48 #define ROL_UNUSED(x) (void) x 54 #include "ROL_Elementwise_Function.hpp" 56 #include "ROL_Ptr.hpp" 82 :
public std::enable_shared_from_this<Vector<Real>>
109 virtual void scale(
const Real alpha ) = 0;
119 virtual Real
dot(
const Vector &x )
const = 0;
128 virtual Real
norm()
const = 0;
139 virtual ROL::Ptr<Vector>
clone()
const = 0;
154 ROL::Ptr<Vector> ax = x.
clone();
168 this->
scale( (Real)0 );
182 virtual ROL::Ptr<Vector>
basis(
const int i )
const {
230 virtual void applyUnary(
const Elementwise::UnaryFunction<Real> &f ) {
232 ROL_TEST_FOR_EXCEPTION(
true, std::logic_error,
233 "The method applyUnary wass called, but not implemented" << std::endl);
239 ROL_TEST_FOR_EXCEPTION(
true, std::logic_error,
240 "The method applyBinary wass called, but not implemented" << std::endl);
243 virtual Real
reduce(
const Elementwise::ReductionOp<Real> &r )
const {
245 ROL_TEST_FOR_EXCEPTION(
true, std::logic_error,
246 "The method reduce was called, but not implemented" << std::endl);
249 virtual void print( std::ostream &outStream )
const {
250 outStream <<
"The method print was called, but not implemented" << std::endl;
280 virtual void randomize(
const Real l = 0.0,
const Real u = 1.0 ) {
281 Elementwise::UniformlyRandom<Real> ur(l,u);
314 const bool printToStream =
true,
315 std::ostream & outStream = std::cout )
const {
321 std::vector<Real> vCheck;
325 ROL::Ptr<std::ostream> pStream;
327 pStream = ROL::makePtrFromRef(outStream);
329 pStream = ROL::makePtrFromRef(bhs);
334 oldFormatState.copyfmt(*pStream);
336 ROL::Ptr<Vector> v = this->
clone();
337 ROL::Ptr<Vector> vtmp = this->
clone();
338 ROL::Ptr<Vector> xtmp = x.
clone();
339 ROL::Ptr<Vector> ytmp = y.
clone();
341 *pStream <<
"\n" << std::setw(width) << std::left << std::setfill(
'*') <<
"********** Begin verification of linear algebra. " <<
"\n\n";
342 headerFormatState.copyfmt(*pStream);
345 v->set(*
this); xtmp->set(x); ytmp->set(y);
346 v->plus(x); xtmp->plus(*
this); v->axpy(-one, *xtmp); vCheck.push_back(v->norm());
347 *pStream << std::scientific << std::setprecision(12) << std::setfill('>
'); 348 *pStream << std::setw(width) << std::left << "Commutativity of addition. Consistency error: " << " " << vCheck.back() << "\n"; 350 // Associativity of addition. 351 v->set(*this); xtmp->set(x); ytmp->set(y); 352 ytmp->plus(x); v->plus(*ytmp); xtmp->plus(*this); xtmp->plus(y); v->axpy(-one, *xtmp); vCheck.push_back(v->norm()); 353 *pStream << std::setw(width) << std::left << "Associativity of addition. Consistency error: " << " " << vCheck.back() << "\n"; 355 // Identity element of addition. 356 v->set(*this); xtmp->set(x); ytmp->set(y); 357 v->zero(); v->plus(x); v->axpy(-one, x); vCheck.push_back(v->norm()); 358 *pStream << std::setw(width) << std::left << "Identity element of addition. Consistency error: " << " " << vCheck.back() << "\n"; 360 // Inverse elements of addition. 361 v->set(*this); xtmp->set(x); ytmp->set(y); 362 v->scale(-one); v->plus(*this); vCheck.push_back(v->norm()); 363 *pStream << std::setw(width) << std::left << "Inverse elements of addition. Consistency error: " << " " << vCheck.back() << "\n"; 365 // Identity element of scalar multiplication. 366 v->set(*this); xtmp->set(x); ytmp->set(y); 367 v->scale(one); v->axpy(-one, *this); vCheck.push_back(v->norm()); 368 *pStream << std::setw(width) << std::left << "Identity element of scalar multiplication. Consistency error: " << " " << vCheck.back() << "\n"; 370 // Consistency of scalar multiplication with field multiplication. 371 v->set(*this); vtmp->set(*this); 372 v->scale(b); v->scale(a); vtmp->scale(a*b); v->axpy(-one, *vtmp); vCheck.push_back(v->norm()); 373 *pStream << std::setw(width) << std::left << "Consistency of scalar multiplication with field multiplication. Consistency error: " << " " << vCheck.back() << "\n"; 375 // Distributivity of scalar multiplication with respect to field addition. 