simpcomp
A GAP toolbox for simplicial complexes
Version 2.1.14

15/03/2022

73

Felix Effenberger
Jonathan Spreer

Felix Effenberger Email: exilef@gmail.com

Jonathan Spreer Email: jonathan.spreer@sydney.edu.au
Address: School of Mathematics and Statistics FO7

The University of Sydney

NSW 2006 Australia


mailto://exilef@gmail.com
mailto://jonathan.spreer@sydney.edu.au

simpcomp 2

Abstract

simpcomp is an extension (a so called package) to GAP for working with simplicial complexes in the context
of combinatorial topology. The package enables the user to compute numerous properties of (abstract) sim-
plicial complexes (such as the f-, g- and h-vectors, the face lattice, the fundamental group, the automorphism
group, (co-)homology with explicit basis computation, etc.). It provides functions to generate simplicial
complexes from facet lists, orbit representatives or difference cycles. Moreover, a variety of infinite series of
combinatorial manifolds and pseudomanifolds (such as the simplex, the cross polytope, transitive handle bodies
and sphere bundles, etc.) is given and it is possible to create new complexes from existing ones (links and stars,
connected sums, simplicial cartesian products, handle additions, bistellar flips, etc.). simpcomp ships with
an extensive library of known triangulations of manifolds and a census of all combinatorial 3-manifolds with
transitive cyclic symmetry up to 22 vertices. Furthermore, it provides the user with the possibility to create
own complex libraries. In addition, functions related to slicings and polyhedral Morse theory as well as a
combinatorial version of algebraic blowups and the possibility to resolve isolated singularities of 4-manifolds
are implemented.

simpcomp caches computed properties of a simplicial complex, thus avoiding unnecessary computations,
internally handles the vertex labeling of the complexes and insures the consistency of a simplicial complex
throughout all operations.

If possible, simpcomp makes use of the GAP package homology [DHSW11] for its homology computation
but also provides the user with own (co-)homology algorithms. For automorphism group computation the GAP
package GRAPE [Soil2] is used, which in turn uses the program nauty by Brendan McKay [MP14]. An
internal automorphism group calculation algorithm is used as fallback if the GRAPE package is not available.
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Chapter 1

Introduction

simpcomp is a GAP package that provides the user with functions to do calculations and construc-
tions with simplicial complexes in the context of combinatorial topology (see abstract). If possible, it
makes use of the GAP packages homology [DHSW11] by J.-G. Dumas et al. and GRAPE [Soi12]
by L. Soicher.

Most parts of this manual can be accessed directly from within GAP using its internal help system.

1.1 What is new

simpcomp is a package for working with simplicial complexes. It claims to provide the user with a
broad spectrum of functionality regarding simplicial constructions.

simpcomp allows the user to interactively construct complexes and to compute their properties
in the GAP shell. Furthermore, it makes use of GAP’s expertise in groups and group operations. For
example, automorphism groups and fundamental groups of complexes can be computed and exam-
ined further within the GAP system. Apart from supplying a facet list, the user can as well construct
simplicial complexes from a set of generators and a prescribed automorphism group — the latter form
being the common in which a complex is presented in a publication. This feature is to our knowl-
edge unique to simpcomp. Furthermore, sSimpcomp as of Version 1.3.0 supports the construction
of simplicial complexes of prescribed dimension, vertex number and transitive automorphism group
as described in [Lut03], [CKO1] and a number of functions (function prefix SCSeries...) provide
infinite series of combinatorial manifolds with transitive automorphism group.

As of Version 1.4.0, simpcomp provides the possibility to perform a combinatorial version of al-
gebraic blowups, so-called simplicial blowups, for combinatorial 4-manfolds as described in [SK11]
and [Sprlla]. The implementation can be used as well to resolve isolated singularities of combinato-
rial 4-pseudomanifolds. It seems that this feature, too, is unique to simpcomp.

Starting from Version 1.5.4, simpcomp comes with more efficient code to perform bistellar moves
implemented in C (see function SCReduceComplexFast (9.2.15)). However, this feature is completely
optional.

1.2 simpcomp benefits

The origin of simpcomp is a collection of scripts of the two authors [Efflla], [Sprlla] that
provide basic and often-needed functions and operations for working with simplicial complexes.
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Apart from some optional code dealing with bistellar moves (see Section 9 and in particular
SCReduceComplexFast (9.2.15)), it is written entirely in the GAP scripting language, thus giving
the user the possibility to see behind the scenes and to customize or alter simpcomp functions if
needed.

The main benefit when working with simpcomp over implementing the needed functions from
scratch is that sSimpcomp encapsulates all methods and properties of a simplicial complex in a new
GAP object type (as an abstract data type). This way, among other things, Simpcomp can transpar-
ently cache properties already calculated, thus preventing unnecessary double calculations. It also
takes care of the error-prone vertex labeling of a complex. As of Version 1.5, simpcomp makes use
of GAP’s caching mechanism (as described in [BL98]) to cache all known properties of a simplicial
complex. In addition, a customized data structure is provided to organize the complex library and to
cache temporary information about a complex.

simpcomp provides the user with functions to save and load the simplicial complexes to and from
files and to import and export a complex in various formats (e.g. from and to polymake/TOPAZ
[GJO0], SnapPea [Wee99] and Regina [BBP*14] (via the SnapPea file format), Macaulay2 [GS],
LaTeX, etc.).

In contrast to the software package polymake [GJ00] providing the most efficient algorithms for
each task in form of a heterogeneous package (where algorithms are implemented in various lan-
guages), the primary goal when developing simpcomp was not efficiency (this is already limited
by the GAP scripting language), but rather ease of use and ease of extensibility by the user in the
GAP language with all its mathematical and algebraic capabilities. Extending sSimpcomp is possible
directly from within GAP, without having to compile anything, see Chapter 18.

1.3 How to save time reading this document

The core component in Simpcomp is the newly defined object types SCPropertyQObject and its de-
rived subtype SCSimplicialComplex. When working with this package it is important to understand
how objects of these types can be created, accessed and modified. The reader is therefore advised to
first skim over the Chapters 3 and 5.

The impatient reader may then directly skip to Chapter 17 to see Simpcomp in action.

The next advised step is to have a look at the functions for creating objects of type
SCSimplicialComplex, see the first section of Chapter 6.

The rest of Chapter 6 contains most of the functions that simpcomp provides, except for the func-
tions related to (co-)homology, bistellar flips, simplicial blowups, polyhedral Morse theory, slicings
(discrete normal surfaces) and the simplicial complex library that are described in the Chapters 8 to
13. Functions for the more general GAP object type SCPolyhedralComplex are described in Chapter
4.

1.4 Organization of this document
This manual accompanying Simpcomp is organized as follows.

* Chapter 2 provides a short introduction into the theory of simplicial complexes and PL-topology.

* Chapter 3 gives a short overview about the newly defined GAP object types simpcomp is
working with.
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* Chapter 4 is devoted to the description of the GAP object type SCPolyhedralComplex that is
defined by simpcomp.

* Chapter 5 introduce the GAP object types SCSimplicialComplex and SCNormalSurface
which are both derived from SCPolyhedralComplex.

* In Chapter 6 functions for working with simplicial complexes are described.
» Chapter 7 gives an overview over functions related to slicings / discrete normal surfaces.
* Chapter 8 describes the homology- and cohomology-related functions of simpcomp.

* Chapter 9 contains a description of the functions related to bistellar flips provided by simp-
comp.

* In Chapter 10 simplicial blowups and resolutions of singularities of combinatorial 4-
pseudomanifolds are explained.

* In Chapter 11 polyhedral Morse theory is discussed.

* In Chapter 13 the simplicial complex library and the input output functionality that simpcomp
provides is described in detail.

* Chapter 15 contains descriptions of functions not fitting in the other chapters, such as the error
handling and the email notification system of simpcomp.

e Chapter 16 contains a list of all property handlers allowing to access properties of a
SCSimplicialComplex object, a SCNormalSurface object or a SCLibRepository object via
the dot operator (pseudo object orientation).

* Chapter 17 contains the transcript of a demo session with simpcomp showing some of the
constructions and calculations with simplicial complexes that can also be used as a first overview
of things possible with this package.

* Finally, Chapter 18 focuses on the description of the internal structure of simpcomp and deals
with aspects of extending the functionality of the package.

1.5 How to assure simpcomp works correctly

As with all software, it is important to test whether sSimpcomp functions correctly on your system
after installing it. GAP has an internal testing mechanism and simpcomp ships with a short testing
file that does some sample computations and verifies that the results are correct.

To test the functionality of simpcomp you can run the function SCRunTest (15.3.1) from the
GAP console:

gap> SCRunTest () ;
simpcomp package test
msecs: 7810

true

gap>

Example

SCRunTest (15.3.1) should return true, otherwise the correct functionality of simpcomp cannot be
guaranteed.
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1.6 Controlling simpcomp log messages

Note that the verbosity of the output of information to the screen during calls to functions of the pack-
age simpcomp can be controlled by setting the info level parameter via the function SCInfoLevel
(15.1.1).

1.7 How to cite simpcomp

If you would like to cite sSimpcomp using BibTeX, you can use the following BibTeX entry for the
current Simpcomp version (remember to include the url package in your IATEX document):

@manual{simpcomp,

author = "Felix Effenberger and Jonathan Spreer",

title = "{\tt simpcomp} - a {\tt GAP} toolkit for simplicial complexes,
{V}ersion 2.1.14",

year = "2022",

url = "\url{https://github.com/simpcomp-team/simpcompl}",

}

If you are not using BibTeX, you can use the following entry inside the bibliography environment of
LaTeX.

\bibitem{simpcomp}

F."Effenberger and J. Spreer,

\emph{{\tt simpcomp} -- a {\tt GAP} toolkit for simplicial complexes},
Version 2.1.14,

2022,

\url{https://github.com/simpcomp-team/simpcomp}.



Chapter 2

Theoretical foundations

The purpose of this chapter is to recall some basic definitions regarding polytopes, triangulations, poly-
hedral Morse theory, discrete normal surfaces, slicings, tight triangulations and simplicial blowups.
The expert in these fields may well skip to the next chapter.

For a more detailed look the authors recommend the books [Hud69], [RS72] on PL-topology and
[Zie95], [Grii03] on the theory of polytopes.

An overview of the more recent developments in the field of combinatorial topology can be found
in [Lut05] and [Dat07].

2.1 Polytopes and polytopal complexes
A convex d-polytope is the convex hull of n points p; € E¢ in the d-dimensional euclidean space:

P=conv{v,...,v,} cEY,

where the v1,...,v, do not lie in a hyperplane of E¢.

From now on when talking about polytopes in this document always convex polytopes are meant
unless explicitly stated otherwise.

For any supporting hyperplane 4 c EY, Pnh is called a k-face of P if dim(Pnh) = k. The O-faces
are called vertices, the 1-faces edges and the (d — 1)-faces are called facets of P.

A d-polytope P for which all facets are congruent regular (d — 1)-polytopes and for which all
vertex links are congruent regular (d — 1)-polytopes is called regular, where the regular 2-polytopes
are regular polygons.

Figure 1 below shows the only five regular convex 3-polytopes (also known as plaronic solids).

DLHSDE

Figure 1. The platonic solids as the five regular convex 3-polytopes.

The set of all k-faces of P is called the k-skeleton of P, written as skely (P).

11
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Figure 2. From left to right, drawn in grey: the O-skeleton, the 1-skeleton and the 2-skeleton of the cube.

A polytopal complex C is a finite collection of polytopes P;, 1 <i < n for which the intersection of
any two polytopes P, N P; is either empty or a common face of P; and P;. The polytopes of maximal
dimension are called the facets of C. The dimension of a polytopal complex C is defined as the
maximum over all dimensions of its facets.

For every d-dimensional polytopal complex the (d + 1)-tuple, containing its number of i-faces in
the i-th entry is called the f-vector of the polytopal complex.

Every polytope P gives rise to a polytopal complex consisting of all the proper faces of P. This
polytopal complex is called the boundary complex C(dP) of the polytope P.

Figure 2 below shows the boundary complex of the cube.

A

7

Figure 3. The 3-cube (left) and its boundary complex (right) where the O-faces shown in black, the 1-faces dark
gray and the 2-faces in light gray.

2.2 Simplices and simplicial complexes

A d-dimensional simplex or d-simplex for short is the convex hull of d + 1 points in E¢ in general
position. Thus the d-simplex is the smallest (with respect to the number of vertices) possible d-
polytope. Every face of the d-simplex is a m-simplex, m < d.

A O-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex a
tetrahedron, and so on.

S AN N

Figure 4. From left to right: a 0-simplex, a 1-simplex, a 2-simplex, a 3-simplex and a Schlegel diagram of a
4-simplex.
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A polytopal complex which entirely consists of simplices is called a simplicial complex (for this it
actually suffices that the facets (i. e., the faces that are not included in any other face of the complex)
of a polytopal complex are simplices).

Figure 4. A simplicial complex (left) and a collection of simplices that does not form a simplicial complex
(right).

The dimension of a simplicial complex is the maximal dimension of a facet. A simplicial complex
is said to be pure if all facets are of the same dimension. A pure simplicial complex of dimension d
satisfies the weak pseudomanifold property if every (d —1)-face is part of exactly two facets.

Since simplices are polytopes and, hence, simplicial complexes are polytopal complexes all of the
terminology regarding simplicial complexes can be transfered from polytope theory.

2.3 From geometry to combinatorics

Every d-simplex has an underlying set in E¢, as the set of all points of that simplex. In the same way
one can define the underlying set |C| of a simplicial complex C. If the underlying set of a simplicial
complex C is a topological manifold, then C is called triangulated manifold (or triangulation of |C)).

One can also go the other way and assign an abstract simplicial complex to a geometrical one by
identifying each simplex with its vertex set. This obviously defines a set of sets with a natural partial
ordering given by the inclusion (a socalled poset).

5

2

Figure 5. A geometrical polytopal complex (left) and its abstract version in form of a poset (right).

Let v be a vertex of C. The set of all facets that contain v is called star of v in C and is denoted by
starc(v). The subcomplex of starc(v) that contains all faces not containing v is called link of v in C,
written as k¢ (v).

A combinatorial d-manifold is a d-dimensional simplicial complex whose vertex links are all
triangulated (d — 1)-dimensional spheres with standard PL-structure. A combinatorial pseudomanifold
is a simplicial complex whose vertex links are all combinatorial (d — 1)-manifolds.
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1 4 5 1
3 3
2 2
1 4 ) 1

Figure 6. A simplicial complex that is a vertex-minimal combinatorial triangulation of the torus 72 (so called
Mobius’ torus) — each vertex link is a hexagon.

Note that every combinatorial manifold is a triangulated manifold. The opposite is wrong: for
example, there exists a triangulation of the 5-sphere that is not combinatorial, the so called Edward’s
sphere, see [BLOO].

A combinatorial manifold carries an induced PL-structure and can be understood in terms of an
abstract simplicial complex. If the complex has d vertices there exists a natural embedding of C into
the (d - 1) simplex and, thus, into E4~!. In general, there is no canonical embedding into any lower
dimensional space. However, combinatorial methods allow to examine a given simplicial complex
independently from an embedding and, in particular, independently from vertex coordinates.

Some fundamental properties of an abstract simplicial complex C are the following:

Dimensionality.
The dimension of C.

f, g and h-vector.
The f-vector (f; equals the number of k-faces of a simplicial complex), the g- and A-vector can
be obtained from the f-vector via linear transformations.

(Co-)Homology.
The simplicical (co-)homology groups and Betti numbers.

Euler characteristic
The Euler characteristic as the alternating sum over the Betti numbers / the f-vector.

Connectedness and closedness.
Whether C is strongly connected, path connected, has a boundary or not.

Symmetries.
The automorphism group, i. e. the group of all permutations on the set of vertex labels that do
not change the complex as a whole.

All of those properties and many more can be computed on a strictly combinatorial basis.
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2.4 Discrete Normal surfaces

The concept of normal surfaces is originally due to Kneser [Kne29] and Haken [Hak61]: A surface S,
properly embedded into a 3-manifold M, is said to be normal, if it respects a given cell decomposition
of M in the following sense: It does not intersect any vertex nor touch any 3-cell of the manifold and
does not intersect with any 2-cell in a circle or an arc starting and ending in a point of the same edge.
Here we will look at normal surfaces in the case that M is given as a combinatorial 3-manifold and
we will call the corresponding objects discrete normal surfaces. In order to do this let us first define:

DEFINITION

A polytopal manifold is a polytopal complex M such that there exists a simplicial subdivision of M
which is a combinatorial manifold. If M is a surface we will call it a polytopal map. If, in addition M
entirely consists of m-gons, we call it a polytopal m-gon map.

DEFINITION (Discrete Normal surface, [Spr11b])

Let M be a combinatorial 3-manifold (3-pseudomanifold), A € M one of its tetrahedra and P the
intersection of A with a plane that does not include any vertex of A. Then P is called a normal subset
of A. Up to an isotopy that respects the face lattice of A, P is equal to one of the triangles P, 1 <i<4,
or quadrilaterals P;, 5 <i <7, shown in Figure 7.

A polyhedral map S c M that entirely consists of facets P; such that every tetrahedron contains
at most one facet is called discrete normal surface of M.

The second author has recently investigated on the combinatorial theory of discrete normal
surfaces, see [Sprl1b].

Q@

v

?

2 (1000000) 2 (0100000) 2 (0010000) 2 (0001000)
4 4
Py )
//\3 '{k 3 3
2 (0000100) (0000010) (000000 1) 2 (0100002)

Figure 7. The seven different normal subsets of the tetrahedron. Note that the rightmost picture of the bottom
row can not be part of a discrete normal surface.

2.5 Polyhedral Morse theory and slicings

In the field of PL-topology Kiihnel developed what one might call a polyhedral Morse theory
(compare [Kiih95], not to be confused with Forman’s discrete Morse theory for cell complexes which
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is decribed in Section 2.6):

Let M be a combinatorial d-manifold. A function f: M — R is called regular simplexwise lin-
ear (rsl) if f(v) # f(w) for any two vertices w # v and if f is linear when restricted to an arbitrary
simplex of the triangulation.

A vertex x € M is said to be crifical for an rsl-function f: M — R, if H.(My,M\{x},F) #0
where M, := {ye M|f(y) < f(x)} and F is a field.

It follows that no point of M can be critical except possibly the vertices. In arbitrary dimen-
sions we define:

DEFINITION (Slicing, [Sprl11b])
Let M be a combinatorial pseudomanifold of dimension d and f: M — R an rsl-function. Then we
call the pre-image f~!( ) a slicing of M whenever a # f(v) for any vertex v € M.

By construction, a slicing is a polytopal (d — 1)-manifold and for any ordered pair o < B we
have f~!(a) = f~'(B) whenever f~!([«,B]) contains no vertex of M. In particular, a slicing S of
a closed combinatorial 3-manifold M is a discrete normal surface: It follows from the simplexwise
linearity of f that the intersection of the pre-image with any tetrahedron of M either forms a single
triangle or a single quadrilateral. In addition, if two facets of § lie in adjacent tetrahedra they ei-
ther are disjoint or glued together along the intersection line of the pre-image and the common triangle.

Any partition of the set of vertices V = ViUV, of M already determines a slicing: Just define
an rsl-function f: M — R with f(v) < f(w) for all ve V; and w € V, and look at a suitable pre-image.
In the following we will write Sy, v,) for the slicing defined by the vertex partition V = V,UV.

Every vertex of a slicing is given as an intersection point of the corresponding pre-image with
an edge (u,w) of the combinatorial manifold. Since there is at most one such intersection point per
edge, we usually label this vertex of the slicing according to the vertices of the corresponding edge,
that is (3) with u e V) and w e V5.

Every slicing decomposes the surrounding combinatorial manifold M into at least 2 pieces (an
upper part M* and a lower part M~). This is not the case for discrete normal surfaces (see 2.4) in
general. However, we will focus on the case where discrete normal surfaces are slicings and we will
apply the above notation for both types of objects.

Since every combinatorial pseudomanifold M has a finite number of vertices, there exist only a
finite number of slicings of M. Hence, if f is chosen carefully, the induced slicings admit a useful
visualization of M, c.f. [SK11].
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Figure 8. One dimensional slicing of the 2-sphere (represented as the boundary of the 3-simplex) seen as a

level set of a regular point of a simplicial Morse function.
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diagram of a quadrilateral face).
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2.6 Discrete Morse theory

For an introduction into Forman’s discrete Morse theory see [For95], not to be confused with
Banchoff and Kiihnel’s theory of regular simplexwise linear functions which is described in Section
2.5).

2.7 Tightness and tight triangulations

Tightness is a notion developed in the field of differential geometry as the equality of the (normalized)
total absolute curvature of a submanifold with the lower bound sum of the Betti numbers [Kui84],
[BK97]. It was first studied by Alexandrov, Milnor, Chern and Lashof and Kuiper and later extended
to the polyhedral case by Banchoff [Ban65], Kuiper [Kui84] and Kiihnel [Kiih95]. From a geometrical
point of view, tightness can be understood as a generalization of the concept of convexity that applies
to objects other than topological balls and their boundary manifolds since it roughly means that an
embedding of a submanifold is “as convex as possible” according to its topology. The usual definition
is the following:

DEFINITION (Tightness, [Kiih95])
Let IF be a field. An embedding M — EV of a compact manifold is called k-tight with respect to T if
for any open or closed halfspace & c EV the induced homomorphism

H;(Mnh;F) — H;(M;F)

is injective for all i < k. M is called F-tight if it is k-tight for all k. The standard choice for the field of
coefficients is [F, and an [F,-tight embedding is called tight.

With regard to PL embeddings of PL manifolds tightness of combinatorial manifolds can also
be defined via a purely combinatorial condition as follows. For an introduction to PL topology see
[RS72].

DEFINITION (Tight triangulation [Kiih95])
Let IF be a field. A combinatorial manifold K on n vertices is called (k-) tight w.r.t. T if its canonical
embedding K c A""! ¢ E""! is (k-)tight w.r.t. F, where A"~! denotes the (n— 1)-dimensional simplex.

In dimension d =2 the following are equivalent for a triangulated surface S on n vertices: (i) S
has a complete edge graph K, (ii) S appears as a so called regular case in Heawood’s Map Color
Theorem [Rin74], compare [Kiih95] and (iii) the induced piecewise linear embedding of S into
Euclidean (n— 1)-space has the two-piece property [Ban74], and it is tight [Kiih95].

Kiihnel investigated the tightness of combinatorial triangulations of manifolds also in higher
dimensions and codimensions, see [Kiih94]. It turned out that the tightness of a combinatorial
triangulation is closely related to the concept of Hamiltonicity of a polyhedral complexes (see
[Kiih95]): A subcomplex A of a polyhedral complex K is called k-Hamiltonian if A contains the full
k-dimensional skeleton of K (not to be confused with the notion of a k-Hamiltonian graph). This
generalization of the notion of a Hamiltonian circuit in a graph seems to be due to C.Schulz [Sch94].
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A Hamiltonian circuit then becomes a special case of a 0-Hamiltonian subcomplex of a 1-dimensional
graph or of a higher-dimensional complex.

A triangulated 2k-manifold that is a k-Hamiltonian subcomplex of the boundary complex of
some higher dimensional simplex is a tight triangulation as Kiihnel [Kiih95] showed. Such a
triangulation is also called (k + 1)-neighborly triangulation since any k + 1 vertices in a k-dimensional
simplex are common neighbors. Moreover, (k+ 1)-neighborly triangulations of 2k-manifolds are also
referred to as super-neighborly triangulations — in analogy with neighborly polytopes the boundary
complex of a (2k + 1)-polytope can be at most k-neighborly unless it is a simplex. Notice here that
combinatorial 2k-manifolds can go beyond k-neighborliness, depending on their topology.

Whereas in the 2-dimensional case all tight triangulations of surfaces were classified by Ringel
and Jungerman and Ringel, in dimensions d > 3 there exist only a finite number of known examples of
tight triangulations (see [KL99] for a census) apart from the trivial case of the boundary of a simplex
and an infinite series of triangulations of sphere bundles over the circle due to Kiihnel [Kiih95],
[Kiih86].

2.8 Simplicial blowups

The blowing up process or Hopf o-process can be described as the resolution of nodes or ordinary
double points of a complex algebraic variety. This was described by H."Hopf in [Hop51], compare
[Hir53] and [Hau00O]. From the topological point of view the process consists of cutting out some
subspace and gluing in some other subspace. In complex algebraic geometry one point is replaced
by the projective line CP' = §? of all complex lines through that point. This is often called blowing
up of the point or just blowup. In general the process can be applied to non-singular 4-manifolds and
yields a transformation of a manifold M to M#(+CP?) or M#(—~CP?), depending on the choice of an
orientation. The same construction is possible for nodes or ordinary double points (a special type of
singularities), and also the ambiguity of the orientation is the same for the blowup process of a node.
Similarly it has been used in arbitrary even dimension by Spanier [SpaS6] as a so-called dilatation
process.

A PL version of the blowing up process is the following: We cut out the star of one of the
singular vertices which is, in the case of an ordinary double point, nothing but a cone over a
triangulated RP?. The boundary of the resulting space is this triangulated RP?. Now we glue back in
a triangulated version C of a complex projective plane with a 4-ball removed where antipodal points
of the boundary are identified. C is called a triangulated mapping cylinder and by construction its
boundary is PL homeomorphic to RP?.

For a combinatorial version with concrete triangulations, however, we face the problem that
these two triangulations are not isomorphic. This implies that before cutting out and gluing in we
have to modify the triangulations by bistellar moves until they coincide:

DEFINITION (Simplicial blowup, [SK11])

Let v be a vertex of a combinatorial 4-pseudomanifold M whose link is isomorphic with the particular
11-vertex triangulation of RP* which is given by the boundary complex of the triangulated C given
in [SK11]. Let w:1k(v) = dC denote such an isomorphism. A simplicial resolution of the singularity
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v is given by the following construction M — M := (M  star(v)°) Uy, C.

The process is described in more detail in [SK11]. In particular it is used to transform a 4-dimensional
Kummer variety into a K3 surface.



Chapter 3

The new GAP object types of simpcomp

In order to meet the particular requirements of piecewise linear geometric objects and their invariants,
simpcomp defines a number of new GAP object types.

All new object types are derived from the object type SCPropertyObject which is a subtype
of Record. It is a GAP object consisting of permanent and temporary attributes. While simpcomp
makes use of GAP’s internal attribute caching mechanism for permanent attributes (see below), this
is not the case for temporary ones.

The temporary properties of a SCProperty0bject can be accessed directly with the functions
SCPropertyTmpByName and changed with SCPropertyTmpSet. But this direct access to property
objects is discouraged when working with sSimpcomp, as the internal consistency of the objects cannot
be guaranteed when the properties of the objects are modified in this way.

Important note: The temporary properties of SCProperty0bject are not used to hold properties
(in the GAP sense) of simplicial complexes or other geometric objects. This is done by the GAP4 type
system [BL98]. Instead, the properties handled by simpcomp’s own caching mechanism are used to
store changing information, e.g. the complex library (see Section 13) of the package or any other data
which possibly is subject to changes (and thus not suited to be stored by the GAP type system).

To realize its complex library (see Section 13), simpcomp defines a GAP object type
SCLibRepository which provides the possibility to store, load, etc. any defined geometric object
to and from the build-in complex library as well as customized user libraries. In addition, a searching
mechanism is provided.

Geometric objects are represented by the GAP object type SCPolyhedralComplex, which as well
is a subtype of SCProperty0Object. SCPolyhedralComplex is designed to represent any kind of
piecewise linear geometric object given by a certain cell decomposition. Here, as already mentioned,
the GAP4 type system [BLIS] is used to cache properties of the object. In this way, a property is not
calculated multiple times in case the object is not altered (see SCPropertiesDropped (5.1.5) for a
way of dropping previously calculated properties).

As of Version 1.4, simpcomp makes use of two different subtypes of SCPolyhedralComplex:
SCSimplicialComplex to handle simplicial complexes and SCNormalSurface to deal with dis-
crete normal surfaces (slicings of dimension 2). Whenever possible, only one method per opera-
tions is implemented to deal with all subtypes of SCPolyhedralComplex, these functions are de-
scribed in Chapter 4. For all other operations, the different methods for SCSimplicialComplex and
SCNormalSurface are documented separately.

21
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3.1 Accessing properties of a SCPolyhedralComplex object

As described above the object type SCPolyhedralComplex (and thus also the GAP object types

SCSimplicialComplex and SCNormalSurface) has properties that are handled by the GAP4 type

system. Hence, GAP takes care of the internal consistency of objects of type SCSimplicialComplex.
There are two ways of accessing properties of a SCPolyhedralComplex object. The first is to

call a property handler function of the property one wishes to calculate. The first argument of such a

property handler function is always the simplicial complex for which the property should be calculated,

in some cases followed by further arguments of the property handler function. An example would be:

Example

gap> c:=SCBdSimplex(3);; # create a SCSimplicialComplex object

gap> SCFVector(c);

[ 4, 6, 4]

gap> SCSkel(c,0);

(011,027,037, 0411

Here the functions SCFVector and SCSkel are the property handler functions, see Chapter 16 for a list
of all property handlers of a SCPolyhedralComplex, SCSimplicialComplex or SCNormalSurface
object. Apart from this (standard) method of calling the property handlers directly with a
SCPolyhedralComplex object, simpcomp provides the user with another more object oriented
method which calls property handlers of a SCPolyhedralComplex object indirectly and more conve-
niently:

Example
gap> c:=SCBdSimplex(3);; # create a SCSimplicialComplex object
gap> c.F;
[ 4,6, 4]

gap> c.Skel(0);
(C11,0271,031,[041]1

Note that the code in this example calculates the same properties as in the first example above, but
the properties of a SCPolyhedralComplex object are accessed via the . operator (the record access
operator).

For each property handler of a SCPolyhedralComplex object the object oriented form of this
property handler equals the name of the corresponding operation. However, in most cases abbrevi-
ations are available: Usually the prefix “SC” can be dropped, in other cases even shorter names are
available. See Chapter 16 for a complete list of all abbreviations available.
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SCPropertyObject
SCLibRepository SCPolyhedralComplex
SCNormalSurface SCSimplicialComplex

Figure 11. Overview over all GAP object types defined by simpcomp.



Chapter 4

Functions and operations for the GAP
object type SCPolyhedralComplex

In the following all operations for the GAP object type SCPolyhedralComplex are listed. I. e. for
the following operations only one method is implemented to deal with all geometric objects derived
from this object type.

4.1 Computing properties of objects of type SCPolyhedralComplex

The following functions compute basic properties of objects of type SCPolyhedralComplex (and thus
also of objects of type SCSimplicialComplex and SCNormalSurface). None of these functions alter
the complex. All properties are returned as immutable objects (this ensures data consistency of the
cached properties of a simplicial complex). Use ShallowCopy or the internal sSimpcomp function
SCIntFunc.DeepCopy to get a mutable copy.

Note: every object is internally stored with the standard vertex labeling from 1 to n and a maptable
to restore the original vertex labeling. Thus, we have to relabel some of the complex properties (facets,
etc...) whenever we want to return them to the user. As a consequence, some of the functions exist
twice, one of them with the appendix "Ex". These functions return the standard labeling whereas the
other ones relabel the result to the original labeling.

4.1.1 SCFacets

> SCFacets(complex) (method)
Returns: a facet list upon success, fail otherwise.
Returns the facets of a simplicial complex in the original vertex labeling.

Example
gap> c:=3C([[2,3],[3,4],[4,211);;
gap> SCFacets(c);
L[2,31, 02,41, [3,41]]
4.1.2 SCFacetsEx
> SCFacetsEx(complex) (method)

Returns: a facet list upon success, fail otherwise.

24
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Returns the facets of a simplicial complex as they are stored, i. e. with standard vertex labeling
from 1 to n.

Example

gap> c:=8C([[2,3],[3,4],[4,2]11);;
gap> SCFacetsEx(c);
(01,27, 01,31, 02,311

4.1.3 SCVertices

> SCVertices(complex) (method)
Returns: a list of vertex labels of complex upon success, fail otherwise.

Returns the vertex labels of a simplicial complex complex.

Example

gap> sphere:=SC([["x",45,[1,1]1], ["x",45,["p",3]1], ["x", [1,1],
("b",311,[45,[1,1],["p",3111);;

gap> SCVerticesEx(sphere);

[1..4]

gap> SCVertices(sphere);

(45, [ 1, 271, "x", [ "b", 311

4.1.4 SCVerticesEx

> SCVerticesEx(complex)
Returns: [1,...,n] upon success, fail otherwise.

Returns [1,...,n], where n is the number of vertices of a simplicial complex complex.
Example
gap> c:=SC([[1,4,5]1,[4,9,8],[12,13,14,15,16,1711);;
gap> SCVerticesEx(c);

[1..11]

(method)

4.2 Vertex labelings and label operations

This section focuses on functions operating on the labels of a complex such as the name or the vertex
labeling.

Internally, simpcomp uses the standard labeling [1,...,n]. It is recommended to use simple ver-

tex labels like integers and, whenever possible, the standard labeling, see also SCRelabelStandard
4.2.7).

4.2.1 SCLabelMax

> SCLabelMax(complex) (method)
Returns: vertex label of complex (an integer, a short list, a character, a short string) upon success,
fail otherwise.

The maximum over all vertex labels is determined by the GAP function MaximumList.
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Example

gap> c:=SCBdSimplex(3);;

gap> SCRelabel(c,[10,100,100000,3500]);;
gap> SCLabelMax(c);

100000

Example

gap> c:=SCBdSimplex(3);;

gap> SCRelabel(c, ["a","bbb",5,[1,1]11);;
gap> SCLabelMax(c);

Ilbbb n

4.2.2 SCLabelMin

> SCLabelMin(complex) (method)
Returns: vertex label of complex (an integer, a short list, a character, a short string) upon success,
fail otherwise.

