Writing Programs Using
newt

Erik Troan, <ewt@redhat.com>
v0.31, 2003-Jan-06

The newt windowing system is a terminal-based window and widget library
designed for writing applications with a simple, but user-friendly, interface.
While newt is not intended to provide the rich feature set advanced
applications may require, it has proven to be flexible enough for a wide
range of applications (most notably, Red Hat’s installation process). This
tutorial explains the design philosophy behind newt and how to use newt
from your programs.

1. Introduction

Newt has a definite design philosophy behind it, and knowing that design makes it
significantly easier to craft robust newt applications. This tutorial documents newt
0.30 --- older versions of newt had annoying inconsistencies in it (which writing
this tutorial pointed out), which were removed while this tutorial was written. The
latest version of newt is always available from Red Hat.

1.1. Background

Newt was originally designed for use in the install code for Red Hat Linux. As this
install code runs in an environment with limited resources (most importantly limited
filesystem space), newt’s size was immediately an issue. To help minimize its size,
the following design decisions were made early in its implementation:

« newt does not use an event-driven architecture.

+ newt is written in C, not C++. While there has been interest in constructing C++
wrapper classes around the newt API, nothing has yet come of those ideas.

« Windows must be created and destroyed as a stack (in other words, all newt
windows behave as modal dialogs). This is probably the greatest functionality

Writing Programs Using newt
restriction of newt.
+ The tty keyboard is the only supported input device.

« Many behaviours, such as widget traversal order, are difficult or impossible to
change.

While newt provides a complete API, it does not handle the low-level screen
drawing itself. Instead, newt is layered on top of the screen management
capabilities of John E. Davis’s S-Lang (ftp://space.mit.edu/pub/davis/slang/) library.

1.2. Designing newt applications

As newt is not event driven and forces modal windows (forcing window order to
behave like a stack), newt applications tend to look quite like other text-mode
programs. It is quite straightforward to convert a command line program which uses
simple user prompts into a newt application. Some of the programs run as part of
the Red Hat installation process (such as xconfigurator and mouseconfig)
were originally written as simple terminal mode programs which used line-oriented
menus to get input from the user and were later converted into newt applications
(through a process affectionately known as newtering). Such a conversion does not
require changes to the control flow of most applications. Programming newt is
dramatically different from writing programs for most other windowing systems as
newt’s API is not event driven. This means that newt applications look
dramatically different from programs written for event-driven architectures such as
Motif, gtk, or even Borland’s old TurboVision libraries. When you’re designing
your newt program, keep this differentiation in mind. As long as you plan your
application to call a function to get input and then continue (rather then having your
program called when input is ready), programming with the newt libraries should be
simple.

1.3. Components

Displayable items in newt are known as components, which are analogous to the
widgets provided by most Unix widget sets. There are two main types of
components in newt, forms and everything else. Forms logically group components
into functional sets. When an application is ready to get input from a user, it “runs a
form”, which makes the form active and lets the user enter information into the
components the form contains. A form may contain any other component, including
other forms. Using subforms in this manner lets the application change the details
of how the user tabs between components on the form, scroll regions of the screen,
and control background colors for portions of windows. Every component is of type
newtComponent, which is an opaque type. It’s guaranteed to be a pointer though,

Writing Programs Using newt

which lets applications move it through void pointers if the need arises. Variables of
type newt Component should never be directly manipulated -- they should only be
passed to newt functions. As newtComponent variables are pointers, remember
that they are always passed by value -- if you pass a newtComponent to a function
which manipulates it, that component is manipulated everywhere, not just inside of
that function (which is nearly always the behaviour you want).

1.4. Conventions

Newt uses a number of conventions to make it easier for programmers to use.

« All functions which manipulate data structures take the data structure being
modified as their first parameter. For example, all of the functions which
manipulate forms expect the newt Component for that form to be the first
parameter.

« As newt is loosely typed (forcing all of the components into a single variable
makes coding easier, but nullifies the value of type checking), newt functions
include the name of the type they are manipulating. An example of this is
newtFormAddComponent (), which adds a component to a form. Note that the
first parameter to this function is a form, as the name would suggest.

« When screen coordinates are passed into a function, the x location precedes the y
location. To help keep this clear, we’ll use the words “left” and “top” to describe
those indicators (with left corresponding to the x position).

« When box sizes are passed, the horizontal width precedes the vertical width.

« When both a screen location and a box size are being passed, the screen location
precedes the box size.

« When any component other then a form is created, the first two parameters are
always the (left, right) location.

« Many functions take a set of flags as the final parameter. These flags may be
logically ORed together to pass more then one flag at a time.

+ Newt uses callback functions to convey certain events to the application. While
callbacks differ slightly in their parameters, most of them allow the application to
specify an arbitrary argument to be passed to the callback when the callback is
invoked. This argument is always a void =, which allows the application great
flexibility.

