\(\newcommand{\W}[1]{ \; #1 \; }\) \(\newcommand{\R}[1]{ {\rm #1} }\) \(\newcommand{\B}[1]{ {\bf #1} }\) \(\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }\) \(\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }\) \(\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }\) \(\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }\)
atomic_four_lin_ode_get.hpp
atomic_lin_ode Get Routine: Example Implementation
Syntax
lin_ode . get
( call_id , r , step , pattern , transpose )
Prototype
typedef CppAD::sparse_rc< CppAD::vector<size_t> > sparse_rc;
template <class Base>
void atomic_lin_ode<Base>::get(
size_t call_id, Base& r, Base& step, sparse_rc& pattern, bool& transpose
)
Purpose
Retrieves the auxillary information for a an atomic operation that computes the solution of a linear ODE.
call_id
This input argument identifies the auxillary information for this ODE.
r
This output argument is the final value for the variable that the ODE is with respect to.
step
This is a positive maximum step size to use when solving the ODE.
pattern
This output argument is a sparsity pattern.
transpose
If this output argument is true (false) the sparsity pattern is for \(A(x)^\R{T}\) (\(A(x)\)).
Source
# include <cppad/example/atomic_four/lin_ode/lin_ode.hpp>
namespace CppAD { // BEGIN_CPPAD_NAMESPACE
// BEGIN PROTOTYPE
template <class Base>
void atomic_lin_ode<Base>::get(
size_t call_id, Base& r, Base& step, sparse_rc& pattern, bool& transpose
)
// END PROTOTYPE
{
// thread
size_t thread = thread_alloc::thread_num();
CPPAD_ASSERT_UNKNOWN( work_[thread] != nullptr );
//
// pattern_vec
CppAD::vector<sparse_rc>& pattern_vec( work_[thread]->pattern_vec );
//
// call_vec
CppAD::vector<call_struct>& call_vec( work_[thread]->call_vec );
//
CPPAD_ASSERT_UNKNOWN( thread == call_vec[call_id].thread );
//
// r
call_struct& call = call_vec[call_id];
r = call.r;
step = call.step;
pattern = pattern_vec[call.pattern_index];
transpose = call.transpose;
//
return;
}
} // END_CPPAD_NAMESPACE