376 v->set(*this); vtmp->set(*this); 377 v->scale(a+b); vtmp->scale(a); vtmp->axpy(b, *this); v->axpy(-one, *vtmp); vCheck.push_back(v->norm()); 378 *pStream << std::setw(width) << std::left << "Distributivity of scalar multiplication with respect to field addition. Consistency error: " << " " << vCheck.back() << "\n"; 380 // Distributivity of scalar multiplication with respect to vector addition. 381 v->set(*this); xtmp->set(x); ytmp->set(y); 382 v->plus(x); v->scale(a); xtmp->scale(a); xtmp->axpy(a, *this); v->axpy(-one, *xtmp); vCheck.push_back(v->norm()); 383 *pStream << std::setw(width) << std::left << "Distributivity of scalar multiplication with respect to vector addition. Consistency error: " << " " << vCheck.back() << "\n"; 385 // Commutativity of dot (inner) product over the field of reals. 386 vCheck.push_back(std::abs(this->dot(x) - x.dot(*this))); 387 *pStream << std::setw(width) << std::left << "Commutativity of dot (inner) product over the field of reals. Consistency error: " << " " << vCheck.back() << "\n"; 389 // Additivity of dot (inner) product. 391 xtmp->plus(y); vCheck.push_back(std::abs(this->dot(*xtmp) - this->dot(x) - this->dot(y))/std::max({static_cast<Real>(std::abs(this->dot(*xtmp))), static_cast<Real>(std::abs(this->dot(x))), static_cast<Real>(std::abs(this->dot(y))), one})); 392 *pStream << std::setw(width) << std::left << "Additivity of dot (inner) product. Consistency error: " << " " << vCheck.back() << "\n"; 394 // Consistency of scalar multiplication and norm. 396 Real vnorm = v->norm(); 399 vCheck.push_back(std::abs(v->norm() - zero)); 402 vCheck.push_back(std::abs(v->norm() - one)); 404 *pStream << std::setw(width) << std::left << "Consistency of scalar multiplication and norm. Consistency error: " << " " << vCheck.back() << "\n"; 408 xtmp = ROL::constPtrCast<Vector>(ROL::makePtrFromRef(this->dual())); 409 ytmp = ROL::constPtrCast<Vector>(ROL::makePtrFromRef(xtmp->dual())); 410 v->axpy(-one, *ytmp); vCheck.push_back(v->norm()); 411 *pStream << std::setw(width) << std::left << "Reflexivity. Consistency error: " << " " << vCheck.back() << "\n\n"; 413 //*pStream << "************ End verification of linear algebra.\n\n"; 415 // Restore format state of pStream used for the header info. 416 pStream->copyfmt(headerFormatState); 417 *pStream << std::setw(width) << std::left << "********** End verification of linear algebra. " << "\n\n"; 419 // Restore format state of the original pStream. 420 pStream->copyfmt(oldFormatState); virtual void scale(const Real alpha)=0
Compute where .
virtual ROL::Ptr< Vector > clone() const =0
Clone to make a new (uninitialized) vector.
virtual void plus(const Vector &x)=0
Compute , where .
virtual void axpy(const Real alpha, const Vector &x)
Compute where .
basic_nullstream< char, char_traits< char > > nullstream
virtual void applyBinary(const Elementwise::BinaryFunction< Real > &f, const Vector &x)
virtual void randomize(const Real l=0.0, const Real u=1.0)
Set vector to be uniform random between [l,u].
virtual ROL::Ptr< Vector > basis(const int i) const
Return i-th basis vector.
virtual void zero()
Set to zero vector.
Defines the linear algebra or vector space interface.
Defines a no-output stream class ROL::NullStream and a function makeStreamPtr which either wraps a re...
virtual Real dot(const Vector &x) const =0
Compute where .
virtual const Vector & dual() const
Return dual representation of , for example, the result of applying a Riesz map, or change of basis...
virtual int dimension() const
Return dimension of the vector space.
virtual void setScalar(const Real C)
Set where .
virtual void applyUnary(const Elementwise::UnaryFunction< Real > &f)
virtual Real reduce(const Elementwise::ReductionOp< Real > &r) const
virtual std::vector< Real > checkVector(const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const
Verify vector-space methods.
virtual Real norm() const =0
Returns where .
virtual void print(std::ostream &outStream) const