Writing Programs Using newt
2. Basic Newt Functions

While most newt functions are concerned with widgets or groups of widgets (called
grids and forms), some parts of the newt API deal with more global issues, such as
initializing newt or writing to the root window.

2.1. Starting and Ending newt Services

There are three functions which nearly every newt application use. The first two are
used to initialize the system.

int newtInit (void);
void newtCls (void) ;

newtInit () should be the first function called by every newt program. It
initializes internal data structures and places the terminal in raw mode. Most
applications invoke newtCls () immediately after newt Init (), which causes the
screen to be cleared. It’s not necessary to call newtCls () to use any of newt’s
features, but doing so will normally give a much neater appearance. When a newt
program is ready to exit, it should call newtFinished ().

int newtFinished(void);

newtFinished () restores the terminal to its appearance when newtInit () was
called (if possible -- on some terminals the cursor will be moved to the bottom, but
it won’t be possible to remember the original terminal contents) and places the
terminal in its original input state. If this function isn’t called, the terminal will
probably need to be reset with the reset command before it can be used easily.

2.2. Handling Keyboard Input

Normally, newt programs don’t read input directly from the user. Instead, they let
newt read the input and hand it to the program in a semi-digested form. Newt does
provide a couple of simple functions which give programs (a bit of) control over the
terminal.

void newtWaitForKey (void) ;
void newtClearKeyBuffer (void) ;

The first of these, newtWaitForKey (), doesn’t return until a key has been pressed.
The keystroke is then ignored. If a key is already in the terminal’s buffer,
newtWaitForKey () discards a keystroke and returns immediately.

Writing Programs Using newt

newtClearKeyBuffer () discards the contents of the terminal’s input buffer
without waiting for additional input.

2.3. Drawing on the Root Window

The background of the terminal’s display (the part without any windows covering
it) is known as the root window (it’s the parent of all windows, just like the system’s
root directory is the parent of all subdirectories). Normally, applications don’t use
the root window, instead drawing all of their text inside of windows (newt doesn’t
require this though -- widgets may be placed directly on the root window without
difficulty). It is often desirable to display some text, such as a program’s name or
copyright information, on the root window, however. Newt provides two ways of
displaying text on the root window. These functions may be called at any time. They
are the only newt functions which are meant to write outside of the current window.

void newtDrawRootText (int left, int top, const char * text);

This function is straightforward. It displays the string text at the position
indicated. If either the 1eft or top is negative, the position is measured from the
opposite side of the screen. The final measurement will seem to be off by one
though. For example, a top of -1 indicates the last line on the screen, and one of -2
is the line above that. As it’s common to use the last line on the screen to display
help information, newt includes special support for doing exactly that. The last line
on the display is known as the help line, and is treated as a stack. As the value of the
help line normally relates to the window currently displayed, using the same
structure for window order and the help line is very natural. Two functions are
provided to manipulate the help line.

void newtPushHelpLine (const char * text);
void newtPopHelpLine (void);

The first function, newtPushHelpLine (), saves the current help line on a stack
(which is independent of the window stack) and displays the new line. If text is
NULL, newt’s default help line is displayed (which provides basic instructions on
using newt). If text is a string of length 0, the help line is cleared. For all other
values of text, the passed string is displayed at the bottom, left-hand corner of the
display. The space between the end of the displayed string the the right-hand edge
of the terminal is cleared. newtPopHelpLine () replaces the current help line with
the one it replaced. It’s important not to call tt/newtPopHelpLine()/ more then
newtPushHelpLine () ! Suspending Newt Applications By default, newt
programs cannot be suspended by the user (compare this to most Unix programs
which can be suspended by pressing the suspend key (normally ~ 7). Instead,

Writing Programs Using newt

programs can specify a callback function which gets invoked when the user presses
the suspend key.

typedef void (*newtSuspendCallback) (void);
void newtSetSuspendCallback (newtSuspendCallback cb);

The suspend function neither expects nor returns any value, and can do whatever it
likes to when it is invoked. If no suspend callback is registered, the suspend
keystroke is ignored. If the application should suspend and continue like most user
applications, the suspend callback needs two other newt functions.

void newtSuspend (void) ;
void newtResume (void) ;

newtSuspend () tells newt to return the terminal to its initial state. Once this is
done, the application can suspend itself (by sending itself a SIGTSTP, fork a child
program, or do whatever else it likes. When it wants to resume using the newt
interface, it must call newtResume before doing so. Note that suspend callbacks are
not signal handlers. When newtInit () takes over the terminal, it disables the part
of the terminal interface which sends the suspend signal. Instead, if newt sees the
suspend keystroke during normal input processing, it immediately calls the suspend
callback if one has been set. This means that suspending newt applications is not
asynchronous.

2.4. Refreshing the Screen

To increase performance, S-Lang only updates the display when it needs to, not
when the program tells S-Lang to write to the terminal. “When it needs to” is
implemented as “right before the we wait for the user to press a key”. While this
allows for optimized screen displays most of the time, this optimization makes
things difficult for programs which want to display progress messages without
forcing the user to input characters. Applications can force S-Lang to immediately
update modified portions of the screen by calling newtRefresh.