The minimum over all vertex labels is determined by the GAP function MinimumList.
Example

gap> c:=SCBdSimplex(3);;

gap> SCRelabel(c,[10,100,100000,3500]);;
gap> SCLabelMin(c);

10

Example

gap> c:=SCBdSimplex(3);;
gap> SCRelabel(c, ["a","bbb",5,[1,111);;
gap> SCLabelMin(c);

4.2.3 SCLabels

> SCLabels(complex) (method)

Returns: a list of vertex labels of complex (a list of integers, short lists, characters, short strings,
...) upon success, fail otherwise.

Returns the vertex labels of complex as a list. This is a synonym of SCVertices (4.1.3).
Example
gap> c:=SCFromFacets(Combinations(["a","b","c","d"],3));;
gap> SCLabels(c);

[ llall, llbll, "C", lldll ]

4.2.4 SCName

> SCName (complex) (operation)
Returns: a string upon success, fail otherwise.
Returns the name of a simplicial complex complex.
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Example
gap> c:=SCBdSimplex(5);;

gap> SCName(c) ;

|lS’\4_6||

Example

gap> C:=SC([[1,2] ’ [2’3] > [3:1]]);;
gap> SCName(c) ;
"unnamed complex 2"

4.2.5 SCReference

> SCReference(compleX) (operation)
Returns: a string upon success, fail otherwise.
Returns a literature reference of a polyhedral complex complex.

Example

gap> c:=SCLib.Load(253);;

gap> SCReference(c);

"manifold_2_14_4_2 in F.H.Lutz: ’The Manifold Page’, http://www.math.tu-berlin\
.de/diskregeom/stellar/,\r\nF.H.Lutz: ’Triangulated manifolds with few vertice\
s and vertex-transitive group actions’, Doctoral Thesis TU Berlin 1999, Shaker\
-Verlag, Aachen 1999"

gap> c¢:=8C([[1,2],[2,3],[3,111);;

gap> SCReference(c);

#I SCReference: complex lacks reference.

fail

4.2.6 SCRelabel

D> SCRelabel (complex, maptable) (method)

Returns: true upon success, fail otherwise.

maptable has to be a list of length n where n is the number of vertices of complex. The function
maps the i-th entry of maptable to the i-th entry of the current vertex labels. If complex has the
standard vertex labeling [1,...,n] the vertex label i is mapped to maptable[i].

Note that the elements of maptable must admit a total ordering. Hence, following Section 4.11
of the GAP manual, they must be members of one of the following families: rationals IsRat, cyclo-
tomics IsCyclotomic, finite field elements IsFFE, permutations IsPerm, booleans IsBool, charac-
ters IsChar and lists (strings) IsList.

Internally the property “SCVertices” of complex is replaced by maptable.

Example
gap> list:=SCLib.SearchByAttribute("F[1]=12");;

gap> c:=SCLib.Load(1ist[1]1[1]);;

gap> SCVertices(c);

(1, 2, 3, 4, 5, 6,7, 8,9, 10, 11, 12 ]

gap> SCRelabel(C, ["a" s "b" ’ "c" ’ "q" » e » £ s "g" s "h" s "in ’ "j " » "k" » "1"] ) M
true

gap> SCLabels(c);
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[ Ilall, llbll, IICII, lldll’ llell’ llfll’ llgll, llhll’ Ilill, Iljll’ Ilkll’ Illll ]

4.2.7 SCRelabelStandard

> SCRelabelStandard(complex) (method)
Returns: true upon success, fail otherwise.
Maps vertex labels vy,...,v, of complex to [1,...,n]. Internally the property "SCVertices" is
replaced by [1,...,n].
Example
gap> list:=SCLib.SearchByAttribute("F[1]=12");;
gap> c:=SCLib.Load(1ist[1][1]1);;
gap> SCRelabel(c,[4..15]);

true

gap> SCVertices(c);

[4 ..15]

gap> SCRelabelStandard(c);
true

gap> SCLabels(c);
[1..12]

4.2.8 SCRelabelTransposition

> SCRelabelTransposition(complex, pair) (method)

Returns: true upon success, fail otherwise.

Permutes vertex labels of a single pair of vertices. pair has to be a list of length 2 and a sublist
of the property “SCVertices”.

The  function is equivalent to  SCRelabel (4.2.6) with maptable =
[SCVertices[1],...,SCVertices[j],...,SCVertices[i],...,SCVertices[n]] if pair =
[SCVertices| j],SCVertices[i]], j<i, j#1i.

Example
gap> c:=SCBdSimplex(3);;

gap> SCVertices(c);

[1..4]

gap> SCRelabelTransposition(c,[1,2]);;
gap> SCLabels(c);

[2,1, 3, 4]

4.2.9 SCRename

> SCRename (complex, name) (method)
Returns: true upon success, fail otherwise.

Renames a polyhedral complex. The argument name has to be given in form of a string.
Example

gap> c:=SCBdSimplex(5);;
gap> SCName(c) ;
IIS’*4_6II
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gap> SCRename (c, "mySphere") ;
true

gap> SCName(c) ;

"mySphere"

4.2.10 SCSetReference

D> SCSetReference(complex, ref)
Returns: true upon success, fail otherwise.

Sets the literature reference of a polyhedral complex. The argument ref has to be given in form
of a string.

(method)

Example

gap> c:=SCBdSimplex(5);;

gap> SCReference(c);

#I SCReference: complex lacks reference.

fail

gap> SCSetReference(c,"my 5-sphere in my cool paper");
true

gap> SCReference(c);

"my 5-sphere in my cool paper"

4.2.11 SCUnlabelFace

D> SCUnlabelFace(complex, face)
Returns: a list upon success, fail otherwise.
Computes the standard labeling of face in complex.
Example

(method)

gap> c:=SCBdSimplex(3);;

gap> SCRelabel(c,["a","bbb",5,[1,111);;
gap> SCUnlabelFace(c, ["a","bbb",5]);
[1, 2, 3]

4.3 Operations on objects of type SCPolyhedralComplex

The following functions perform operations on objects of type SCPolyhedralComplex and all of its
subtypes. Most of them return simplicial complexes. Thus, this section is closely related to the Sec-
tions 6.6 (for objects of type SCSimplicialComplex), "Generate new complexes from old”. How-

ever, the data generated here is rather seen as an intrinsic attribute of the original complex and not as
an independent complex.

4.3.1 SCAntiStar

> SCAntiStar(complex, face) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise .
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Computes the anti star of face (a face given as a list of vertices or a scalar interpreted as vertex)
in complex, i. e. the complement of face in complex.
Example

gap> SCLib.SearchByName ("RP~2");

[ L3, "RP~2 (V)" 1, [ 262, "RP~2xS~1" ] ]

gap> rp2:=SCLib.Load(last[1][1]);;

gap> SCVertices(rp2);

[ 1, 2, 3, 4, 5, 6]

gap> SCAntiStar(rp2,1);

<SimplicialComplex: ast([ 1 ]) in RP"2 (VT) | dim = 2 | n = 5>
gap> last.Facets;

[[2 3,41, [2,4,51,[2,5,61,[3,4,61,[3,5,61]

4.3.2 SCLink

> SCLink(complex, face) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes the link of face (a face given as a list of vertices or a scalar interpreted as vertex) in

a polyhedral complex complex, i. e. all facets containing face, reduced by face. if complex is

pure, the resulting complex is of dimension dim(complex) - dim(face) —1. If face is not a face of

complex the empty complex is returned.

Example

gap> SCLib.SearchByName ("RP~2");

[ [3, "RP°2 (VD" 1, [ 262, "RP~2xS~1" ] ]

gap> rp2:=SCLib.Load(last[1][1]);;

gap> SCVertices(rp2);

[1, 2, 3, 4, 5, 6]

gap> SCLink(rp2, [1]1);

<SimplicialComplex: 1k([ 1 ]) in RP"2 (VT) | dim =1 | n = 5>
gap> last.Facets;

(2,31, [2,61, (3,561, [4,51, [4,61]1

4.3.3 SCLinks

> SCLinks(complex, k) (method)
Returns: a list of simplicial complexes of type SCSimplicialComplex upon success, fail
otherwise.
Computes the link of all k-faces of the polyhedral complex complex and returns them as a list of
simplicial complexes. Internally calls SCLink (4.3.2) for every k-face of complex.
Example

gap> c:=SCBdSimplex(4);;
gap> SCLinks(c,0);

[ <SimplicialComplex: 1k([ 1 1) in S°3.5 | dim = 2 | n = 4>,
<SimplicialComplex: 1k([ 2 ]) in S°3_.5 | dim = 2 | n = 4>,
<SimplicialComplex: 1k([ 3 ]) in S°3_5 | dim = 2 | n = 4>,
<SimplicialComplex: 1k([ 4 ]) in S°3_.5 | dim = 2 | n = 4>,
<SimplicialComplex: 1k([ 5 1) in S°3.5 | dim =2 | n = 4> ]

gap> SCLinks(c,1);
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[ <SimplicialComplex: 1k([ 1, 2 1) in $S73_.5 | dim =1 | n = 3>,
<SimplicialComplex: 1k([ 1, 3 1) in S°3.56 | dim=1 | n = 3>,
<SimplicialComplex: 1k([ 1, 4 ]) in $°3.5 | dim =1 | n = 3>,
<SimplicialComplex: 1k([ 1, 5 1) in S35 | dim =1 | n = 3>,
<SimplicialComplex: 1k([ 2, 3 ]) in S°3_.5 | dim=1 | n = 3>,
<SimplicialComplex: 1k([ 2, 4 1) in S°3.5 | dim =1 | n = 3>,
<SimplicialComplex: 1k([ 2, 5 1) in S°3.56 | dim=1 | n = 3>,
<SimplicialComplex: 1k([ 3, 4 ]) in $°3.5 | dim =1 | n = 3>,
<SimplicialComplex: 1k([ 3, 5 1) in S35 | dim =1 | n = 3>,
<SimplicialComplex: 1k([ 4, 5 1) in S°3_.5 | dim =1 | n = 3> ]

4.3.4 SCStar
> SCStar(complex, face) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise .
Computes the star of face (a face given as a list of vertices or a scalar interpreted as vertex) in a
polyhedral complex complex, i. e. the set of facets of complex that contain face.
Example

gap> SCLib.SearchByName ("RP~2");

[ [3, "RP~2 (V)" 1, [ 262, "RP~2xS~1" ] ]

gap> rp2:=SCLib.Load(last[1]1[1]);;

gap> SCVertices(rp2);

[1, 2, 3, 4, 5, 6]

gap> SCStar(rp2,1);

<SimplicialComplex: star([ 1 ]) in RP"2 (VT) | dim =2 | n = 6>
gap> last.Facets;

rci1, 2,31, 01,2,61, [1,3,561,[1,4,51,1[1, 4,611

4.3.5 SCStars

> SCStars(complex, k) (method)
Returns: a list of simplicial complexes of type SCSimplicialComplex upon success, fail
otherwise.
Computes the star of all k-faces of the polyhedral complex complex and returns them as a list of
simplicial complexes. Internally calls SCStar (4.3.4) for every k-face of complex.
Example
gap> SCLib.SearchByName ("T~2"){[1..61};
([4, "Tr2 (vD)" 1, (5, "T~2 (vO)" 1, [ 9, "T~2 (vDO)" 1, [ 10, "T"2 (VD" 1,
(17, "T~2 (VD" 1, [ 20, "(T~2)#2" ] ]
gap> torus:=SCLib.Load(last[1][1]);; # the minimal 7-vertex torus
gap> SCStars(torus,0); # 7 2-discs as vertex stars

[ <SimplicialComplex: star([ 1 ]) in T2 (VT) | dim =2 | n = 7>,
<SimplicialComplex: star([ 2 1) in T"2 (VT) | dim = 2 | n = 7>,
<SimplicialComplex: star([ 3 1) in T"2 (VT) | dim = 2 | n = 7>,
<SimplicialComplex: star([ 4 1) in T2 (VT) | dim = 2 | n = 7>,
<SimplicialComplex: star([ 5 ]) in T"2 (VT) | dim = 2 | n = 7>,
<SimplicialComplex: star([ 6 1) in T"2 (VI) | dim = 2 | n = 7>,
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<SimplicialComplex: star([ 7 1) in T~2 (VT) | dim

2

| n=7>]
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Chapter 5

The GAP object types
SCSimplicialComplex and
SCNormalSurface

Currently, the GAP package simpcomp supports data structures for two different kinds of geo-
metric objects, namely simplicial complexes (SCSimplicialComplex) and discrete normal surfaces
(SCNormalSurface) which are both subtypes of the GAP object type SCPolyhedralComplex

5.1 The object type SCSimplicialComplex

A major part of simpcomp deals with the object type SCSimplicialComplex. For a complete
list of properties that SCSimplicialComplex handles, see Chapter 6. For a few fundamental
methods and functions (such as checking the object class, copying objects of this type, etc.) for
SCSimplicialComplex see below.

5.1.1 SCIsSimplicialComplex

D> SCIsSimplicialComplex(object) (filter)
Returns: true or false upon success, fail otherwise.
Checks if object is of type SCSimplicialComplex. The object type SCSimplicialComplex is

derived from the object type SCPropertyObject.
Example

gap> c:=SCEmpty Q) ;;
gap> SCIsSimplicialComplex(c);
true

5.1.2 SCDetails

> SCDetails(complex) (function)
Returns: a string of type IsString upon success, fail otherwise.
The function returns a list of known properties of complex an lists some of these properties
explicitly.

33
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gap> c:=SC([[1,2,3]1,[1,2,4],[1,3,4]1,[2,3,411);
<SimplicialComplex: unnamed complex 1 | dim = 2 | n = 4>
gap> Print(SCDetails(c));

[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.
Name="unnamed complex 1"
Dim=2

/SimplicialComplex]

gap> c.F;

[ 4, 6, 41

gap> c.Homology;

trto, L 11, Co0,C 11,01, 111
gap> Print(SCDetails(c));
[SimplicialComplex

Properties known: Dim, FacetsEx, Homology, Name, Vertices.
Name="unnamed complex 1"

Dim=2

Homology=[ [0, [ 11, [0, [ 11, [1, [171]

/SimplicialComplex]

5.1.3 SCCopy

> SCCopy (complex)
Returns: a copy of complex upon success, fail otherwise.

(method)

Makes a “deep copy” of complex — this is a copy such that all properties of the copy can be altered

without changing the original complex.

Example
gap> c:=SCBdSimplex(4);;
gap> d:=SCCopy(c)-1;;
gap> c.Facets=d.Facets;
false
Example

gap> c:=SCBdSimplex(4);;
gap> d:=SCCopy(c);;

gap> IsIdenticalObj(c,d);
false

5.1.4 ShallowCopy (SCSimplicial Complex)

D> ShallowCopy (SCSimplicialComplex) (complex)
Returns: a copy of complex upon success, fail otherwise.

(method)

Makes a copy of complex. This is actually a “deep copy” such that all properties of the copy can

be altered without changing the original complex. Internally calls SCCopy (7.2.1).
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Example

gap> c:=SCBdCrossPolytope(7);;
gap> d:=ShallowCopy(c)+10;;
gap> c.Facets=d.Facets;

false

5.1.5 SCPropertiesDropped

> SCPropertiesDropped(complex) (function)

Returns: a object of type SCSimplicialComplex upon success, fail otherwise.

An object of the type SCSimplicialComplex caches its previously calculated properties such
that each property only has to be calculated once. This function returns a copy of complex with all
properties (apart from Facets, Dim and Name) dropped, clearing all previously computed properties.
See also SCPropertyDrop (18.1.8) and SCPropertyTmpDrop (18.1.13).

Example
gap> c:=SC(SCFacets(SCBdCyclicPolytope(10,12)));
<SimplicialComplex: unnamed complex 27 | dim = 9 | n
gap> c.F; time;

[ 12, 66, 220, 495, 792, 922, 780, 465, 180, 36 ]

39

gap> c.F; time;

[ 12, 66, 220, 495, 792, 922, 780, 465, 180, 36 ]

71

gap> c:=SCPropertiesDropped(c);

<SimplicialComplex: unnamed complex 27 | dim = 9 | n = 12>
gap> c.F; time;

[ 12, 66, 220, 495, 792, 922, 780, 465, 180, 36 ]

54

12>

5.2 Overloaded operators of SCSimplicialComplex

simpcomp overloads some standard operations for the object type SCSimplicialComplex if this
definition is intuitive and mathematically sound. See a list of overloaded operators below.

5.2.1 Operation + (SCSimplicial Complex, Integer)

> Operation + (SCSimplicialComplex, Integer) (complex, value) (method)
Returns: the simplicial complex passed as argument upon success, fail otherwise.
Positively shifts the vertex labels of complex (provided that all labels satisfy the property
IsAdditiveElement) by the amount specified in value.
Example

gap> c:=SCBdSimplex(3)+10;;
gap> c.Facets;
([11, 12, 131, [ 11, 12, 141, [ 11, 13, 141, [ 12, 13, 14 1]
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5.2.2 Operation - (SCSimplicial Complex, Integer)

D> Operation - (SCSimplicialComplex, Integer) (complex, value) (method)
Returns: the simplicial complex passed as argument upon success, fail otherwise.
Negatively shifts the vertex labels of complex (provided that all labels satisfy the property
IsAdditiveElement) by the amount specified in value.
Example

gap> c:=SCBdSimplex(3)-1;;
gap> c.Facets;
rfo,1,21,00,1,31,00,2,31]1,[1,2,31]1]

5.2.3 Operation mod (SCSimplicialComplex, Integer)

> Operation mod (SCSimplicialComplex, Integer) (complex, value) (method)
Returns: the simplicial complex passed as argument upon success, fail otherwise.
Takes all vertex labels of complex modulo the value specified in value (provided that all labels
satisfy the property IsAdditiveElement). Warning: this might result in different vertices being

assigned the same label or even in invalid facet lists, so be careful.
Example

gap> c:=(SCBdSimplex(3)*10) mod 7;;
gap> c.Facets;
(023 51, 02,3,61,[2,5,61,[3,5,61]

5.2.4 Operation ~ (SCSimplicial Complex, Integer)

> Operation ~ (SCSimplicialComplex, Integer) (complex, value) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Forms the value-th simplicial cartesian power of complex, i.e. the value-fold cartesian
product of copies of complex. The complex passed as argument is not altered. Internally calls
SCCartesianPower (6.6.1).

Example
gap> c:=SCBdSimplex(2)~2; #a torus
<SimplicialComplex: (S~1_3)"2 | dim =2 | n = 9>

5.2.5 Operation + (SCSimplicial Complex, SCSimplicial Complex)

> Operation + (SCSimplicialComplex, SCSimplicialComplex) (complexl, complex2)
(method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Forms the connected sum of complexl and complex2. Uses the lexicographically first facets of
both complexes to do the gluing. The complexes passed as arguments are not altered. Internally calls
SCConnectedSum (6.6.5).

Example
gap> SCLib.SearchByName ("RP~3");;
gap> c:=SCLib.Load(last[1][1]);;
gap> SCLib.SearchByName("S~27S~1"){[1..3]};
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[ [ 12, "s~27s~1 (vI)" 1, [ 26, "s~27s~1 (vDO" ], [ 27, "S~27S~1 (V)" ] ]
gap> d:=SCLib.Load(last[1]1[1]);;

gap> c:=c+d; #form RP~3#(5°275"1)

<SimplicialComplex: RP~3#+-5"27S~1 (VT) | dim = 3 | n = 16>

5.2.6 Operation - (SCSimplicial Complex, SCSimplicial Complex)

> Operation - (SCSimplicialComplex, SCSimplicialComplex) (complexl, complex2)
(method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Calls SCDifference (6.10.5)(complexl, complex2)

5.2.7 Operation * (SCSimplicial Complex, SCSimplicialComplex)

> Operation * (SCSimplicialComplex, SCSimplicialComplex) (complexl, complex2)

(method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Forms the simplicial cartesian product of complexl and complex2. Internally calls

SCCartesianProduct (6.6.2).
Example

gap> SCLib.SearchByName ("RP~2");

[ [ 3, "RP~2 (V)" 1, [ 262, "RP~2xS~1" ] ]

gap> c:=SCLib.Load(last[1][1])*SCBdSimplex(3); #form RP"2 x S~2
<SimplicialComplex: RP~2 (VI)xS~2_4 | dim = 4 | n = 24>

5.2.8 Operation = (SCSimplicial Complex, SCSimplicial Complex)

> Operation = (SCSimplicialComplex, SCSimplicialComplex) (complexl, complex2)
(method)
Returns: true or false upon success, fail otherwise.
Calculates whether two simplicial complexes are isomorphic, i.e. are equal up to a relabeling of

the vertices.
Example

gap> c:=SCBdSimplex(3);;
gap> c=c+10;

true

gap> c=SCBdCrossPolytope (4);
false

5.3 SCSimplicialComplex as a subtype of Set

Apart from being a subtype of SCPropertyObject, an object of type SCSimplicialComplex also
behaves like a GAP Set type. The elements of the set are given by the facets of the simplical complex,
grouped by their dimensionality, i.e. if complex is an object of type SCSimplicialComplex, c[1]
refers to the O-faces of complex, c[2] to the 1-faces, etc.
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5.3.1 Operation Union (SCSimplicial Complex, SCSimplicial Complex)

D> Operation Union (SCSimplicialComplex, SCSimplicialComplex) (complex1,

complex?2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes the union of two simplicial complexes by calling SCUnion (7.3.16).

Example
gap> c:=Union(SCBdSimplex(3),SCBdSimplex(3)+3); #a wedge of two 2-spheres
<SimplicialComplex: S72_4 cup $S°2_4 | dim =2 | n = 7>

5.3.2 Operation Difference (SCSimplicial Complex, SCSimplicial Complex)

D> Operation Difference (SCSimplicialComplex, SCSimplicialComplex) (complexl,

complex2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes the “difference” of two simplicial complexes by calling SCDifference (6.10.5).
Example

gap> c:=SCBdSimplex(3);;

gap> d:=SC([[1,2,3]11);;

gap> disc:=Difference(c,d);;

gap> disc.Facets;
(C1,2,41,[1,3,41,[02, 3,411
gap> empty:=Difference(d,c);;

gap> empty.Dim;

-1

5.3.3 Operation Intersection (SCSimplicialComplex, SCSimplicialComplex)

> Operation Intersection (SCSimplicialComplex, SCSimplicialComplex) (complexl1,

complex2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes the “intersection” of two simplicial complexes by calling SCIntersection (6.10.8).
Example

gap> c:=SCBdSimplex(3);;

gap> d:=SCBdSimplex(3);;

gap> d:=SCMove(d, [[1,2,3]1,[11);;

gap> d:=d+1;;

gap> sl.Facets;

Error, Variable: ’sl1’ must have a value
not in any function at *stdin*:77

5.3.4 Size (SCSimplicial Complex)

> Size (SCSimplicialComplex) (complex)

(method)
Returns: an integer upon success, fail otherwise.
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Returns the “size” of a simplicial complex. This is d + 1, where d is the dimension of the complex.
d + 1 is returned instead of d, as all lists in GAP are indexed beginning with 1 — thus this also holds

for all the face lattice related properties of the complex.
Example

gap> SCLib.SearchByAttribute("F=[12,66,108,54]");;
gap> c:=SCLib.Load(last[1]1[1]);;

gap> for i in [1..Size(c)] do Print(c.F[i],"\n"); od;
12

66

108

54

5.3.5 Length (SCSimplicial Complex)

> Length (SCSimplicialComplex) (complex)
Returns: an integer upon success, fail otherwise.
Returns the “size” of a simplicial complex by calling Size (complex).

Example

(method)

gap> SCLib.SearchByAttribute("F=[12,66,108,54]1");;

gap> c:=SCLib.Load (last[1][1]);;

gap> for i in [1..Length(c)] do Print(c.F[i],"\n"); od;
12

66

108

54

5.3.6 Operation [] (SCSimplicialComplex)

> Operation [] (SCSimplicialComplex) (complex, pos)
Returns: a list of faces upon success, fail otherwise.

(method)

Returns the (pos—1)-dimensional faces of complex as a list. If pos >d+2, where d is the

dimension of complex, the empty set is returned. Note that pos must be > 1.
Example

gap> SCLib.SearchByName ("K~2") ;
[ [ 18, "K~2 (vIO" 1, [ 221, "K~2 (VDO" ] ]
gap> c:=SCLib.Load(last[1]1[1]);;

gap> c[2];

1, 21,011,31, 01,571, (1,71, 01,91, [1, 10]
(2,41,02,61,[2,81,[2,101,0[3,41, [3,5]
(3,91, (4,51, 4,61, [4,81,[4,101, [5,6]
(5,91, (e, 71, [6,81,[6,11,[7,81, [7,9]
(8,101, [ 9, 1011

gap> c[4];

L]
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5.3.7 Iterator (SCSimplicialComplex)

> Iterator (SCSimplicialComplex) (complex) (method)
Returns: an iterator on the face lattice of complex upon success, fail otherwise.
Provides an iterator object for the face lattice of a simplicial complex.

Example

gap> c:=SCBdCrossPolytope(4);;

gap> for faces in c do Print(Length(faces),"\n"); od;
8

24

32

16

5.4 The object type SCNormalSurface

The GAP object type SCNormalSurface is designed to describe slicings (level sets of discrete Morse
functions) of combinatorial 3-manifolds, i. e. discrete normal surfaces. Internally SCNormalSurface
is a subtype of SCPolyhedralComplex and, thus, mostly behaves like a SCSimplicialComplex
object (see Section 5.1). For a very short introduction to normal surfaces see 2.4, for a more
thorough introduction to the field see [Sprll1b]. For some fundamental methods and functions for
SCNormalSurface see below. For more functions related to the SCNormalSurface object type see
Chapter 7.

5.5 Overloaded operators of SCNormalSurface

As with the object type SCSimplicialComplex, Simpcomp overloads some standard operations for
the object type SCNormalSurface. See a list of overloaded operators below.

5.5.1 Operation + (SCNormalSurface, Integer)

> Operation + (SCNormalSurface, Integer) (complex, value) (method)
Returns: the discrete normal surface passed as argument upon success, fail otherwise.
Positively shifts the vertex labels of complex (provided that all labels satisfy the property

IsAdditiveElement) by the amount specified in value.

Example

gap> s1:=SCNSSlicing(SCBdSimplex(4),[[1],[2..511);;

gap> sl.Facets;

ctc1,271,01,31,01,411,
tf1,21, 01,41, 01,511

gap> sl:=sl + 2;;

gap> sl.Facets;

rrrcs, 41,038,511, (38,611, [[3,4]1,0[3,51, 3,711,
(03,41, 03,61, 03,711, [[35]1,[3,61,[3,711]1

tft1,27,01,31,[1,511,
’[[1)3])[1)4]’[1,5]]]

B




simpcomp 41

5.5.2 Operation - (SCNormalSurface, Integer)

D> Operation - (SCNormalSurface, Integer)(complex, value) (method)
Returns: the discrete normal surface passed as argument upon success, fail otherwise.
Negatively shifts the vertex labels of complex (provided that all labels satisfy the property

IsAdditiveElement) by the amount specified in value.
Example

gap> s1:=SCNSSlicing(SCBdSimplex(4),[[1],[2..5]11);;
gap> sl.Facets;
ccft, 23,011,331, 01,4111,C0C0¢t,21,01,37, (1,511,
tft+21,01,41,01,511, (01,37, [01,41,0[01,511]1
gap> sl:=sl - 2;;
gap> sl.Facets;
ccft-t,01,0-1,21,0-1,2111,(C-1,071,[-1,11,[-1,311,
tt-1,0131,0-1,21,0-1,311,(0C-1,17,[0[-1,21,[-1,311]
5.5.3 Operation mod (SCNormalSurface, Integer)
> Operation mod (SCNormalSurface, Integer) (complex, value) (method)

Returns: the discrete normal surface passed as argument upon success, fail otherwise.
Takes all vertex labels of complex modulo the value specified in value (provided that all labels
satisfy the property IsAdditiveElement). Warning: this might result in different vertices being

assigned the same label or even invalid facet lists, so be careful.
Example
gap> s1:=SCNSSlicing(SCBdSimplex(4),[[1],[2..5]11);;
gap> sl.Facets;
crftt+,21,01,31,01,411, (01,271,101,
(1,271, 01,41, 01,511, [[1,31,([1
gap> sl:=sl mod 2;;
gap> sl.Facets;
tcfts,01,0t,01, 01,111, 001,01, [1,01,
1,071, 01,121, 01,211, [[1,01, 1, 1]

31, [1,511,
,41, [1,5111

> B B B

B

, 01,1111

5.6 SCNormalSurface as a subtype of Set

Like objects of type SCSimplicialComplex, an object of type SCNormalSurface behaves like a
GAP set type. The elements of the set are given by the facets of the normal surface, grouped by their
dimensionality and type, i.e. if complex is an object of type SCNormalSurface, c[1] refers to the
O-faces of complex, c[2] to the 1-faces, c[3] to the triangles and c [4] to the quadrilaterals. See
below for some examples and Section 5.3 for details.

5.6.1 Operation Union (SCNormalSurface, SCNormalSurface)

D> Operation Union (SCNormalSurface, SCNormalSurface) (complexl, complex2)
(method)
Returns: discrete normal surface of type SCNormalSurface upon success, fail otherwise.
Computes the union of two discrete normal surfaces by calling SCUnion (7.3.16).
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gap> SCLib.SearchByAttribute("F = [ 10, 35, 50, 25 1");
[ [19, "s*3 (vD)" 11

gap> c:=SCLib.Load(last[1][1]);;

gap> s11:=SCNSSlicing(c,[[1,3,5,7,9]1,[2,4,6,8,1011);;
gap> s12:=s11+10;;

gap> SCTopologicalType(sll);

IIT’*2II

gap> sl13:=Union(sll,s12);;

gap> SCTopologicalType(sl3);

"T~2 U T~2"




Chapter 6

Functions and operations for
SCoimplicialComplex

6.1 Creating an SCSimplicialComplex object from a facet list

This section contains functions to generate or to construct new simplicial complexes. Some of them
obtain new complexes from existing ones, some generate new complexes from scratch.

6.1.1 SCFromFacets

> SCFromFacets(facets) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

Constructs a simplicial complex object from the given facet list. The facet list facets has to
be a duplicate free list (or set) which consists of duplicate free entries, which are in turn lists or
sets. For the vertex labels (i. e. the entries of the list items of facets) an ordering via the less-
operator has to be defined. Following Section 4.11 of the GAP manual this is the case for objects
of the following families: rationals IsRat, cyclotomics IsCyclotomic, finite field elements ISFFE,
permutations IsPerm, booleans IsBool, characters IsChar and lists (strings) IsList.

Internally the vertices are mapped to the standard labeling 1..n, where 7 is the number of vertices of
the complex and the vertex labels of the original complex are stored in the property ”VertexLabels”, see
SCLabels (4.2.3) and the SCRelabel.. functions like SCRelabel (4.2.6) or SCRelabelStandard
(4.2.7).

Example
gap> c:=SCFromFacets([[1,2,5], [1,4,5], [1,4,6], [2,3,5], [3,4,6], [3,5,6]11);
<SimplicialComplex: unnamed complex 12 | dim = 2 | n = 6>
gap> c:=SCFromFacets( [ [nau s npn , IICII] , [uau s npn s 1] s [nan s nen , 1] s [”b" s nen s 1]] ) ;
<SimplicialComplex: unnamed complex 13 | dim =2 | n = 4>

6.1.2 SC

> SC(facets) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
A shorter function to create a simplicial complex from a facet list, just calls SCFromFacets
(6.1.1)(facets).

43
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Example

gap> c:=SC(Combinations([1..6],5));
<SimplicialComplex: unnamed complex 14 | dim = 4 | n = 6>

6.1.3 SCFromDifferenceCycles

> SCFromDifferenceCycles(diffcycles) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Creates a simplicial complex object from the list of difference cycles provided. If diffcycles
is of length 1 the computation is equivalent to the one in SCDifferenceCycleExpand (6.6.8). Oth-
erwise the induced modulus (the sum of all entries of a difference cycle) of all cycles has to be equal
and the union of all expanded difference cycles is returned.

vi =v;_1 +d; and a cyclic group action by Zs where ¢ = " d; is the modulus of D. The function returns
the Zs-orbit of A.

Note that modulo operations in GAP are often a little bit cumbersome, since all integer ranges
usually start from 1.

Example
gap> c:=SCFromDifferenceCycles([[1,1,6],[2,3,3]11);;
gap> c.F;
[ 8, 24, 16 ]

gap> c.Homology;

cco,C 11,02, 011,01, [ 111
gap> c.Chi;

0

gap> c.HasBoundary;

false

gap> SCIsPseudoManifold(c);

true

gap> SCIsManifold(c);

true

6.1.4 SCFromGenerators

D> SCFromGenerators(group, generators) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Constructs a simplicial complex object from the set of generators on which the group group

acts, i.e. a complex which has group as a subgroup of the automorphism group and a facet list that

consists of the group-orbits specified by the list of representatives passed in generators. Note that
group is not stored as an attribute of the resulting complex as it might just be a subgroup of the actual

automorphism group. Internally calls Orbits and SCFromFacets (6.1.1).

