▶CAnasazi::AnasaziError | An exception class parent to all Anasazi exceptions |
CAnasazi::BlockDavidsonInitFailure | BlockDavidsonInitFailure is thrown when the BlockDavidson solver is unable to generate an initial iterate in the BlockDavidson::initialize() routine |
CAnasazi::BlockDavidsonOrthoFailure | BlockDavidsonOrthoFailure is thrown when the orthogonalization manager is unable to orthogonalize the preconditioned residual against (a.k.a. H ) the current basis (a.k.a. V ) |
CAnasazi::BlockKrylovSchurInitFailure | BlockKrylovSchurInitFailure is thrown when the BlockKrylovSchur solver is unable to generate an initial iterate in the BlockKrylovSchur::initialize() routine |
CAnasazi::BlockKrylovSchurOrthoFailure | BlockKrylovSchurOrthoFailure is thrown when the orthogonalization manager is unable to generate orthonormal columns from the new basis vectors |
CAnasazi::EpetraMultiVecFailure | EpetraMultiVecFailure is thrown when a return value from an Epetra call on an Epetra_MultiVector is non-zero |
CAnasazi::EpetraOpFailure | EpetraOpFailure is thrown when a return value from an Epetra call on an Epetra_Operator is non-zero |
CAnasazi::EpetraSpecializedMultiVecFailure | EpetraSpecializedMultiVecFailure is thrown when a return value from an Epetra call on an Epetra_MultiVector is non-zero |
CAnasazi::Experimental::TraceMinBaseInitFailure | TraceMinBaseInitFailure is thrown when the TraceMinBase solver is unable to generate an initial iterate in the TraceMinBase::initialize() routine |
CAnasazi::Experimental::TraceMinBaseOrthoFailure | TraceMinBaseOrthoFailure is thrown when the orthogonalization manager is unable to orthogonalize the vectors in the current basis |
CAnasazi::LOBPCGInitFailure | LOBPCGInitFailure is thrown when the LOBPCG solver is unable to generate an initial iterate in the LOBPCG::initialize() routine |
CAnasazi::LOBPCGOrthoFailure | LOBPCGOrthoFailure is thrown when an orthogonalization attempt fails |
CAnasazi::LOBPCGRitzFailure | LOBPCGRitzFailure is thrown when the LOBPCG solver is unable to continue a call to LOBPCG::iterate() due to a failure of the algorithm |
CAnasazi::OperatorError | Exceptions thrown to signal error in operator application |
▶CAnasazi::OrthoError | Exception thrown to signal error in an orthogonalization manager method |
CAnasazi::TsqrOrthoError | TsqrOrthoManager(Impl) error |
CAnasazi::TsqrOrthoFault | Orthogonalization fault |
CAnasazi::ResNormNaNError | ResNormNaNError is thrown from StatusTestResNorm::checkStatus() when a NaN ("not a number") is detected among the residual norms returned by the eigensolver |
CAnasazi::RTRInitFailure | RTRInitFailure is thrown when the RTR solver is unable to generate an initial iterate in the RTRBase::initialize() routine |
CAnasazi::RTROrthoFailure | RTROrthoFailure is thrown when an orthogonalization attempt fails |
CAnasazi::RTRRitzFailure | RTRRitzFailure is thrown when the RTR solver is unable to continue a call to RTRBase::iterate() due to a failure of the algorithm |
CAnasazi::SortManagerError | SortManagerError is thrown when the Anasazi::SortManager is unable to sort the numbers, due to some failure of the sort method or error in calling it |
CAnasazi::StatusTestError | Exception thrown to signal error in a status test during Anasazi::StatusTest::checkStatus() |
CAnasazi::BlockDavidsonState< ScalarType, MV > | Structure to contain pointers to BlockDavidson state variables |
CAnasazi::BlockKrylovSchurState< ScalarType, MulVec > | Structure to contain pointers to BlockKrylovSchur state variables |
▶CAnasazi::Eigenproblem< ScalarType, MV, OP > | This class defines the interface required by an eigensolver and status test class to compute solutions to an eigenproblem |
CAnasazi::BasicEigenproblem< ScalarType, MV, OP > | This provides a basic implementation for defining standard or generalized eigenvalue problems |
CAnasazi::Eigensolution< ScalarType, MV > | Struct for storing an eigenproblem solution |
▶CAnasazi::Eigensolver< ScalarType, MV, OP > | The Eigensolver is a templated virtual base class that defines the basic interface that any eigensolver will support |