1. The program wants to display a progress message, without forcing for the user
to enter any characters.

2. A misfeature of the program causes part of the screen to be corrupted. Ideally,
the program would be fixed, but that may not always be practical.

Writing Programs Using newt
2.5. Other Miscellaneous Functions

As always, some function defy characterization. Two of newt’s general function fit
this oddball category.

void newtBell (void);
vold newtGetScreenSize (int * cols, int * rows);

The first sends a beep to the terminal. Depending on the terminal’s settings, this
been may or may not be audible. The second function, newtGetScreenSize (),
fills in the passed pointers with the current size of the terminal.

2.6. Basic newt Example

To help illustrate the functions presented in this section here is a short sample newt
program which uses many of them. While it doesn’t do anything interesting, it does
show the basic structure of newt programs.

#include <newt.h>
#include <stdlib.h>

int main (void) {
newtInit () ;
newtCls () ;

newtDrawRootText (0, 0, "Some root text");
newtDrawRootText (=25, -2, "Root text in the other corner");

newtPushHelpLine (NULL) ;
newtRefresh () ;
sleep(1l);

newtPushHelpLine ("A help line");
newtRefresh () ;
sleep(1l);

newtPopHelpLine () ;
newtRefresh () ;

sleep(1l);

newtFinished () ;

Writing Programs Using newt
3. Windows

While most newt applications do use windows, newt’s window support is actually
extremely limited. Windows must be destroyed in the opposite of the order they
were created, and only the topmost window may be active. Corollaries to this are:

+ The user may not switch between windows.
+ Only the top window may be destroyed.

While this is quite a severe limitation, adopting it greatly simplifies both writing
newt applications and developing newt itself, as it separates newt from the world
of event-driven programming. However, this tradeoff between function and
simplicity may make newt unsuitable for some tasks.

3.1. Creating Windows

There are two main ways of opening newt windows: with or without explicit
sizings. When grids (which will be introduced later in this tutorial) are used, a
window may be made to just fit the grid. When grids are not used, explicit sizing
must be given.

int newtCenteredWindow (int width, int height, const char * title);
int newtOpenWindow (int left, int top, int width, int height,
const char * title);

The first of these functions open a centered window of the specified size. The title
is optional -- if it is NULL, then no title is used. newt OpenWindowx (is similar, but
it requires a specific location for the upper left-hand corner of the window.

3.2. Destroying Windows

All windows are destroyed in the same manner, no matter how the windows were
originally created.

void newtPopWindow (void) ;

This function removes the top window from the display, and redraws the display
areas which the window overwrote.

Writing Programs Using newt

4. Components

Components are the basic user interface element newt provides. A single
component may be (for example) a listbox, push button checkbox, a collection of
other components. Most components are used to display information in a window,
provide a place for the user to enter data, or a combination of these two functions.
Forms, however, are a component whose primary purpose is not noticed by the user
at all. Forms are collections of components (a form may contain another form)
which logically relate the components to one another. Once a form is created and
had all of its constituent components added to it, applications normally then run the
form. This gives control of the application to the form, which then lets the user enter
data onto the form. When the user is done (a number of different events qualify as
“done”), the form returns control to the part of the application which invoked it. The
application may then read the information the user provided and continue
appropriately. All newt components are stored in a common data type, a
newtComponent (some of the particulars of newt Components have already been
mentioned. While this makes it easy for programmers to pass components around, it
does force them to make sure they don’t pass entry boxes to routines expecting push
buttons, as the compiler can’t ensure that for them. We start off with a brief
introduction to forms. While not terribly complete, this introduction is enough to let
us illustrate the rest of the components with some sample code. We’ll then discuss
the remainder of the components, and end this section with a more exhaustive
description of forms.

4.1. Introduction to Forms

As we’ve mentioned, forms are simply collections of components. As only one
form can be active (or running) at a time, every component which the user should be
able to access must be on the running form (or on a subform of the running form). A
form is itself a component, which means forms are stored in newt Component data
structures.

newtComponent newtForm(newtComponent vertBar, const char x help, int flag:

To create a form, call newtForm (). The first parameter is a vertical scrollbar which
should be associated with the form. For now, that should always be NULL (we’ll
discuss how to create scrolling forms later in this section). The second parameter,
help, is currently unused and should always be NULL. The £1ags is normally O,
and other values it can take will be discussed later. Now that we’ve waved away the
complexity of this function, creating a form boils down to simply:

newtComponent myForm;

myForm = newtForm (NULL, NULL, O);

Writing Programs Using newt

10

After a form is created, components need to be added to it --- after all, an empty
form isn’t terribly useful. There are two functions which add components to a form.

void newtFormAddComponent (newtComponent form, newtComponent co);
void newtFormAddComponents (newtComponent form, ...);