Example

gap> #group: AGL(1,7) of order 42

gap> G:=Group([(2,6,5,7,3,4),(1,3,5,7,2,4,6)1);;

gap> c:=SCFromGenerators(G,[[ 1, 2, 4 11);

<SimplicialComplex: complex from generators under unknown group | dim = 2 | n \
= 7>



simpcomp 45

gap> SCLib.DetermineTopologicalType(c);
<SimplicialComplex: complex from generators under unknown group | dim =2 | n \
= 7>

6.2 Isomorphism signatures

This section contains functions to construct simplicial complexes from isomorphism signatures and to
compress closed and strongly connected weak pseudomanifolds to strings.

The isomorphism signature of a closed and strongly connected weak pseudomanifold is a repre-
sentation which is invariant under relabelings of the underlying complex and thus unique for a combi-
natorial type, i.e. two complexes are isomorphic iff they have the same isomorphism signature.

To compute the isomorphism signature of a closed and strongly connected weak pseudomanifold
P we have to compute all canonical labelings of P and chose the one that is lexicographically minimal.

A canonical labeling of P is determined by chosing a facet A € P and a numbering 1,2,...,d+1
of the vertices of A (which in turn determines a numbering of the co-dimension one faces of A by
identifying each face with its opposite vertex). This numbering can then be uniquely extended to a
numbering (and thus a labeling) on all vertices of P by the weak pseudomanifold property: start at
face 1 of A and label the opposite vertex of the unique other facet 6 meeting face 1 by d +2, go on
with face 2 of A and so on. After finishing with the first facet we now have a numbering on 0, repeat
the procedure for &, etc. Whenever the opposite vertex of a face is already labeled (and also, if the
vertex occurs for the first time) we note this label. Whenever a facet is already visited we skip this step
and keep track of the number of skippings between any two newly discovered facets. This results in a
sequence of m— 1 vertex labels together with m — 1 skipping numbers (where m denotes the number of
facets in P) which then can by encoded by characters via a lookup table.

Note that there are precisely (d + 1)!m canonical labelings we have to check in order to find
the lexicographically minimal one. Thus, computing the isomorphism signature of a large or highly
dimensional complex can be time consuming. If you are not interested in the isomorphism signature
but just in the compressed string representation use SCExportToString (6.2.1) which just computes
the first canonical labeling of the complex provided as argument and returns the resulting string.

Note: Another way of storing and loading complexes is provided by simpcomp’s library function-
ality, see Section 13.1 for details.

6.2.1 SCExportToString

> SCExportToString(c) (function)
Returns: string upon success, fail otherwise.
Computes one string representation of a closed and strongly connected weak pseudomanifold.
Compare SCExportIsoSig (6.2.2), which returns the lexicographically minimal string representation.
Example

gap> c:=SCSeriesBdHandleBody(3,9);;

gap> s:=SCExportToString(c); time;
"deffg.h.f.fahaiciai.i.hai.fbgeiagihbhceceba.g.gag"
3

gap> s:=SCExportIsoSig(c); time;

"deefgaf .hbi.gbh.eaiaeaicg.g.ibf .heg.iff .hggcfffgg"
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6.2.2 SCExportlsoSig

> SCExportIsoSig(c) (method)
Returns: string upon success, fail otherwise.
Computes the isomorphism signature of a closed, strongly connected weak pseudomanifold. The

isomorphism signature is stored as an attribute of the complex.
Example

gap> c:=SCSeriesBdHandleBody(3,9);;
gap> s:=SCExportIsoSig(c);
"deefgaf .hbi.gbh.eaiaeaicg.g.ibf .heg.iff .hggcfffgg"

6.2.3 SCFromlsoSig

> SCFromIsoSig(str) (method)
Returns: a SCSimplicialComplex object upon success, fail otherwise.
Computes a simplicial complex from its isomorphism signature. If a file with isomorphism signa-
tures is provided a list of all complexes is returned.
Example

gap> s:="deeee";;

gap> c:=SCFromIsoSig(s);;

gap> SCIsIsomorphic(c,SCBdSimplex(4));
true

Example
gap> s:="deeee";;

gap> PrintTo("tmp.txt",s,"\n");;

gap> cc:=SCFromIsoSig("tmp.txt");

[ <SimplicialComplex: unnamed complex 9 | dim = 3 | n = 5> ]
gap> cc[1].F;

[ 5, 10, 10, 5]

6.3 Generating some standard triangulations

6.3.1 SCBdCyclicPolytope

> SCBdCyclicPolytope(d, n) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the boundary complex of the d-dimensional cyclic polytope (a combinatorial d — 1-

sphere) on n vertices, where n > d +2.

Example

gap> SCBdCyclicPolytope(3,8);
<SimplicialComplex: BA(C_3(8)) | dim =2 | n = 8>
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6.3.2 SCBdSimplex

> SCBdSimplex (d)

(function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the boundary of the d-simplex A¢, a combinatorial d — 1-sphere.

Example
gap> SCBdSimplex(5);
<SimplicialComplex: S~4_6 | dim

=4 | n=6>

6.3.3 SCEmpty
> SCEmpty ()

(function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates an empty complex (of dimension —1), i. e. a SCSimplicialComplex object with empty
facet list.

Example
gap> SCEmpty();

<SimplicialComplex: empty complex | dim = -1 | n = 0>

6.3.4 SCSimplex

> SCSimplex(d)

(function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the d-simplex.

Example
gap> SCSimplex(3);
<SimplicialComplex: B~3_4 | dim

=3 | n=4>

6.3.5 SCSeriesTorus

> SCSeriesTorus(d)

(function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the d-torus described in [Kiih86].

Example
gap> t4:=SCSeriesTorus(4);

<SimplicialComplex: 4-torus T"4 | dim = 4 | n = 31>
gap> t4.Homology;

cfo, 0 11,04, [ 11,

te, L 11,04, 0 11,01, 0111

6.3.6 SCSurface

> SCSurface(g, orient)

(function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the surface of genus g where the boolean argument orient specifies whether the sur-
face is orientable or not. The surfaces have transitive cyclic group actions and can be described using
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the minimum amount of O(log(g)) memory. If orient is true and g> 50 or if orient is false and
g> 100 only the difference cycles of the surface are returned
Example

gap> c:=SCSurface(23,true);

<SimplicialComplex: S_23"or | dim = 2 | n = 88>
gap> c.Homology;

cfo,C 11,046, [ 11, 01,0 111
gap> c.TopologicalType;

"(T~2) ~#23"

gap> c:=SCSurface(23,false);
<SimplicialComplex: S_23"non | dim = 2 | n = 21>
gap> c.Homology;

tfo, C 1171, 02,0211, C0,T[ 111
gap> c.TopologicalType;

"(RP~2) ~#23"

Example

gap> dc:=SCSurface(345,true);

[ [1, 1, 13741, [ 2, 343, 1031 ], [ 343, 345, 688 ] 1

gap> c:=SCFromDifferenceCycles(dc);

<SimplicialComplex: complex from diffcycles [ [ 1, 1, 1374 1, [ 2, 343, 1031 ]\

, [ 343, 345, 688 1 ] | dim =2 | n = 1376>

gap> c.Chi;

-688

gap> dc:=SCSurface(12345678910,true); time;

[ [ 1, 1, 24691357816 1, [ 2, 4, 24691357812 ], [ 3, 3, 24691357812 ],
[ 4, 12345678907, 12345678907 ] 1]

0

6.3.7 SCFVectorBdCrossPolytope

> SCFVectorBdCrossPolytope (d) (function)
Returns: a list of integers of size d + 1 upon success, fail otherwise.
Computes the f-vector of the d-dimensional cross polytope without generating the underlying

complex.
Example

gap> SCFVectorBdCrossPolytope(50) ;

[ 100, 4900, 156800, 3684800, 67800320, 1017004800, 12785203200,
137440934400, 1282782054400, 10518812846080, 76500457062400,
497252970905600, 2907017368371200, 15365663232819200, 73755183517532160,
322678927889203200, 1290715711556812800, 4732624275708313600,
15941471244491161600, 49418560857922600960, 141195888165493145600,
372243705163572838400, 906332499528699084800, 2039248123939572940800,
4241636097794311716864, 8156992495758291763200, 14501319992459185356800,
23823597130468661657600, 36146147370366245273600, 50604606318512743383040,
65296266217435797913600, 77539316133205010022400, 84588344872587283660800,
84588344872587283660800, 77337915312079802204160, 64448262760066501836800,
48771658304915190579200, 33370081998099867238400, 20535435075753764454400,
11294489291664570449920, 5509506971543692902400, 2361217273518725529600,
878592473867432755200, 279552150776001331200, 74547240206933688320,
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162056921784116019200, 2758454771764428800, 344806846470553600,
28147497671065600, 1125899906842624 ]

6.3.8 SCFVectorBdCyclicPolytope

> SCFVectorBdCyclicPolytope(d, n) (function)
Returns: a list of integers of size d+1 upon success, fail otherwise.
Computes the f-vector of the d-dimensional cyclic polytope on n vertices, n > d + 2, without
generating the underlying complex.

Example

gap> SCFVectorBdCyclicPolytope(25,198);

[ 198, 19503, 1274196, 62117055, 2410141734, 77526225777, 2126433621312,
50768602708824, 1071781612741840, 20256672480820776, 346204947854027808,
5395027104058600008, 48354596155522298656, 262068846498922699590,
940938105142239825104, 2379003007642628680027, 4396097923113038784642,
6062663500381642763609, 6294919173643129209180, 4911378208855785427761,
2840750019404460890298, 1183225500922302444568, 335951678686835900832,
58265626173398052500, 4661250093871844200 ]

6.3.9 SCFVectorBdSimplex

> SCFVectorBdSimplex(d) (function)
Returns: a list of integers of size d + 1 upon success, fail otherwise.

Computes the f-vector of the d-simplex without generating the underlying complex.
Example

gap> SCFVectorBdSimplex(100);

[ 101, 5050, 166650, 4082925, 79208745, 1267339920, 17199613200,
202095455100, 2088319702700, 19212541264840, 158940114100040,
1192050855750300, 8160963550905900, 51297485177122800, 297525414027312240,
15699199100396803290, 7995995501984016450, 37314645675925410100,
163006083742200475700, 668324943343021950370, 2577824781465941808570,
9373908296239788394800, 32197337191432316660400, 104641345872155029146300,
322295345286237489770604, 942094086221309585483304,
2616928017281415515231400, 6916166902815169575968700,
17409661513983013070541900, 41783187633559231369300560,
95696978128474368620010960, 209337139656037681356273975,
437704928371715151926754675, 875409856743430303853509350,
1675784582908852295948146470, 3072271735332895875904935195,
5397234129638871133346507775, 9090078534128625066688855200,
14683973016669317415420458400, 22760158175837441993901710520,
33862674359172779551902544920, 48375249084532542217003635600,
66375341767149302111702662800, 87494768693060443692698964600,
110826707011209895344085355160, 134919469404951176940625649760,
157884485473879036845412994400, 177620046158113916451089618700,
192119641762857909630770403900, 199804427433372226016001220056,
199804427433372226016001220056, 192119641762857909630770403900,
177620046158113916451089618700, 157884485473879036845412994400,
134919469404951176940625649760, 110826707011209895344085355160,
87494768693060443692698964600, 66375341767149302111702662800,
48375249084532542217003635600, 33862674359172779551902544920,
22760158175837441993901710520, 14683973016669317415420458400,




simpcomp 50

9090078534128625066688855200, 5397234129638871133346507775,
3072271735332895875904935195, 1675784582908852295948146470,
875409856743430303853509350, 437704928371715151926754675,
209337139656037681356273975, 95696978128474368620010960,
41783187633559231369300560, 17409661513983013070541900,
6916166902815169575968700, 2616928017281415515231400,
942094086221309585483304, 322295345286237489770604,
104641345872155029146300, 32197337191432316660400, 9373908296239788394800,
2577824781465941808570, 668324943343021950370, 163006083742200475700,
37314645675925410100, 7995995501984016450, 1599199100396803290,
297525414027312240, 51297485177122800, 8160963550905900, 1192050855750300,
168940114100040, 19212541264840, 2088319702700, 202095455100, 17199613200,
1267339920, 79208745, 4082925, 166650, 5050, 101 ]

6.4 Generating infinite series of transitive triangulations

6.4.1 SCSeriesAGL

> SCSeriesAGL (p) (function)
Returns: a permutation group and a list of 5-tuples of integers upon success, fail otherwise.
For a given prime p the automorphism group (AGL(1, p)) and the generators of all members of

the series of 2-transitive combinatorial 4-pseudomanifolds with p vertices from [Sprl1a], Section 5.2,

is computed. The affine linear group AGL(1, p) is returned as the first argument. If no member of the

series with p vertices exists only the group is returned.
Example

gap> gens:=SCSeriesAGL(17);

[ AGL(1,17), [ [ 1, 2, 4,8, 161 1]

gap> c:=SCFromGenerators(gens[1],gens[2]);;
gap> SCIsManifold(SCLink(c,1));

true

Example
gap> List([19..23],x->SCSeriesAGL(x));
#I SCSeriesAGL: argument must be a prime > 13.
#I SCSeriesAGL: argument must be a prime > 13.
#I SCSeriesAGL: argument must be a prime > 13.
[ [ AGL(1,19), [ [ 1, 2, 10, 12, 17 1 1 1, fail, fail, fail,
[ AGL(1,23), [ [1,2,7,9,191, [1,2,4,8,22111]
gap> for i in [80000..80100] do if IsPrime(i) then Print(i,"\n"); fi; od;
80021
80039
80051
80071
80077
gap> SCSeriesAGL(80021);
AGL(1,80021)
gap> SCSeriesAGL(80039) ;
[ AGL(1,80039), [ [ 1, 2, 6496, 73546, 78018 1 1 1]
gap> SCSeriesAGL(80051) ;
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[ AGL(1,80051), [ [ 1, 2, 31498, 37522, 48556 ] ] ]
gap> SCSeriesAGL(80071) ;

AGL(1,80071)

gap> SCSeriesAGL(80077) ;

[ AGL(1,80077), [ [ 1, 2, 4126, 39302, 40778 1 1 1]

6.4.2 SCSeriesBrehmKuehnelTorus

> SCSeriesBrehmKuehnelTorus (n) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates a neighborly 3-torus with n vertices if n is odd and a centrally symmetric 3-torus if n

is even (n> 15 . The triangulations are taken from [BK12]

Example

gap> T3:=SCSeriesBrehmKuehnelTorus(15);

<SimplicialComplex: Neighborly 3-Torus NT3(15) | dim = 3 | n = 15>

gap> T3.Homology;

tto, 0 11,03 C 11,03 [ 11,01, 111

gap> T3.Neighborliness;

2

gap> T3:=SCSeriesBrehmKuehnelTorus(16) ;

<SimplicialComplex: Centrally symmetric 3-Torus SCT3(16) | dim = 3 | n = 16>

gap> T3.Homology;

tfo,C 131, Cs8 C 11,03 C 11,01, 111

gap> T3.IsCentrallySymmetric;

true

6.4.3 SCSeriesBdHandleBody

> SCSeriesBdHandleBody(d, n) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
SCSeriesBdHandleBody(d,n) generates a transitive d-dimensional sphere bundle (d > 2) with n

vertices (n > 2d + 3) which coincides with the boundary of SCSeriesHandleBody (6.4.9)(d,n). The

sphere bundle is orientable if d is even or if d is odd and n is even, otherwise it is not orientable.

Internally calls SCFromDifferenceCycles (6.1.3).
Example

gap> c:=SCSeriesBdHandleBody(2,7) ;
<SimplicialComplex: Sphere bundle S~1 x S~1 | dim
gap> SCLib.DetermineTopologicalType(c);
<SimplicialComplex: Sphere bundle S*1 x S°1 | dim =2 | n
gap> SCIsIsomorphic(c,SCSeriesHandleBody(3,7) .Boundary) ;
true

2| n="17>

7>

6.4.4 SCSeriesBid

> SCSeriesBid(i, d) (function)
Returns: a simplicial complex upon success, fail otherwise.
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Constructs the complex B(i,d) as described in [KN12], cf. [Efflla], [Spa99]. The complex
B(i,d) is a i-Hamiltonian subcomplex of the d-cross polytope and its boundary topologically is a

sphere product ' x $97-2 with vertex transitive automorphism group.
Example

gap> b26:=SCSeriesBid(2,6);

<SimplicialComplex: B(2,6) | dim =5 | n = 12>

gap> s2s2:=SCBoundary(b26) ;

<SimplicialComplex: Bd(B(2,6)) | dim = 4 | n = 12>

gap> SCFVector(s2s2);

[ 12, 60, 160, 180, 72 ]

gap> SCAutomorphismGroup(s2s2);

Group([ (1,3)(4,6)(7,9)(10,12), (1,5)(2,10)(4,8)(6,12)(7,11), (1,10,7,4)
(2,3,8,9)(5,12,11,6) 1)

gap> SCIsManifold(s2s2);

true

gap> SCHomology (s2s2) ;

tto, r 11, o, C 11,02, 0 11,00, 11,01, 111

6.4.5 SCSeriesC2n

> SCSeriesC2n(n) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

Generates the combinatorial 3-manifold C,,, n > 8, with 2n vertices from [Sprlla], Section 4.5.3
and Section 5.2. The complex is homeomorphic to S? x §! for n odd and homeomorphic to 5 x S'
in case n is an even number. In the latter case Cy, is isomorphic to Dy, from SCSeriesD2n (6.4.8).
The complexes are believed to appear as the vertex links of some of the members of the series of 2-
transitive 4-pseudomanifolds from SCSeriesAGL (6.4.1). Internally calls SCFromDifferenceCycles
(6.1.3).

Example

gap> c:=SCSeriesC2n(8);

<SimplicialComplex: C_16 = { (1:1:3:11),(1:1:11:3),(1:3:1:11),(2:3:2:9),(2:5:2\

:7) } | dim =3 | n = 16>

gap> SCGenerators(c);

rrrs 2,3,61,321, [[1,2,5,61,161, [ [1, 3,6,81, 161,
[[1,3,8,101, 1611

Example

gap> c:=SCSeriesC2n(8);;

gap> d:=SCSeriesD2n(8);

<SimplicialComplex: D_16 = { (1:1:1:13),(1:2:11:2),(3:4:5:4),(2:3:4:7),(2:7:4:\
3) } | dim=3 | n = 16>

gap> SCIsIsomorphic(c,d);

true

gap> c:=SCSeriesC2n(11);;

gap> d:=SCSeriesD2n(11);;

gap> c.Homology;

tfto,C 11,0+, C 311,01, 0 11,01, 111
gap> d.Homology;

tcto, C 11,0+, [ 11,00, [211,C0, [ 111
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6.4.6 SCSeriesConnectedSum

> SCSeriesConnectedSum(k) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates a combinatorial manifold of type (S?xS')* for k even. The complex is a combinatorial

3-manifold with transitive cyclic symmetry as described in [BS14].

Example

gap> c:=SCSeriesConnectedSum(12) ;

<SimplicialComplex: (S~2xS~1)~#12) | dim = 3 | n = 52>

gap> c.Homology;

tto, C 11,012, 0 11,012, L 11,01, C 111

gap> g:=SimplifiedFpGroup(SCFundamentalGroup(c));

<fp group of size infinity on the generators

[ [2,3], [2,14], [3,4], (6,71, [9,10], [10,11], [11,12], [12,13], [26,32],
[26,34], [29,31], [33,35] 1>

gap> Relators0fFpGroup(g);

(I

6.4.7 SCSeriesCSTSurface

> SCSeriesCSTSurface(1[, jJ, 2k) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
SCSeriesCSTSurface(l, j,2k) generates the centrally symmetric transitive (cst) surface

S(1,j,2k)» SCSeriesCSTSurface(1,2k) generates the cst surface S(; o) from [Spr12], Section 4.4.

Example

gap> SCSeriesCSTSurface(2,4,14);

<SimplicialComplex: cst surface S_{(2,4,14)} = { (2:4:8),(2:8:4) } | dim = 2 |\
n = 14>

gap> last.Homology;

crct1, 0 11,0400 171,02, 07111

gap> SCSeriesCSTSurface(2,10);

<SimplicialComplex: cst surface S_{(2,10)} = { (2:2:6),(3:3:4) } | dim = 2 | n\
= 10>

gap> last.Homology;
tcto, C 11,01, 0211, 00, [ 111

6.4.8 SCSeriesD2n

> SCSeriesD2n(n) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the combinatorial 3-manifold D,,, n > 8, n # 9, with 2n vertices from [Sprl1a], Section

4.5.3 and Section 5.2. The complex is homeomorphic to §* x §'. In the case that n is even Dy, is

isomorphic to C,, from SCSeriesC2n (6.4.5). The complexes are believed to appear as the vertex

links of some of the members of the series of 2-transitive 4-pseudomanifolds from SCSeriesAGL

(6.4.1). Internally calls SCFromDifferenceCycles (6.1.3).

Example

gap> d:=SCSeriesD2n(15);
<SimplicialComplex: D_30 = { (1:1:1:27),(1:2:25:2),(3:11:5:11),(2:3:11:14),(2:\
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14:11:3) } | dim =3 | n = 30>

gap> SCAutomorphismGroup(d) ;

Group([ (1,3)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25) (10,24) (11,23) (12,22) (13,21)
(14,20) (15,19) (16,18), (1,4)(2,3)(5,30) (6,29)(7,28) (8,27) (9,26) (10,25)
(11,24) (12,23) (13,22) (14,21) (15,20) (16,19) (17,18) 1)

gap> StructureDescription(last);

"De0"

Example
gap> c:=SCSeriesC2n(8);;

gap> d:=SCSeriesD2n(8);
<SimplicialComplex: D_16 = { (1:1:1:13),(1:2:11:2),(3:4:5:4),(2:3:4:7),(2:7:4:\
3) } | dim=3 | n= 16>

gap> SCIsIsomorphic(c,d);

true

gap> c:=SCSeriesC2n(11);;

gap> d:=SCSeriesD2n(11);;

gap> c.Homology;

tto, 0 11,0+, 0 101,01, 0 1101, 01,T 111

gap> d.Homology;

tto, r 11,0+, C 11,00, 02711, C00,[ 111

6.4.9 SCSeriesHandleBody

> SCSeriesHandleBody(d, n) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
SCSeriesHandleBody(d,n) generates a transitive d-dimensional handle body (d > 3) with n ver-

tices (n > 2d + 1). The handle body is orientable if d is odd or if d and n are even, otherwise it is not

orientable. The complex equals the difference cycle (1:...:1:n—-d) To obtain the boundary com-

plexes of SCSeriesHandleBody(d,n) use the function SCSeriesBdHandleBody (6.4.3). Internally

calls SCFromDifferenceCycles (6.1.3).

Example

gap> c:=SCSeriesHandleBody(3,7);

<SimplicialComplex: Handle body B~2 x S°1 | dim = 3 | n = 7>
gap> SCAutomorphismGroup(c);

Group([ (1,3)(4,7)(5,6), (1,4)(2,3)(5,7) 1)

gap> bd:=SCBoundary(c);;

gap> SCAutomorphismGroup (bd) ;

Group([ (1,2)(3,7)(4,6), (1,4,2)(3,5,6) 1)

gap> SCIsIsomorphic(bd,SCSeriesBdHandleBody(2,7));

true

6.4.10 SCSeriesHomologySphere

> SCSeriesHomologySphere(p, q, r) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
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Generates a combinatorial Brieskorn homology sphere of type X(p,q,r), p, ¢ and r pairwise co-

prime. The complex is a combinatorial 3-manifold with transitive cyclic symmetry as described in
[BS14].

Example
gap> c:=SCSeriesHomologySphere(2,3,5);
<SimplicialComplex: Homology sphere Sigma(2,3,5) | dim =3 | n = 17>
gap> c.Homology;

tto,r 11, Co,C 11, Lo, 0 11,01, 111

gap> c:=SCSeriesHomologySphere(3,4,13);

<SimplicialComplex: Homology sphere Sigma(3,4,13) | dim = 3 | n = 37>
gap> c.Homology;

tto, r 11, Co,C 11,00, 0 311,01, 111

6.4.11 SCSeriesK

> SCSeriesK(i, k) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the k-th member (k > 0) of the series K~i (1 <i<396) from [Sprlla]. The 396 series

describe a complete classification of all dense series (i. e. there is a member of the series for every

integer, fo(K'(k+1)) = fo(K'(k)) + 1) of cyclic 3-manifolds with a fixed number of difference cycles

and at least one member with less than 23 vertices. See SCSeriesL (6.4.13) for a list of series of order
2.

Example
gap> cc:=List([1..10],x->SCSeriesK(x,0));;
gap> Set(List(cc,x->x.F));
[ [o9, 36, 54, 27 1, [ 11, 55, 88, 44 1, [ 13, 65, 104, 52 1],
[ 13, 78, 130, 651, [ 15, 90, 150, 75 1, [ 15, 105, 180, 90 ] 1
gap> cc:=List([1..10],x->SCSeriesK(x,10));;
gap> gap> cc:=List([1..10],x->SCSeriesK(x,10));;
gap> Set(List(cc,x->x.Homology));
tcto, C 11,0+, C 11,00, 0211, C00, [ 1111
gap> Set(List(cc,x->x.IsManifold));
[ true ]

6.4.12 SCSeriesKu

> SCSeriesKu(n) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes the symmetric orientable sphere bundle Ku(n) with 4n vertices from [Sprl1a], Section
4.5.2. The series is defined as a generalization of the slicings from [Sprl1a], Section 3.3.
Example

gap> c:=SCSeriesKu(4);

<SimplicialComplex: S1_16 = G{ [1,2,5,9],[1,2,9,10],[1,5,9,16] } | dim = 3 | n\
= 16>

gap> SCSlicing(c,[[1,2,3,4,9,10,11,12],[5,6,7,8,13,14,15,1611);

<NormalSurface: slicing [ [ 1, 2, 3, 4, 9, 10, 11, 12 ], [ 5, 6, 7, 8, 13, 14,\
15, 16 1 1 of s1_16 = ¢{ [1,2,5,9],[1,2,9,10],[1,5,9,16] } | dim = 2>

gap> Mminus:=SCSpan(c, [1,2,3,4,9,10,11,12]);;
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gap> Mplus:=SCSpan(c, [5,6,7,8,13,14,15,161) ;;

gap> SCCollapseGreedy(Mminus) .Facets;

[[03,41,[3,101, [ 4,121, [9,101, [9, 1271

gap> SCCollapseGreedy (Mplus) .Facets;

(5,61, [5,81,0[6, 141, [7,81, [7,1561, [ 14, 157 1]

6.4.13 SCSeriesL

> SCSeriesL(i, k) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

Generates the k-th member (k > 0) of the series L~i, 1 <i< 18 from [Sprlla]. The 18 series
describe a complete classification of all series of cyclic 3-manifolds with a fixed number of difference
cycles of order 2 (i. e. there is a member of the series for every second integer, fo(L!(k+1)) =
fo(Li(k)) +2) and at least one member with less than 15 vertices where each series does not appear as
a sub series of one of the series K’ from SCSeriesK (6.4.11).
Example
gap> cc:=List([1..18],x->SCSeriesL(x,0));;
gap> Set(List(cc,x->x.F));
[ [ 10, 45, 70, 351, [ 12, 60, 96, 48 1, [ 12, 66, 108, 54 1],

[ 14, 77, 126, 63 1, [ 14, 84, 140, 70 1, [ 14, 91, 154, 77 ] ]

gap> cc:=List([1..18],x->SCSeriesL(x,10));;
gap> Set(List(cc,x->x.IsManifold));
[ true ]

6.4.14 SCSeriesLe

> SCSeriesLe(k) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the k-th member (k > 7) of the series Le from [Sprlla], Section 4.5.1. The series can

be constructed as the generalization of the boundary of a genus 1 handlebody decomposition of the

manifold manifold_3_14_1_5 from the classification in [Lut03].

Example

gap> c:=SCSeriesLe(7);

<SimplicialComplex: Le_14 = { (1:1:1:11),(1:2:4:7),(1:4:2:7),(2:1:4:7),(2:5:2:\
5),(2:4:2:6) } | dim =3 | n = 14>

gap> d:=SCLib.DetermineTopologicalType(c);;

gap> SCReference(d);

"manifold_3_14_1_5 in F.H.Lutz: ’The Manifold Page’, http://www.math.tu-berlin\
.de/diskregeom/stellar/,\r\nF.H.Lutz: ’Triangulated manifolds with few vertice\

s and vertex-transitive group actions’, Doctoral Thesis TU Berlin 1999, Shaker\
-Verlag, Aachen 1999"

6.4.15 SCSeriesLensSpace

> SCSeriesLensSpace(p, q)

(function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
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Generates the lens space L(p,q) whenever p = (k+2)*~1and g=k+2 or p=2k+3 and g = 1 for

ak>0and fail otherwise. All complexes have a transitive cyclic automorphism group.
Example

gap> 1154:=SCSeriesLensSpace(15,4);

<SimplicialComplex: Lens space L(15,4) | dim = 3 | n = 22>
gap> 1154 .Homology;

tto,f 11, Lo, L1511, C0, [ 11,01, C 111
gap> g:=SimplifiedFpGroup(SCFundamentalGroup(1154));

<fp group on the generators [ [2,5] ]>

gap> StructureDescription(g);

"C1i5"

Example

gap> 1151:=SCSeriesLensSpace(15,1);

<SimplicialComplex: Lens space L(15,1) | dim = 3 | n = 62>
gap> 1151.Homology;

tto, € 11, Lo, 01511, C0,C 11,01, 111
gap> g:=SimplifiedFpGroup(SCFundamentalGroup(1151));

<fp group on the generators [ [2,3] ]>

gap> StructureDescription(g);

"Ci5"

6.4.16 SCSeriesPrimeTorus

> SCSeriesPrimeTorus(1l, j, p) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates the well known triangulated torus {(/: j: p—1—j),(l: p—1—j: j)} with p vertices, 3p

edges and 2p triangles where j has to be greater than / and p must be any prime number greater than

6.

Example
gap> 1:=List([2..19],x->SCSeriesPrimeTorus(1,x,41));;
gap> Set(List(1,x->SCHomology(x)));

ccfto, L 11,02, [ 11,01, [ 1111

6.4.17 SCSeriesSeifertFibredSpace

D> SCSeriesSeifertFibredSpace(p, g, r) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates a combinatorial Seifert fibred space of type

SFS[(T?) @ DD (pla,by)’, (q/b,b2)", (r/ab,bs)]

where p and g are co-prime, a = gcd(p,r), b = gcd(p,r), and the b; are given by the identity

bl bz b3 +ab
—+—+—= .
p q r pqgr

This 3-parameter family of combinatorial 3-manifolds contains the families generated
by SCSeriesHomologySphere (6.4.10), SCSeriesConnectedSum (6.4.6) and parts of
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SCSeriesLensSpace (6.4.15), internally calls SCIntFunc.SeifertFibredSpace(p,q,r).

The complexes are combinatorial 3-manifolds with transitive cyclic symmetry as described in [BS14].

Example
gap> c:=SCSeriesSeifertFibredSpace(2,3,15);

<SimplicialComplex: SFS [ S~2 : (2,b1)"3, (5,b3) ] | dim = 3 | n = 27>
gap> c.Homology;

tto, € 131,00, 02,2711, 00, 11,01, 111

6.4.18 SCSeriesS2xS2

> SCSeriesSQXSQ(k) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Generates a combinatorial version of (52 x §2)#,

Example

gap> c:=SCSeriesS2xS2(3);
<SimplicialComplex: (S~2 x S~2)~(# 3) | dim = 4 | n = 24>
gap> c.Homology;

tctco, € 11, Co, 0L 11,06, C 11, 00,0 11,01, [ 111

6.5 A census of regular and chiral maps

6.5.1 SCChiralMap

> SCChiralMap(m, g)

Returns: a SCSimplicialComplex object upon success, fail otherwise.
Returns the (hyperbolic) chiral map of vertex valence m and genus g if existent and fail other-
wise. The list was generated with the help of the classification of regular maps by Marston Conder

[Con09]. Use SCChiralMaps (6.5.2) to get a list of all chiral maps available.
Example

(function)

gap> SCChiralMaps();

tt7, 171, (8,101, [8, 281, [8,37], [8,461], [8,82],
(9,431, [10,731]1, [12, 221, [12, 331, [ 12, 401, [ 12, 511,
[ 12,581, [ 12, 641, [ 12, 851, [ 12, 941, [ 12, 97 1, [ 18, 28 ] 1]

gap> c:=SCChiralMap(8,10);

<SimplicialComplex: Chiral map {8,10} | dim = 2 | n = 54>

gap> c.Homology;

(fo, [ 11,02, 11, 01,0 111

6.5.2 SCChiralMaps

> SCChiralMaps ()
Returns: a list of lists upon success, fail otherwise.
Returns a list of all simplicial (hyperbolic) chiral maps of orientable genus up to 100. The list was
generated with the help of the classification of regular maps by Marston Conder [Con09]. Every chiral
map is given by a 2-tuple (m,g) where m is the vertex valence and g is the genus of the map. Use the
2-tuples of the list together with SCChiralMap (6.5.1) to get the corresponding triangulations.