CAnasazi::BlockDavidson< ScalarType, MV, OP > | This class implements a Block Davidson iteration, a preconditioned iteration for solving linear Hermitian eigenproblems |
CAnasazi::BlockKrylovSchur< ScalarType, MV, OP > | This class implements the block Krylov-Schur iteration, for solving linear eigenvalue problems |
▶CAnasazi::Experimental::TraceMinBase< ScalarType, MV, OP > | This is an abstract base class for the trace minimization eigensolvers |
CAnasazi::Experimental::TraceMin< ScalarType, MV, OP > | This class implements a TraceMIN iteration, a preconditioned iteration for solving linear symmetric positive definite eigenproblems |
CAnasazi::Experimental::TraceMinDavidson< ScalarType, MV, OP > | This class implements a TraceMin-Davidson iteration for solving symmetric generalized eigenvalue problems |
CAnasazi::GeneralizedDavidson< ScalarType, MV, OP > | Solves eigenvalue problem using generalized Davidson method |
CAnasazi::LOBPCG< ScalarType, MV, OP > | This class provides the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) iteration, a preconditioned iteration for solving linear Hermitian eigenproblems |
▶CAnasazi::RTRBase< ScalarType, MV, OP > | This class is an abstract base class for Implicit Riemannian Trust-Region based eigensolvers. The class provides the interfaces shared by the IRTR solvers (e.g., getState() and initialize()) as well as the shared implementations (e.g., inner products) |
CAnasazi::IRTR< ScalarType, MV, OP > | |
CAnasazi::SIRTR< ScalarType, MV, OP > | |
▶CAnasazi::EpetraMultiVecAccessor | EpetraMultiVecAccessor is an interfaceto allow any Anasazi::MultiVec implementation that is based on Epetra_MultiVector to use the various Anasazi::Operator interfaces defined for Epetra_Operator |
CAnasazi::EpetraMultiVec | Basic adapter class for Anasazi::MultiVec that uses Epetra_MultiVector |
CAnasazi::EpetraOpMultiVec | Specialized adapter class for Anasazi::MultiVec that uses Epetra_MultiVector and Epetra_Operator to define the inner-product |
CAnasazi::Factory | This provides a factory to build Anasazi solvers using parameter lists |
CAnasazi::GeneralizedDavidsonState< ScalarType, MV > | Structure to contain pointers to GeneralizedDavidson state variables |
CAnasazi::HelperTraits< ScalarType > | Class which defines basic traits for working with different scalar types |
CAnasazi::LOBPCGState< ScalarType, MultiVector > | Structure to contain pointers to Anasazi state variables |
▶CAnasazi::MultiVec< ScalarType > | Interface for multivectors used by Anasazi's linear solvers |
CAnasazi::ThyraMultiVec< ScalarType > | Basic adapter class for Anasazi::MultiVec that uses Thyra::MultiVectorBase<ScalarType> |
▶CAnasazi::MultiVec< double > | |
CAnasazi::EpetraMultiVec | Basic adapter class for Anasazi::MultiVec that uses Epetra_MultiVector |
CAnasazi::EpetraOpMultiVec | Specialized adapter class for Anasazi::MultiVec that uses Epetra_MultiVector and Epetra_Operator to define the inner-product |
CAnasazi::MultiVecTraits< ScalarType, MV > | Traits class which defines basic operations on multivectors |
CAnasazi::MultiVecTraits< double, Epetra_MultiVector > | Template specialization of Anasazi::MultiVecTraits class using the Epetra_MultiVector class |
CAnasazi::MultiVecTraits< Scalar, Tpetra::MultiVector< Scalar, LO, GO, Node > > | Specialization of MultiVecTraits for MV = Tpetra::MultiVector |
CAnasazi::MultiVecTraits< ScalarType, MultiVec< ScalarType > > | Specialization of MultiVecTraits for Belos::MultiVec |
CAnasazi::MultiVecTraits< ScalarType, Thyra::MultiVectorBase< ScalarType > > | Template specialization of Anasazi::MultiVecTraits class using the Thyra::MultiVectorBase class |
CAnasazi::details::MultiVecTsqrAdapter< ScalarType > | TSQR adapter for MultiVec |
▶CAnasazi::Operator< ScalarType > | Anasazi's templated virtual class for constructing an operator that can interface with the OperatorTraits class used by the eigensolvers |
CAnasazi::ThyraOp< ScalarType > | Basic adapter class for Anasazi::Operator that uses Thyra_Operator |
▶CAnasazi::Operator< double > | |