The first function, newt FormAddComponent (), adds a single component to the
form which is passed as the first parameter. The second function is simply a
convenience function. After passing the form to newtFormAddComponents (), an
arbitrary number of components is then passed, followed by NULL. Every
component passed is added to the form. Once a form has been created and
components have been added to it, it’s time to run the form.

newtComponent newtRunForm (newtComponent form);

This function runs the form passed to it, and returns the component which caused
the form to stop running. For now, we’ll ignore the return value completely. Notice
that this function doesn’t fit in with newt’s normal naming convention. It is an older
interface which will not work for all forms. It was left in newt only for legacy
applications. It is a simpler interface than the new newtFormRun () though, and is
still used quite often as a result. When an application is done with a form, it
destroys the form and all of the components the form contains.

void newtFormDestroy (newtComponent form);

This function frees the memory resources used by the form and all of the
components which have been added to the form (including those components which
are on subforms). Once a form has been destroyed, none of the form’s components
can be used.

4.2. Components

Non-form components are the most important user-interface component for users.
They determine how users interact with newt and how information is presented to
them.

4.3. General Component Manipulation

There are a couple of functions which work on more then one type of components.
The description of each component indicates which (if any) of these functions are
valid for that particular component.

typedef void (xnewtCallback) (newtComponent, void x*);

Writing Programs Using newt

void newtComponentAddCallback (newtComponent co, newtCallback f, void * da
void newtComponentTakesFocus (newtComponent co, int wval);

The first registers a callback function for that component. A callback function is a
function the application provides which newt calls for a particular component.
Exactly when (if ever) the callback is invoked depends on the type of component
the callback is attached to, and will be discussed for the components which support
callbacks. newtComponentTakesFocus () works on all components. It allows the
application to change which components the user is allowed to select as the current
component, and hence provide input to. Components which do not take focus are
skipped over during form traversal, but they are displayed on the terminal. Some
components should never be set to take focus, such as those which display static
text.

4.4. Buttons

Nearly all forms contain at least one button. Newt buttons come in two flavors, full
buttons and compact buttons. Full buttons take up quit a bit of screen space, but
look much better then the single-row compact buttons. Other then their size, both
button styles behave identically. Different functions are used to create the two types
of buttons.

newtComponent newtButton (int left, int top, const char * text);
newtComponent newtCompactButton (int left, int top, const char * text);

Both functions take identical parameters. The first two parameters are the location
of the upper left corner of the button, and the final parameter is the text which
should be displayed in the button (such as “Ok’ or “Cancel”).

4.4.1. Button Example

Here is a simple example of both full and compact buttons. It also illustrates
opening and closing windows, as well a simple form.

#include <newt.h>
#include <stdlib.h>

void main (void) {
newtComponent form, bl, b2;
newtInit () ;

newtCls () ;

newtOpenWindow (10, 5, 40, 6, "Button Sample");

11

Writing Programs Using newt

12

bl newtButton (10, 1, "Ok");

b2 = newtCompactButton (22, 2, "Cancel");
form = newtForm (NULL, NULL, O0);
newtFormAddComponents (form, bl, b2, NULL);

newtRunForm (form) ;

newtFormDestroy (form) ;
newtFinished () ;

4.5. Labels

Labels are newt’s simplest component. They display some given text and don’t
allow any user input.

newtComponent newtLabel (int left, int top, const char x text);
void newtLabelSetText (newtComponent co, const char x text);

Creating a label is just like creating a button; just pass the location of the label and
the text it should display. Unlike buttons, labels do let the application change the
text in the label with newt LabelSet Text. When the label’s text is changed, the
label automatically redraws itself. It does not clear out any old text which may be
leftover from the previous time is was displayed, however, so be sure that the new
text is at least as long as the old text.

4.6. Entry Boxes

Entry boxes allow the user to enter a text string into the form which the application
can later retrieve.

typedef int (*newtEntryFilter) (newtComponent entry, void % data, int ch,
int cursor);

newtComponent newtEntry(int left, int top, const char x initialValue, int
char ** resultPtr, int flags);

void newtEntrySet (newtComponent co, const char * value, int cursorAtEnd);

char * newtEntryGetValue (newtComponent co);

void newtEntrySetFilter (newtComponent co, newtEntryFilter filter, void x

(

Writing Programs Using newt

newtEntry () creates a new entry box. After the location of the entry box, the
initial value for the entry box is passed, which may be NULL if the box should start
off empty. Next, the width of the physical box is given. This width may or may not
limit the length of the string the user is allowed to enter; that depends on the flags.
The resultPtr must be the address of a char ». Until the entry box is destroyed
by newtFormDestroy (), that char « will point to the current value of the entry
box. It’s important that applications make a copy of that value before destroying the
form if they need to use it later. The resultPtr may be NULL, in which case the
user must use the newtEntryGetValue () function to get the value of the entry
box. Entry boxes support a number of flags:

NEWT_ENTRY_SCROLL

If this flag is not specified, the user cannot enter text into the entry box which
is wider then the entry box itself. This flag removes this limitation, and lets the
user enter data of an arbitrary length.

