PVS Tutorial, FM99

John Rushby, Dave Stringer-Calvert, and N. Shankar
Computer Science Laboratory

SRI International
Menlo Park CA 94025 USA

These are the examples that will be used during the first part of the tutorial. They
(and several others) are available by following the ExamplesandTutorials link from
the PVS home page at http://pvs.csl.sri.com. You can also download the PVS
system from there. This document is not intended to be self-contained: it is intended to help
you follow along during the tutorial. If you want to examine the proofs for the lemmas and
theorems appearing here, load the appropriate example file into PVS, position the cursor in
the formula whose proof you wish to examine, and give the command M-x step. The
two characters tab 1 will then step you through the proof one command at a time.

1 Sum

This example is used to introduce the look and feel of PVS. The recursive function sum_nats
takes a natural number n as its argument and returns the sum of the natural numbers up to
n.

sum: THEORY
BEGIN
sum_nats (n: nat): RECURSIVE nat =
IF n=0 THEN 0 ELSE n+sum_nats(n-1) ENDIF
MEASURE n
test: LEMMA sum_nats(3) = 6
closed_form: THEOREM FORALL (n:nat): sum_nats(n) = nx(n+l)/2
bigtest: LEMMA sum_nats (100) = 5050
biggertest: LEMMA sum_nats (200) = 20100
hugetest: LEMMA sum_nats (100000) = 5000050000
END sum

Because it is recursive, we must give a measure to help establish termination. Proof
obligations called Typecheck Correctness Conditions (TCCs) are generated to ensure that

the measure decreases across recursive calls, and also that the expression n—1 is well-
defined (i.e., that it is not negative).

We can test this specification by expanding the definition several times to evaluate small
values such as sum_nats (3). Then we can use the prover to establish (by induction) the
closed-form expression for this sum.

If we try testing larger and larger values, we see that execution by theorem prov-
ing is not very efficient: it takes several seconds to evaluate sum_nats (100). PVS
has a ground evaluator this purpose; it compiles PVS into Lisp that can easily evaluate
sum_nats (100000).

2 Summations

This example demonstrates some of the higher-order features of PVS. The function summation
takes another function as its argument and sums the value of that function over the natural
numbers up to n. The function id [nat] is a PVS prelude (built-in) function that specifies

the identity function on the natural numbers, so that summation (id[nat], n) should

be the same as sum_nats (n). We prove this fact, and also the closed-form expressions

for sums of squares and cubes.

summations: THEORY
BEGIN

n: VAR nat
f, g: VAR [nat -> real]

summation (f, n): RECURSIVE real =
IF n =0
THEN £ (0)
ELSE f(n) + summation(f, n - 1)
ENDIF
MEASURE n

IMPORTING sum
summation_nats: LEMMA summation (id[nat], n)
summation_nats_closed_form: LEMMA

summation (id[nat], n)

sum_nats (n)

n*x (n+l)/2
. .continued

...continuation

r: VAR real
square (r: real): real = r*r

summation_squares: LEMMA
summation (square, n) = n * (n + 1) * (2*xn + 1) / 6

cube(r): real = r*xr+*r
summation_cubes: LEMMA

summation (cube, n) = nxnx (n+l)*(n+l)/4
...continued

To illustrate additional proof commands, we also prove that the sum of cubes is equal to the
square of the sum of naturals.

...continuation

summation_of_ cubes_alt: LEMMA
summation (cube, n) = square (summation (id[nat],n))

summation_of_cubes_alt2: LEMMA
summation (cube, n) = square(summation (id[nat],n))

summation_of_ sum: LEMMA
summation ((lambda n: f(n) + g(n)), n) =

summation (f, n) + summation (g, n)

subtype_test: LEMMA
summation (square, summation (id[nat],3)) = 91

summation_of nat_is_nat: JUDGEMENT
summation (g: [nat->nat], n) HAS_TYPE nat

judgement_test: LEMMA
summation (square, summation (id[nat], 3)) = 91

END summations

The summat ions function is defined over the reals and returns a real value, so if we try to
use summation (id[nat], 3) asthe nin summation (square, n) we encounter a
TCC. However, the summation of a nat-valued function is always a nat and it is better to
establish this fact once and for all. We use this to illustrate the use of PVS type judgements.

3 Language Interpreter

The next example introduces PVS Abstract Data Types. We will define a simple program-
ming language for a machine whose memory can store integers and is addressed by numbers

intherange 1..1000.

memories: THEORY
BEGIN
n: nat = 1000
addrs: TYPE = upto(n)
memory: TYPE = [addrs —-> int]
END memories
...continued

Our language has expressions consisting of literal integer constants, “variables” that
denote a memory address, and (recursively) sums, differences, and negations.

...continuation
exprs: DATATYPE
BEGIN
IMPORTING memories
const (n: int): num?
varbl (a: addrs): vbl?
+(x,y: exprs): sum?
-(x,y: exprs): diff?
“(x: exprs): minus?
END exprs
...continued

Statements consist of assignments, sequential composition, if-then-else, and primitive
“for” loops that executed a fixed number of times given by an explicit natural number.