(function)
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Example
gap> 11:=SCChiralMaps();
cr7 11, 08,101, 8,281, [8,371, [8, 461, [8, 821,
[9, 431, (10,731, [ 12,221, [ 12, 331, [ 12, 401, [ 12, 511,
[ 12, 681, [ 12,641, [ 12,81, [ 12, 941, [ 12, 971, [ 18, 28 ] 1]

gap> c:=SCChiralMap(11[18][1],11[18][2]1);

<SimplicialComplex: Chiral map {18,28} | dim = 2 | n = 27>

gap> SCHomology(c);

tco, o 11,066, [ 11,01, 111

6.5.3 SCChiralTori
> SCChiralTori(n) (function)
Returns: a SCSimplicialComplex object upon success, fail otherwise.
Returns a list of chiral triangulations of the torus with n vertices. See [BK08] for details.
Example

gap> cc:=SCChiralTori(91);

[ <SimplicialComplex: {3,6}_(9,1) | dim = 2 | n = 91>,

<SimplicialComplex: {3,6}_(6,5) | dim = 2 | n = 91> ]
gap> SCIsIsomorphic(cc[1],cc[2]);
false

6.5.4 SCNrChiralTori
> SCNrChiralTori(n) (function)

Returns: an integer upon success, fail otherwise.

Returns the number of simplicial chiral maps on the torus with n vertices, cf. [BKOS8] for details.
Example

gap> SCNrChiralTori(7);
1

gap> SCNrChiralTori(343);
2

6.5.5 SCNrRegularTorus

> SCNrRegularTorus (n) (function)
Returns: an integer upon success, fail otherwise.

Returns the number of simplicial regular maps on the torus with n vertices, cf. [BKO08] for details.
Example

gap> SCNrRegularTorus(9);
1

gap> SCNrRegularTorus(10);
0
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6.5.6 SCRegularMap

> SCRegularMap(m, g, orient) (function)

Returns: a SCSimplicialComplex object upon success, fail otherwise.

Returns the (hyperbolic) regular map of vertex valence m, genus g and orientability orient if
existent and fail otherwise. The triangulations were generated with the help of the classification of
regular maps by Marston Conder [Con(09]. Use SCRegularMaps (6.5.7) to get a list of all regular
maps available.

Example

gap> SCRegularMaps(){[1..10]};

(7,3, truel, [ 7,7, true ], [ 7, 8, false ], [ 7, 14, true ],
[ 7, 15, false 1, [ 7, 147, false ], [ 8, 3, true ], [ 8, 5, true ],
[ 8, 8, true ], [ 8, 9, false ] 1]

gap> c:=SCRegularMap(7,7,true);

<SimplicialComplex: Orientable regular map {7,7} | dim = 2 | n = 72>

gap> g:=SCAutomorphismGroup(c) ;

#I group not listed

C2 x PSL(2,8)

gap> Size(g);

1008

6.5.7 SCRegularMaps

> SCRegularMaps () (function)

Returns: a list of lists upon success, fail otherwise.

Returns a list of all simplicial (hyperbolic) regular maps of orientable genus up to 100 or non-
orientable genus up to 200. The list was generated with the help of the classification of regular maps
by Marston Conder [Con09]. Every regular map is given by a 3-tuple (m, g,or) where m is the vertex
valence, g is the genus and or is a boolean stating if the map is orientable or not. Use the 3-tuples of

the list together with SCRegularMap (6.5.6) to get the corresponding triangulations. g
Example

gap> 11:=SCRegularMaps(){[1..10]};
(7,3, truel, [ 7,7, true ], [ 7, 8, false ], [ 7, 14, true ],
[ 7, 15, false ], [ 7, 147, false ], [ 8, 3, true ], [ 8, 5, true ],
[ 8, 8, true ], [ 8, 9, false ] ]
gap> c:=SCRegularMap(11[5][1],11[5][2],11[5][3]1);
<SimplicialComplex: Non-orientable regular map {7,15} | dim
gap> SCHomology(c) ;
cfto, [ 11,014, 02171,C00,[ 111
gap> SCGenerators(c);
0014, 77, 1821]]

2 | n=178

6.5.8 SCRegularTorus

> SCRegularTorus(n) (function)
Returns: a SCSimplicialComplex object upon success, fail otherwise.

Returns a list of regular triangulations of the torus with n vertices (the length of the list will be at
most 1). See [BKOS] for details.
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Example

gap> cc:=SCRegularTorus(9);

[ <SimplicialComplex: {3,6}_(3,0) | dim =2 | n = 9> ]

gap> g:=SCAutomorphismGroup(cc[1]);

Group([ (2,7)(3,4)(5,9), (1,4,2)(3,7,9)(5,8,6), (2,8,7,3,6,4)(5,9) 1)
gap> SCNumFaces(cc[1],0)*12 = Size(g);

true

6.5.9 SCSeriesSymmetricTorus

> SCSeriesSymmetricTorus(p, q) (function)
Returns: a SCSimplicialComplex object upon success, fail otherwise.
Returns the equivarient triangulation of the torus {3,6}( p.q) With fundamental domain (p,q) on
the 2-dimensional integer lattice. See [BKO08] for details.
Example
gap> c:=SCSeriesSymmetricTorus(2,1);
<SimplicialComplex: {3,6}_(2,1) | dim =2 | n = 7>
gap> SCFVector(c);
[ 7, 21, 14 ]

See also SCSurface (6.3.6) for example triangulations of all compact closed surfaces with transi-
tive cyclic automorphism group.

6.6 Generating new complexes from old

6.6.1 SCCartesianPower

> SCCartesianPower (complex, n) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
The new complex is PL-homeomorphic to n times the cartesian product of complex, of dimen-

sions n-d and has f} -n- 22”,;11 ! facets where d denotes the dimension and f; denotes the number of

facets of complex. Note that the complex returned by the function is not the n-fold cartesian product

complex” of complex (which, in general, is not simplicial) but a simplicial subdivision of complex”.
Example

gap> c:=SCBdSimplex(2);;

gap> 4torus:=SCCartesianPower(c,4);

<SimplicialComplex: (S~1_3)"4 | dim = 4 | n = 81>

gap> 4torus.Homology;

tfo,C 11,04 C 11,06, 0 11,04, 171, 01,0 11]1
gap> 4torus.Chi;

0

gap> 4torus.F;

[ 81, 1215, 4050, 4860, 1944 ]
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6.6.2 SCCartesianProduct

D> SCCartesianProduct(complexl, complex2) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes the simplicial cartesian product of complex! and complex2 where complexl and

complex2 are pure, simplicial complexes. The original vertex labeling of complex1 and complex2

is changed into the standard one. The new complex has vertex labels of type [v;,v;] where v; is a

vertex of complex1 and v; is a vertex of complex2.

If n;, i = 1,2, are the number facets and d;, i = 1,2, are the dimensions of complexi, then the new

complex has ny -np - (dlgldz) facets. The number of vertices of the new complex equals the product of
the numbers of vertices of the arguments.
Example

gap> c1:=SCBdSimplex(2);;

gap> c2:=SCBdSimplex(3);;

gap> c3:=SCCartesianProduct(cl,c2);
<SimplicialComplex: S~1_3xS"2_4 | dim = 3 | n = 12>
gap> c3.Homology;

tto, 0 11,0+, 0 101,01, 0 711,01, 111
gap> c3.F;

[ 12, 48, 72, 36 ]

6.6.3 SCConnectedComponents

> SCConnectedComponents (complex) (method)

Returns: a list of simplicial complexes of type SCSimplicialComplex upon success, fail
otherwise.

Computes all connected components of an arbitrary simplicial complex.
Example
gap> c:=3C([[1,2,3],[3,4,5],[4,5,6,7,811);;
gap> SCRename(c,"connected complex");;

gap> SCConnectedComponents(c) ;

[ <SimplicialComplex: Connected component #1 of connected complex | dim = 4 | \
n =238 ]

gap> c:=8C([[1,2,3],[4,5],[6,7,8]11);;

gap> SCRename(c, "non-connected complex");;

gap> SCConnectedComponents(c) ;

[ <SimplicialComplex: Connected component #1 of non-connected complex | dim = \
2 | n=3>,
<SimplicialComplex: Connected component #2 of non-connected complex | dim = \
1| n=2>,
<SimplicialComplex: Connected component #3 of non-connected complex | dim = \
2 | n=23>1]
6.6.4 SCConnectedProduct
> SCConnectedProduct (complex, n) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
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If n> 2, the function internally calls 1x SCConnectedSum (6.6.5) and (n - 2)x
SCConnectedSumMinus (6.6.6).
Example
gap> SCLib.SearchByName ("T~2"){[1..6]};
(f4, "vr2 (VD" 1, [ 5, "T~2 (vDO" 1, [ 9, "T~2 (VD)" 1, [ 10, "T"2 (VD" 1,
[ 17, "T~2 (vD)" 1, [ 20, "(T~2)#2" ] 1]
gap> torus:=SCLib.Load(last[1][1]);;
gap> genus10:=SCConnectedProduct (torus,10);
<SimplicialComplex: T~2 (VI)#+-T~2 (VI)#+-T~2 (VI)#+-T~2 (VI)#+-T~2 (VT)#+-T~2\
(VD #+-T~2 (VD #+-T~2 (VD #+-T~2 (VD)#+-T~2 (VI) | dim = 2 | n = 43>
gap> genus10.Chi;
-18
gap> genusl10.F;
[ 43, 183, 122 ]

6.6.5 SCConnectedSum

> SCConnectedSum(complexl, complex2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

In a lexicographic ordering the smallest facet of both complex1 and complex2 is removed and the
complexes are glued together along the resulting boundaries. The bijection used to identify the vertices
of the boundaries differs from the one chosen in SCConnectedSumMinus (6.6.6) by a transposition.
Thus, the topological type of SCConnectedSum is different from the one of SCConnectedSumMinus

(6.6.6) whenever complex1 and complex2 do not allow an orientation reversing homeomorphism.

Example

gap> SCLib.SearchByName ("T~2"){[1..6]1};

([4, "T~2 (vD)" 1, [ 5, "T~2 (vO)" 1, [ 9, "T~2 (vDO)" 1, [ 10, "T"2 (VD" 1,
(17, "T~2 (vT)" 1, [ 20, "(T~2)#2" ] ]

gap> torus:=SCLib.Load(last[1][1]);;

gap> genus2:=SCConnectedSum(torus,torus);

<SimplicialComplex: T2 (VD)#+-T~2 (VI) | dim = 2 | n = 11>

gap> genus2.Homology;

tfto, 0 11,04, C 11, 01,0 111

gap> genus2.Chi;

-2

Example

gap> SCLib.SearchByName ("CP~2") ;

[ [ 16, "cP~2 (VT)" 1, [ 96, "CP~2#-CP~2" ], [ 97, "CP~2#CP~2" ],
[ 185, "CP~2#(S8~2xS~2)" 1, [ 397, "Gaifullin CP~2" ],
[ 457, "(58~37s~1)#(CP~2)~{#56} (VI)" ] 1]

gap> cp2:=SCLib.Load(last[1] [1]);;

gap> cl:=SCConnectedSum(cp2,cp2);;

gap> c2:=SCConnectedSumMinus (cp2,cp2);;

gap> cl.F=c2.F;

true

gap> cl.ASDet=c2.ASDet;

true

gap> SCIsIsomorphic(cl,c2);

false
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gap> PrintArray(SCIntersectionForm(cl));
([ 1, 01,

[ o, 111

gap> PrintArray(SCIntersectionForm(c2));
cc 1, o1,

[ o0, -111

6.6.6 SCConnectedSumMinus

> SCConnectedSumMinus (complexl, complex2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

In a lexicographic ordering the smallest facet of both complex1 and complex2 is removed and
the complexes are glued together along the resulting boundaries. The bijection used to identify the
vertices of the boundaries differs from the one chosen in SCConnectedSum (6.6.5) by a transposition.
Thus, the topological type of SCConnectedSumMinus is different from the one of SCConnectedSum
(6.6.5) whenever complex1 and complex2 do not allow an orientation reversing homeomorphism.
Example
gap> SCLib.SearchByName ("T~2"){[1..6]2};
(L4, "T2 )" 1, [ 5, "T~2 (w»)" 1, [ 9, "T~2 (vD" 1, [ 10, "T~2 (V)" 1,

[ 17, "T~2 (vD)" 1, [ 20, "(T~2)#2" ] ]
gap> torus:=SCLib.Load(last[1][1]);;
gap> genus2:=SCConnectedSumMinus (torus,torus) ;
<SimplicialComplex: T2 (VD)#+-T~2 (VI) | dim = 2 | n = 11>
gap> genus2.Homology;
tfo, L 11,04 CC 11, 01,0 111
gap> genus2.Chi;
-2

Example

gap> SCLib.SearchByName ("CP~2");

[ [ 16, "CcP~2 (VT)" 1, [ 96, "CP~2#-CP~2" 1, [ 97, "CP~2#CP~2" ],
[ 185, "CP~2#(S~2xS~2)" 1, [ 397, "Gaifullin CP~2" ],
[ 457, "(S~378~1)#(CP~2)~{#6} (VI)" ] ]

gap> cp2:=SCLib.Load(last[1]1[1]);;

gap> cl:=SCConnectedSum(cp2,cp2);;

gap> c2:=SCConnectedSumMinus(cp2,cp2);;

gap> cl.F=c2.F;

true
gap> cl.ASDet=c2.ASDet;
true
gap> SCIsIsomorphic(cl,c2);
false
gap> PrintArray(SCIntersectionForm(c1));
(rc 1, o1,
[ o, 111
gap> PrintArray(SCIntersectionForm(c2));
[t 1, o1,

[ o, -11]1
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6.6.7 SCDifferenceCycleCompress

D> SCDifferenceCycleCompress(simplex, modulus)
Returns: list with possibly duplicate entries upon success, fail otherwise.
A difference cycle is returned, i. e. a list of integer values of length (d + 1), if d is the di-

mension of simplex, and a sum equal to modulus. In some sense this is the inverse operation of
SCDifferenceCycleExpand (6.6.8).

(function)

Example

gap> sphere:=SCBdSimplex(4);;

gap> gens:=SCGenerators (sphere) ;

(C[l1,2,3,41,[5]11]1

gap> diffcycle:=SCDifferenceCycleCompress(gens[1][1],5);

[1, 1,1, 2]

gap> c:=SCDifferenceCycleExpand([1,1,1,2]);;

gap> c.Facets;

(rit+2,3,41,01,2,3,51,[1,2,4,51,[1,3, 4,51,
[ 2, 3,4,51]]1

6.6.8 SCDifferenceCycleExpand

> SCDifferenceCycleExpand(diffcycle) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
diffcycle induces a simplex A= (vy,...,v,41) by vi =diffcycle[1],v;=v,_1+ diffcycle[i]
and a cyclic group action by Zs where ¢ =Y diffcycle[i] is the modulus of diffcycle. The
function returns the Zs-orbit of A.

Note that modulo operations in GAP are often a little bit cumbersome, since all integer ranges
usually start from 1.

Example
gap> c:=SCDifferenceCycleExpand([1,1,2]);;
gap> c.Facets;

(1, 2,31,01,2,471,[1,3,41,10[2,3,4171]1

6.6.9 SCStronglyConnectedComponents

> SCStronglyConnectedComponents (complex) (method)

Returns: a list of simplicial complexes of type SCSimplicialComplex upon success, fail
otherwise.

Computes all strongly connected components of a pure simplicial complex.
Example
gap> c:=SC([[1,2,31,[2,3,41,[4,5,61,[5,6,711);;
gap> comps:=SCStronglyConnectedComponents(c) ;
[ <SimplicialComplex: Strongly connected component #1 of unnamed complex 85 | \
dim =2 | n = 4>,

<SimplicialComplex: Strongly connected component #2 of unnamed complex 85 | \

dim =2 | n = 4> ]
gap> comps[1] .Facets;
(01,2,31,[2,3,41]
gap> comps[2] .Facets;
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([4,5,61, [5,6,71]1

6.7 Simplicial complexes from transitive permutation groups

Beginning from Version 1.3.0, simpcomp is able to generate triangulations from a prescribed tran-
sitive group action on its set of vertices. Note that the corresponding group is a subgroup of the full
automorphism group, but not necessarily the full automorphism group of the triangulations obtained
in this way. The methods and algorithms are based on the works of Frank H. Lutz [Lut03], [Lut] and
in particular his program MANIFOLD_VT.

6.7.1 SCsFromGroupExt

> SCsFromGroupExt(G, n, d, objectType, cache, removeDoubleEntries, outfile,
maxLinkSize, subset) (function)

Returns: a list of simplicial complexes of type SCSimplicialComplex upon success, fail
otherwise.

Computes all combinatorial d-pseudomanifolds, d =2 / all strongly connected combinatorial d-
pseudomanifolds, d > 3, as a union of orbits of the group action of G on (d+1)-tuples on the set of
n vertices, see [Lut03]. The integer argument objectType specifies, whether complexes exceeding
the maximal size of each vertex link for combinatorial manifolds are sorted out (objectType = 0)
or not (objectType = 1, in this case some combinatorial pseudomanifolds won’t be found, but no
combinatorial manifold will be sorted out). The integer argument cache specifies if the orbits are
held in memory during the computation, a value of 0 means that the orbits are discarded, trading
speed for memory, any other value means that they are kept, trading memory for speed. The boolean
argument removeDoubleEntries specifies whether the results are checked for combinatorial iso-
morphism, preventing isomorphic entries. The argument outfile specifies an output file containing
all complexes found by the algorithm, if outfile is anything else than a string, not output file is
generated. The argument maxLinkSize determines a maximal link size of any output complex. If
maxLinkSize= 0 or if maxLinkSize is anything else than an integer the argument is ignored. The
argument subset specifies a set of orbits (given by a list of indices of repHigh) which have to be
contained in any output complex. If subset is anything else than a subset of matrixAllowedRows

the argument is ignored.
Example

gap> G:=PrimitiveGroup(8,5);

PGL(2, 7)

gap> Size(G);

336

gap> Transitivity(G);

3

gap> list:=SCsFromGroupExt(G,8,3,1,0,true,false,0,[]);

[ "defgh.g.h.fah.e.gaf.h.eag.e.faf.a.haa.g.fah.a.gjhzh" ]
gap> c:=SCFromIsoSig(list[1]);

<SimplicialComplex: unnamed complex 6 | dim = 3 | n = 8>
gap> SCNeighborliness(c);

3

gap> c.F;

[ 8, 28, 56, 28 ]
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gap> c.IsManifold;

false

gap> SCLibDetermineTopologicalType(SCLink(c,1));

<SimplicialComplex: 1k([ 1 ]) in unnamed complex 6 | dim = 2 | n = 7>
gap> # there are no 3-neighborly 3-manifolds with 8 vertices

gap> list:=SCsFromGroupExt (PrimitiveGroup(8,5),8,3,0,0,true,false,0,[]);
gap> [ ]

6.7.2 SCsFromGroupByTransitivity

> SCsFromGroupByTransitivity(n, d, k, maniflag, computeAutGroup,
removeDoubleEntries) (function)

Returns: a list of simplicial complexes of type SCSimplicialComplex upon success, fail
otherwise.

Computes all combinatorial d-pseudomanifolds, d =2 / all strongly connected combinatorial d-
pseudomanifolds, d > 3, as union of orbits of group actions for all k-transitive groups on (d+1)-tuples
on the set of n vertices, see [Lut03]. The boolean argument maniflag specifies, whether the resulting
complexes should be listed separately by combinatorial manifolds, combinatorial pseudomanifolds
and complexes where the verification that the object is at least a combinatorial pseudomanifold failed.
The boolean argument computeAutGroup specifies whether or not the real automorphism group
should be computed (note that a priori the generating group is just a subgroup of the automorphism
group). The boolean argument removeDoubleEntries specifies whether the results are checked for
combinatorial isomorphism, preventing isomorphic entries. Internally calls SCsFromGroupExt (6.7.1)

for every group.

Example
gap> list:=SCsFromGroupByTransitivity(8,3,2,true,true,true);

#I SCsFromGroupByTransitivity: Building list of groups...

#I SCsFromGroupByTransitivity: ...2 groups found.

#I degree 8: [ AGL(1, 8), PSL(2, 7) ]

#I SCsFromGroupByTransitivity: Processing dimension 3.

#I SCsFromGroupByTransitivity: Processing degree 8.

#I SCsFromGroupByTransitivity: 1 / 2 groups calculated, found O complexes.

#I SCsFromGroupByTransitivity: Calculating O automorphism and homology groups...
#I SCsFromGroupByTransitivity: ...all automorphism groups calculated for group 1| / 2.
#I SCsFromGroupByTransitivity: 2 / 2 groups calculated, found 1 complexes.

#I SCsFromGroupByTransitivity: Calculating 1 automorphism and homology groups...
#I group not listed

#I SCsFromGroupByTransitivity: 1 / 1 automorphism groups calculated.

#I SCsFromGroupByTransitivity: ...all automorphism groups calculated for group 2 / 2.
#I SCsFromGroupByTransitivity: ...done dim = 3, deg = 8, 0 manifolds, 1 pseudomanifolds, O car
#I SCsFromGroupByTransitivity: ...done dim = 3.

cc 1,0 1,0 11

6.8 The classification of cyclic combinatorial 3-manifolds

This section contains functions to access the classification of combinatorial 3-manifolds with transitive
cyclic symmetry and up to 22 vertices as presented in [Spr14].
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6.8.1 SCNrCyclic3Mflds

> SCNI‘CyCliC3Mf 1lds (1) (function)
Returns: integer upon success, fail otherwise.
Returns the number of combinatorial 3-manifolds with transitive cyclic symmetry with i vertices.
See [Spr14] for more about the classification of combinatorial 3-manifolds with transitive cyclic sym-
metry up to 22 vertices.

Example
gap> SCNrCyclic3Mflds(22);
3090

6.8.2 SCCyclic3MfldTopTypes

> SCCyclic3MfldTopTypes (i) (function)

Returns: a list of strings upon success, fail otherwise.

Returns a list of all topological types that occur in the classification combinatorial 3-manifolds
with transitive cyclic symmetry with i vertices. See [Sprl14] for more about the classification of
combinatorial 3-manifolds with transitive cyclic symmetry up to 22 vertices.

Example

gap> SCCyclic3MfldTopTypes(19);
[ "B2", "RP~2xS~1", "SFS[RP-2:(2,1)(3,1)]", "s8~27s~1", "sS~3", "Sigma(2,3,7)",
||T"3|| ]

6.8.3 SCCyclic3Mfld

> SCCyCliC3Mfld(i, _]) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Returns the jth combinatorial 3-manifold with i vertices in the classification of combinatorial

3-manifolds with transitive cyclic symmetry. See [Spr14] for more about the classification of combi-

natorial 3-manifolds with transitive cyclic symmetry up to 22 vertices.

Example

gap> SCCyclic3Mf1d(15,34);
<SimplicialComplex: Cyclic 3-mfld (15,34): T~3 | dim = 3 | n = 15>

6.8.4 SCCyclic3MfldByType

> SCCyclic3Mf1ldByType (type) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Returns the smallest combinatorial 3-manifolds in the classification of combinatorial 3-manifolds

with transitive cyclic symmetry of topological type type. See [Spr14] for more about the classification

of combinatorial 3-manifolds with transitive cyclic symmetry up to 22 vertices.

Example

gap> SCCyclic3Mf1ldByType("T~3");
<SimplicialComplex: Cyclic 3-mfld (15,34): T°3 | dim = 3 | n = 15>
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6.8.5 SCCyclic3MfldListOfGivenType

D> SCCyclic3MfldList0fGivenType (type) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Returns a list of indices { (i1, 1), (i1,/1),---(in, jn)} of all combinatorial 3-manifolds in the clas-

sification of combinatorial 3-manifolds with transitive cyclic symmetry of topological type type.

Complexes can be obtained by calling SCCyclic3Mfld (6.8.3) using these indices. See [Spr14] for

more about the classification of combinatorial 3-manifolds with transitive cyclic symmetry up to 22

vertices.

Example
gap> SCCyclic3MfldList0fGivenType("Sigma(2,3,7)");
[ [ 19, 1001, [ 19, 1181, [ 19, 1201, [ 19, 1301 ]

6.9 Computing properties of simplicial complexes

The following functions compute basic properties of simplicial complexes of type
SCSimplicialComplex. None of these functions alter the complex. All properties are re-
turned as immutable objects (this ensures data consistency of the cached properties of a simplicial
complex). Use ShallowCopy or the internal simpcomp function SCIntFunc.DeepCopy to get a
mutable copy.

Note: every simplicial complex is internally stored with the standard vertex labeling from 1 to n
and a maptable to restore the original vertex labeling. Thus, we have to relabel some of the complex
properties (facets, face lattice, generators, etc...) whenever we want to return them to the user. As a
consequence, some of the functions exist twice, one of them with the appendix "Ex". These functions
return the standard labeling whereas the other ones relabel the result to the original labeling.

6.9.1 SCAltshulerSteinberg

> SCAltshulerSteinberg(complex) (method)

Returns: a non-negative integer upon success, fail otherwise.

Computes the Altshuler-Steinberg determinant.

Definition: Let v;, 1 <i <n be the vertices and let Fj, 1 < j <m be the facets of a pure simplicial
complex C, then the determinant of AS € Z"™, AS;; = 1 if v; € F}, AS;; = 0 otherwise, is called the
Altshuler-Steinberg matrix. The Altshuler-Steinberg determinant is the determinant of the quadratic
matrix AS-AS”.

The Altshuler-Steinberg determinant is a combinatorial invariant of C and can be checked before
searching for an isomorphism between two simplicial complexes.

Example
gap> list:=SCLib.SearchByName("T~2");;
gap> torus:=SCLib.Load(last[1][11);;

gap> SCAltshulerSteinberg(torus) ;

73728

gap> c:=SCBdSimplex(3);;

gap> SCAltshulerSteinberg(c);

9

gap> c:=SCBdSimplex(4);;

gap> SCAltshulerSteinberg(c);
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16

gap> c:=SCBdSimplex(5);;

gap> SCAltshulerSteinberg(c);
25

6.9.2 SCAutomorphismGroup

> SCAutomorphismGroup (complex) (method)

Returns: a GAP permutation group upon success, fail otherwise.

Computes the automorphism group of a strongly connected pseudomanifold complex, i. e. the
group of all automorphisms on the set of vertices of complex that do not change the complex as a
whole. Necessarily the group is a subgroup of the symmetric group S, where n is the number of
vertices of the simplicial complex.

The function uses an efficient algorithm provided by the package GRAPE (see [Soil2], which is
based on the program nauty by Brendan McKay [MP14]). If the package GRAPE is not available,
this function call falls back to SCAutomorphismGroupInternal (6.9.3).

The position of the group in the GAP libraries of small groups, transitive groups or primitive
groups is given. If the group is not listed, its structure description, provided by the GAP function
StructureDescription(), is returned as the name of the group. Note that the latter form is not
always unique, since every non trivial semi-direct product is denoted by ”:”.

Example

gap> SCLib.SearchByName ("K3");

[ [ 520, "K3_16" 1, [ 539, "K3_17" 1] ]

gap> k3surf:=SCLib.Load(last[1][1]);;

gap> SCAutomorphismGroup (k3surf) ;

Group([ (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16), (1,2,8,14,5)
(3,11,9,4,13)(6,7,12,15,10), (1,3,2)(5,11,14)(6,9,15)(7,10,13)(8,12,16) 1)

6.9.3 SCAutomorphismGrouplInternal

> SCAutomorphismGroupInternal (complex) (method)

Returns: a GAP permutation group upon success, fail otherwise.

Computes the automorphism group of a strongly connected pseudomanifold complex, i. e. the
group of all automorphisms on the set of vertices of complex that do not change the complex as a
whole. Necessarily the group is a subgroup of the symmetric group S, where n is the number of
vertices of the simplicial complex.

The position of the group in the GAP libraries of small groups, transitive groups or primitive
groups is given. If the group is not listed, its structure description, provided by the GAP function
StructureDescription(), is returned as the name of the group. Note that the latter form is not
always unique, since every non trivial semi-direct product is denoted by ”:”.

Example

gap> c:=SCBdSimplex(5);;
gap> SCAutomorphismGroupInternal(c);
Sym( [ 1 ..61)
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gap> c:=8C([[1,2],[2,3]1,[1,3]11);;

gap> g:=SCAutomorphismGroupInternal(c);
Group([ (2,3), (1,2,3) 1)

gap> List(g);

[ O, 1,2,3), (1,3,2), (2,3), (1,2), (1,3) 1]
gap> StructureDescription(g);

"Ss"

6.9.4 SCAutomorphismGroupSize

> SCAutomorphismGroupSize (complex)
Returns: a positive integer group upon success, fail otherwise.

(method)

Computes the size of the automorphism group of a strongly connected pseudomanifold complex,

see SCAutomorphismGroup (6.9.2).

Example

gap> SCLib.SearchByName ("K3");

[ [ 520, "k3_16" 1, [ 539, "K3_17" ] ]
gap> k3surf:=SCLib.Load(last[1][1]);;
gap> SCAutomorphismGroupSize (k3surf) ;
240

6.9.5 SCAutomorphismGroupStructure

> SCAutomorphismGroupStructure (complex)
Returns: the GAP structure description upon success, fail otherwise.

(method)

Computes the GAP structure description of the automorphism group of a strongly connected pseu-

domanifold complex, see SCAutomorphismGroup (6.9.2).
Example

gap> SCLib.SearchByName ("K3") ;

[ [ 520, "K3_16" 1, [ 539, "K3_17" 1 ]
gap> k3surf:=SCLib.Load(last[1][1]);;

gap> SCAutomorphismGroupStructure (k3surf) ;
"(C2 x C2 x C2 x C2) : C15"

6.9.6 SCAutomorphismGroupTransitivity

> SCAutomorphismGroupTransitivity(complex)
Returns: a positive integer upon success, fail otherwise.

(method)

Computes the transitivity of the automorphism group of a strongly connected pseudomanifold
complex, i. e. the maximal integer ¢ such that for any two ordered ¢-tuples 77 and 7, of vertices of
complex, there exists an element g in the automorphism group of complex for which g7 = 75, see

[Hup67].

Example

gap> SCLib.SearchByName ("K3");
[ [ 520, "k3_16" 1, [ 539, "K3_17" 1 ]
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gap> k3surf:=SCLib.Load(last[1]1[1]);;
gap> SCAutomorphismGroupTransitivity(k3surf);
2

6.9.7 SCBoundary

> SCBoundary (complex) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
The function computes the boundary of a simplicial complex complex satisfying the weak pseu-
domanifold property and returns it as a simplicial complex. In addition, it is stored as a property of
complex.
The boundary of a simplicial complex is defined as the simplicial complex consisting of all d - 1-
faces that are contained in exactly one facet.
If complex does not fulfill the weak pseudomanifold property (i. e. if the valence of any d — 1-face
exceeds 2) the function returns fail.

Example
gap> c:=SC([[1,2,3,4],[1,2,3,5],[1,2,4,5],[1,3,4,5]11);
<SimplicialComplex: unnamed complex 63 | dim = 3 | n = 5>
gap> SCBoundary(c);

<SimplicialComplex: Bd(unnamed complex 63) | dim =2 | n = 4>
gap> ¢;
<SimplicialComplex: unnamed complex 63 | dim = 3 | n = 5>
6.9.8 SCDehnSommervilleCheck
> SCDehnSommervilleCheck(c) (method)

Returns: true or false upon success, fail otherwise.

Checks if the simplicial complex c fulfills the Dehn Sommerville equations: hj—hgyi—j =
(=1 (T) (2 (M) ~2) for 0< j < § and d even, and hj—hgs1—; =0 for 0< j < 45! and d odd.
Where h; is the jth component of the h-vector, see SCHVector (6.9.26).

Example

gap> c:=SCBdCrossPolytope(6);;
gap> SCDehnSommervilleCheck(c);
true
gap> c¢:=SC([[1,2,3],[1,4,511);;
gap> SCDehnSommervilleCheck(c);
false

6.9.9 SCDehnSommervilleMatrix

> SCDehnSommervilleMatrix(d) (method)
Returns: a (d+1) xInt (d+1/2) matrix with integer entries upon success, fail otherwise.
Computes the coefficients of the Dehn Sommerville equations for dimension d: hj—hgy1-; =
(=1 (2 (M) ~2) for 0< j < § and d even, and hj—hgs1—j =0 for 0< j < 45! and d odd.
Where h; is the jth component of the h-vector, see SCHVector (6.9.26).
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Example
gap> m:=SCDehnSommervilleMatrix(6);;
gap> PrintArray(m);
[ [ 1, _1: 1: _1) 1: _1, 1 ]s
[ O: _2’ 3: _4’ 5: _6, 7 ]:
L 0, 0, 0, -4, 10, -20, 35 1],
[ O, O, O: O: 0, _6, 21 ] ]
6.9.10 SCDifferenceCycles
> SCDifferenceCycles(complex) (method)

Returns: a list of lists upon success, fail otherwise.
Computes the difference cycles of complex in standard labeling if complex is invariant under a
shift of the vertices of type v v+1 mod n. The function returns the difference cycles as lists where

the sum of the entries equals the number of vertices n of complex.

Example
gap> torus:=SCFromDifferenceCycles([[1,2,4],[1,4,2]1);

<SimplicialComplex: complex from diffcycles [ [ 1, 2, 41, [ 1, 4, 21 1 | dim\
=2 | n=7>

gap> torus.Homology;

tfo, C 131,02, 0L 11,01, 111

gap> torus.DifferenceCycles;

(C01,2,471,[01,4,21]

6.9.11 SCDim

> SCDim(complex) (method)
Returns: an integer > —1 upon success, fail otherwise.
Computes the dimension of a simplicial complex. If the complex is not pure, the dimension of the
highest dimensional simplex is returned.
Example
gap> complex:=SC([[1,2,3], [1,2,4], [1,3,4], [2,3,4]11);;
gap> SCDim(complex) ;
2
gap> c:=SC([[1], [2,4], [3,4], [5,6,7,8]11);;
gap> SCDim(c) ;
3

6.9.12 SCDualGraph

> SCDualGraph (complex) (method)
Returns: 1-dimensional simplicial complex of type SCSimplicialComplex upon success, fail
otherwise.
Computes the dual graph of the pure simplicial complex complex.
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gap> sphere:=SCBdSimplex(5);;

gap> graph:=SCFaces (sphere,1);

(1,21, 01,31, 01,41, [1,5
[2,5]1, (2,61, [3,41, 3,5
[5,61]

gap> graph:=SC(graph);;

gap> dualGraph:=SCDualGraph (sphere) ;

<SimplicialComplex: dual graph of S~4_6 | dim

gap> graph.Facets = dualGraph.Facets;

true

o

[
-
=
[
o
v

6.9.13 SCEulerCharacteristic

> SCEulerCharacteristic(complex) (method)
Returns: integer upon success, fail otherwise.

d :
Computes the Euler characteristic x(C) = >, (-1)'f; of a simplicial complex C, where f; denotes
i=0

the i-th component of the f-vector.