NEWT_FLAG_HIDDEN

If this flag is specified, the value of the entry box is not displayed. This is
useful when the application needs to read a password, for example.

NEWT_FLAG_RETURNEXIT

When this flag is given, the entry box will cause the form to stop running if the
user pressed return inside of the entry box. This can provide a nice shortcut for
users.

After an entry box has been created, its contents can be set by newtEntrySet ().
After the entry box itself, the new string to place in the entry box is passed. The
final parameter, cursorAtEnd, controls where the cursor will appear in the entry
box. If it is zero, the cursor remains at its present location; a nonzero value moves
the cursor to the end of the entry box’s new value. While the simplest way to find
the value of an entry box is by using a resultPtr, doing so complicates some
applications. newtEntryGetValue () returns a pointer to the string which the
entry box currently contains. The returned pointer may not be valid once the user
further modifies the entry box, and will not be valid after the entry box has been
destroyed, so be sure to save its value in a more permanent location if necessary.
Entry boxes allow applications to filter characters as they are entered. This allows
programs to ignore characters which are invalid (such as entering a ” in the middle
of a phone number) and provide intelligent aids to the user (such as automatically
adding a ’.’ after the user has typed in the first three numbers in an IP address).
When a filter is registered through newtEntrySetFilter (), both the filter itself
and an arbitrary void =, which passed to the filter whenever it is invoked, are

13

Writing Programs Using newt

recorded. This data pointer isn’t used for any other purpose, and may be NULL.
Entry filters take four arguments.

1. The entry box which had data entered into it

2. The data pointer which was registered along with the filter

3. The new character which newt is considering inserting into the entry box
4. The current cursor position (0 is the leftmost position)

The filter returns O if the character should be ignored, or the value of the character
which should be inserted into the entry box. Filter functions which want to do
complex manipulations of the string should use newtEntrySet () to update the
entry box and then return O to prevent the new character from being inserted. When
a callback is attached to a entry box, the callback is invoked whenever the user
moves off of the callback and on to another component. Here is a sample program
which illustrates the use of both labels and entry boxes.

#include <newt.h>
#include <stdlib.h>
#include <stdio.h>

volid main (void) {
newtComponent form, label, entry, button;
char * entryValue;

newtInit () ;
newtCls () ;

newtOpenWindow (10, 5, 40, 8, "Entry and Label Sample");

label

entry = newtEntry (16, 1, "sample", 20, &entryValue,
NEWT_FLAG_SCROLL | NEWT_FLAG_RETURNEXIT) ;

button = newtButton (17, 3, "Ok");

form = newtForm (NULL, NULL, O0);

newtFormAddComponents (form, label, entry, button, NULL);

newtLabel (1, 1, "Enter a string");

newtRunForm (form) ;

newtFinished () ;

printf ("Final string was: %s\n", entryValue);

/* We cannot destroy the form until after we’ve used the value

from the entry widget. =*/
newtFormDestroy (form) ;

14

Writing Programs Using newt

4.7. Checkboxes

Most widget sets include checkboxes which toggle between two value (checked or
not checked). Newt checkboxes are more flexible. When the user presses the space
bar on a checkbox, the checkbox’s value changes to the next value in an arbitrary
sequence (which wraps). Most checkboxes have two items in that sequence,
checked or not, but newt allows an arbitrary number of value. This is useful when
the user must pick from a limited number of choices. Each item in the sequence is a
single character, and the sequence itself is represented as a string. The checkbox
components displays the character which currently represents its value the left of a
text label, and returns the same character as its current value. The default sequence
for checkboxes is " «", with 7 ’ indicating false and ’ ' true.

newtComponent newtCheckbox (int left, int top, const char x text, char def’
const char * seq, char x result);
char newtCheckboxGetValue (newtComponent co);

Like most components, the position of the checkbox is the first thing passed to the
function that creates one. The next parameter, text, is the text which is displayed
to the right of the area which is checked. The defvalue is the initial value for the
checkbox, and seq is the sequence which the checkbox should go through
(defvalue must be in seq. seq may be NULL, in which case " " is used. The
final parameter, result, should point to a character which the checkbox should
always record its current value in. If result is NULL, newtCheckboxGetValue ()
must be used to get the current value of the checkbox. newtCheckboxGetVvalue ()
is straightforward, returning the character in the sequence which indicates the
current value of the checkbox If a callback is attached to a checkbox, the callback is
invoked whenever the checkbox responds to a user’s keystroke. The entry box may
respond by taking focus or giving up focus, as well as by changing its current value.

