|
static int | Multiply (const Epetra_CrsMatrix &A, bool transposeA, const Epetra_CrsMatrix &B, bool transposeB, Epetra_CrsMatrix &C, bool call_FillComplete_on_result=true, bool keep_all_hard_zeros=false) |
| Given Epetra_CrsMatrix objects A, B and C, form the product C = A*B. More...
|
|
static int | Add (const Epetra_CrsMatrix &A, bool transposeA, double scalarA, Epetra_CrsMatrix &B, double scalarB) |
| Given Epetra_CrsMatrix objects A and B, form the sum B = a*A + b*B. More...
|
|
static int | Add (const Epetra_CrsMatrix &A, bool transposeA, double scalarA, const Epetra_CrsMatrix &B, bool transposeB, double scalarB, Epetra_CrsMatrix *&C) |
| Given Epetra_CrsMatrix objects A and B, form the sum C = a*A + b*B. More...
|
|
static int | Jacobi (double omega, const Epetra_Vector &Dinv, const Epetra_CrsMatrix &A, const Epetra_CrsMatrix &B, Epetra_CrsMatrix &C, bool call_FillComplete_on_result=true) |
| Given Epetra_CrsMatrix objects A, B and C, and Epetra_Vector Dinv, form the product C = (I-omega * Dinv A)*B In a parallel setting, A and B need not have matching distributions, but C needs to have the same row-map as A. More...
|
|
|
template<typename int_type > |
static int | Tmult_A_B (const Epetra_CrsMatrix &A, CrsMatrixStruct &Aview, const Epetra_CrsMatrix &B, CrsMatrixStruct &Bview, Epetra_CrsMatrix &C, bool call_FillComplete_on_result, bool keep_all_hard_zeros) |
|
static int | mult_A_B (const Epetra_CrsMatrix &A, CrsMatrixStruct &Aview, const Epetra_CrsMatrix &B, CrsMatrixStruct &Bview, Epetra_CrsMatrix &C, bool call_FillComplete_on_result, bool keep_all_hard_zeros) |
|
template<typename int_type > |
static int | Tmult_AT_B_newmatrix (const CrsMatrixStruct &Atransview, const CrsMatrixStruct &Bview, Epetra_CrsMatrix &C, bool keep_all_hard_zeros) |
|
static int | mult_AT_B_newmatrix (const CrsMatrixStruct &Atransview, const CrsMatrixStruct &Bview, Epetra_CrsMatrix &C, bool keep_all_hard_zeros) |
|
template<typename int_type > |
static int | TMultiply (const Epetra_CrsMatrix &A, bool transposeA, const Epetra_CrsMatrix &B, bool transposeB, Epetra_CrsMatrix &C, bool call_FillComplete_on_result, bool keep_all_hard_zeros) |
|
template<typename int_type > |
static int | TAdd (const Epetra_CrsMatrix &A, bool transposeA, double scalarA, Epetra_CrsMatrix &B, double scalarB) |
|
template<typename int_type > |
static int | TAdd (const Epetra_CrsMatrix &A, bool transposeA, double scalarA, const Epetra_CrsMatrix &B, bool transposeB, double scalarB, Epetra_CrsMatrix *&C) |
|
template<typename int_type > |
static int | Tjacobi_A_B (double omega, const Epetra_Vector &Dinv, const Epetra_CrsMatrix &A, CrsMatrixStruct &Aview, const Epetra_CrsMatrix &B, CrsMatrixStruct &Bview, Epetra_CrsMatrix &C, bool call_FillComplete_on_result) |
|
static int | jacobi_A_B (double omega, const Epetra_Vector &Dinv, const Epetra_CrsMatrix &A, CrsMatrixStruct &Aview, const Epetra_CrsMatrix &B, CrsMatrixStruct &Bview, Epetra_CrsMatrix &C, bool call_FillComplete_on_result) |
|
template<typename int_type > |
static int | TJacobi (double omega, const Epetra_Vector &Dinv, const Epetra_CrsMatrix &A, const Epetra_CrsMatrix &B, Epetra_CrsMatrix &C, bool call_FillComplete_on_result) |
|
Collection of matrix-matrix operations.