Example
gap> complex:=SCFromFacets([[1,2,3], [1,2,4], [1,3,4], [2,3,4]11);;
gap> SCEulerCharacteristic(complex);

2

gap> s2:=SCBdSimplex(3);;

gap> s2.EulerCharacteristic;

2

6.9.14 SCFVector

> SCFVector (complex) (method)
Returns: a list of non-negative integers upon success, fail otherwise.
Computes the f-vector of the simplicial complex complex, i. e. the number of i-dimensional
faces for 0 < i <d, where d is the dimension of complex. A memory-saving implicit algorithm is used
that avoids calculating the face lattice of the complex. Internally calls SCNumFaces (6.9.52).

Example
gap> complex:=SC([[1,2,3], [1,2,4], [1,3,4], [2,3,4]11);;
gap> SCFVector (complex) ;

[ 4, 6, 41

6.9.15 SCFaceLattice

> SCFacelLattice(complex) (method)
Returns: a list of face lists upon success, fail otherwise.
Computes the entire face lattice of a d-dimensional simplicial complex, i. e. all of its i-skeletons
for 0 <i<d. The faces are returned in the original labeling.
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Example
gap> CZ=SC( [ [nau s npn , "C"] , [nau , npn s "d"] , [nau s nen , "d"] s [ubn s nen s "d"]] ) 33
gap> SCFacelattice(c);
[ [ [ Ilall ] s [ Ilbll ] s [ IICII ] s [ Ildll ] ] ,
[ [ Ilall s Ilbll ] s [ llall s "C" ] s [ llall s Ildll ] s [ llbll s llcll ] s [ llbll s lldll ] s
[ "C", lldll ] ]’
[ [ Ilall, |Ibl|, "C" ] , |Ial|, |Ibl|, |Idll ] , [ |Ial|’ "C", |Idll ] ,
I: llbll s "C" s lldll ] ] ]
6.9.16 SCFaceLatticeEx
> SCFacelLatticeEx(complex) (method)

Returns: a list of face lists upon success, fail otherwise.

Computes the entire face lattice of a d-dimensional simplicial complex, i. e. all of its i-skeletons
for 0 <i<d. The faces are returned in the standard labeling.

Example
gap> c:=sc([["a","b","c"],["a","b","d"], ["a","c","d"], ["b","c","d"]11);;
gap> SCFacelatticeEx(c);

(crc1+1, 021,031, 14
]

1,

]
, 01,31, 01,41,02,31,[2,41,[3,411,
31, 01,2,41,01,3,41,[2,3,411]1

B

[ [1, 2
[[1, 2,

6.9.17 SCFaces

> SCFaces(complex, k)

(method)
Returns: a face list upon success, fail otherwise.
This is a synonym of the function SCSkel (7.3.13).
6.9.18 SCFacesEx
> SCFacesEx(complex, k) (method)
Returns: a face list upon success, fail otherwise.
This is a synonym of the function SCSkelEx (7.3.14).
6.9.19 SCFacets
> SCFacets(complex) (method)

Returns: a facet list upon success, fail otherwise.
Returns the facets of a simplicial complex in the original vertex labeling.
Example

gap> c:=3C([[2,3],[3,4],[4,211);;
gap> SCFacets(c);

(02,31, 02,41, [3,41]1]
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6.9.20 SCFacetsEx

> SCFacetsEx(complex)
Returns: a facet list upon success, fail otherwise.

Returns the facets of a simplicial complex as they are stored, i. e. with standard vertex labeling
from 1 to n.

(method)

Example

gap> c:=8C([[2,3],[3,4],[4,2]11);;
gap> SCFacetsEx(c);
(1, 271,01,31,[2,31]1

6.9.21 SCFpBettiNumbers

> SCFpBettiNumbers(complex, p)
Returns: a list of non-negative integers upon success, fail otherwise.

Computes the Betti numbers of a simplicial complex with respect to the field I, for any prime
number p.

(method)

Example

gap> SCLib.SearchByName ("K~2") ;

([18, "k~2 (V)" 1, [ 221, "K~2 (VD)" ] ]
gap> kleinBottle:=SCLib.Load(last[1][1]);;

gap> SCHomology(kleinBottle);

cfto, 0 11,01, 0211, 00,[ 111

gap> SCFpBettiNumbers(kleinBottle,2);

[1, 2, 1]
gap> SCFpBettiNumbers(kleinBottle,3);
(1, 1,0]

6.9.22 SCFundamentalGroup

> SCFundamentalGroup (complex)
Returns: a GAP fp group upon success, fail otherwise.
Computes the first fundamental group of complex, which must be a connected simplicial com-
plex, and returns it in form of a finitely presented group. The generators of the group are given
as 2-tuples that correspond to the edges of complex in standard labeling. You can use GAP’s
SimplifiedFpGroup to simplify the group presenation.
Example
gap> list:=SCLib.SearchByName ("RP~2");
[ [3, "RP~2 (V)" 1, [ 262, "RP~2xS~1" ] ]
gap> c:=SCLib.Load(1ist[1][1]1);
<SimplicialComplex: RP"2 (VT) | dim = 2 | n = 6>
gap> g:=SCFundamentalGroup(c);;
gap> StructureDescription(g);
IIC2II

(method)
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6.9.23 SCGVector

> SCGVector (complex)
Returns: a list of integers upon success, fail otherwise.
Computes the g-vector of a simplicial complex. The g-vector is defined as follows:
Let & be the h-vector of a d-dimensional simplicial complex C, then g; := h;.1 — h;; % >i>01is
called the g-vector of C. For the definition of the h-vector see SCHVector (6.9.26). The information

contained in g suffices to determine the f-vector of C.
Example

(method)

gap> SCLib.SearchByName ("RP~2");

[ [3, "RP~2 (V)" 1, [ 262, "RP~2xS~1" ] ]
gap> rp2_6:=SCLib.Load(last[1][1]);;

gap> SCFVector (rp2_6) ;

[ 6, 15, 10 1]

gap> SCHVector(rp2_6);

[ 3, 6, 0]

gap> SCGVector (rp2_6);

[ 2, 3]

6.9.24 SCGenerators

> SCGenerators (complex)
Returns: a list of pairs of the form [ 1ist, integer ] upon success, fail otherwise.
Computes the generators of a simplicial complex in the original vertex labeling.
The generating set of a simplicial complex is a list of simplices that will generate the complex by
uniting their G-orbits if G is the automorphism group of complex.
The function returns the simplices together with the length of their orbits.
Example
gap> list:=SCLib.SearchByName ("T~2");;
gap> torus:=SCLib.Load(list[1][1]);;
gap> SCGenerators(torus);
[[[01,2, 41,1411

(method)

Example

gap> SCLib.SearchByName ("K3") ;

[ [ 520, "k3_16" 1, [ 539, "K3_17" ] ]

gap> SCLib.Load (last[1][1]);

<SimplicialComplex: K3_16 | dim = 4 | n = 16>

gap> SCGenerators(last);

tcrf1,2,3,8,1271,2401, [ [1,2,5,8, 141, 481 ]

6.9.25 SCGeneratorsEx

> SCGeneratorsEx (complex)
Returns: a list of pairs of the form [ 1ist, integer ] upon success, fail otherwise.
Computes the generators of a simplicial complex in the standard vertex labeling.

The generating set of a simplicial complex is a list of simplices that will generate the complex by
uniting their G-orbits if G is the automorphism group of complex.

(method)
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The function returns the simplices together with the length of their orbits.

Example
gap> list:=SCLib.SearchByName ("T~2");;

gap> torus:=SCLib.Load(list[1]1[1]);;
gap> SCGeneratorsEx(torus);
(001,2,41]1,141]]

Example

gap> SCLib.SearchByName ("K3") ;
[ [ 520, "K3_16" 1, [ 539, "K3_17" 1 ]
gap> SCLib.Load(last[1][1]);
<SimplicialComplex: K3_16 | dim = 4 | n = 16>
gap> SCGeneratorsEx(last);

tcrf1,2,3,8,12],2401]1, [ [1,2,5,8, 141], 481 ]

6.9.26 SCHVector

> SCHVector (complex)

(method)
Returns: a list of integers upon success, fail otherwise.

Computes the h-vector of a simplicial complex.

The h-vector is defined as /Ay :=

k=1 , .
izl(—l)k"‘l(i:lfj) fi for 0 <k <d, where f_:=1. For all simplicial complexes we have hg = 1,
hence the returned list starts with the second entry of the h-vector.

Example

gap> SCLib.SearchByName ("RP~2");
[ [ 3, "RP~2 (V)" 1, [ 262, "RP~2xS~1" ] ]
gap> rp2_6:=SCLib.Load (last[1][1]);;

gap> SCFVector (rp2_6);

[ 6, 15, 10 ]

gap> SCHVector (rp2_6);

[3,6, 01

6.9.27 SCHasBoundary

> SCHasBoundary (complex)

(method)
Returns: true or false upon success, fail otherwise.

Checks if a simplicial complex complex that fulfills the weak pseudo manifold property has a
boundary, i. e. d — 1-faces of valence 1. If complex is closed false is returned, if complex does not
fulfill the weak pseudomanifold property, fail is returned, otherwise true is returned.

Example

gap> SCLib.SearchByName ("K~2") ;
[ [ 18, "K~2 (vT)" 1, [ 221, "K~2 (VIO" ] 1
gap> kleinBottle:=SCLib.Load(last[1][1]);;

gap> SCHasBoundary(kleinBottle) ;
false
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Example
gap> c:=SC([[1,2,3,4],[1,2,3,5],[1,2,4,5],[1,3,4,511);;
gap> SCHasBoundary(c);

true

6.9.28 SCHasInterior

> SCHasInterior (complex) (method)

Returns: true or false upon success, fail otherwise.

Returns true if a simplicial complex complex that fulfills the weak pseudomanifold property has
at least one d — 1-face of valence 2, i. e. if there exist at least one d — 1-face that is not in the boundary
of complex, if no such face can be found false is returned. It complex does not fulfill the weak
pseudomanifold property fail is returned.

Example
gap> c:=SC([[1,2,3,4],[1,2,3,5],[1,2,4,51,[1,3,4,5]11);;
gap> SCHasInterior(c)

true

gap> c:=SC([[1,2,3,411);;

gap> SCHasInterior(c);

false

6.9.29 SCHeegaardSplittingSmallGenus

> SCHeegaardSplittingSmallGenus (M) (method)

Returns: a list of an integer, a list of two sublists and a string upon success, fail otherwise.

Computes a Heegaard splitting of the combinatorial 3-manifold M of small genus. The function
returns the genus of the Heegaard splitting, the vertex partition of the Heegaard splitting and informa-
tion whether the splitting is minimal or just small (i. e. the Heegaard genus could not be determined).
See also SCHeegaardSplitting (6.9.30) for a faster computation of a Heegaard splitting of arbi-
trary genus and SCIsHeegaardSplitting (6.9.40) for a test whether or not a given splitting defines
a Heegaard splitting.

Example
gap> c:=SCSeriesBdHandleBody(3,10);;

gap> M:=SCConnectedProduct(c,3);;

gap> list:=SCHeegaardSplittingSmallGenus (M) ;
This creates an error

6.9.30 SCHeegaardSplitting

> SCHeegaardSplitting (M) (method)
Returns: a list of an integer, a list of two sublists and a string upon success, fail otherwise.
Computes a Heegaard splitting of the combinatorial 3-manifold M. The function returns the genus
of the Heegaard splitting, the vertex partition of the Heegaard splitting and a note, that splitting is ar-
bitrary and in particular possibly not minimal. See also SCHeegaardSplittingSmallGenus (6.9.29)
for the calculation of a Heegaard splitting of small genus and SCIsHeegaardSplitting (6.9.40) for
a test whether or not a given splitting defines a Heegaard splitting.
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Example
gap> M:=SCSeriesBdHandleBody(3,12);;

gap> list:=SCHeegaardSplitting(M);

(1, [C1, 2,835,911, [4,6,7,8, 10, 11, 12 1 1, "arbitrary" ]

gap> s1:=SCSlicing(M,1list[2]);

<NormalSurface: slicing [ [ 1, 2, 3, 5, 91, [ 4, 6, 7, 8, 10, 11, 12 ] ] of S\
phere bundle S°2 x S~1 | dim = 2>

6.9.31 SCHomologyClassic

> SCHomologyClassic(complex) (function)

Returns: a list of pairs of the form [ integer, list ].

Computes the integral simplicial homology groups of a simplicial complex complex (internally
calls the function SimplicialHomology(complex.FacetsEx) from the homology package, see
[DHSW11]).

If the homology package is not available, this function call falls back to SCHomologyInternal
(8.1.5). The output is a list of homology groups of the form [Hj, ....,H;], where d is the dimension of
complex. The format of the homology groups H; is given in terms of their maximal cyclic subgroups,
i.e. a homology group H; = Z/ + Z[t,Z x ---x Z|t,Z. is returned in form of a list [ £, [t1,...,2,]], where f

is the (integer) free part of H; and ¢; denotes the torsion parts of H; ordered in weakly increasing size.
Example

gap> SCLib.SearchByName ("K~2");
([18, "k~2 (vD)" 1, [ 221, "K~2 (VD)" ] ]
gap> kleinBottle:=SCLib.Load(last[1][1]);;
gap> kleinBottle.Homology;
trto, L 11,01, 0211, 00, [ 111
gap> SCLib.SearchByName ("L_"){[1..10]};
([ [ 123, "L_3_1" 1, [ 265, "L_4_1" 1, [ 289, "L_5_2" 1],
[ 368, "(S~27s~1)#L_3_1" 1, [ 369, "(S~2xS~1)#L_3_1" ], [ 400, "L_5_1" 1],
[ 403, "(8~27s~1)#2#L_3_1" 1, [ 406, "(S8~2xS~1)#2#L_3_1" ],
[ 496, "L_7_2" 1, [ 498, "L_8_.3" 1 1
gap> c:=SCConnectedSum(SCLib.Load(last[9][1]),
SCConnectedProduct (SCLib.Load (last[10] [1]),2));
> <SimplicialComplex: L_7_2#+-L_8_3#+-L_8_3 | dim = 3 | n = 40>
gap> SCHomology(c);
tro, 11, Co0,[8,5611, (0, [ 11,1, 111
gap> SCFpBettiNumbers(c,2);
[1, 2,2, 1]
gap> SCFpBettiNumbers(c,3);
[1, 0, 0, 1]

6.9.32 SClncidences

> SCIncidences(complex, k) (method)
Returns: a list of face lists upon success, fail otherwise.
Returns a list of all k-faces of the simplicial complex complex. The list is sorted by the valence
of the faces in the k+1-skeleton of the complex, i. e. the i-th entry of the list contains all k-faces of
valence i. The faces are returned in the original labeling.



simpcomp 81

Example
gap> c:=3C([[1,2,3],[2,3,4],[3,4,5],[4,5,61,[1,5,61,[1,4,61,[2,3,611);;
gap> SCIncidences(c,1);
rrct,21,01,31,01,41,01,51,0[02,41,[2,61, [3,5]1,

[3,6 ,[[01,61,03,41,[4,51,[04,61, 5,611,
[[2, 3]

11
11

6.9.33 SClncidencesEx

> SCIncidencesEx(complex, k) (method)

Returns: a list of face lists upon success, fail otherwise.

Returns a list of all k-faces of the simplicial complex complex. The list is sorted by the valence
of the faces in the k+1-skeleton of the complex, i. e. the i-th entry of the list contains all k-faces of
valence i. The faces are returned in the standard labeling.

Example
gap> c:=3C([[1,2,3],[2,3,4],[3,4,5],[4,5,6],[1,5,6],[1,4,6]1,[2,3,611);;
gap> SCIncidences(c,1);
tcf,271,01t,31,01,41,01,51,[2,4]1,[2,61, [3,51,
(3,611, [[1,61,[03,4]1,[4,51,0[4,61,[5,611,
([2 3111

6.9.34 SClnterior

> SCInterior (complex) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes all d — 1-faces of valence 2 of a simplicial complex complex that fulfills the weak

pseudomanifold property, i. e. the function returns the part of the d — 1-skeleton of C that is not part

of the boundary.

Example

gap> c:=SC([[1,2,3,4],[1,2,3,5],[1,2,4,5],[1,3,4,5]11);;

gap> SCInterior(c).Facets;

rrc:2,31,01,2,41,[1,2,51,[1,3,41,I[1,3,51,
(1, 4,511

gap> c:=SC([[1,2,3,4]11);;

gap> SCInterior(c) .Facets;

L]

6.9.35 SClIsCentrallySymmetric

> SCIsCentrallySymmetric(complex) (method)
Returns: true or false upon success, fail otherwise.
Checks if a simplicial complex complex is centrally symmetric, i. e. if its automorphism group
contains a fixed point free involution.
Example

gap> c:=SCBdCrossPolytope(4);;
gap> SCIsCentrallySymmetric(c);
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true

Example

gap> c:=SCBdSimplex(4);;
gap> SCIsCentrallySymmetric(c);
false

6.9.36 SClIsConnected

> SCIsConnected(complex)
Returns: true or false upon success, fail otherwise.
Checks if a simplicial complex complex is connected.

Example

(method)

gap> c:=SCBdSimplex(1);;
gap> SCIsConnected(c);
false

gap> c:=SCBdSimplex(2);;
gap> SCIsConnected(c);
true

6.9.37 SCIsEmpty

> SCIsEmpty(complex)
Returns: true or false upon success, fail otherwise.

Checks if a simplicial complex complex is the empty complex, i. e. a SCSimplicialComplex
object with empty facet list.

(method)

Example

gap> c:=SC([[1]11);;
gap> SCIsEmpty(c);
false

gap> c:=SC([1);;
gap> SCIsEmpty(c);
true

gap> c:=SC([[11);;
gap> SCIsEmpty(c);
true

6.9.38 SCIsEulerianManifold

> SCIsEulerianManifold(complex)
Returns: true or false upon success, fail otherwise.
Checks whether a given simplicial complex complex is a Eulerian manifold or not, i. e. checks if

all vertex links of complex have the Euler characteristic of a sphere. In particular the function returns
false in case complex has a non-empty boundary.

(method)



simpcomp 83

Example

gap> c:=SCBdSimplex(4);;

gap> SCIsEulerianManifold(c);

true

gap> SCLib.SearchByName ("Moebius") ;

[ [ 1, "Moebius Strip" ] ]

gap> moebius:=SCLib.Load(last[1][1]); # a moebius strip
<SimplicialComplex: Moebius Strip | dim = 2 | n = 5>
gap> SCIsEulerianManifold(moebius);

false

6.9.39 SClIsFlag

> SCIsFlag(complex, k) (method)
Returns: true or false upon success, fail otherwise.
Checks if complex is flag. A connected simplicial complex of dimension at least one is a flag

complex if all cliques in its 1-skeleton span a face of the complex (cf. [Fro08]).
Example

gap> SCLib.SearchByName ("RP~2");

(03, "RP~2 (V)" ], [ 262, "RP~2xS"1" ] ]
gap> rp2_6:=SCLib.Load(last[1][1]);;

gap> SCIsFlag(rp2_6);

false

6.9.40 SClIsHeegaardSplitting

> SCIsHeegaardSplitting(c, list) (method)

Returns: true or false upon success, fail otherwise.

Checks whether 1ist defines a Heegaard splitting of ¢ or not. See also SCHeegaardSplitting
(6.9.30) and SCHeegaardSplittingSmallGenus (6.9.29) for functions to compute Heegaard split-
tings.

Example

gap> c:=SCSeriesBdHandleBody(3,9);;

gap> list:=[[1..3],[4..9]];

(l1..31,[4..911

gap> SCIsHeegaardSplitting(c,list);

false

gap> splitting:=SCHeegaardSplitting(c);

(1, [[1,2,3,61,[4,5,7,8,911], "arbitrary" ]
gap> SCIsHeegaardSplitting(c,splitting[2]);

true

6.9.41 SCIsHomologySphere

> SCIsHomologySphere (complex) (method)
Returns: true or false upon success, fail otherwise.
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Checks whether a simplicial complex complex is a homology sphere, i. e. has the homology of a
sphere, or not.
Example

gap> c:=3C([[2,3],[3,4],[4,2]11);;
gap> SCIsHomologySphere(c) ;
true

6.9.42 SCIsInKd

> SCIsInKd(complex, k) (method)

Returns: true/false upon success, fail otherwise.

Checks whether the simplicial complex complex that must be a combinatorial d-manifold is in the
class KX(d), 1 <k< [%J, of simplicial complexes that only have k-stacked spheres as vertex links,
see [Eff11b]. Note that it is not checked whether complex is a combinatorial manifold — if not, the
algorithm will not succeed. Returns true / false upon success. If true is returned this means that
complex is at least k-stacked and thus that the complex is in the class K*(d), i.e. all vertex links are
i-stacked spheres. If false is returnd the complex cannot be k-stacked. In some cases the question
can not be decided. In this case fail is returned.

Internally calls SCIsKStackedSphere (9.2.5) for all links. Please note that this is a radomized

algorithm that may give an indefinite answer to the membership problem.
Example
gap> list:=SCLib.SearchByName("S~27S~1"){[1..31};;

gap> c:=SCLib.Load(list[1][1]);;

gap> c.AutomorphismGroup;

Group([ (1,2,3,4,5,6,7,8,9), (1,3)(4,9)(5,8)(6,7) 1)

gap> SCIsInKd(c,1);

#I SCIsKStackedSphere: checking if complex is a 1-stacked sphere...
#I SCIsKStackedSphere: try 1/1

#I SCIsKStackedSphere: complex is a 1l-stacked sphere.

true

6.9.43 SCIsKNeighborly

> SCIsKNeighborly(complex, k) (method)
Returns: true or false upon success, fail otherwise.

Example
gap> SCLib.SearchByName ("RP~2");

[ [3, "RP2 (V)" 1, [ 262, "RP~2xS~1" ] 1]
gap> rp2_6:=SCLib.Load(last[1][1]);;
gap> SCFVector (rp2_6);

[ 6, 15, 10 ]
gap> SCIsKNeighborly(rp2_6,2);
true

gap> SCIsKNeighborly(rp2_6,3);
false
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6.9.44 SClIsOrientable

D> SCIsOrientable(complex)

(method)
Returns: true or false upon success, fail otherwise.

Checks if a simplicial complex complex, satisfying the weak pseudomanifold property, is ori-
entable.

Example

gap> c:=SCBdCrossPolytope(4);;
gap> SCIsOrientable(c);
true

6.9.45 SCIsPseudoManifold

> SCIsPseudoManifold(complex)
Returns: true or false upon success, fail otherwise.

Checks if a simplicial complex complex fulfills the weak pseudomanifold property, i. e. if every
d — 1-face of complex is contained in at most 2 facets.

(method)

Example

gap> c:=SC([[1,2,3],[1,2,4]1,[1,3,4]1,[2,3,4]1,[1,5,6],[1,5,71,[1,6,71,[5,6,711);;
gap> SCIsPseudoManifold(c);
true

gap> c:=8C([[1,2],[2,3],[3,1],[1,4],[4,51,[5,111);;
gap> SCIsPseudoManifold(c);
false

6.9.46 SCIsPure

> SCIsPure(complex)

(method)
Returns: a boolean upon success, fail otherwise.
Checks if a simplicial complex complex is pure.
Example
gap> c:=SC([[1,2], [1,4], [2,4], [2,3,411);;
gap> SCIsPure(c);
false
gap> c:=SC([[1,2], [1,4], [2,4]11);;
gap> SCIsPure(c);
true
6.9.47 SClsShellable
> SCIsShellable(complex) (method)

Returns: true or false upon success, fail otherwise.

The simplicial complex complex must be pure, strongly connected and must fulfill the weak
pseudomanifold property with non-empty boundary (cf. SCBoundary (6.9.7)).

The function checks whether complex is shellable or not. An ordering (Fy,F,...,F,) on the facet
list of a simplicial complex is called a shelling if and only if F;n (FjU...UF;_y) is a pure simplicial
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complex of dimension d -1 forall i=1,...,r. A simplicial complex is called shellable, if at least one
shelling exists.

See [Zie95], [Pac87] to learn more about shellings.
Example

gap> c:=SCBdCrossPolytope(4);;

gap> c:=Difference(c,SC([[1,3,5,7]1]));; # bounded version
gap> SCIsShellable(c);

true

6.9.48 SClIsStronglyConnected

D> SCIsStronglyConnected(complex) (method)

Returns: true or false upon success, fail otherwise.

Checks if a simplicial complex complex is strongly connected, i. e. if for any pair of facets (A,A)
there exists a sequence of facets (A, ...,A;) with A; = A and Ay = A and dim(A;,A;,;) =d -1 for all
1<i<k-1.

Example
gap> c:=SC([[1,2,3],[1,2,4]1,[1,3,4],[2,3,4], [1,5,6],[1,5,7],[1,6,7]1,[5,6,711);
<SimplicialComplex: unnamed complex 27 | dim = 2 | n = 7>

gap> SCIsConnected(c);

true

gap> SCIsStronglyConnected(c);

false

6.9.49 SCMinimalNonFaces

> SCMinimalNonFaces (complex) (method)
Returns: a list of face lists upon success, fail otherwise.
Computes all missing proper faces of a simplicial complex complex by calling
SCMinimalNonFacesEx (6.9.50). The simplices are returned in the original labeling of complex.

Example
gap> c:=SCFromFacets(["abc","abd"]);;

gap> SCMinimalNonFaces(c);

CC 1, [ "ed" 1]

6.9.50 SCMinimalNonFacesEx

> SCMinimalNonFacesEx(complex) (method)

Returns: a list of face lists upon success, fail otherwise.

Computes all missing proper faces of a simplicial complex complex, i.e. the missing (i+ 1)-tuples
in the i-dimensional skeleton of a complex. A missing i+ 1-tuple is not listed if it only consists of
missing i-tuples. Note that whenever complex is k-neighborly the first k + 1 entries are empty. The
simplices are returned in the standard labeling 1,...,n, where n is the number of vertices of complex.

Example
gap> SCLib.SearchByName ("T~2"){[1..10]};

(4, "vv2 (vp" 1, [ 5, "T72 (vDO" 1, [ 9, "T~2 (vD)" 1, [ 10, "T"2 (VD" 1,
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[ 17, "T~2 (V)" 1, [ 20, "(T~2)#2" 1, [ 24, "(T~2)#3" 1,
[ 41, "T~2 (VI)" 1, [ 44, "(T~2)#4" 1, [ 65, "T"2 (VI)" ] ]
gap> torus:=SCLib.Load(last[1][1]);;
gap> SCFVector (torus);
[ 7, 21, 14 ]
gap> SCMinimalNonFacesEx(torus);
crf 1,0 11
gap> SCMinimalNonFacesEx (SCBdCrossPolytope(4));
cf1,001,21,03,41,[5,61, (7,811, [ 11

6.9.51 SCNeighborliness

> SCNeighborliness(complex) (method)
Returns: a positive integer upon success, fail otherwise.
Returns k if a simplicial complex complex is k-neighborly but not (k+ 1)-neighborly. See also
SCIsKNeighborly (6.9.43).

Note that every complex is at least 1-neighborly.
Example

gap> c:=SCBdSimplex(4);;

gap> SCNeighborliness(c);

4

gap> c:=SCBdCrossPolytope(4);;

gap> SCNeighborliness(c);

1

gap> SCLib.SearchByAttribute ("F[3]=Binomial(F[1],3) and Dim=4");
[ [ 16, "cP~2 (VI)" 1, [ 520, "K3_16" ] 1]
gap> cp2:=SCLib.Load(last[1] [1]);;

gap> SCNeighborliness(cp2) ;

3

6.9.52 SCNumFaces

> SCNumFaces (complex[, i]) (method)
Returns: an integer or a list of integers upon success, fail otherwise.
If i is not specified the function computes the f-vector of the simplicial complex complex (cf.
SCFVector (7.3.4)). If the optional integer parameter i is passed, only the i-th position of the f-
vector of complex is calculated. In any case a memory-saving implicit algorithm is used that avoids

calculating the face lattice of the complex.

Example
gap> complex:=SC([[1,2,3], [1,2,4], [1,3,4], [2,3,4]1D);;
gap> SCNumFaces (complex,1);

6

6.9.53 SCOrientation

> SCOrientation(complex) (method)
Returns: a list of the type {+1}/ or [ ] upon success, fail otherwise.
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This function tries to compute an orientation of a pure simplicial complex complex that fulfills the
weak pseudomanifold property. If complex is orientable, an orientation in form of a list of orientations
for the facets of complex is returned, otherwise an empty set.

Example

gap> c:=SCBdCrossPolytope(4);;
gap> SCOrientation(c);
[1: _1) _1: 1: _1: 1) 1’ _1: _1: 1: 1: _1: 1) _1: _1> 1]

6.9.54 SCSkel

> SCSkel(complex, k) (method)

Returns: a face list or a list of face lists upon success, fail otherwise.

If k is an integer, the k-skeleton of a simplicial complex complex, i. e. all k-faces of complex,
is computed. If k is a list, a list of all k [i]-faces of complex for each entry k [1] (which has to be
an integer) is returned. The faces are returned in the original labeling.

Example

gap> SCLib.SearchByName ("RP~2") ;

[ [3, "RP~2 (V)" 1, [ 262, "RP~2xS~1" ] ]

gap> rp2_6:=SCLib.Load(last[1][1]);;

gap> rp2_6:=SC(rp2_6.Facets+10);;

gap> SCSkelEx(rp2_6,1);

(ct1,21,01,81, 01,41, 01,581, 11
(2,51, [2,61,[3,41,[3,51, [3
[ 5,611

gap> SCSkel(rp2_6,1);

(11,1271, [ 11, 131, [ 11, 14 ], [ 11, 161, [ 11, 161, [ 12, 13 1],
[ 12, 141, [ 12, 1561, [ 12, 16 1, [ 13, 141, [ 13, 151, [ 13, 161,
[ 14, 157, [ 14, 16 1, [ 15, 16 1 ]

,61,02,31,[02,41,
,61, 04,51, 04,61,

6.9.55 SCSkelEx

> SCSkelEx(complex, k) (method)

Returns: a face list or a list of face lists upon success, fail otherwise.

If k is an integer, the k-skeleton of a simplicial complex complex, i. e. all k-faces of complex,
is computed. If k is a list, a list of all k [i]-faces of complex for each entry k [1] (which has to be
an integer) is returned. The faces are returned in the standard labeling.

Example

gap> SCLib.SearchByName ("RP~2");

[ [3, "RP~2 (VTO" 1, [ 262, "RP~2x3"1" ] ]

gap> rp2_6:=SCLib.Load(last[1][1]);;

gap> rp2_6:=SC(rp2_6.Facets+10);;

gap> SCSkelEx(rp2_6,1);

tf1+,21,01,31, 01,41, 001,51, [1,61,[2,31,1[2,4]1,
[2,5]1, (2,61, [3,41,[3,51,[3,61,[4,51, 1[4, 6]
[5,61]1]

gap> SCSkel(rp2_6,1);

(11,127, [ 11, 131, [ 11, 141, [ 11, 157, [ 11, 161, [ 12, 131,
(12, 141, [ 12, 161, [ 12, 16 1, [ 13, 141, [ 13, 161, [ 13, 16 1,

’ B ’ B B B
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(14, 151, [ 14, 16 1, [ 15, 16 ] ]

6.9.56 SCSpanningTree

> SCSpanningTree (complex) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

Computes a spanning tree of a connected simplicial complex complex using a greedy algorithm.
Example
gap> c:=Sc([["a","b","c"],["a","b","d"], ["a","c","d"], ["b","c","d"]11);;
gap> s:=SCSpanningTree(c);

<SimplicialComplex: spanning tree of unnamed complex 1 | dim =1 | n = 4>
gap> s.Facets;

(01, 271,01,371,[1,41]1]

6.10 Operations on simplicial complexes

The following functions perform operations on simplicial complexes. Most of them return simplicial
complexes. Thus, this section is closely related to the Sections 6.6 "Generate new complexes from
old”. However, the data generated here is rather seen as an intrinsic attribute of the original complex
and not as an independent complex.

6.10.1 SCAlexanderDual

> SCAlexanderDual (complex) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

The Alexander dual of a simplicial complex complex with set of vertices V is the simplicial
complex where any subset of V spans a face if and only if its complement in V is a non-face of
complex.