4.8. Radio Buttons

Radio buttons look very similar to checkboxes. The key difference between the two
is that radio buttons are grouped into sets, and exactly one radio button in that set
may be turned on. If another radio button is selected, the button which was selected
is automatically deselected.

newtComponent newtRadiobutton (int left, int top, const char x text,
int isDefault, newtComponent prevButton);

15

Writing Programs Using newt

newtComponent newtRadioGetCurrent (newtComponent setMember) ;

Each radio button is created by calling newtRadiobutton (). After the position of
the radio button, the text displayed with the button is passed. i sDefault should be
nonzero if the radio button is to be turned on by default. The final parameter,
prevMember is used to group radio buttons into sets. If prevMember is NULL, the
radio button is assigned to a new set. If the radio button should belong to a
preexisting set, prevMember must be the previous radio button added to that set.
Discovering which radio button in a set is currently selected necessitates
newtRadioGetCurrent (). It may be passed any radio button in the set you’re
interested in, and it returns the radio button component currently selected. Here is
an example of both checkboxes and radio buttons.

#include <newt.h>
#include <stdlib.h>
#include <stdio.h>

void main (void) {
newtComponent form, checkbox, rb[3], button;
char cbValue;
int 1i;

newtInit () ;
newtCls () ;

newtOpenWindow (10, 5, 40, 11, "Checkboxes and Radio buttons");
checkbox = newtCheckbox (1, 1, "A checkbox", 7 7, " X", &cbValue);
rb[0] = newtRadiobutton(l, 3, "Choice 1", 1, NULL);

rb[1l] newtRadiobutton(l, 4, "Choice 2", 0, rb[0]);
rb[2] newtRadiobutton(l, 5, "Choice 3", 0, rb[1l]);

button = newtButton(l, 7, "Ok");

form = newtForm (NULL, NULL, O0);
newtFormAddComponent (form, checkbox);
for (i = 0; i < 3; 1i++)
newtFormAddComponent (form, rb[i]);
newtFormAddComponent (form, button);

newtRunForm (form) ;
newtFinished () ;

/* We cannot destroy the form until after we’ve found the current
radio button x/

16

Writing Programs Using newt

for (1 = 0; 1 < 3; i++)

if (newtRadioGetCurrent (rb[0]) == rb[i])
printf ("radio button picked: %d\n", 1i);
newtFormDestroy (form) ;

/* But the checkbox’s value is stored locally =/
printf ("checkbox value: ’%c’\n", cbValue);

4.9. Scales

It’s common for programs to need to display a progress meter on the terminal while
it performs some length operation (it behaves like an anesthetic). The scale
component is a simple way of doing this. It displays a horizontal bar graph which
the application can update as the operation continues.

newtComponent newtScale(int left, int top, int width, long long fullValue
void newtScaleSet (newtComponent co, unsigned long long amount) ;

When the scale is created with newtScale, it is given the width of the scale itself
as well as the value which means that the scale should be drawn as full. When the
position of the scale is set with newtScaleset (), the scale is told the amount of
the scale which should be filled in relative to the fullaAmount. For example, if the
application is copying a file, fullvalue could be the number of bytes in the file,
and when the scale is updated newt Scaleset () would be passed the number of
bytes which have been copied so far.

4.10. Textboxes

Textboxes display a block of text on the terminal, and is appropriate for display
large amounts of text.

newtComponent newtTextbox (int left, int top, int width, int height, int £f.
void newtTextboxSetText (newtComponent co, const char x text);

newtTextbox () creates a new textbox, but does not fill it with data. The function
is passed the location for the textbox on the screen, the width and height of the
textbox (in characters), and zero or more of the following flags:

17

Writing Programs Using newt

NEWT_FLAG_WRAP

All text in the textbox should be wrapped to fit the width of the textbox. If this
flag is not specified, each newline delimited line in the text is truncated if it is
too long to fit. When newt wraps text, it tries not to break lines on spaces or
tabs. Literal newline characters are respected, and may be used to force line
breaks.

NEWT_FLAG_SCROLL

The text box should be scrollable. When this option is used, the scrollbar
which is added increases the width of the area used by the textbox by 2
characters; that is the textbox is 2 characters wider then the width passed
to newtTextbox ().

After a textbox has been created, text may be added to it through
newtTextboxSetText (), which takes only the textbox and the new text as
parameters. If the textbox already contained text, that text is replaced by the
new text. The textbox makes its own copy of the passed text, so these is no
need to keep the original around unless it’s convenient.