This class basically functions as a namespace, containing only static methods. See the program epetraext/test/MatrixMatrix/cxx_main.cpp for a usage example.
Definition at line 63 of file EpetraExt_MatrixMatrix.h.
int EpetraExt::MatrixMatrix::Multiply |
( |
const Epetra_CrsMatrix & |
A, |
|
|
bool |
transposeA, |
|
|
const Epetra_CrsMatrix & |
B, |
|
|
bool |
transposeB, |
|
|
Epetra_CrsMatrix & |
C, |
|
|
bool |
call_FillComplete_on_result = true , |
|
|
bool |
keep_all_hard_zeros = false |
|
) |
| |
|
static |
Given Epetra_CrsMatrix objects A, B and C, form the product C = A*B.
In a parallel setting, A and B need not have matching distributions, but C needs to have the same row-map as A.
- Parameters
-
A | Input, must already have had 'FillComplete()' called. |
transposeA | Input, whether to use transpose of matrix A. |
B | Input, must already have had 'FillComplete()' called. |
transposeB | Input, whether to use transpose of matrix B. |
C | Result. On entry to this method, it doesn't matter whether FillComplete() has already been called on C or not. If it has, then C's graph must already contain all nonzero locations that will be produced when forming the product A*B. On exit, C.FillComplete() will have been called, unless the last argument to this function is specified to be false. |
call_FillComplete_on_result | Optional argument, defaults to true. Power users may specify this argument to be false if they DON'T want this function to call C.FillComplete. (It is often useful to allow this function to call C.FillComplete, in cases where one or both of the input matrices are rectangular and it is not trivial to know which maps to use for the domain- and range-maps.) |
keep_all_hard_zeros | Optional argument, defaults to false. If true, Multiply, keeps all entries in C corresponding to hard zeros.
If false, the following happens by case: A*B^T, A^T*B^T - Does not store entries caused by hard zeros in C. A^T*B (unoptimized) - Hard zeros are always stored (this option has no effect) A*B, A^T*B (optimized) - Hard zeros in corresponding to hard zeros in A are not stored, There are certain cases involving reuse of C, where this can be useful.
|
- Returns
- error-code, 0 if successful. non-zero returns may result if A or B are not already Filled, or if errors occur in putting values into C, etc.
Definition at line 1304 of file EpetraExt_MatrixMatrix.cpp.
int EpetraExt::MatrixMatrix::Jacobi |
( |
double |
omega, |
|
|
const Epetra_Vector & |
Dinv, |
|
|
const Epetra_CrsMatrix & |
A, |
|
|
const Epetra_CrsMatrix & |
B, |
|
|
Epetra_CrsMatrix & |
C, |
|
|
bool |
call_FillComplete_on_result = true |
|
) |
| |
|
static |
Given Epetra_CrsMatrix objects A, B and C, and Epetra_Vector Dinv, form the product C = (I-omega * Dinv A)*B In a parallel setting, A and B need not have matching distributions, but C needs to have the same row-map as A.
- Parameters
-
omega | Input, scalar multiplier for Dinverse A |
Dinv | Input, Epetra_Vector representing a diagonal matrix, must match A's RowMap |
A | Input, must already have had 'FillComplete()' called. |
B | Input, must already have had 'FillComplete()' called. |
C | Result. On entry to this method, it doesn't matter whether FillComplete() has already been called on C or not. If it has, then C's graph must already contain all nonzero locations that will be produced when forming the product A*B. On exit, C.FillComplete() will have been called, unless the last argument to this function is specified to be false. |
call_FillComplete_on_result | Optional argument, defaults to true. Power users may specify this argument to be false if they DON'T want this function to call C.FillComplete. (It is often useful to allow this function to call C.FillComplete, in cases where one or both of the input matrices are rectangular and it is not trivial to know which maps to use for the domain- and range-maps.) |
- Returns
- error-code, 0 if successful. non-zero returns may result if A or B are not already Filled, or if errors occur in putting values into C, etc.
Definition at line 1695 of file EpetraExt_MatrixMatrix.cpp.