Example
gap> c:=SC([[1,2],[2,3],[3,41,[4,111);;
gap> dual:=SCAlexanderDual(c);;

gap> dual.F;

[4, 2]

gap> dual.IsConnected;

false

gap> dual.Facets;

(01,31, 02,41]1

6.10.2 SCClose

> SCClose(complex[, apex]) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Closes a simplicial complex complex by building a cone over its boundary. If apex is specified it
is assigned to the apex of the cone and the original vertex labeling of complex is preserved, otherwise
an arbitrary vertex label is chosen and complex is returned in the standard labeling.
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Example
gap> s:=SCSimplex(5);;

gap> b:=SCSimplex(5);;

gap> s:=SCClose(b,13);;

gap> SCIsIsomorphic(s,SCBdSimplex(6));
true

6.10.3 SCCone

> SCCone(complex, apex) (function)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

If the second argument is passed every facet of the simplicial complex complex is united with
apex. If not, an arbitrary vertex label v is used (which is not a vertex of complex). In the first case
the vertex labeling remains unchanged. In the second case the function returns the new complex in the
standard vertex labeling from 1 to n+ 1 and the apex of the cone is n+ 1.

If called with a facet list instead of a SCSimplicialComplex object and apex is not specified,

internally falls back to the homology package [DHSW11], if available.
Example

gap> SCLib.SearchByName ("RP~3") ;
[ [ 45, "RP~3" 1, [ 114, "RP~3=L(2,1) (VD" 1, [ 237, "(8"2xS"1)#RP~3" 1],
[ 238, "(5°27S~1)#RP~3" 1, [ 263, "(S~2xS"1)#2#RP~3" 1,
264, "(S~27S~1)#2#RP~3" ], [ 366, "RP"3#RP~3" ],
382, "RP~3=L(2,1) (V)" 1, [ 399, "(S~275~1)#3#RP~3" ]
402, "(8~2xS~1)#3#RP~3" 1, [ 417, "RP~3=L(2,1) (VvD)" 1],
502, "(8°27S~1)#4#RP~3" 1, [ 503, "(872xS~1)#4#RP~3" ]
1, ]
[1

[ B e B e B |

[ 531, "(S~2xS~1)#5#RP~3" [ 532, "(8~27S~1)#5#RP~3"
gap> rp3:=SCLib.Load(last[11[1]1);;
gap> rp3.F;
[ 11, 51, 80, 40 ]
gap> cone:=SCCone (rp3);;
gap> cone.F;
[ 12, 62, 131, 120, 40 ]

Example

gap> s:=SCBdSimplex(4)+12;;

gap> s.Facets;

[ [ 13, 14, 15, 16 1, [ 13, 14, 15, 17 1, [ 13, 14, 16, 17 1],
[ 13, 15, 16, 17 1, [ 14, 15, 16, 17 1 1]

gap> cc:=SCCone(s,13);;

gap> cc:=SCCone(s,12);;

gap> cc.Facets;

( [ 12, 13, 14, 15, 16 1, [ 12, 13, 14, 15, 17 1, [ 12, 13, 14, 16, 17 1],
[ 12, 13, 15, 16, 17 1, [ 12, 14, 15, 16, 17 ] ]

6.10.4 SCDeleted]Join

> SCDeletedJoin(complex1, complex2) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
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Calculates the simplicial deleted join of the simplicial complexes complex1 and complex2. If
called with a facet list instead of a SCSimplicialComplex object, the function internally falls back
to the homology package [DHSW11], if available.

gap> deljoin:=SCDeletedJoin(SCBdSimplex(3),SCBdSimplex(3));
<SimplicialComplex: S~2_4 deljoin S~2_4 | dim =

Example

gap> bddeljoin:=SCBoundary(deljoin);;

gap> bddeljoin.Homology;

(L1,

[

—/

L 11,
gap> deljoin.Facets

1,

-

-

-

-

-

-

-

-

-

.

1

1,

M

.

-

-

-

-

-

-

-

-

.

[

Lo,

2,

M

™

-

-

-

-

-

-

-

-

™

>

-

-

-

-

-

-

-

-

-

-

-

-

L 11,

-

-

-

-

-

-

-

-

-

-

-

-

2,

-

-

-

-

-

-

-

-

-

-

-

[

111

-

-

-

-

-

-

-

-

-

-

-

-

3| n=8

NNMNNDNPFP,P PP FEPNNDMNNDMNDNDERE -~

e L b b e e e e e e b e
W WWWwwWwwwwwwwwwow

N, P, NP P NNMNNNDER,EPRDNDNDE-

| I [ I [y NN [ N D N Dy N D SN D S S D SN Dy Sy S SNy S—
L S S S N L S T S o
F NP, NEFENENNERLENEREDNDREN

-

e I e N e A e Y e SO s B e A e A e N s Y ey B e |

L I s I s I e B e O e A s I e I e Y e Y e A s A s I |

e e e e e e e e e e

M M

NNDNNDNDNNDNMNNDMNNDNE, P P22

| I [y N D N SN [ S [y S D S [ SN [ S AU [ U D S m—
-

L s I e IO e TN e O e Y e Y s A s A e A e A e A o B e |

N NN DNDNDNDNNDNNDNDNDNDDNDDNDDN

- -

| e I e B e B s N oy A st I s AN s A s N e I sy N e A sy B §

| e U e B e I s Oy A st B s A s A e N e I sy O e A s B §

| Iy N Ny S [y U [y Iy S [ SN [y IS I [y IS Dy Sy Sy S— )

—_ e e e e e e

—

-
-

6.10.5 SCDifference

D> SCDifference(complexl, complex2)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

(method)

Forms the “difference” of two simplicial complexes complexl and complex2 as the simpli-
cial complex formed by the difference of the face lattices of complex! minus complex2. The

two arguments are not altered. Note:

for the difference process the vertex labelings of the

complexes are taken into account, see also Operation Difference (SCSimplicialComplex,

SCSimplicialComplex) (5.3.2).

Example
gap> c:=SCBdSimplex(3);;
gap> d:=SC([[1,2,3]11);;
gap> disc:=SCDifference(c,d);;
gap> disc.Facets;
(l1,2,41,[01,3,41,[2,3,41]1

gap> empty:=SCDifference(d,c);;
gap> empty.Dim;
-1

6.10.6 SCFillSphere

> SCFillSphere(complex[, vertex])
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise .

(function)
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Fills the given simplicial sphere complex by forming the suspension of the anti star of vertex
over vertex. This is a triangulated (d + 1)-ball with the boundary complex, see [BD08]. If the

optional argument vertex is not supplied, the first vertex of complex is chosen.

Note that it is not checked whether complex really is a simplicial sphere — this has to be done by

the user!
Example

gap> SCLib.SearchByName ("S~4");

[ [36, "s"4 (vT)" 1, [ 37, "s~4 (vi)" 1, [ 38, "s~4 (vO)" 1,
[ 117, "S~4 (vT)" 1, [ 203, "S$~4~sS~1 (VT)" 1, [ 282, "S~4xS~1 (VD)" 1,
[ 329, "S~4xS~1 (VT)" 1, [ 330, "sS~4~s~1 (VI)" 1, [ 331, "S~4xS~1 (VD" 1,
[ 332, "S~4~s~1 (VT)" 1, [ 395, "s~4~s~1 (VvT)" 1, [ 396, "S~4 (VD)" 1,
[ 450, "S~4 (VvT)" ], [ 451, "S$~4~s~1 (VI)" 1, [ 452, "s~4~S~1 (VD" 1,
[ 453, "S~4~s~1 (VT)" 1, [ 454, "S$~4~S~1 (VT)" 1, [ 455, "$"4~S~1 (VD))" 1,
[ 458, "S~4~S~1 (VT)" 1, [ 459, "S~4~s~1 (VI)" 1, [ 460, "S$~4~S~1 (VI)" ] ]

gap> s:=SCLib.Load(last[1][1]);;
gap> filled:=SCFillSphere(s);

<SimplicialComplex: FilledSphere(S~4 (VT)) at vertex [ 1] | dim=5 | n =

gap> SCHomology(filled) ;

tto, ¢ 11, Co,C 11, Co0,C 11,00, 11, C0,[ 11,
(o, [ 111

gap> SCCollapseGreedy(filled);

]l dim=01]n-=1>

gap> bd:=SCBoundary(filled);;
gap> bd=s;

true

10>

<SimplicialComplex: collapsed version of FilledSphere(S~4 (VT)) at vertex [ 1 \

6.10.7 SCHandleAddition

> SCHandleAddition(complex, f1, f2)
Returns: simplicial complex of type SCSimplicialComplex, fail otherwise.

(method)

Returns a simplicial complex obtained by identifying the vertices of facet £1 with the ones from
facet £2 in complex. A combinatorial handle addition is possible, whenever we have d(v,w) > 3 for
any two vertices v €f1 and w ef2, where d(-,-) is the length of the shortest path from v to w. This

condition is not checked by this algorithm. See [BD11] for further information.
Example

gap> c:=SC([[1,2,4],[2,4,5],[2,3,5],[3,5,6],[1,3,6],[1,4,611);;

gap> c:=SCUnion(c,SCUnion(SCCopy(c)+3,SCCopy(c)+6));;

gap> c:=3CUnion(c,SC([[1,2,3],[10,11,12]11));;

gap> c.Facets;

(f1,2,31,01,2,41,01,3,61,[1,4,61,1[2,3,5]1,
(2,4,51,[3,5,61,[4,5,71,04,6,91,[4,7,91,
[5,6,81,[5,7,81,[6,8,91, [7,8,101, [7,9, 121,
(7, 10,121, [8, 9,111, [8, 10, 127, [ 9, 11, 12 ], [ 10, 11, 12 ] ]

gap> c.Homology;

tfto, L 11,00, 0 11,01, 0 111

gap> torus:=SCHandleAddition(c, [1,2,3],[10,11,12]);;
gap> torus.Homology;

trfo, L 11,02, 01171, 01, 111

gap> ism:=SCIsManifold(torus);;
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gap> ism;
true

6.10.8 SClntersection

D> SCIntersection(complexl, complex2) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Forms the “intersection” of two simplicial complexes complex! and complex2 as the simpli-

cial complex formed by the intersection of the face lattices of complexl and complex2. The

two arguments are not altered. Note: for the intersection process the vertex labelings of the com-
plexes are taken into account. See also Operation Intersection (SCSimplicialComplex,

SCSimplicialComplex) (5.3.3).

Example

gap> c:=SCBdSimplex(3);;

gap> d:=SCBdSimplex(3)+1;;

gap> d.Facets;
(r2,3,41,02,3,51,[2,4,51, [3,4,51]1
gap> c:=SCBdSimplex(3);;

gap> d:=SCBdSimplex(3);;

gap> d:=SCMove(d, [[1,2,3],[]1]1)+1;;

gap> sl:=SCIntersection(c,d);;

gap> sl.Facets;

([2,31,[2,41,[3,41]1

6.10.9 SClIsIsomorphic

> SCIsIsomorphic(complexl, complex2) (method)
Returns: true or false upon success, fail otherwise.
The function returns true, if the simplicial complexes complexl and complex2 are combinato-
rially isomorphic, false if not.
Example
gap> c1:=SC([[11,12,13],[11,12,14],[11,13,14],[12,13,14]11);;
gap> c2:=SCBdSimplex(3);;
gap> SCIsIsomorphic(cl,c2);
true
gap> c3:=SCBdCrossPolytope(3);;
gap> SCIsIsomorphic(cl,c3);
false

6.10.10 SCIsSubcomplex

> SCIsSubcomplex(scl, sc2) (method)
Returns: true or false upon success, fail otherwise.
Returns true if the simplicial complex sc2 is a sub-complex of simplicial complex sc1, false
otherwise. If dim(sc2) < dim(sc1) the facets of sc2 are compared with the dim(sc2)-skeleton of



simpcomp 94

sc1. Only works for pure simplicial complexes. Note: for the intersection process the vertex labelings
of the complexes are taken into account.
Example
gap> SCLib.SearchByAttribute("F[1]=10"){[1..10]};
([17, "T~2 (vI)" 1, [ 18, "K~2 (V)" 1, [ 19, "s"3 (vI)" 1],
[ 20, "(T~2)#2" 1, [ 21, "s~3 (vI)" 1, [ 22, "S"3 (VD))" 1],
[ 23, "S~2xS~1 (vT)" 1, [ 24, "(T~2)#3" 1, [ 25, "(P~2)#7 (VI)" 1,
[ 26, "s~27s"1 (VD))" ] ]
gap> k:=SCLib.Load (last[1][1]);;
gap> c:=SCBdSimplex(9);;
gap> k.F;
[ 10, 30, 20 ]
gap> c.F;
[ 10, 45, 120, 210, 252, 210, 120, 45, 10 ]
gap> SCIsSubcomplex(c,k);
true
gap> SCIsSubcomplex(k,c);
false

6.10.11 SCIsomorphism

> SCIsomorphism(complexl, complex2) (method)
Returns: a list of pairs of vertex labels or false upon success, fail otherwise.
Returns an isomorphism of simplicial complex complex1 to simplicial complex complex2 in
the standard labeling if they are combinatorially isomorphic, false otherwise. Internally calls
SCIsomorphismEx (6.10.12).

Example
gap> c1:=SC([[11,12,13],[11,12,14],[11,13,14],[12,13,14]11);;
gap> c2:=SCBdSimplex(3);;

gap> SCIsomorphism(cl,c2);

(11,17, 012,271, [ 13,37, [ 14, 41 ]

gap> SCIsomorphismEx(cl,c2);

cftcf1,11, 02,21, 03,31, 0[4,411]1

6.10.12 SCIsomorphismEx

> SCIsomorphismEx(complexl, complex2) (method)
Returns: a list of pairs of vertex labels or false upon success, fail otherwise.
Returns an isomorphism of simplicial complex complexl to simplicial complex complex2 in
the standard labeling if they are combinatorially isomorphic, false otherwise. If the f-vector and
the Altshuler-Steinberg determinant of complex1 and complex2 are equal, the internal function

SCIntFunc.SCComputelsomorphismsEx(complex1,complex2,true) is called.
Example
gap> c1:=SC([[11,12,13],[11,12,14],[11,13,14],[12,13,14]11);;
gap> c2:=SCBdSimplex(3);;

gap> SCIsomorphism(cl,c2);

(011,171,012, 2], [13,31, [ 14,411

gap> SCIsomorphismEx(cl,c2);
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tfcf1,11,02, 271, 03,31, 04,4111

6.10.13 SCJoin

> SCJoin(complexl, complex2) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Calculates the simplicial join of the simplicial complexes complex1 and complex2. If facet lists

instead of SCSimplicialComplex objects are passed as arguments, the function internally falls back

to the homology package [DHSW11], if available. Note that the vertex labelings of the complexes

passed as arguments are not propagated to the new complex.
Example
gap> sphere:=3CJoin(SCBdSimplex(2),SCBdSimplex(2));
<SimplicialComplex: S~1_3 join S°1_3 | dim = 3 | n = 6>
gap> SCHasBoundary(sphere) ;

false

gap> sphere.Facets;
tccf1,11,01,271,02,11,[2,211,
tf1, 11,011,211, 02,11,02,311,
trt1, 11,011,271, 02,2],02,311,
trt1,11,01,31,02,1],02,211,
tri1, 11,011,371, 02,1],02,311,
tf1,11,01,31,[02,21,02,311,
tf1,271,01,31,[02,11,02,211,
1, 271,01,31,02,11,02,311,
trt1,21,01,31,02,2]1,02,311]
gap> sphere.Homology;

tfto, L 11,00, 11,00, 011,01, 111

Example

gap> ball:=SCJoin(8C([[1]]),SCBdSimplex(2));

<SimplicialComplex: unnamed complex 4 join S°1_3 | dim =2 | n = 4>

gap> ball.Homology;

tfto, L 11,00, 11,00, [ 111

gap> ball.Facets;

ccft, 11, 02,11,
tf1, 11, 02,21,

(2,211, 001,11, 02,11,[2,311,
[2,311]1

B

6.10.14 SCNeighbors

> SCNeighbors(complex, face) (method)
Returns: a list of faces upon success, fail otherwise.
In a simplicial complex complex all neighbors of the k-face face, i. e. all k-faces distinct from
face intersecting with face in a common (k- 1)-face, are returned in the original labeling.
Example
gap> c:=SCFromFacets(Combinations(["a","b","c"],2));
<SimplicialComplex: unnamed complex 22 | dim =1 | n = 3>
gap> SCNeighbors(c, ["a","d"]);
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[ [ llall’ Ilbll ] s [ llall’ IICII ] ]

6.10.15 SCNeighborsEx

D> SCNeighborsEx(complex, face) (method)

Returns: a list of faces upon success, fail otherwise.

In a simplicial complex complex all neighbors of the k-face face, i. e. all k-faces distinct from
face intersecting with face in a common (k— 1)-face, are returned in the standard labeling.
Example
gap> c:=SCFromFacets(Combinations(["a","b","c"],2));
<SimplicialComplex: unnamed complex 21 | dim =1 | n = 3>
gap> SCLabels(c);

[ "a", "b", "c" ]
gap> SCNeighborsEx(c, [1,2]);
(01,31, 02, 311

6.10.16 SCShelling

> SCShelling(complex) (method)

Returns: a facet list or false upon success, fail otherwise.

The simplicial complex complex must be pure, strongly connected and must fulfill the weak
pseudomanifold property with non-empty boundary (cf. SCBoundary (6.9.7)).

An ordering (Fy,F,...,F,) on the facet list of a simplicial complex is a shelling if and only if
F,n(Fu...UF;_) is a pure simplicial complex of dimension d—1 foralli=1,...,r.

The function checks whether complex is shellable or not. In the first case a permuted version of
the facet list of complex is returned encoding a shelling of complex, otherwise false is returned.

Internally calls SCShellingExt (6.10.17) (complex,false, [1) ;. To learn more about shellings
see [Zie95], [Pac87].

Example
gap> c:=SC([[1,2,3],[1,2,4],[1,3,411);;
gap> SCShelling(c);
(ff1,2,371,[01,2,41,[1,3,411]

6.10.17 SCShellingExt

> SCShellingExt(complex, all, checkvector) (method)

Returns: a list of facet lists (if checkvector = []) or true or false (if checkvector is not
empty), fail otherwise.

The simplicial complex complex must be pure of dimension d, strongly connected and must fulfill
the weak pseudomanifold property with non-empty boundary (cf. SCBoundary (6.9.7)).

An ordering (Fy,F,,...,F,) on the facet list of a simplicial complex is a shelling if and only if
F,n(Fyu...UF;_;) is a pure simplicial complex of dimension d —1 forall i=1,...,r.

If a1l is set to true all possible shellings of complex are computed. If all is set to false, at
most one shelling is computed.
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Every shelling is represented as a permuted version of the facet list of complex. The list
checkvector encodes a shelling in a shorter form. It only contains the indices of the facets. If
an order of indices is assigned to checkvector the function tests whether it is a valid shelling or not.

See [Zie95], [Pac87] to learn more about shellings.
Example

gap> c:=SCBdSimplex(4);;

gap> c:=SCDifference(c,SC([c.Facets[1]]));; # bounded version
gap> all:=SCShellingExt(c,true,[]);;

gap> Size(all);

24

gap> alll[1];
(l(t1,2,35]1,[1,2,4,51,[1,3,4,51,1[2,3,4,51]
gap> all:=SCShellingExt(c,false,[]);
(cf1,2,3,571,[01,2,4,571,[1,3,4,51,1[2,3,4,5711]
gap> all:=SCShellingExt(c,true,[1..4]);

true

6.10.18 SCShellings

> SCShellings(complex) (method)

Returns: a list of facet lists upon success, fail otherwise.

The simplicial complex complex must be pure, strongly connected and must fulfill the weak
pseudomanifold property with non-empty boundary (cf. SCBoundary (6.9.7)).

An ordering (Fy,F,,...,F,) on the facet list of a simplicial complex is a shelling if and only if
F,n(Fyu...UF;_;) is a pure simplicial complex of dimension d — 1 forall i=1,...,r.

The function checks whether complex is shellable or not. In the first case a list of permuted
facet lists of complex is returned containing all possible shellings of complex, otherwise false is
returned.

Internally calls SCShellingExt (6.10.17)(complex,true, [1) ;. To learn more about shellings
see [Zie95], [Pac87].

Example
gap> c:=SC([[1,2,3],[1,2,4],[1,3,4]11);;

gap> SCShellings(c);

(rri1, 2,31, 01,2,41,[1,3,411,
([1,2,31,[1,3,41,[1,2,411,
[C1,2,41,01,2,31,[1,3,411,
[fi1,3,41731,01,2,371,[1,2,4711,
(C1,2,41,001,3,41,[1,2,311,
[C1,3,41,01,2,41,[1,2,311]1

6.10.19 SCSpan
> SCSpan(complex, subset) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes the reduced face lattice of all faces of a simplicial complex complex that are spanned
by subset, a subset of the set of vertices of complex.
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Example
gap> c:=SCBdCrossPolytope(4);;

gap> SCVertices(c);

[1..8]

gap> span:=SCSpan(c,[1,2,3,4]);
<SimplicialComplex: span([ 1, 2, 3, 4 ]) in Bd(\beta"4) | dim =1 | n = 4>
gap> span.Facets;

(01,31, 01,471, 02,381,1[0[2,41]1

Example
gap> c:=8C([[1,2],[1,4,5],[2,3,4]11);;

gap> span:=SCSpan(c, [2,3,5]);
<SimplicialComplex: span([ 2, 3, 5 ]) in unnamed complex 121 | dim = 1 | n = 3\
>

gap> SCFacets(span);

(L2, 31, [51]

6.10.20 SCSuspension

> SCSuspension(complex) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Calculates the simplicial suspension of the simplicial complex complex. Internally falls back to

the homology package [DHSW11] (if available) if a facet list is passed as argument. Note that the

vertex labelings of the complexes passed as arguments are not propagated to the new complex.

Example

gap> SCLib.SearchByName("Poincare") ;

[ [ 497, "Poincare_sphere" ] ]

gap> phs:=SCLib.Load(last[1][1]);

<SimplicialComplex: Poincare_sphere | dim = 3 | n = 16>

gap> susp:=SCSuspension(phs);;

gap> edwardsSphere:=SCSuspension(susp);

<SimplicialComplex: susp of susp of Poincare_sphere | dim = 5 | n = 20>

6.10.21 SCUnion

> SCUnion(complexl, complex2) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Forms the union of two simplicial complexes complex1 and complex2 as the simplicial complex
formed by the union of their facets sets. The two arguments are not altered. Note: for the union
process the vertex labelings of the complexes are taken into account, see also Operation Union
(SCSimplicialComplex, SCSimplicialComplex) (5.3.1). Facets occurring in both arguments are
treated as one facet in the new complex.

Example
gap> c:=SCUnion(SCBdSimplex(3),SCBdSimplex(3)+3); #a wedge of two 2-spheres
<SimplicialComplex: S°2_4 cup S°2_4 | dim =2 | n = 7>
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6.10.22 SCVertexIdentification

D> SCVertexIdentification(complex, vi1, v2) (method)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

Identifies vertex v1 with vertex v2 in a simplicial complex complex and returns the result as a
new object. A vertex identification of v1 and v2 is possible whenever d(v1,v2) > 3. This is not
checked by this algorithm.

Example

gap> c:=SC([[1,2],[2,3],[3,4]11);;

gap> circle:=SCVertexIdentification(c, [1],[4]);;
gap> circle.Facets;

(01,21, 01,31,[02,3171]1

gap> circle.Homology;

tfo, L 11,01, [ 111

6.10.23 SCWedge

> SCWedge (complexl, complex2) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Calculates the wedge product of the complexes supplied as arguments. Note that the vertex label-

ings of the complexes passed as arguments are not propagated to the new complex.
Example
gap> wedge:=SCWedge (SCBdSimplex(2) ,SCBdSimplex(2));
<SimplicialComplex: unnamed complex 17 | dim =1 | n = 5>
gap> wedge.Facets;
(Cl1, 01,211, I
(1,271,101, 3

, 01, 02,211, 01, 02,311,

1, ]
] (2,21,[0[2,311]1

(1, 3]
1, I




Chapter 7

Functions and operations for
SCNormalSurface

7.1 Creating an SCNormalSurface object

This section contains functions to construct discrete normal surfaces that are slicings from a list of
2-dimensional facets (triangles and quadrilaterals) or combinatorial 3-manifolds.

For a very short introduction to the theory of discrete normal surfaces and slicings see Section
2.4 and Section 2.5, for an introduction to the GAP object type SCNormalSurface see 5.4, for more
information see the article [Spr11b].

7.1.1 SCNSEmpty

> SCNSEmpty() (function)
Returns: discrete normal surface of type SCNormalSurface upon success, fail otherwise.
Generates an empty complex (of dimension —1), i. e. an object of type SCNormalSurface with
empty facet list.

Example
gap> SCNSEmpty () ;
<NormalSurface: empty normal surface | dim = -1>
7.1.2 SCNSFromFacets
> SCNSFromFacets(facets) (method)

Returns: discrete normal surface of type SCNormalSurface upon success, fail otherwise.

Constructor for a discrete normal surface f{Eom a {acet list, see SCFromFacets (6.1.1) for details.
xample

gap> sl:=SCNSFromFacets([[1,2,3],[1,2,4,5],[1,3,4,61,[2,3,5,6],[4,5,611);
<NormalSurface: unnamed complex 114 | dim = 2>

7.1.3 SCNS

D> SCNS(facets) (method)
Returns: discrete normal surface of type SCNormalSurface upon success, fail otherwise.

100
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Internally calls SCNSFromFacets (7.1.2).

Example
gap> sl:=SCNs([[1,2,3],[1,2,4,5],[1,3,4,6],([2,3,5,6],[4,5,6]]);
<NormalSurface: unnamed complex 115 | dim = 2>

7.1.4 SCNSSlicing

D> SCNSSlicing(complex, slicing) (function)
Returns: discrete normal surface of type SCNormalSurface upon success, fail otherwise.
Computes a slicing defined by a partition s1icing of the set of vertices of the 3-dimensional

combinatorial pseudomanifold complex. In particular, slicing has to be a pair of lists of vertex

labels and has to contain all vertex labels of complex.

Example

gap> SCLib.SearchByAttribute("F=[ 10, 35, 50, 25 1");

[ [19, "s~3 (vD)" 11

gap> c:=SCLib.Load (last[1][1]);;

gap> sl:=SCNSSlicing(c,[[1..5],[6..10]11);

<NormalSurface: slicing [ [ 1, 2, 3, 4, 51, [ 6, 7, 8, 9, 101 1 of S°3 (VI) \

| dim = 2>

gap> sl.Facets;

rrfts, 61,011,871, 01,911, (C1,61,[1,8]1,[3,61,[3,81]1]
, 1,61, 01,91, [4,61,[4,911,

(1,671, [3,61, 04,611, ([1,8]1, 01,91, [1, 1011,

(r:i 831, 01,101, 03,81, [3,1011,

(rC1, 91, 01,101, [02,91,[2,1011,

(c1,91,02,91, (4,911, [[1,101, 2,101, [3, 1011,
tc2,71,02,91, [2, 1011,
(c2,71,02,91, [ 4, 71,004,911,

(2,71, 02,101, 5,71, [5,1011,

(C2,71, 04,71, [5, 711, [[2, 101, [3,101, [5, 1011,
(3,61, 03,81, [5,61,[5,811,[[3,61,[4,61,1[5,61]1
, 03 81, 03,101, 5,81, [5,1011,

(4,61, (4,71, (4,911, [ (4,61, [4, 7], [5,61, [5,71]1]
, 5,61, 05,71, [5,811, [[5, 71, [5,81, [5,101171]1]

gap> sl:=SCNSSlicing(c,[[1,3,5,7,9],[2,4,6,8,1011);

<NormalSurface: slicing [ [ 1, 3, 5, 7, 91, [ 2, 4, 6, 8, 10 ] 1 of S°3 (VT) \

| dim = 2>

gap> sl.Facets;

crrft1,21,01,41,03,21,1[3,411,

(1,273, 01,41,09,21,0[009,411,

(rc:1 21,011,101, 03,21, [3,1011,

(c:1 21,011,101, 09,21, 0[9, 1011,

(C1, 41,011,671, [3,41, 03,611,

(C1,4]1, 01,61, 09,41, [9,611,
(1,61, 01,81, [3,61, (3,811,
(1,61, 01,81, [9,61,[9,811,

(c: 81, 01,101, 03,81, [3,1011,

(rci+ 81, 01,101, 09,81, 0[9, 1011,

(3, 21,03,41,[5,21,[5,411,

(3,21, 03,101, [ 5,21, [5,1011,

(03,41, 03,61,[5,41, [5,611,
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(s 61,3 81, [5,61, [5,811,
(3 81, [3 101, [5,81, [5, 1011,
(5, 21,[5,41, (7,21, [7,411,
(5, 21, [5,101, [7,21,[7,101]1,
[[5,41,[5,61, (7,41, (7,611,
[[5,61,[5,81,[7,61,[7,811,
rfs,81, 5,101, 7,81, [7,101]]1,
tc7,21, 07,41, 09,21, 09,411,
(c7,21, 07,101, (9,21, [9, 1011,
(7,41, 7,61, [9,41,[9,611,
7,61, 7,81, [9,61,[9,811,
7,81, 7,101, [9,81, [9,10]11]1]

7.2 Generating new objects from discrete normal surfaces

simpcomp provides the possibility to copy and / or triangulate normal surfaces. Note that other
constructions like the connected sum or the cartesian product do not make sense for (embedded)
normal surfaces in general.

7.2.1 SCCopy

> SCCopy(complex) (method)
Returns: discrete normal surface of type SCNormalSurface upon success, fail otherwise.
Copies a GAP object of type SCNormalSurface (cf. SCCopy).

Example

gap> s1:=SCNSSlicing(SCBdSimplex(4),[[1],[2..511);

<NormalSurface: slicing [ [ 11, [ 2, 3, 4, 51 ] of S73_5 | dim

gap> sl_2:=SCCopy(sl);

<NormalSurface: slicing [ [ 1], [ 2, 3, 4, 5] ] of S*3_5 | dim

gap> IsIdenticalObj(sl,sl_2);

false

2>

2>

7.2.2 SCNSTriangulation

> SCNSTriangulation(sl) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Computes a simplicial subdivision of a slicing s1I without introducing new vertices. The subdi-

vision is stored as a property of s1 and thus is returned as an immutable object. Note that symmetry

may be lost during the computation.

Example

gap> SCLib.SearchByAttribute("F=[ 10, 35, 50, 25 1");

[ [19, "s~3 (vD)" 11

gap> c:=SCLib.Load(last[1]1[1]);;

gap> s1:=SCNSSlicing(c,[[1,3,5,7,9],[2,4,6,8,10]11);;

gap> sl.F;

[ 25, 50, 0, 25 ]

gap> sc:=SCNSTriangulation(sl);;
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gap> sc.F;
[ 25, 75, 50 ]

7.3 Properties of SCNormalSurface objects

Although some properties of a discrete normal surface can be computed by using the functions for

simplicial complexes, there is a variety of properties needing specially designed functions. See below
for a list.

7.3.1 SCConnectedComponents

> SCConnectedComponents (complex) (method)

Returns: alist of simplicial complexes of type SCNormalSurface upon success, fail otherwise.
Computes all connected components of an arbitrary normal surface.

Example
gap> s1:=SCNSSlicing(SCBdCrossPolytope(4),[[1,2],[3..8]1);

<NormalSurface: slicing [ [ 1, 21, [ 3, 4, 5, 6, 7, 8 1 1 of Bd(\beta~4) | di\
m = 2>

gap> cc:=SCConnectedComponents(sl);

[ <NormalSurface: Connected component #1 of slicing [ [ 1, 21, [ 3, 4, 5, 6, \
7, 81 1 of Bd(\beta~4) | dim = 2>,

<NormalSurface: Connected component #2 of slicing [ [ 1, 21, [ 3, 4, 5, 6, \
7, 8 1 1 of Bd(\beta~4) | dim = 2> ]

7.3.2 SCDim

> SCDim(sl)
Returns: an integer upon success, fail otherwise.

Computes the dimension of a discrete normal surface (which is always 2 if the slicing s1 is not
empty).

(method)

Example

gap> s1:=SCNSEmpty();;
gap> SCDim(sl);

-1

gap> sl:=SCNSFromFacets([[1,2,3],[1,2,4,5],[1,3,4,61,[2,3,5,6],[4,5,611);;
gap> SCDim(sl);

2

7.3.3 SCEulerCharacteristic

> SCEulerCharacteristic(sl)
Returns: an integer upon success, fail otherwise.
Computes the Euler characteristic of a discrete normal surface s1, cf. SCEulerCharacteristic.

(method)
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list:=SCLib.SearchByName ("S~2xS~1");;
c:=3CLib.Load (list [1]1[1]1);;
s1:=SCNSSlicing(c,[[1..5],[6..1011);;
SCEulerCharacteristic(sl);

gap>
gap>
gap>
gap>

7.3.4 SCFVector

> SCFVector(sl)

(method)

Returns: a1, 3 or 4 tuple of (non-negative) integer values upon success, fail otherwise.
Computes the f-vector of a discrete normal surface, i. e. the number of vertices, edges, triangles

and quadrilaterals of s1, cf. SCFVector.
Example

gap> list:=SCLib.SearchByName ("S~2xS~1");;
gap> c:=SCLib.Load (1ist[1][1]);;

gap> s1:=SCNSSlicing(c, [[1..5],[6..10]11);;
gap> SCFVector(sl);

[ 20, 40, 16, 8 ]

7.3.5 SCFaceLattice

> SCFacelattice(complex)
Returns: a list of facet lists upon success, fail otherwise.

(method)

Computes the face lattice of a discrete normal surface s1 in the original labeling. Triangles and

quadrilaterals are stored separately (cf. SCSkel (7.3.13)).