4.10.1. Reflowing Text

When applications need to display large amounts of text, it’s common not to know
exactly where the linebreaks should go. While textboxes are quite willing to scroll
the text, the programmer still must know what width the text will look “best” at
(where “best” means most exactly rectangular; no lines much shorter or much
longer then the rest). This common is especially prevalent in internationalized
programs, which need to make a wide variety of message string look god on a
screen. To help with this, newt provides routines to reformat text to look good. It
tries different widths to figure out which one will look “best” to the user. As these
commons are almost always used to format text for textbox components, newt
makes it easy to construct a textbox with reflowed text.

char * newtReflowText (char *x text, int width, int flexDown, int flexUp,
int x actualWidth, int % actualHeight);
newtComponent newtTextboxReflowed (int left, int top, char > text, int widi
int flexDown, int flexUp, int flags);
int newtTextboxGetNumLines (newtComponent co);

newtReflowText () reflows the text to a target width of width. The actual width
of the longest line in the returned string is between width - flexDown and
width + flexUp; the actual maximum line length is chosen to make the displayed

18

Writing Programs Using newt

check look rectangular. The ints pointed to by actualWidth and actualHeight
are set to the width of the longest line and the number of lines in in the returned
text, respectively. Either one may be NULL. The return value points to the reflowed
text, and is allocated through malloc (). When the reflowed text is being placed in
a textbox it may be easier to use newt TextboxReflowed (), which creates a
textbox, reflows the text, and places the reflowed text in the listbox. It’s parameters
consist of the position of the final textbox, the width and flex values for the text
(which are identical to the parameters passed to newtReflowText (), and the flags
for the textbox (which are the same as the flags for newt Textbox (). This function
does not let you limit the height of the textbox, however, making limiting it’s use to
constructing textboxes which don’t need to scroll. To find out how tall the textbox
created by newt TextboxReflowed () 1S, use newtTextboxGetNumLines (),
which returns the number of lines in the textbox. For textboxes created by

newt TextboxReflowed (), this is always the same as the height of the textbox.
Here’s a simple program which uses a textbox to display a message.

#include <newt.h>
#include <stdlib.h>

char message[] = "This is a pretty long message. It will be displayed "
"in a newt textbox, and illustrates how to construct "
"a textbox from arbitrary text which may not have "
"very good line breaks.\n\n"
"Notice how literal \\n characters are respected, and "
"may be used to force line breaks and blank lines.";

void main (void) {
newtComponent form, text, button;

newtInit ();
newtCls () ;

text = newtTextboxReflowed(l, 1, message, 30, 5, 5, 0);
button = newtButton (12, newtTextboxGetNumLines (text) + 2, "Ok");

newtOpenWindow (10, 5, 37,
newtTextboxGetNumLines (text) + 7, "Textboxes");

form = newtForm (NULL, NULL, O0);
newtFormAddComponents (form, text, button, NULL);

newtRunForm (form) ;

newtFormDestroy (form) ;
newtFinished () ;

19

Writing Programs Using newt

4.11. Scrollbars

Scrollbars (which, currently, are always vertical in newt), may be attached to forms
to let them contain more data then they have space for. While the actual process of
making scrolling forms is discussed at the end of this section, we’ll go ahead and
introduce scrollbars now so you’ll be ready.

newtComponent newtVerticalScrollbar (int left, int top, int height,
int normalColorset, int thumbColorset);

When a scrollbar is created, it is given a position on the screen, a height, and two
colors. The first color is the color used for drawing the scrollbar, and the second
color is used for drawing the thumb. This is the only place in newt where an
application specifically sets colors for a component. It’s done here to let the colors a
scrollbar use match the colors of the component the scrollbar is mated too. When a
scrollbar is being used with a form, normalColorset is often
NEWT_COLORSET_WINDOW and thumbColorset
NEWT_COLORSET_ACTCHECKBOX. Of course, feel free to peruse <newt .h> and
pick your own colors. As the scrollbar is normally updated by the component it is
mated with, there is no public interface for moving the thumb.

4.12. Listboxes

Listboxes are the most complicated components newt provides. They can allow a
single selection or multiple selection, and are easy to update. Unfortunately, their
API is also the least consistent of newt’s components. Each entry in a listbox is a
ordered pair of the text which should be displayed for that item and a key, which is a
void « that uniquely identifies that listbox item. Many applications pass integers in
as keys, but using arbitrary pointers makes many applications significantly easier to
code.

4.12.1. Basic Listboxes

Let’s start off by looking at the most important listbox functions.

newtComponent newtListbox (int left, int top, int height, int flags);

int newtListboxAppendEntry (newtComponent co, const char * text,
const void * data);

void » newtListboxGetCurrent (newtComponent co);

void newtListboxSetWidth (newtComponent co, int width);

20

Writing Programs Using newt

void newtListboxSetCurrent (newtComponent co, int num);
void newtListboxSetCurrentByKey (newtComponent co, void x key);

A listbox is created at a certain position and a given height. The height is used for
two things. First of all, it is the minimum height the listbox will use. If there are less
items in the listbox then the height, suggests the listbox will still take up that
minimum amount of space. Secondly, if the listbox is set to be scrollable (by setting
the NEWT_FLAG_SCROLL flag, the height is also the maximum height of the
listbox. If the listbox may not scroll, it increases its height to display all of its items.
The following flags may be used when creating a listbox:

NEWT_FLAG_SCROLL

The listbox should scroll to display all of the items it contains.

NEWT_FLAG_RETURNEXIT

When the user presses return on an item in the list, the form should return.

NEWT_FLAG_BORDER

A frame is drawn around the listbox, which can make it easier to see which
listbox has the focus when a form contains multiple listboxes.

