed) division `other / self`."""
3713 return self.__rdiv__(other)
3714
◆ __rxor__()
def __rxor__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression bitwise-xor `other ^ self`.
>>> x = BitVec('x', 32)
>>> 10 ^ x
10 ^ x
Definition at line 3631 of file z3py.py.
3631 def __rxor__(self, other):
3632 """Create the Z3 expression bitwise-xor `other ^ self`.
3633
3635 >>> 10 ^ x
3636 10 ^ x
3637 """
3638 a, b = _coerce_exprs(self, other)
3639 return BitVecRef(
Z3_mk_bvxor(self.ctx_ref(), b.as_ast(), a.as_ast()), self.ctx)
3640
Z3_ast Z3_API Z3_mk_bvxor(Z3_context c, Z3_ast t1, Z3_ast t2)
Bitwise exclusive-or.
◆ __sub__()
def __sub__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression `self - other`.
>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x - y
x - y
>>> (x - y).sort()
BitVec(32)
Definition at line 3549 of file z3py.py.
3549 def __sub__(self, other):
3550 """Create the Z3 expression `self - other`.
3551
3554 >>> x - y
3555 x - y
3556 >>> (x - y).sort()
3558 """
3559 a, b = _coerce_exprs(self, other)
3560 return BitVecRef(
Z3_mk_bvsub(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3561
◆ __truediv__()
def __truediv__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression (signed) division `self / other`.
Definition at line 3691 of file z3py.py.
3691 def __truediv__(self, other):
3692 """Create the Z3 expression (signed) division `self / other`."""
3693 return self.__div__(other)
3694
◆ __xor__()
def __xor__ |
( |
|
self, |
|
|
|
other |
|
) |
| |
Create the Z3 expression bitwise-xor `self ^ other`.
>>> x = BitVec('x', 32)
>>> y = BitVec('y', 32)
>>> x ^ y
x ^ y
>>> (x ^ y).sort()
BitVec(32)
Definition at line 3618 of file z3py.py.
3618 def __xor__(self, other):
3619 """Create the Z3 expression bitwise-xor `self ^ other`.
3620
3623 >>> x ^ y
3624 x ^ y
3625 >>> (x ^ y).sort()
3627 """
3628 a, b = _coerce_exprs(self, other)
3629 return BitVecRef(
Z3_mk_bvxor(self.ctx_ref(), a.as_ast(), b.as_ast()), self.ctx)
3630
◆ size()
◆ sort()
Return the sort of the bit-vector expression `self`.
>>> x = BitVec('x', 32)
>>> x.sort()
BitVec(32)
>>> x.sort() == BitVecSort(32)
True
Reimplemented from ExprRef.
Definition at line 3481 of file z3py.py.
3481 def sort(self):
3482 """Return the sort of the bit-vector expression `self`.
3483
3485 >>> x.sort()
3488 True
3489 """
3490 return BitVecSortRef(
Z3_get_sort(self.ctx_ref(), self.as_ast()), self.ctx)
3491
Z3_sort Z3_API Z3_get_sort(Z3_context c, Z3_ast a)
Return the sort of an AST node.
def BitVecSort(sz, ctx=None)
Referenced by BitVecRef.__add__(), BitVecRef.__and__(), BitVecRef.__div__(), BitVecRef.__mod__(), BitVecRef.__mul__(), BitVecRef.__or__(), BitVecRef.__sub__(), BitVecRef.__xor__(), FPNumRef.as_string(), ArrayRef.domain(), ArrayRef.domain_n(), FPRef.ebits(), ArithRef.is_int(), ArithRef.is_real(), ArrayRef.range(), FPRef.sbits(), BitVecRef.size(), and ExprRef.sort_kind().