Example
gap> c:=SCBdSimplex(4);;
gap> s1:=3CNSSlicing(c,[[1,2],[3..5]11);;
gap> SCFacelattice(sl);
cctrfs,311, 001,411, 001,511, 002,311, [[2,411,
[[2, 5111,
crct1,31, 01,411, 001,371, 01¢,5711, 001,31, T[2,311,
tr+ 41,011,511, [C1,41,02,411,C[1,5871,0[2,511,
(r2,31,02,411, (2,31, [2,511,[([2,41,[2,511]1
, 0tcf1,31,01,471, 01,511, [(02,381,[2,41,0[02,5111,
tfrf1,31,01,41,02,31, 102,411,
tr+ 331,011,571, 02,31,[2,511,
(rc1,41, 01,51, 02,41, [2,51111
gap> sl.F;
[ 6,9, 2, 3]
7.3.6 SCFaceLatticeEx
D> SCFacelatticeEx(complex) (method)

Returns: a list of face lists upon success, fail otherwise.
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Computes the face lattice of a discrete normal surface s1 in the standard labeling. Triangles and
quadrilaterals are stored separately (cf. SCSkelEx (7.3.14)).
Example

gap> c:=SCBdSimplex(4);;
gap> sl:=SCNSSlicing(c,[[1,2],[3..5]11);;
gap> SCFacelatticeEx(sl);
(rrt+1, 021,031,041, 51,0611,
tf+ 21,011,311, [1,41,02,31,[2,51, (3,61, 1[4, 51,
(4,61, 5,611, [[1,2,3]1,[4,5,61]11,
[[1,2, 4,51, [1,3,4,61,[2,3,5,611]1
gap> sl.F;
[ 6,9, 2, 3]

7.3.7 SCFpBettiNumbers

> SCFpBettiNumbers(sl, p) (method)
Returns: a list of non-negative integers upon success, fail otherwise.
Computes the Betti numbers modulo p of a slicing s1. Internally, s1 is triangulated (using

SCNSTriangulation (7.2.2)) and the Betti numbers are computed via SCFpBettiNumbers using
the triangulation.

Example
gap> SCLib.SearchByName (" (S~2xS~1)#20") ;

[ [ 633, "(S~2xS~1)#20" ] ]

gap> c:=SCLib.Load(last[1][1]);;

gap> c.F;

[ 27, 298, 542, 271 1]

gap> s1:=SCNSSlicing(c,[[1..13],[14..2711);;
gap> SCFpBettiNumbers(sl,2);

[ 2, 14, 2]

7.3.8 SCGenus

> SCGenus(sl1)

Returns: a non-negative integer upon success, fail otherwise.
Computes the genus of a discrete normal surface s1.

Example
gap> SCLib.SearchByName (" (S~2xS~1)#20") ;

[ [ 633, "(572xS~1)#20" ] ]

gap> c:=SCLib.Load (last[1][1]);;

gap> c.F;

[ 27, 298, 542, 271 ]

gap> s1:=SCNSSlicing(c, [[1..12],[13..2711);;
gap> SCIsConnected(sl);

true

gap> SCGenus(sl);

7

(method)
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7.3.9 SCHomology

> SCHomology(s1)

(method)
Returns: a list of homology groups upon success, fail otherwise.

Computes the homology of a slicing s1. Internally, s1 is triangulated (cf. SCNSTriangulation
(7.2.2)) and simplicial homology is computed via SCHomology using the triangulation.

Example
gap> SCLib.SearchByName (" (S~2xS~1)#20");

[ [ 633, "(s~2xS~1)#20" 1 ]

gap> c:=SCLib.Load(last[1][1]);;

gap> c.F;

[ 27, 298, 542, 271 ]

gap> s1:=SCNSSlicing(c, [[1..12],[13..2711);;
gap> sl.Homology;

cfo,C 11,014, 0 11, 01,0 1711
gap> sl:=SCNSSlicing(c, [[1..13],[14..27]11);;
gap> sl.Homology;

CC1,C 13,0124, 0 131, 02,0 1711

7.3.10 SCIsConnected

> SCIsConnected(complex)

(method)
Returns: true or false upon success, fail otherwise.

Checks if a normal surface complex is connected.

Example
gap> list:=SCLib.SearchByAttribute("Dim=3 and F[1]=10");;
gap> c:=SCLib.Load(1list[1][1]);

<SimplicialComplex: S°3 (VT) | dim = 3 | n = 10>

gap> s1:=SCNSSlicing(c,[[1..5],[6..1011);

<NormalSurface: slicing [ [ 1, 2, 3, 4, 51, [ 6, 7, 8, 9, 10 ] 1 of S~3 (VI) \
| dim = 2>

gap> SCIsConnected(sl);
true

7.3.11 SCIsEmpty

> SCIsEmpty(complex) (method)
Returns: true or false upon success, fail otherwise.

Checks if a normal surface complex is the empty complex, i. e. a SCNormalSurface object with
empty facet list.

Example

gap> s1:=SCNS([1);;

gap> SCIsEmpty(sl);
true
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7.3.12 SClIsOrientable

> SCIsOrientable(sl)

(method)
Returns: true or false upon success, fail otherwise.
Checks if a discrete normal surface s1 is orientable.
Example
gap> c:=SCBdSimplex(4);;
gap> sl:=SCNSSlicing(c,[[1,2],[3,4,51]1);
<NormalSurface: slicing [ [ 1, 21, [ 3, 4, 561 1 of S°3_5 | dim = 2>
gap> SCIsOrientable(sl);
true
7.3.13 SCSkel
> SCSkel(sl, k) (method)

Returns: a face list (of k+1tuples) or a list of face lists upon success, fail otherwise.
Computes all faces of cardinality k+1 in the original labeling: k = 0 computes the vertices, k =1
computes the edges, k =2 computes the triangles, k = 3 computes the quadrilaterals.

If k is a list (necessarily a sublistof [ 0,1,2,3 1) all faces of all cardinalities contained in k are
computed.

Example

gap> c:=SCBdSimplex(4);;

gap> s1:=SCNSSlicing(c, [[1],[2..511);;

gap> SCSkel(sl,1);

crcrce,21,01¢,3171,001,21,01,4711,I[T[1, 21,
rcst+ 31,011,411, (01,31, [01,511,[I[1, 4

1, L
1, [

1, 511,
1, 5111

Example

gap> c:=SCBdSimplex(4);;

gap> s1:=SCNSSlicing(c, [[1],[2..511);;

gap> SCSkel(sl,3);

[ ]

gap> s1:=3CNSSlicing(c, [[1,2],[3..5]11);;

gap> SCSkelEx(sl,3);
(l1,2,4,573,[1,3,4,61,[2,3,5,61]1

7.3.14 SCSkelEx

> SCSkelEx(sl, k)
Returns: a face list (of k+1tuples) or a list of face lists upon success, fail otherwise.
Computes all faces of cardinality k+1 in the standard labeling: k = 0 computes the vertices, k =1
computes the edges, k =2 computes the triangles, k = 3 computes the quadrilaterals.

If k is a list (necessarily a sublist of [ 0,1,2,3 1) all faces of all cardinalities contained in k are
computed.

(method)

Example

gap> c:=SCBdSimplex(4);;
gap> s1:=SCNSSlicing(c, [[1],[2..5]1);;
gap> SCSkelEx(sl,1);
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tft:, 21,011,311, 01,41, 02,31,0[02,41,[3,41]1

Example

gap> c:=SCBdSimplex(4);;

gap> s1:=SCNSSlicing(c, [[1],[2..511);;

gap> SCSkelEx(sl,3);

[ 1]

gap> s1:=3CNSSlicing(c,[[1,2],[3..5]11);;

gap> SCSkelEx(sl,3);
(01,2,4,5]1,[01,3,4,61, [2,3,5,61]

7.3.15 SCTopologicalType

> SCTopologicalType(sl) (method)
Returns: a string upon success, fail otherwise.
Determines the topological type of s1 via the classification theorem for closed compact surfaces.
If s1 is not connected, the topological type of each connected component is computed.
Example
gap> SCLib.SearchByName (" (S~2xS~1)#20");
[ [ 633, "(572xS~1)#20" ] ]
gap> c:=SCLib.Load(last[1][1]);;
gap> c.F;
[ 27, 298, 542, 271 ]
gap> for i in [1..26] do sl:=SCNSSlicing(c,[[1..i],[i+1..27]]); Print(sl.TopologilcalType,"\n");
S~2

S~2

(T~2)#3
(T~2)#5
(T~2)#4
(T~2)#3
(T~2)#7
(T~2)#7
(T~2)#7
(T~2)#7
(T~2)#8
(T~2)#7
(T~2)#8
(T~2)#6
(T~2)#6
(T~2)#5
(T~2)#3
(T~2)#2
T~2

S~2

0 nwnnwn
NN NDNDN

U S~2
U 872

acacacag
UJU)U;U)UJ
N NNNN
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7.3.16 SCUnion

> SCUnion(complexl, complex2)
Returns: normal surface of type SCNormalSurface upon success, fail otherwise.

Forms the union of two normal surfaces complex1 and complex2 as the normal surface formed by
the union of their facet sets. The two arguments are not altered. Note: for the union process the vertex
labelings of the complexes are taken into account, see also Operation Union (SCNormalSurface,
SCNormalSurface) (5.6.1). Facets occurring in both arguments are treated as one facet in the new

complex.

Example
gap> list:=SCLib.SearchByAttribute("Dim=3 and F[1]=10");;
gap> c:=SCLib.Load (1list[1][1]);

<SimplicialComplex: S~3 (VT) | dim = 3 | n = 10>

gap> s11:=SCNSSlicing(c, [[1..5],[6..1011);;

gap> s12:=s511+10;;

gap> s13:=SCUnion(sl1,sl2);;

gap> SCTopologicalType(sl3);

"S=2 U S~2"




Chapter 8

(Co-)Homology of simplicial complexes

By default, simpcomp uses an algorithm based on discrete Morse theory (see Chapter 12,
SCHomology (12.1.12)) for its homology computations. However, some additional (co-)homology
related functionality cannot be realised using this algorithm. For this, Simpcomp contains an addi-
tional (co-)homology algorithm (cf. SCHomologyInternal (8.1.5)), which will be presented in this
chapter.

Furthermore, whenever possible simpcomp makes use of the GAP package “homology”
[DHSWI11], for an alternative method to calculate homology groups (cf. SCHomologyClassic
(6.9.31)) which sometimes is much faster than the built-in discrete Morse theory algorithm.

8.1 Homology computation

Apart from calculating boundaries of simplices, boundary matrices or the simplicial homology of a
given complex, Simpcomp is also able to compute a basis of the homology groups.

8.1.1 SCBoundaryOperatorMatrix

> SCBoundaryOperatorMatrix(complex, k) (method)

Returns: a rectangular matrix upon success, fail otherwise.

Calculates the matrix of the boundary operator dj4; of a simplicial complex complex. Note that
each column contains the boundaries of a k+1-simplex as a list of oriented k-simplices and that the
matrix is stored as a list of row vectors (as usual in GAP).

Example
gap> c:=SCFromFacets([[1,2,3],[1,2,6],[1,3,5],[1,4,5],[1,4,6],\
(2,3,41,[2,4,51,[2,5,61,[3,4,61,[3,5,611);;
gap> mat:=SCBoundaryOperatorMatrix(c,1);
s+ ¢, 1,11, 0,0,0,0,0,0,0,0,0,01,
(-1, 0,0,0,0,1,1,1,1, 0,0, 0,0, 0,01,
o, -1, 0, 0, 0, -1, 0, 0,0, 1,1,1, 0,0, 01,
o, o, -1, 0, 0, 0, -1, 0, O, -1, 0, 0, 1, 1, O 1,
o0, 0, 0, -1, 0, 0, 0, -1, 0, 0, -1, O, -1, 0, 11,
o, o, o, 0, -1, 0, 0, O, -1, 0, O, -1, O, -1, -1 1]

[ B e B e B e |

110
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8.1.2 SCBoundarySimplex

D> SCBoundarySimplex(simplex, orientation) (function)

Returns: a list upon success, fail otherwise.

Calculates the boundary of a given simplex. If the flag orientation is set to true, the function
returns the boundary as a list of oriented simplices of the form [ ORIENTATION, SIMPLEX ], where
ORIENTATION is either +1 or -1 and a value of +1 means that SIMPLEX is positively oriented and a
value of -1 that SIMPLEX is negatively oriented. If orientation is set to false, an unoriented list
of simplices is returned.

Example

gap> SCBoundarySimplex([1..5],true);

(r-1,02,3,4,511,[1,[1,3,4,°5]
(1, 01,2,3,511,[-1,[1,2,3,4]

gap> SCBoundarySimplex([1..5],false);

(238,451, 01,3,4,51,[1,2,4,51,([1,2,3,5]1,
[1, 2, 3,411

]; [_1’ [1: 2, 4:5]]7
11

8.1.3 SCHomologyBasis

D> SCHomologyBasis(complex, k) (method)

Returns:  a list of pairs of the form [ integer, list of linear combinations of
simplices ] upon success, fail otherwise.

Calculates a set of basis elements for the k-dimensional homology group (with integer coeffi-
cients) of a simplicial complex complex. The entries of the returned list are of the form [ MODU-
LUS, [ BASEELM1, BASEELM?2, ...] ], where the value MODULUS is 1 for the basis elements of
the free part of the k-th homology group and g > 2 for the basis elements of the g-torsion part. In
contrast to the function SCHomologyBasisAsSimplices (8.1.4) the basis elements are stored as lists
of coefficient-index pairs referring to the simplices of the complex, i.e. a basis element of the form
[[A1,i],[A2,/],---]-.. encodes the linear combination of simplices of the form A; * Aj + A, * A, with
A;=8CSkel (complex,k) [i], Ap=SCSkel (complex,k) [j] and so on.

Example
gap> SCLib.SearchByName (" (S~2xS~1)#RP~3");
[ [ 237, "(8"2xS~1)#RP~3" ] ]
gap> c:=SCLib.Load(last[1][1]);;
gap> SCHomologyBasis(c,1);
(ctq1, 001,227, [-1,7]1, 01,1171,

(2,001,681, [-1,691, [ -1, 711, [2,721, [-2,731171]1

8.1.4 SCHomologyBasisAsSimplices

> SCHomologyBasisAsSimplices(complex, k) (method)

Returns: a list of pairs of the form [ integer, list of linear combinations of
simplices ] upon success, fail otherwise.

Calculates a set of basis elements for the k-dimensional homology group (with integer coeffi-
cients) of a simplicial complex complex. The entries of the returned list are of the form [ MODULUS,
[ BASEELM1, BASEELM?2, ...] ], where the value MODULUS is 1 for the basis elements of the free
part of the k-th homology group and g > 2 for the basis elements of the g-torsion part. In contrast to the
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function SCHomologyBasis (8.1.3) the basis elements are stored as lists of coefficient-simplex pairs,
i.e. a basis element of the form [[A;,A;],[A2,A2],...] encodes the linear combination of simplices of
the form A * A+ Ao x Ay + .. ..

Example
gap> SCLib.SearchByName (" (S~2xS~1)#RP~3");

[ [ 237, "(S"2xS~1)#RP~3" ] ]
gap> c:=SCLib.Load(last[1][1]);;
gap> SCHomologyBasisAsSimplices(c,1);
tfq+, CC1,02,81101,0-1,01¢,8171,01,01,21111,
L2,
(1, [11, 121
[ 2, [ 12, 14

1, [-1,C11,1311, -1, [12, 1311,
11, [-2,[013,1411111

8.1.5 SCHomologylInternal

> SCHomologyInternal (complex) (function)

Returns: a list of pairs of the form [ integer, list ] upon success, fail otherwise.

This function computes the reduced simplicial homology with integer coefficients of a given sim-
plicial complex complex with integer coefficients. It uses the algorithm described in [DKTOS].

The output is a list of homology groups of the form [Hy,....,H;], where d is the dimension of
complex. The format of the homology groups H; is given in terms of their maximal cyclic subgroups,
i.e. a homology group H; = Z/ + Z/t,Z x --- x Z|t,Z is returned in form of a list [f,[t1,...,2,]], where
f is the (integer) free part of H; and ¢; denotes the torsion parts of H; ordered in weakly incresing size.

See also SCHomology (12.1.12) and SCHomologyClassic (6.9.31).
Example

gap> c:=SCSurface(1,false);;
gap> SCHomologyInternal(c);
trto, f 11,00, 0211, 00, [ 111

8.2 Cohomology computation

simpcomp can also compute the cohomology groups of simplicial complexes, bases of these coho-
mology groups, the cup product of two cocycles and the intersection form of (orientable) 4-manifolds.

8.2.1 SCCoboundaryOperatorMatrix

> SCCoboundaryOperatorMatrix(complex, k) (method)
Returns: a rectangular matrix upon success, fail otherwise.

Calculates the matrix of the coboundary operator d¥*1 a5 alist of row vectors.
Example
gap> c:=SCFromFacets([[1,2,3],[1,2,6]1,[1,3,5],[1,4,5],[1,4,6],\
(2,3,4]1,[2,4,51,[2,5,6],[3,4,61,[3,5,611);

> <SimplicialComplex: unnamed complex 2 | dim = 2 | n = 6>

gap> mat:=SCCoboundaryOperatorMatrix(c,1);
trf-t11,0,0,0, -1, 0,0,0,0,0,0,0,0,
(-1, 0,0,0,1,0,0,0, -1, 0, 0, O, O, O,
(o, -1, 0,1, 0,0,0,0,0,0, -1, 0,0, 0

o O O
[ )

B B
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[ 0: O’ _1) 1) 0: O) O: Os O: 0: O’ O) _1’ O: 0 ]:
[ 05 O: _1: O; 1’ O’ 05 O: O’ 0’ O: Os 0’ _1, 0 ]’
[ 0, O: O’ O, O: _13 1, O: O: _1’ 0, 03 0, O: O ]:
[ 0: O, O: O) O: O’ _1: 1, O: 0) O: O’ _1: O, O ],
(o, o,o00o0,0,0,0,-,1,0,0,0,0,0,-11,
to,o,o,o0,o0,0,0,00-10,1,0, -1, 01,
to,o,o0,o0,0,0,0,0,0,0,-1,1,0,0,-11]1]
8.2.2 SCCohomology
> SCCohomology (complex) (method)

Returns: a list of pairs of the form [ integer, list ] upon success, fail otherwise.

This function computes the simplicial cohomology groups of a given simplicial complex complex
with integer coefficients. It uses the algorithm described in [DKTO8].

The output is a list of cohomology groups of the form [H?,....,H?], where d is the dimension of
complex. The format of the cohomology groups H' is given in terms of their maximal cyclic sub-
groups, i.e. a cohomology group H' 2 7/ + Z/t| Z.x ---x .t 7 is returned in form of a list [ f, [t1, ...,1,]],
where f is the (integer) free part of H' and #; denotes the torsion parts of H' ordered in weakly increas-
ing size.

Example

gap> c:=SCFromFacets([[1,2,3],[1,2,6],[1,3,5],[1,4,5],[1,4,6],
[2,3,4],[2,4,5],[2,5,6],[3,4,6],[3,5,611);

> <SimplicialComplex: unnamed complex 4 | dim = 2 | n = 6>

gap> SCCohomology(c);

tcq+,C 313,00 [ 11, 00,02111

8.2.3 SCCohomologyBasis

> SCCohomologyBasis(complex, k) (method)

Returns: a list of pairs of the form [ integer, list of linear combinations of
simplices ] upon success, fail otherwise.

Calculates a set of basis elements for the k-dimensional cohomology group (with integer coeffi-
cients) of a simplicial complex complex. The entries of the returned list are of the form [ MODULUS,
[ BASEELMI1, BASEELM?2, ...] ], where the value MODULUS is 1 for the basis elements of the free
part of the k-th homology group and g > 2 for the basis elements of the g-torsion part. In contrast
to the function SCCohomologyBasisAsSimplices (8.2.4) the basis elements are stored as lists of
coefficient-index pairs referring to the linear forms dual to the simplices in the k-th cochain complex
of complex, i.e. a basis element of the form [[A;,i],[A2, j],-..]... encodes the linear combination of
simplices (or their dual linear forms in the corresponding cochain complex) of the form A; * A| + A * Ay
with Aj=SCSkel (complex,k) [i], Ap=SCSkel (complex,k) [j] and so on.

Example
gap> SCLib.SearchByName ("SU(3)/S0(3)");
[ [ 219, "sU(3)/80(3) (V)" 1, [ 477, "SU(3)/s0(3) (VD" 1,
[ 484, "SU(3)/80(3) (VD" 1, [ 486, "SU(3)/s0(3) (VD))" ] ]
gap> c:=SCLib.Load(last[1][1]);;
gap> SCCohomologyBasis(c,3);
(2, C0-9,2601, [9, 2621, [9, 26371, [ -9,2701, [9, 2711,
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[ -9, 2731, [ -9, 2741, [ -18, 2751, [ -9, 2761, [ 9, 278 1,
[-9,2791, [ -9,2801, [3, 2831, [-3,281, [3, 2891,

[ -3, 2041, [3,310]1, [ -3, 3131, [3,3161, [ -1, 3171,
[-6,3181, [3,3191, [ -6, 3201, [6, 3211, [ 1, 3221,
[3,357], [ -1, 3281, [6,33%1, [ -2,31171, [ 12, 3321,
[7,3331], [ -5,33%%1]1, [1, 3451, [ 3,351, [ -9, 3587 1,
[9,387], [1,331]1, [ 12, 351, [ -9, 3661, [ -3, 370 1,
[-1,3711, [-3,3721,[8,3731, [ -1, 3741, [ 6, 3751,
o9, 3761, [(3,3771, (1,301, [3,331, [-8, 381,

[ -9,3861, [ -9, 3881, [ -18, 404 1, [ 9, 4101, [ -9, 425 ],
[ -18, 426 1, [ -9, 4271, [ 9, 4281, [ -9, 4291, [ 3, 4331,
[ -3, 4351, [ -9, 4371, [ 10, 442 1, [ 12, 4451, [ 1, 447 1,
[ -19, 448 1, [ 2, 4491, [ -1, 4501, [ -9, 4511, [ 3, 4531,
[ 1, 45571, [ 1, 467 1, [ -11, 458 1, [ -9, 459 1, [ 9, 461 1,
[9, 462 ], [ -9, 4681, [ 9, 4697, [ -18, 4711, [ -9, 4721,
[ 9, 4741, [ -9, 4751, [ 9, 4881, [ 9, 4951, [ -9, 500 1,

[ -3,5041, [9,5051, [9,5121, [ 9, 5151, [ 6, 519 1,

[ 18, 521 1, [ -15, 5231, [ 9, 5241, [ -3, 5251, [ 18, 527 1,
[ -18, 528 1, [ 6, 529 1, [ 6, 5311, [ 12, 532 1 1 11
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8.2.4 SCCohomologyBasisAsSimplices

> SCCohomologyBasisAsSimplices(complex, k)

Returns: alist of pars of the form [ integer, linear combination of simplices

success, fail otherwise.

(method)
1 upon

Calculates a set of basis elements for the k-dimensional cohomology group (with integer coeffi-
cients) of a simplicial complex complex. The entries of the returned list are of the form [ MODULUS,
[ BASEELMI1, BASEELM?2, ...] ], where the value MODULUS is 1 for the basis elements of the free
part of the k-th homology group and g > 2 for the basis elements of the g-torsion part. In contrast to
the function SCCohomologyBasis (8.2.3) the basis elements are stored as lists of coefficient-simplex
pairs referring to the linear forms dual to the simplices in the k-th cochain complex of complex, i.e.
a basis element of the form [[A1,A;],[A2,A;],...]... encodes the linear combination of simplices (or

their dual linear forms in the corresponding cochain complex) of the form A; * Aj + A+ Ag +....

Example

gap> SCLib.SearchByName ("SU(3)/S0(3)");

[ [ 219, "sU(3)/s0(3) (V)" 1, [ 477, "Su(
[ 484, "SU(3)/s0(3) (VT)" 1, [ 486, "SU(

gap> c:=SCLib.Load(last[1][1]);;

gap> SCCohomologyBasisAsSimplices(c,3);

[ [2,

[[-9,[2,7,8,911,0[9,I2,
Lo, [2,7,8, 1311, [-9, 1
Lo, [ 2,7, 11, 1311, [ -9, [
[-9,[2,8,9, 1111, [ -18,
[-9,[2,8,9,1311,[9, I
[-9,[2,8, 10, 1311, [ -9,
[3 [2,9,10, 1211, [ -3, [
(3, [(3,4,5, 711, [-3 [3
[3 [3, 4,10, 12711, [ -3, [
[3,[3,5,6, 1111, I[-1, [

3)/80(3) (v 1,
3)/s0(3) (v 1 1]

7! 8, 12 ] ])
2, 7, 11, 121 1,
2,8,9, 1011,

[ 2,8, 9, 1211,
2,8, 10, 1211,

[ 2,8, 11, 1211,
2,9, 11, 1211,
, 4,5, 121 1]
3, 5,6, 7]
3, 5, 6, 13 1]

>

—_ .

B
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9, [ 6, 9, 11, 131 ] , [7,8,9, 1311,

9, [ 7, 8, 11, 12 1 ] [ 7,9, 11, 1211,

18, [ 7, 11, 12, 1311, [ -15, [ 8, 9, 10, 121 1,
9, [8,9, 10,1311, [-3, [s8,9, 11, 121 1,

18, [ 8, 10, 11, 1211, [ -18, [ 8, 10, 12, 131 1,
6, [ 9, 10, 11, 1211, [
12, [ 9, 11, 12, 131 1 ]

[-6,[35,7,811,[3,[3,5,7,1011,
[-6, [3,5,7, 1111, [6,[3,5,7,1211,
(1, [3,5,7,1311,[3,[3,5,8, 1211,
[-1,[3,5,9,1311, [se6, [3,5, 10, 12171,
[-2,[3,5, 10,1311, [12, [3, 5, 11, 12711,
L7, (3,5,1,1311, [-5,[3,5, 12,1311,
[+, 03,6,9,1311,[3,[3,7, 10,1211,
[-9,[3, 7,111,121 1,09, [3,7, 11, 1311,
(1, [(3,8,9,13171, [12, [3, 8, 10, 121 1,
[-9,[3,8, 10,1311, -3, [3,9, 10, 1271,
[-1,[03,9, 10,1311, -3, [3,9, 11, 1271,
(s, [3,9, 11,1311, [-1,[3,9, 12,1311,
(e, [ 3, 10, 11, 1211, [ 9, [3, 10, 11, 131 1,
[3, [3,10,12,13]11, [1, [4, 5,6,811,
[3, [4,5,6, 1111, [-8, [4,5,6, 1311,
[-9,[4,5,7,811, [-9,[4,5,7, 1111,

[ -18, [ 4,6,8,911, [9,[4,6,9, 1311,
[-9,[04,8,9,1011, [-18, [ 4, 8,9, 1211,
[-9,[4,8,9,1311,1[9,[4,s, 10, 12171,
[-9,[4,8, 10,1311, [3, [4,9, 10, 1211,
[ -3, [4,9, 11,1211, [-9, [4,9, 12, 1311,
[10, [ 5,6, 7,811, [ 12, [ 5,6, 7, 1111,
[1, [ 5,6, 7,1311, [-19,[5,6,8,911,
[2, [5,6,8, 1111, [-1,[5,6,8, 1211,
[-9,[5,6,8, 1311, [3,[5,6,9, 1111,
[1, [5,6,9,1311, [1, [5,6, 10,1311,

[ -11, [ 5,6, 11, 1311, [ -9, [5,7,8,911,
L9, [5,7,8,1211, [9, [5, 7,8, 1311,
[-9, [5,7, 11,1211, (9, [5, 7, 11, 1311,
[-18, [5,8,9,1211,[-9,[5,8,9, 1311,
9, [5,8,10, 1211, [ -9, [ 5, 8, 11, 1211,
o, [6,7,8, 1311, [9, [6,7, 11, 1311,
[-9,[6,8, 10,1311, -3, [6,9, 11, 12171,
[

[

[

[

[

[

[

6, [ 9, 10, 12, 131 1,
11

8.2.5 SCCupProduct

D> SCCupProduct (complex, cocyclel, cocycle2) (function)
Returns: a list of pairs of the form [ ORIENTATION, SIMPLEX ] upon success, fail otherwise.
The cup product is a method of adjoining two cocycles of degree p and ¢ to form a composite

cocycle of degree p +¢q. It endows the cohomology groups of a simplicial complex with the structure

of aring.
The construction of the cup product starts with a product of cochains: if cocyclel is a p-
cochain and cocylce2 is a g-cochain of a simplicial complex complex (given as list of oriented
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p- (g-)simplices), then

cocyclel ~ cocycle2(0) =cocyclel(Coly, p)- cocycle2(Goly pii,. . piq)

where 0 is a p + ¢g-simplex and 15, S c {0, 1,...,p+q} is the canonical embedding of the simplex
spanned by S into the (p +¢)-standard simplex.

o olyy,.. p is called the p-th front face and o o1, 1. p14 is the g-th back face of o, respectively.

Note that this function only computes the cup product in the case that complex is an orientable
weak pseudomanifold of dimension 2k and p = g = k. Furthermore, complex must be given in stan-
dard labeling, with sorted facet list and cocylcel and cocylce2 must be given in simplex notation
and labeled accordingly. Note that the latter condition is usually fulfilled in case the cocycles were

computed using SCCohomologyBasisAsSimplices (8.2.4).
Example

gap> SCLib.SearchByName ("K3");

[ [ 520, "K3_16" 1, [ 539, "K3_17" ] ]

gap> c:=SCLib.Load(last[1][1]);;

gap> basis:=SCCohomologyBasisAsSimplices(c,2);;

gap> SCCupProduct (c,basis[1] [2],basis[1][2]);

(1, C1,2,4,7,12711, 01, [2,3,4,5,9711]1]

gap> SCCupProduct(c,basis[1] [2],basis[2][2]);

tf-1,01,2,4,7,12011,[0-1,[1,2,4,7,15]]1],
[ -1, [2,3,4,5,911]1

8.2.6 SClntersectionForm

> SCIntersectionForm(complex) (method)

Returns: a square matrix of integer values upon success, fail otherwise.

For 2k-dimensional orientable manifolds M the cup product (see SCCupProduct (8.2.5)) defines
a bilinear form

H¥(M)xH*(M) -H**(M), (a,b) = aub

called the intersection form of M. This function returns the intersection form of an orientable com-
binatorial 2k-manifold complex in form of a matrix mat with respect to the basis of H*(complexM)
computed by SCCohomologyBasisAsSimplices (8.2.4). The matrix entry mat [i] [j] equals the

intersection number of the i-th base element with the j-th base element of H*( complexM).
Example

gap> SCLib.SearchByName ("CP~2");

[ [ 16, "CP~2 (VT)" 1, [ 96, "CP~2#-CP~2" 1, [ 97, "CP~2#CP~2" ],
[ 185, "CP~2#(S~2xS~2)" 1, [ 397, "Gaifullin CP~2" ],
[ 457, "(S~37s~1)#(CP~2)~{#5} (VI)" ] ]

gap> c:=SCLib.Load(last[1]1[1]);;

gap> cl:=SCConnectedSum(c,c);;

gap> c2:=SCConnectedSumMinus(c,c);;

gap> ql:=SCIntersectionForm(cl);;

gap> q2:=SCIntersectionForm(c2);;

gap> PrintArray(ql);

(C 1, 01,
[ o, 111
gap> PrintArray(q2);
[r 1, o1,

L o, -111
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8.2.7 SClntersectionFormParity

> SCIntersectionFormParity(complex) (method)

Returns: 0 or 1 upon success, fail otherwise.

Computes the parity of the intersection form of a combinatorial manifold complex (see
SCIntersectionForm (8.2.6)). If the intersection for is even (i. e. all diagonal entries are even
numbers) O is returned, otherwise 1 is returned.
Example
gap> SCLib.SearchByName ("S~2xS~2");;
gap> c:=SCLib.Load(last[1][1]);;
gap> SCIntersectionFormParity(c);

0

gap> SCLib.SearchByName ("CP~2");;
gap> c:=SCLib.Load(last[1][1]);;
gap> SCIntersectionFormParity(c);
1

8.2.8 SClntersectionFormDimensionality

> SCIntersectionFormDimensionality(complex) (method)
Returns: an integer upon success, fail otherwise.
Returns the dimensionality of the intersection form of a combinatorial manifold complex, i. e.
the length of a minimal generating set of HX(M) (where 2k is the dimension of complex). See

SCIntersectionForm (8.2.6) for further details.
Example

gap> SCLib.SearchByName ("CP~2");;

gap> c:=SCLib.Load (last[1][1]);;

gap> SCIntersectionFormParity(c);

1

gap> SCCohomology(c);

tcqs+,€C 313,00, C 11,012,011, 00,013,011, 111
gap> SCIntersectionFormDimensionality(c);
1

gap> d:=SCConnectedProduct(c,10);;

gap> SCIntersectionFormDimensionality(d);
10

8.2.9 SClntersectionFormSignature

> SCIntersectionFormSignature (complex) (method)

Returns: a triple of integers upon success, fail otherwise.

Computes the dimensionality (see SCIntersectionFormDimensionality (8.2.8)) and the sig-
nature of the intersection form of a combinatorial manifold complex as a 3-tuple that contains the
dimensionality in the first entry and the number of positive / negative eigenvalues in the second and
third entry. See SCIntersectionForm (8.2.6) for further details.