NEWT_FLAG_MULTIPLE

By default, a listbox only lets the user select one item in the list at a time.
When this flag is specified, they may select multiple items from the list.

Once a listbox has been created, items are added to it by invoking
newtListboxAppendEntry (), which adds new items to the end of the list. In
addition to the listbox component, newtListboxAppendEntry () needs both
elements of the (text, key) ordered pair. For lists which only allow a single
selection, newtListboxGetCurrent () should be used to find out which listbox
item is currently selected. It returns the key of the currently selected item. Normally,
a listbox is as wide as its widest element, plus space for a scrollbar if the listbox is
supposed to have one. To make the listbox any larger then that, use
newtListboxSetWidth (), which overrides the natural list of the listbox. Once
the width has been set, it’s fixed. The listbox will no longer grow to accommodate
new entries, so bad things may happen! An application can change the current
position of the listbox (where the selection bar is displayed) by calling
newtListboxSetCurrent () Or newtListboxSetCurrentByKey (). The first
sets the current position to the entry number which is passed as the second

21

Writing Programs Using newt

argument, with 0 indicating the first entry. newt ListboxSetCurrentByKey ()
sets the current position to the entry whose key is passed into the function.

4.12.2. Manipulating Listbox Contents

While the contents of many listboxes never need to change, some applications need
to change the contents of listboxes regularly. Newt includes complete support for
updating listboxes. These new functions are in addition to
newtListboxAppendEntry (), which was already discussed.

void newtListboxSetEntry (newtComponent co, void % key, const char * text)
int newtListboxInsertEntry (newtComponent co, const char * text,
const void * data, void x key);
int newtListboxDeleteEntry (newtComponent co, void x key);
void newtListboxClear (newtComponent co);

The first of these, newtListboxSetEntry (), updates the text for a key which is
already in the listbox. The key specifies which listbox entry should be modified,
and text becomes the new text for that entry in the listbox.
newtListboxInsertEntry () inserts a new listbox entry after an already existing
entry, which is specified by the key parameter. The text and data parameters
specify the new entry which should be added. Already-existing entries are removed
from a listbox with newtListboxDeleteEntry (). It removes the listbox entry
with the specified key. If you want to remove all of the entries from a listbox, use

newtListboxClear ().

4.12.3. Multiple Selections

When a listbox is created with NEWT_FLAG_MULTIPLE, the user can select multiple
items from the list. When this option is used, a different set of functions must be
used to manipulate the listbox selection.

void newtListboxClearSelection (newtComponent co);

void xxnewtListboxGetSelection (newtComponent co, int xnumitems);

void newtListboxSelectItem(newtComponent co, const void x key,
enum newtFlagsSense sense);

The simplest of these is newtListboxClearSelection (), which deselects all of
the items in the list (listboxes which allow multiple selections also allow zero
selections). newtListboxGetSelection () returns a pointer to an array which
contains the keys for all of the items in the listbox currently selected. The int
pointed to by numitems is set to the number of items currently selected (and hence

22

Writing Programs Using newt

the number of items in the returned array). The returned array is dynamically
allocated, and must be released through free (). newtListboxSelectItem()
lets the program select and deselect specific listbox entries. The key of the listbox
entry is being affected is passed, and sense is one of NEWT_FLAGS_RESET, which
deselects the entry, NEWT_FLAGS_SET, which selects the entry, or
NEWT_FLAGS_TOGGLE, which reverses the current selection status.

4.13. Advanced Forms

Forms, which tie components together, are quite important in the world of newt.
While we’ve already discussed the basics of forms, we’ve omitted many of the
details.

4.13.1. Exiting From Forms

Forms return control to the application for a number of reasons:

A component can force the form to exit. Buttons do this whenever they are
pushed, and other components exit when NEWT_FLAG_RETURNEXIT has been
specified.

+ Applications can setup hot keys which cause the form to exit when they are
pressed.

« Newt can exit when file descriptors are ready to be read or ready to be written to.

By default, newt forms exit when the F12 key is pressed (F12 is setup as a hot key
by default). Newt applications should treat F12 as an “Ok” button. If applications
don’t want F12 to exit the form, they can specify NEWT_FLAG_NOF12 as flag when
creating the form with newtForm.

void newtFormAddHotKey (newtComponent co, int key);
void newtFormWatchFd (newtComponent form, int fd, int fdFlags);

void newtDrawForm (newtComponent form);

newtComponent newtFormGetCurrent (newtComponent co);

void newtFormSetCurrent (newtComponent co, newtComponent subco);
void newtFormRun (newtComponent co, struct newtExitStruct * es);

newtComponent newtForm(newtComponent vertBar, const char » help, int flag:
void newtFormSetBackground (newtComponent co, int color);

void newtFormSetHeight (newtComponent co, int height);

voilid newtFormSetWidth (newtComponent co, int width);

23

Writing Programs Using newt

24