..continuation

statements: DATATYPE

BEGIN
IMPORTING memories, exprs
assign(a:addrs, e:exprs): assign?
seqg(a,b: statements): seqg?
ifelse(t: exprs, i,e:statements): ifelse?
for(l: nat, b:statements): for?

END statements

Notice that exprs and statements are not mutually recursive; if they were, we
would have to define them together in a single datatype with subtypes. here is an example

expression: DATATYPE WITH SUBTYPES term, typ
BEGIN

base_type(n:nat): base_type? : typ

funtype (dom: typ, ran: typ): funtype? : typ

variable(n:nat): variable? : term

number (num:nat) : number? : term

lam(v: (variable?), ty: typ, ex: term): lam? : term
app(op: term, arg: term): app? : term

END expression

We define the semantics of simple exprs in the context of a given memory by means
of an interpreter function valof. The subterm ordering predicate << on exprs is used to
establish termination.

eval: THEORY
BEGIN
IMPORTING statements

valof (v: exprs) (mem: memory): RECURSIVE int =
CASES v OF

const (n) : n,
varbl (a): mem(a),
+(x,y): valof (x) (mem) + valof (y) (mem),
-(x,vy): valof (x) (mem) - valof (y) (mem),
T(x) - valof (x) (mem)
ENDCASES
MEASURE v BY <<
...continued

We can test our specification by evaluating some simple expressions. The first two,
testl and test?2 mean the same thing: the latter uses the infix and prefix forms of
the subtraction and unary minus functions. We can avoid having to use the constructor
const each time by specifying it as a conversion; if we also specify varbl as a
conversion then this is preferred over const (because it comes later) and test 4 does
not mean the same as test3.

...continuation
arb: memory

testl: LEMMA valof (- (const(3), "~ (const(4)))) (arb) = 7
test2: LEMMA valof (const (3) - “const(4)) (arb) = 7
CONVERSION const

test3: LEMMA valof (3 - 74) (arb) = 7

CONVERSION wvarbl

testd4: LEMMA valof(3 - 74) (arb) = 7

testda: LEMMA valof (3 - 74) (arb with [(3):=12, (4):=-5]) = 7
...continued

The logically next step is to define the semantics of statements, but first we must
introduce a function that can be used as a measure for that recursive definition.

...continuation
runtime (s: statements): RECURSIVE posnat =

CASES s OF
assign(a, e): 1,
seq(a, b): runtime (a) + runtime (b),
ifelse(t,i,e): max (runtime (i), runtime (e))+1,
for(l,b): lxruntime (b) +1

ENDCASES

MEASURE s BY <<

exec (s: statements) (mem: memory): RECURSIVE memory =

CASES s OF
assign(a, e): mem with [(a) := valof(e) (mem)],
seqg(a, b): exec (b) (exec (a) (mem)),
ifelse(t,1i,e): IF valof(t) (mem) /= 0 THEN exec (i) (mem)
ELSE exec (i) (mem) ENDIF,
for(l,b): IF 1 = 0 then mem
ELSE exec (for(l-1,b)) (exec(b) (mem)) ENDIF
ENDCASES
MEASURE runtime (s)
..continued

We can test these definitions by evaluating some simple statements, and then a program
that sums the first j natural numbers.

..continuation
init: memory = id[addrs]

test5: LEMMA

valof (varbl (3)) (exec (assign (3, —(3, ~(4)))) (init)) = 7
testb5a: LEMMA

valof (3) (exec(assign (3, 3 - 74)) (init)) = 7

Q

zero: memory = 0 % K conversion

test_sum: LEMMA LET j = 10 IN
valof (0) (exec(
for (j+1,seg(assign (0, varbl(0) + wvarbl(l)),
assign(l, wvarbl(l) + const(l))))) (zero))
= sum_nats (j)

...continued

We can evaluate the expression in test_sum for 7 = 10 using rewriting, but using
the PVS ground evaluator we can do it for j = 100000 in just a few seconds.

Finally, we prove that the program does indeed compute the same function as sum_nat;
first we prove the loop invariant, then the desired correctness theorem.

...continuation

program_prop_lemma: LEMMA FORALL (j:nat), (m:memory) :
valof (0) (exec (

for (j+1,seqg(assign (0, wvarbl (0 varbl (1))

) + 14
assign(l, wvarbl(l) + const(l))))) (m)) =
sum_nats(j) + m(0) + (Jj+1)»*m(1l)
program_prop: THEOREM FORALL (j:nat):
valof (0) (exec (
for (j+1,seqg(assign (0, varbl(0) + wvarbl(l)),
assign(l, wvarbl(l) + const(l))))) (zero))

= sum_nats (j)

END eval

That concludes this part of the tutorial. The second part will demonstrate model check-
ing, abstraction, and other more advanced or recent capabilities.