CAnasazi::EpetraGenOp | Adapter class for creating an operators often used in solving generalized eigenproblems |
CAnasazi::EpetraOp | Basic adapter class for Anasazi::Operator that uses Epetra_Operator |
CAnasazi::EpetraSymMVOp | Adapter class for creating a symmetric operator from an Epetra_MultiVector |
CAnasazi::EpetraSymOp | Adapter class for creating a symmetric operator from an Epetra_Operator |
CAnasazi::EpetraW2SymMVOp | Adapter class for creating a weighted symmetric operator from an Epetra_MultiVector and Epetra_Operator |
CAnasazi::EpetraWSymMVOp | Adapter class for creating a weighted operator from an Epetra_MultiVector and Epetra_Operator |
CAnasazi::OperatorTraits< ScalarType, MV, OP > | Virtual base class which defines basic traits for the operator type |
CAnasazi::OperatorTraits< double, Epetra_MultiVector, Epetra_Operator > | Template specialization of Anasazi::OperatorTraits class using the Epetra_Operator virtual base class and Epetra_MultiVector class |
CAnasazi::OperatorTraits< Scalar, Tpetra::MultiVector< Scalar, LO, GO, Node >, Tpetra::Operator< Scalar, LO, GO, Node > > | Partial specialization of OperatorTraits for Tpetra objects |
CAnasazi::OperatorTraits< ScalarType, MultiVec< ScalarType >, Operator< ScalarType > > | Template specialization of Anasazi::OperatorTraits class using Anasazi::Operator and Anasazi::MultiVec virtual base classes |
CAnasazi::OperatorTraits< ScalarType, Thyra::MultiVectorBase< ScalarType >, Thyra::LinearOpBase< ScalarType > > | Template specialization of Anasazi::OperatorTraits class using the Thyra::LinearOpBase virtual base class and Thyra::MultiVectorBase class |
▶CAnasazi::OrthoManager< ScalarType, MV > | Anasazi's templated virtual class for providing routines for orthogonalization and orthonormalization of multivectors |
▶CAnasazi::MatOrthoManager< ScalarType, MV, OP > | Anasazi's templated virtual class for providing routines for orthogonalization and orthonormalization of multivectors using matrix-based inner products |
CAnasazi::BasicOrthoManager< ScalarType, MV, OP > | An implementation of the Anasazi::MatOrthoManager that performs orthogonalization using (potentially) multiple steps of classical Gram-Schmidt |
▶CAnasazi::GenOrthoManager< ScalarType, MV, OP > | |
CAnasazi::ICGSOrthoManager< ScalarType, MV, OP > | An implementation of the Anasazi::GenOrthoManager that performs orthogonalization using iterated classical Gram-Schmidt |
CAnasazi::SVQBOrthoManager< ScalarType, MV, OP > | An implementation of the Anasazi::MatOrthoManager that performs orthogonalization using the SVQB iterative orthogonalization technique described by Stathapoulos and Wu. This orthogonalization routine, while not returning the upper triangular factors of the popular Gram-Schmidt method, has a communication cost (measured in number of communication calls) that is independent of the number of columns in the basis |
▶CAnasazi::OrthoManager< Scalar, MV > | |
CAnasazi::TsqrOrthoManager< Scalar, MV > | TSQR-based OrthoManager subclass |
▶CAnasazi::MatOrthoManager< Scalar, MV, OP > | |
CAnasazi::TsqrMatOrthoManager< Scalar, MV, OP > | MatOrthoManager subclass using TSQR or SVQB |
▶CAnasazi::OutOfPlaceNormalizerMixin< Scalar, MV > | Mixin for out-of-place orthogonalization |
CAnasazi::TsqrMatOrthoManager< Scalar, MV, OP > | MatOrthoManager subclass using TSQR or SVQB |
CAnasazi::TsqrOrthoManager< Scalar, MV > | TSQR-based OrthoManager subclass |
▶CAnasazi::OutputManager< ScalarType > | Output managers remove the need for the eigensolver to know any information about the required output. Calling isVerbosity( MsgType type ) informs the solver if it is supposed to output the information corresponding to the message type |
CAnasazi::BasicOutputManager< ScalarType > | Anasazi's basic output manager for sending information of select verbosity levels to the appropriate output stream |
CAnasazi::OutputStreamTraits< OperatorType > | Output managers remove the need for the eigensolver to know any information about the required output. However, a formatted output stream is needed to control the output during parallel computations |
