Top
Back: normalToricRing
Forward: toricRingFromBinomials
FastBack:
FastForward:
Up: normaliz_lib
Top: Singular Manual
Contents: Table of Contents
Index: Index
About: About this document

D.4.24.3 normalToricRingFromBinomials

Procedure from library normaliz.lib (see normaliz_lib).

Usage:
normalToricRingFromBinomials(ideal I);
normalToricRingFromBinomials(ideal I, intvec grading);

Return:


The function returns the input ideal I if an option blocking the computation of Hilbert bases has been activated.
However, in this case some numerical invariants are computed, and some other data may be contained in files that you can read into Singular (see showNuminvs, exportNuminvs).

Example:
 
LIB "normaliz.lib";
ring R = 37,(u,v,w,x,y,z),dp;
ideal I = u2v-xyz, ux2-wyz, uvw-y2z;
def S = normalToricRingFromBinomials(I);
setring S;
I;
==> I[1]=x(3)
==> I[2]=x(1)
==> I[3]=x(2)*x(3)^3
==> I[4]=x(1)*x(2)*x(3)^2
==> I[5]=x(1)^2*x(2)*x(3)
==> I[6]=x(1)^3*x(2)
==> I[7]=x(1)*x(2)^2*x(3)^4
==> I[8]=x(1)^2*x(2)^2*x(3)^3
==> I[9]=x(1)^2*x(2)^3*x(3)^5
See also: ehrhartRing; intclMonIdeal; intclToricRing; normalToricRing.


Top Back: normalToricRing Forward: toricRingFromBinomials FastBack: FastForward: Up: normaliz_lib Top: Singular Manual Contents: Table of Contents Index: Index About: About this document
            User manual for Singular version 4.3.2, 2023, generated by texi2html.