▶C |
CAnasazi::TsqrOrthoManager< Scalar, MV > | TSQR-based OrthoManager subclass |
▶C |
CAnasazi::details::StubTsqrAdapter< MultiVectorType > | "Stub" TSQR adaptor for unsupported multivector types |
CAnasazi::TsqrMatOrthoManager< Scalar, MV, OP > | MatOrthoManager subclass using TSQR or SVQB |
CAnasazi::TsqrOrthoManagerImpl< Scalar, MV > | TSQR-based OrthoManager subclass implementation |
CTSQR::Trilinos::Randomizer< S, LO, GO, MV, Gen > | Generates random test problems for TSQR |
CAnasazi::RTRState< ScalarType, MV > | Structure to contain pointers to RTR state variables |
▶CAnasazi::SolverManager< ScalarType, MV, OP > | The Anasazi::SolverManager is a templated virtual base class that defines the basic interface that any solver manager will support |
CAnasazi::BlockDavidsonSolMgr< ScalarType, MV, OP > | The BlockDavidsonSolMgr provides a powerful solver manager over the BlockDavidson eigensolver |
CAnasazi::BlockKrylovSchurSolMgr< ScalarType, MV, OP > | The Anasazi::BlockKrylovSchurSolMgr provides a flexible solver manager over the BlockKrylovSchur eigensolver |
▶CAnasazi::Experimental::TraceMinBaseSolMgr< ScalarType, MV, OP > | The Anasazi::TraceMinBaseSolMgr provides an abstract base class for the TraceMin series of solver managers |
CAnasazi::Experimental::TraceMinDavidsonSolMgr< ScalarType, MV, OP > | The Anasazi::TraceMinDavidsonSolMgr provides a flexible solver manager over the TraceMinDavidson eigensolver |
CAnasazi::Experimental::TraceMinSolMgr< ScalarType, MV, OP > | The Anasazi::TraceMinSolMgr provides a flexible solver manager over the TraceMin eigensolver |
CAnasazi::GeneralizedDavidsonSolMgr< ScalarType, MV, OP > | Solver Manager for GeneralizedDavidson |
CAnasazi::LOBPCGSolMgr< ScalarType, MV, OP > | User interface for the LOBPCG eigensolver |
CAnasazi::RTRSolMgr< ScalarType, MV, OP > | The Anasazi::RTRSolMgr provides a simple solver manager over the RTR eigensolver. For more information, see the discussion for RTRBase |
CAnasazi::SimpleLOBPCGSolMgr< ScalarType, MV, OP > | The Anasazi::SimpleLOBPCGSolMgr provides a simple solver manager over the LOBPCG eigensolver |
CAnasazi::SolverUtils< ScalarType, MV, OP > | Anasazi's templated, static class providing utilities for the solvers |
▶CAnasazi::SortManager< MagnitudeType > | Anasazi's templated pure virtual class for managing the sorting of approximate eigenvalues computed by the eigensolver. A concrete implementation of this class is necessary |
CAnasazi::BasicSort< MagnitudeType > | An implementation of the Anasazi::SortManager that performs a collection of common sorting techniques |
▶CAnasazi::StatusTest< ScalarType, MV, OP > | Common interface of stopping criteria for Anasazi's solvers |
CAnasazi::StatusTestCombo< ScalarType, MV, OP > | Status test for forming logical combinations of other status tests |
CAnasazi::StatusTestMaxIters< ScalarType, MV, OP > | A status test for testing the number of iterations |
CAnasazi::StatusTestOutput< ScalarType, MV, OP > | A special StatusTest for printing other status tests |
CAnasazi::StatusTestResNorm< ScalarType, MV, OP > | A status test for testing the norm of the eigenvectors residuals |
CAnasazi::StatusTestWithOrdering< ScalarType, MV, OP > | A status test for testing the norm of the eigenvectors residuals along with a set of auxiliary eigenvalues |
CAnasazi::Experimental::TraceMinBaseState< ScalarType, MV > | Structure to contain pointers to TraceMinBase state variables |
CAnasazi::TsqrAdaptor< ScalarType, MultiVectorType > | Map from multivector class to TSQR adaptor class |
CTSQR::TwoLevelDistTsqr< LocalOrdinal, Scalar, DistTsqrType > | Interprocess part of TSQR |
CAnasazi::UndefinedMultiVecTraits< ScalarType, MV > | Used by MultiVecTraits to report lack of a specialization |
CAnasazi::UndefinedOperatorTraits< ScalarType, MV, OP > | This is the default struct used by OperatorTraits<ScalarType, MV, OP> class to produce a compile time error when the specialization does not exist for operator type OP |
CAnasazi::Value< ScalarType > | This struct is used for storing eigenvalues and Ritz values, as a pair of real values |