Internally calls the GAP-functions Matrix_CharacteristicPolynomialSameField and
CoefficientsOfLaurentPolynomial to compute the number of positive / negative eigenvalues of
the intersection form.
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Example

gap> SCLib.SearchByName ("CP~2");;

gap> c:=SCLib.Load(last[1][1]);;

gap> SCIntersectionFormParity(c);

1

gap> SCCohomology(c) ;

cfts+, C 311, Lo,C 31, 01,031,000, 0 711,01, 0T 711711
gap> SCIntersectionFormSignature(c);

1,0, 1]

gap> d:=SCConnectedSum(c,c);

<SimplicialComplex: CP~2 (VI)#+-CP~2 (VT) | dim =4 | n = 13>
gap> SCIntersectionFormSignature(d) ;

[2,2,0]1

gap> d:=SCConnectedSumMinus(c,c);;

gap> SCIntersectionFormSignature(d);

[2,1, 1]




Chapter 9

Bistellar flips

9.1 Theory

Since two combinatorial manifolds are already considered distinct to each other as soon as they
are not combinatorially isomorphic, a topological PL-manifold is represented by a whole class of
combinatorial manifolds. Thus, a frequent question when working with combinatorial manifolds is
whether two such objects are PL-homeomorphic or not. One possibility to approach this problem,
i. e. to find combinatorially distinct members of the class of a PL-manifold, is a heuristic algorithm
using the concept of bistellar moves.

DEFINITION (Bistellar moves [Pac87])

Let M be a combinatorial d-manifold (d-pseudomanifold), 7y = (vg,...,v) a k-face and
0 = (wo,...,wg—) a (d—k+1)-tuple of vertices of M that does not span a (d —k)-face in M,
0 <k <d, such that {vg,...,vi} n{wo,...,wa_i} = @ and {vg,...,vk,Wwo,...Wi_q} spans exactly
d —k+ 1 facets. Then the operation

Ky (M) =M~ (7% 98) U (9y + 6)
is called a bistellar (d —k)-move.

In other words: If there exists a bouquet D c M of d —k+ 1 facets on a subset of vertices
W cV of order d +2 with a common k-face y and the complement & of the vertices of ¥ in W does
not span a (d — k)-face in M we can remove D and replace it by a bouquet of k+ 1 facets E ¢ M with
vertex set W with a common face spanned by §. By construction dD = dE and the altered complex
is again a combinatorial d-manifold (d-pseudomanifold). See Fig. 11 for a bistellar 1-move of a
2-dimensional complex, see Fig. 12 for all bistellar moves in dimension 3.

119
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Figure 11. Bistellar I-move in dimension 2 with W = {1,2,3,4}.

((1,2,3,4),(5))
— T

3 3
] ((1,2,3),(4,5))
-~ U 4
((5),(1,2,3.4) ((4,5),(1,2,3))
3 1

1 3 1

Figure 12. Bistellar moves in dimension d =3 with W = {1,2,3,4,5}. On the left side a bistellar 0- and a
bistellar 3-move, on the right side a bistellar 1- and a bistellar 2-move.

A bistellar 0-move is a stellar subdivision, 1. e. the subdivision of a facet & into d + 1 new
facets by introducing a new vertex at the center of & (cf. Fig. 12 on the left). In particular, the
vertex set of a combinatorial manifold (pseudomanifold) is not invariant under bistellar moves.
For any bistellar (d - k)-move &k, 5y we have an inverse bistellar k-move K(_yl 5) = K. such that
K(5,7)(K(y,6)(M)) = M. 1If for two combinatorial manifolds M and N there exist a sequence of
bistellar moves that transforms one into the other, M and N are called bistellarly equivalent. So
far bistellar moves are local operations on combinatorial manifolds that change its combinatorial
type. However, the strength of the concept in combinatorial topology is a consequence of the following

THEOREM (Bistellar moves [Pac87])
Two combinatorial manifolds (pseudomanifolds) M and N are PL homeomorphic if and only if they
are bistellarly equivalent.

Unfortunately Pachners theorem does not guarantee that the search for a connecting sequence
of bistellar moves between M and N terminates. Hence, using bistellar moves, we can not prove that
M and N are not PL-homeomorphic. However, there is a very effective simulated annealing approach
that is able to give a positive answer in a lot of cases. The heuristic was first implemented by Bjoerner
and Lutz in [BLOO]. The functions presented in this chapter are based on this code which can be used
for several tasks:

* Decide, whether two combinatorial manifolds are PL-homeomorphic,
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* for a given triangulation of a PL-manifold, try to find a smaller one with less vertices,

* check, if an abstract simplicial complex is a combinatorial manifold by reducing all vertex links
to the boundary of the d-simplex (this can also be done using discrete Morse theory, see Chapter
<Ref Chap="chap:DMT" />, <Ref Meth="SCBistellarIsManifold" />).

In many cases the heuristic reduces a given triangulation but does not reach a minimal triangula-
tion after a reasonable amount of flips. Thus, we usually can not expect the algorithm to terminate.
However, in some cases the program normally stops after a small number of flips:

* Whenever d = 1 (in this case the approach is deterministic),
* whenever a complex is PL-homeomorphic to the boundary of the d-simplex,
* in the case of some 3-manifolds, namely §2xS' §2 xS or RP3.

Technical note: Since bistellar flips do not respect the combinatorial properties of a complex, no
attention to the original vertex labels is payed, i. e. the flipped complex will be relabeled whenever its
vertex labels become different from the standard labeling (for example after every reverse 0-move).

9.2 Functions for bistellar flips

9.2.1 SCBistellarOptions

D> SCBistellarQOptions (global variable)

Record of global variables to adjust output an behavior of bistellar moves in
SCIntFunc.SCChooseMove (9.2.4) and SCReduceComplexEx (9.2.14) respectively.

1. BaseRelaxation: determines the length of the relaxation period. Default: 3

2. BaseHeating: determines the length of the heating period. Default: 4

3. Relaxation: value of the current relaxation period. Default: 0

4. Heating: value of the current heating period. Default: 0

5. MaxRounds: maximal over all number of bistellar flips that will be performed. Default: 500000

6. MaxInterval: maximal number of bistellar flips that will be performed without a change of the
f-vector of the moved complex. Default: 100000

7. Mode: flip mode, O=reducing, 1=comparing, 2=reduce as sub-complex, 3=randomize. Default:
0

8. WriteLevel: O=no output, 1=storing of every vertex minimal complex to user library, 2=e-mail
notification. Default: 1

9. MailNotifyIntervall: (minimum) number of seconds between two e-mail notifications. De-
fault: 24-60-60 (one day)
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10. MaxIntervalIsManifold: maximal number of bistellar flips that will be performed without a
change of the f-vector of a vertex link while trying to prove that the complex is a combinatorial
manifold. Default: 5000

11. MaxIntervalRandomize := 50: number of flips performed to create a randomized sphere.
Default: 50

Example

gap> SCBistellarOptions.BaseRelaxation;

3

gap> SCBistellarOptions.BaseHeating;

4

gap> SCBistellarOptions.Relaxation;

0

gap> SCBistellarOptions.Heating;

0

gap> SCBistellarOptions.MaxRounds;

500000

gap> SCBistellarOptions.MaxInterval;

100000

gap> SCBistellarOptions.Mode;

0

gap> SCBistellarOptions.WriteLevel;

0

gap> SCBistellarOptions.MailNotifyInterval;

86400

gap> SCBistellarOptions.MaxIntervallsManifold;

5000

gap> SCBistellarOptions.MaxIntervalRandomize;

50

9.2.2 SCEquivalent

D> SCEquivalent (complexl, complex2) (method)

Returns: true or false upon success, fail oralistof type [ fail, SCSimplicialComplex,
Integer, facet list] otherwise.

Checks if the simplicial complex complex1 (which has to fulfill the weak pseudomanifold prop-
erty with empty boundary) can be reduced to the simplicial complex complex2 via bistellar moves, i.
e. if complex! and complex2 are PL-homeomorphic. Note that in general the problem is undecid-
able. In this case fail is returned.

It is recommended to use a minimal triangulation complex2 for the check if possible.

Internally calls SCReduceComplexEx (9.2.14) (complex1,complex2,1,SCIntFunc.SCChooseMove) ;
Example
gap> SCBistellarOptions.WriteLevel:=0;; # do not save complexes to disk
gap> obj:=SC([[1,2],[2,3],[3,4]1,[4,5],[5,6]1,[6,11]1);; # hexagon

gap> refObj:=SCBdSimplex(2);; # triangle as a (minimal) reference object
gap> SCEquivalent (obj,ref0bj);

#I SCReduceComplexEx: complexes are bistellarly equivalent.

true
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9.2.3 SCExamineComplexBistellar

> SCExamineComplexBistellar (complex) (method)
Returns: simplicial complex passed as argument with additional properties upon success, fail
otherwise.
Computes the face lattice, the f-vector, the AS-determinant, the dimension and the maximal vertex
label of complex.

Example
gap> obj:=SC([[1,2],[2,3],[3,4]1,[4,5],[5,6],[6,111);
<SimplicialComplex: unnamed complex 7 | dim =1 | n
gap> SCExamineComplexBistellar (obj);

<SimplicialComplex: unnamed complex 7 | dim =1 | n = 6>

6>

9.2.4 SCIntFunc.SCChooseMove

> SCIntFunc.SCChooseMove(dim, moves) (function)

Returns: a bistellar move, i. e. a pair of lists upon success, fail otherwise.

Since the problem of finding a bistellar flip sequence that reduces a simplicial complex is unde-
cidable, we have to use an heuristic approach to choose the next move.

The implemented strategy SCIntFunc.SCChooseMove first tries to directly remove vertices,
edges, i-faces in increasing dimension etc. If this is not possible it inserts high dimensional faces in
decreasing co-dimension. To do this in an efficient way a number of parameters have to be adjusted,
namely SCBistellarOptions.BaseHeating and SCBistellarOptions.BaseRelaxation. See
SCBistellarOptions (9.2.1) for further options.

If this strategy does not work for you, just implement a customized strategy and pass it to
SCReduceComplexEx (9.2.14).

See SCRMoves (9.2.10) for further information.

9.2.5 SCIsKStackedSphere

> SCIsKStackedSphere(complex, k) (method)

Returns: a list upon success, fail otherwise.

Checks, whether the given simplicial complex complex that must be a PL d-sphere is a k-stacked
sphere with 1 <k < [%J using a randomized algorithm based on bistellar moves (see [Eff11b],
[Eff11a]). Note that it is not checked whether complex is a PL sphere — if not, the algorithm will
not succeed. Returns a list upon success: the first entry is a boolean, where true means that the com-
plex is k-stacked and false means that the complex cannot be k-stacked. A value of -1 means that
the question could not be decided. The second argument contains a simplicial complex that, in case
of success, contains the trigangulated (d + 1)-ball B with dB = S and skel;_;(B) = skely_;(S), where S
denotes the simplicial complex passed in complex.

Internally calls SCReduceComplexEx (9.2.14).
Example
gap> SCLib.SearchByName("S~47S~1");;
gap> c:=SCLib.Load(last[1][1]);;
gap> 1:=SCLink(c,1);
<SimplicialComplex: 1k([ 1 ]) in S°47S~1 (VT) | dim =4 | n = 12>
gap> SCIsKStackedSphere(l,1);

#I SCIsKStackedSphere: checking if complex is a 1l-stacked sphere...
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#I SCIsKStackedSphere: try 1/1
#I SCIsKStackedSphere: complex is a 1-stacked sphere.
[ true,
<SimplicialComplex: Filled 1-stacked sphere (1k([ 1 ]) in S°47S~1 (VT)) | di\
m=5|n=12>]

9.2.6 SCBistellarIsManifold

> SCBistellarIsManifold(complex) (method)

Returns: true or false upon success, fail otherwise.

Tries to prove that a closed simplicial d-pseudomanifold is a combinatorial manifold by reducing
its vertex links to the boundary of the d-simplex.

false is returned if it can be proven that there exists a vertex link which is not PL-homeomorphic
to the standard PL-sphere, true is returned if all vertex links are bistellarly equivalent to the bound-
ary of the simplex, fail is returned if the algorithm does not terminate after the number of rounds
indicated by SCBistellarOptions.MaxIntervallIsManifold.

Internally calls SCReduceComplexEx (9.2.14) (1ink,SCEmpty () ,0,SCIntFunc.SCChooseMove) ;
for every link of complex. Note that false is returned in case of a bounded manifold.

See SCIsManifoldEx (12.1.18) and SCIsManifold (12.1.17) for alternative methods for mani-

fold verification.
Example

gap> c:=SCBdCrossPolytope(3);;
gap> SCBistellarIsManifold(c);
true

9.2.7 SCIsMovableComplex

> SCIsMovableComplex (complex) (method)
Returns: true or false upon success, fail otherwise.
Checks if a simplicial complex complex can be modified by bistellar moves, i. e. if it is a pure
simplicial complex which fulfills the weak pseudomanifold property with empty boundary.

Example
gap> c:=SCBdCrossPolytope(3);;
gap> SCIsMovableComplex(c);
true
Complex with non-empty boundary:
Example

gap> c:=SC([[1,2],[2,3],[3,4],[3,111);;
gap> SCIsMovableComplex(c);
false
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9.2.8 SCMove

> SCMove(c, move) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Applies the bistellar move move to a simplicial complex c¢. move is given as a (r+ 1)-tuple
together with a (d + 1 —r)-tuple if d is the dimension of ¢ and if move is a r-move. See SCRMoves
(9.2.10) for detailed information about bistellar »-moves.
Note: move and ¢ should be given in standard labeling to ensure a correct result.
Example
gap> obj:=SC([[1,2],[2,3],[3,4],[4,111);
<SimplicialComplex: unnamed complex 5 | dim =1 | n = 4>
gap> moves:=SCMoves (obj);
ccrcrcs,21, 0311, 001,41, 0 11,002,311, [ 11,
trs,41, 0 111,
tcct11, 02,411, 021,011,311, 0031, [2,411,
[r41,01,3111]1
gap> obj:=SCMove(obj,last[2][1]);
<SimplicialComplex: unnamed complex 6 | dim =1 | n = 3>

9.2.9 SCMoves

> SCMoves (complex) (method)
Returns: a list of list of pairs of lists upon success, fail otherwise.
See SCRMoves (9.2.10) for further information.

Example
gap> c:=SCBdCrossPolytope(3);;
gap> moves:=SCMoves(c);
cccecte,38,51,0171,0C01,3,61, [ 131, 0C01,4,581,[ 11,
(rt1,4,61, 0 11,0[02,3,51,011,0[2,3,61, [ 11,
(r2,4,51, 0 11, 0[02,4,61,[0 1711,
rrrf131, 05,611, (1,41, [5,611, [[1,51,[3,411,
trt+ 61, 03,411, [C2,31,[5,611,[[2,41,[5,611,
tr2,51,03,411, (2,61, (3,411, (3,51, [1,211],
trs3,61, 01,211, (4,571, [1,2]11,[[4,61,[1,2]11]
,» [ 11
9.2.10 SCRMoves
> SCRMoves(complex, r) (method)

Returns: a list of pairs of the form [ 1list, list ], fail otherwise.

A bistellar r-move of a d-dimensional combinatorial manifold complex is a r-face m; together
with a d — r-tuple m, where m, is a common face of exactly (d + 1 —r) facets and m; is not a face of
complex.

The r-move removes all facets containing m; and replaces them by the (r+ 1) faces obtained by
uniting m, with any subset of m; of order r.

The resulting complex is PL-homeomorphic to complex.
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Example
gap> c:=SCBdCrossPolytope(3);;
gap> moves:=SCRMoves(c,1);
tcf1, 31,065,611, [[1,4]1,[5,611, [[1,5],[3,411],
[ [1’ 6 ]’ [3, 4] ], [ [2, 3 ], [5, 6] ], [ [2, 4 ], [5’ 6] ]’
[ [2’ 5 ]’ [3’ 4] ]’ [ [2’ 6 ]’ [3’ 4] ]} [ [3’ 5 ]’ [1’ 2] ]’
(13,61, 01,211, ([4,571, 01,211, [[4,61,[1,2]11]
9.2.11 SCRandomize
> SCRandomize (complex[[, rounds][, allowedmoves]]) (function)

Returns: a simplicial complex upon success, fail otherwise.

Randomizes the given simplicial complex complex via bistellar moves chosen at random. By
passing the optional array allowedmoves, which has to be a dense array of integer values of
length SCDim(complex), certain moves can be allowed or forbidden in the proccess. An entry
allowedmoves[i]=1 allows (i—1)-moves and an entry allowedmoves [i]=0 forbids (i—1)-moves
in the randomization process.

With optional positive integer argument rounds, the amount of randomization can be
controlled. The higher the value of rounds, the more bistellar moves will be ran-
domly performed on complex. Note that the argument rounds overrides the global setting
SCBistellarOptions.MaxIntervalRandomize (this value is used, if rounds is not specified). In-
ternally calls SCReduceComplexEx (9.2.14).

Example
gap> c:=SCRandomize (SCBdSimplex(4));
<SimplicialComplex: Randomized S~3_5 | dim = 3 | n = 16>
gap> c.F;

[ 16, 65, 98, 49 ]

9.2.12 SCReduceAsSubcomplex

> SCReduceAsSubcomplex(complexl, complex2) (method)

Returns: SCBistellarOptions.WriteLevel=0: a triple of the form [ boolean,
simplicial complex, rounds performed ] upon termination of the algorithm.

SCBistellarOptions.WriteLevel=1: A library of simplicial complexes with a number of
complexes from the reducing process and (upon termination) a triple of the form [ boolean,
simplicial complex, rounds performed ].

SCBistellarOptions.WriteLevel=2: A mail in case a smaller version of complexl was
found, a library of simplicial complexes with a number of complexes from the reducing process and
(upon termination) a triple of the form [ boolean, simplicial complex, rounds performed
1.

Returns fail upon an error.

Reduces a simplicial complex complex1 (satisfying the weak pseudomanifold property with
empty boundary) as a sub-complex of the simplicial complex complex2.

Main application: Reduce a sub-complex of the cross polytope without introducing diagonals.

Internally calls SCReduceComplexEx (9.2.14) (complex1,complex2,2,SCIntFunc.SCChooseMove) ;
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Example
gap> c:=SCFromFacets([[1,3],[3,5],[4,5],[4,111);;

gap> SCBistellarOptions.WriteLevel:=0;; # do not save any complexes
gap> SCReduceAsSubcomplex(c,SCBdCrossPolytope(3));

[ true, <SimplicialComplex: unnamed complex 36 | dim =1 | n = 3>, 1 ]

9.2.13 SCReduceComplex

> SCReduceComplex(complex) (method)

Returns: SCBistellarOptions.WriteLevel=0: a triple of the form [ boolean,
simplicial complex, rounds performed ] upon termination of the algorithm.

SCBistellarOptions.WriteLevel=1: A library of simplicial complexes with a number of
complexes from the reducing process and (upon termination) a triple of the form [ boolean,
simplicial complex, rounds performed J].

SCBistellarOptions.WriteLevel=2: A mail in case a smaller version of complexl was
found, a library of simplicial complexes with a number of complexes from the reducing process and
(upon termination) a triple of the form [ boolean, simplicial complex, rounds performed
1.

Returns fail upon an error..

Reduces a pure simplicial complex complex satisfying the weak pseudoman-

ifold property via bistellar moves. Internally calls SCReduceComplexEx (9.2.14)
(complex,SCEmpty () ,0,SCIntFunc.SCChooseMove) ;
Example

gap> obj:=SC([[1,2],[2,3],[3,4],[4,5],[5,6],[6,111);; # hexagon

gap> SCBistellarOptions.WritelLevel:=0;; # do not save complexes

gap> tmp := SCReduceComplex(obj);

[ true, <SimplicialComplex: unnamed complex 27 | dim = 1 | n = 3>, 3 ]

9.2.14 SCReduceComplexEx

> SCReduceComplexEx(complex, refComplex, mode, choosemove) (function)

Returns: SCBistellarOptions.WriteLevel=0: a triple of the form [ boolean,
simplicial complex, rounds ] upon termination of the algorithm.

SCBistellarOptions.WriteLevel=1: A library of simplicial complexes with a number of
complexes from the reducing process and (upon termination) a triple of the form [ boolean,
simplicial complex, rounds ].

SCBistellarOptions.WriteLevel=2: A mail in case a smaller version of complexl was
found, a library of simplicial complexes with a number of complexes from the reducing process and
(upon termination) a triple of the form [ boolean, simplicial complex, rounds ].

Returns fail upon an error.

Reduces a pure simplicial complex complex satisfying the weak pseudomanifold property via
bistellar moves mode = 0, compares it to the simplicial complex refComplex (mode = 1) orreduces
it as a sub-complex of refComplex (mode = 2).

choosemove is a function containing a flip strategy, see also SCIntFunc.SCChooseMove (9.2.4).

The currently smallest complex is stored to the variable minComplex, the currently smallest f-
vector to minF. Note that in general the algorithm will not stop until the maximum number of rounds
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is reached. You can adjust the maximum number of rounds via the property SCBistellarOptions
(9.2.1). The number of rounds performed is returned in the third entry of the triple returned by this
function.

This function is called by

1. SCReduceComplex (9.2.13),

2. SCEquivalent (9.2.2),

3. SCReduceAsSubcomplex (9.2.12),
4. SCBistellarIsManifold (9.2.6).
5. SCRandomize (9.2.11).

Please see SCMailIsPending (15.2.3) for further information about the email notification system in
case SCBistellarOptions.WriteLevel is set to 2.

Example

gap> c:=SCBdCrossPolytope(4);;

gap> SCBistellarOptions.WritelLevel:=0;; # do not save complexes

gap> SCReduceComplexEx(c,SCEmpty(),0,SCIntFunc.SCChooseMove) ;

[ true, <SimplicialComplex: unnamed complex 13 | dim = 3 | n = 5>, 7 ]
gap> SCReduceComplexEx(c,SCEmpty(),0,SCIntFunc.SCChooseMove) ;

[ true, <SimplicialComplex: unnamed complex 18 | dim = 3 | n = 5>, 9 ]
gap> SCMailSetAddress("johndoe@somehost") ;

true

gap> SCMailIsEnabled();

true

gap> SCReduceComplexEx(c,SCEmpty(),0,SCIntFunc.SCChooseMove) ;

[ true, <SimplicialComplex: unnamed complex 23 | dim = 3 | n = 5>, 7 ]

Content of sent mail:

Example
Greetings master,

this is simpcomp 0.0.0 running on compOl.maths.fancytown.edu
I have been working hard for O seconds and have a message for you, see below.
#### START MESSAGE ####
SCReduceComplex:
Computed locally minimal complex after 7 rounds:
[SimplicialComplex
Properties known: Boundary, Chi, Date, Dim, F, Faces, Facets, G, H,

HasBoundary, Homology, IsConnected, IsManifold, IsPM, Name, SCVertices,
Vertices.
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Name="ReducedComplex_5_vertices_7"

Dim=3

Chi=0

F=[ 5, 10, 10, 5 ]
G=[ 0, 0]

H=[ 1, 1, 1, 1]
HasBoundary=false

Homology=[ [ 0, [ 11, (o, [11,C0, 11,1, []171]1
IsConnected=true

IsPM=true

/SimplicialComplex]

##### END MESSAGE #####

That’s all, I hope this is good news! Have a nice day.

9.2.15 SCReduceComplexFast

> SCReduceComplexFast (complex) (function)
Returns: a simplicial complex upon success, fail otherwise.
Same as SCReduceComplex (9.2.13), but calls an external binary provided with the simpcomp
package.



Chapter 10

Simplicial blowups

10.1 Theory

In this chapter functions are provided to perform simplicial blowups as well as the resolution of iso-
lated singularities of certain types of combinatorial 4-manifolds. As of today singularities where the
link is homeomorphic to RP3, §% x S, §? x S' and the lens spaces L(k, 1) are supported. In addition,
the program provides the possibility to hand over additional types of mapping cylinders to cover other
types of singularities.

Please note that the program is based on a heuristic algorithm using bistellar moves. Hence, the
search for a suitable sequence of bistellar moves to perform the blowup does not always terminate.
However, especially in the case of ordinary double points (singularities of type RP*), a lot of blowups
have already been successful. For a very short introduction to simplicial blowups see 2.8, for further
information see [SK11].

10.2 Functions related to simplicial blowups

10.2.1 SCBlowup

> SCBlowup(pseudomanifold, singularity[, mappingCyll]) (property)

Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.

If singularity is an ordinary double point of a combinatorial 4-pseudomanifold
pseudomanifold (lk(singularity) = RP?) the blowup of pseudomanifold at singularity is
computed. If it is a singularity of type S x S', §? x ! or L(k,1), k <4, the canonical resolution of
singularity is computed using the bounded complexes provided in the source code below.

If the optional argument mappingCyl of type SCIsSimplicialComplex is given, this complex
will be used to to resolve the singularity singularity.

Note that bistellar moves do not necessarily preserve any orientation. Thus, the orientation of the
blowup has to be checked in order to verify which type of blowup was performed. Normally, repeated
computation results in both versions.

Example
gap> SCLib.SearchByName ("Kummer variety");
[ [ 519, "4-dimensional Kummer variety (VT)" ] 1]

gap> c:=SCLib.Load(last[1][1]);;

gap> d:= SCBlowup(c,1);

#I SCBlowup: checking if singularity is a combinatorial manifold...

130
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#I SCBlowup: ...true

#I SCBlowup: checking type of singularity...

#I SCReduceComplexEx: complexes are bistellarly equivalent.

#I SCBlowup: ...ordinary double point (supported type).

#I SCBlowup: starting blowup...

#I SCBlowup: map boundaries...

#I SCBlowup: boundaries not isomorphic, initializing bistellar moves...

#I SCBlowup: found complex with smaller boundary: f = [ 15, 74, 118, 59

#I SCBlowup: found complex with smaller boundary: 14, 70, 112, 56

#I SCBlowup: found complex with smaller boundary: 14, 69, 110, 55

#I SCBlowup: found complex with smaller boundary: 14, 68, 108, 54

#I SCBlowup: found complex with smaller boundary: 13, 65, 104, 52

#I SCBlowup: found complex with smaller boundary: 13, 64, 102, 51

#I SCBlowup: found complex with smaller boundary: 13, 63, 100, 50

#I SCBlowup: found complex with smaller boundary: 13, 62, 98, 49 ]

#I SCBlowup: found complex with smaller boundary: 13, 61, 96, 48 ]

#I SCBlowup: found complex with smaller boundary: 12, 57, 90, 45 1.

#I SCBlowup: found complex with smaller boundary: 12, 56, 88, 44 ].
]
]

— o

Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh b
1]

#I SCBlowup: found complex with smaller boundary: 12, 55, 86, 43
#I SCBlowup: found complex with smaller boundary: f = 11, 51, 80, 40
#I SCBlowup: found complex with isomorphic boundaries.

]
Lo e T e T e T e T s Y s T, T s B e B e M s |

#I SCBlowup: ...boundaries mapped succesfully.
#I SCBlowup: build complex...

#I SCBlowup: ...done.

#I SCBlowup: ...blowup completed.

#I SCBlowup: You may now want to reduce the complex via ’SCReduceComplex’.
<SimplicialComplex: unnamed complex 2735 \ star([ 1 ]) in unnamed complex 2735\
cup unnamed complex 2739 cup unnamed complex 2737 | dim = 4 | n = 39>

Example

gap> # resolving the singularities of a 4 dimensional Kummer variety
gap> SCLib.SearchByName ("Kummer variety");
[ [ 519, "4-dimensional Kummer variety (VT)" ] ]
gap> c:=SCLib.Load(last[1][1]);;
gap> for i in [1..16] do
for j in SCLabels(c) do
1k:=SCLink(c,]);
if 1k.Homology = [[0],[0],[0],[1]] then continue; fi;

singularity := j; break;
od;
c:=SCBlowup(c,singularity);
od;
gap> d.IsManifold;

true
gap> d.Homology;
tfo, (11,00, 037,022 [1],00, 011, 01,0111

10.2.2 SCMappingCylinder

> SCMappingCylinder (k) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
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Generates a bounded version of CP? (a so-called mapping cylinder for a simplicial blowup, com-

pare [SK11]) with boundary L(k,1).

Example

gap> mapCyl:=SCMappingCylinder(3);;
gap> mapCyl.Homology;

tco, € 11,00, 11,01, 011, TCO0,
gap> 131:=SCBoundary(mapCyl) ;;

gap> 131.Homology;

tto, C 11,00, 0311, L0, 11,1,

L

[

11,

]

]

Lo,

]

[ 111




Chapter 11

Polyhedral Morse theory

In this chapter we present some useful functions dealing with polyhedral Morse theory. See Section
2.5 for a very short introduction to the field, see [Kiih95] for more information. Note: this is not to be
confused with Robin Forman’s discrete Morse theory for cell complexes which is described in Chapter
12.

If M is a combinatorial d-manifold with n-vertices a rsl-function will be represented as an ordering
on the set of vertices, i. e. a list of length n containing all vertex labels of the corresponding simplicial
complex.

11.1 Polyhedral Morse theory related functions

11.1.1 SCIsTight

> SCIsTight (complex) (method)

Returns: true or false upon success, fail otherwise.

Checks whether a simplicial complex complex (complex must satisfy the weak pseudomanifold
property and must be closed) is a tight triangulation (with respect to the field with two elements) or not.
A simplicial complex with n vertices is said to be a tight triangulation if it can be tightly embedded
into the (n— 1)-simplex. See Section 2.7 for a short introduction to the field of tightness.

First, if complex is a (k+ 1)-neighborly 2k-manifold (cf. [Kiih95], Corollary 4.7), or complex is
of dimension d > 4, 2-neighborly and all its vertex links are stacked spheres (i.e. the complex is in
Walkup’s class K(d), see [Effl1b]) true is returned as the complex is a tight triangulation in these
cases. If complex is of dimension d = 3, true is returned if and only if complex is 2-neighborly and
stacked (i.e. tight-neighbourly, see [BDSS15]), otherwise false is returned, see [BDS].

Note that, for dimension d > 4, it is not computed whether or not complex is a combinatorial man-
ifold as this computation might take a long time. Hence, only if the manifold flag of the complex is set
(this can be achieved by calling SCIsManifold (12.1.17) and the complex indeed is a combinatorial
manifold) these checks are performed.

In a second step, the algorithm first checks certain rsl-functions allowing slicings between minimal
non faces and the rest of the complex. In most cases where complex is not tight at least one of these
rsl-functions is not perfect and thus false is returned as the complex is not a tight triangulation.

If the complex passed all checks so far, the remaining rsl-functions are checked for being per-
fect functions. As there are “only” 2" different multiplicity vectors, but n! different rsl-functions, a
lookup table containing all possible multiplicity vectors is computed first. Note that nonetheless the

133
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complexity of this algorithm is O(n!).

In order to reduce the number of rsl-functions that need to be checked, the automorphism group
of complex is computed first using SCAutomorphismGroup (6.9.2). In case it is k-transitive, the
complexity is reduced by the factor of n-(n—1)----- (n—k+1).

Example
gap> list:=SCLib.SearchByName("S~27S~1 (VI)"){[1..9]1};;

gap> s2s1:=SCLib.Load (list[1][1]);

<SimplicialComplex: S~27S~1 (VT) | dim =3 | n = 9>

gap> SCInfolevel(2); # print information while running

true

gap> SCIsTight(s2s1); time;

#I SCIsTight: complex is 3-dimensional and tight neighbourly, and thus tight.
true

2

Example
gap> SCLib.SearchByAttribute("F[1] = 120");
[ [ 648, "Bd(600-cell)" ] 1]

gap> id:=last[1][1];;

gap> c:=SCLib.Load(id);;

gap> SCIsTight(c); time;

#I SCIsTight: complex is connected but not 2-neighbourly, and thus not tight.
false

194392

Example

gap> SCInfolevel(0);

true

gap> SCLib.SearchByName ("K3");

[ [ 520, "K3_16" 1, [ 539, "K3_17" ] ]
gap> c:=SCLib.Load(last[1][1]);;

gap> SCIsManifold(c);

true

gap> SCInfolevel(1);

true

gap> c.IsTight;

#I SCIsTight: complex is (k+1)-neighborly 2k-manifold and thus tight.
true

Example

gap> SCInfolevel(1);

true

gap> dc:=[ [ 1, 1,1, 1,451, [ 1, 2,1, 27,181, [ 1,27, 9,9, 31,
>[4,7,20,9,9]1,[9,9, 11,9, 111, [6,9,9,17, 81,

>[e6, 10,8, 17,81, [8,8,8,8, 171, [ 5,6, 9,9, 21 1;;

gap> c:=SCBoundary (SCFromDifferenceCycles(dc));;

gap> SCAutomorphismGroup(c);;

gap> SCIsTight(c);

#I SCIsTight: complex is (k+1)-neighborly 2k-manifold and thus tight.
true




simpcomp

Example

135

gap> list:=SCLib.SearchByName ("S~3xS~1");;

gap> c:=SCLib.Load(list[1][1]);

<SimplicialComplex: S~3xS~1 (VT) | dim =4 | n = 11>
gap> SCInfolevel(0);

true

gap> SCIsManifold(c);

true

gap> SCInfolevel(2);

true

gap> c.IsTight;

#I SCIsInKd: checking link 1/11

#I SCIsKStackedSphere: checking if complex is a 1-stacked sphere...
#I SCIsKStackedSphere: try 1/1

#I round O

Reduced complex, F: [ 9, 26, 34, 17 ]

#I round 1

Reduced complex, F: [ 8, 22, 28, 14 ]

#I round 2

Reduced complex, F: [ 7, 18, 22, 11 ]

#I round 3

Reduced complex, F: [ 6, 14, 16, 8 ]

#I round 4

Reduced complex, F: [ 5, 10, 10, 5 ]

#I SCReduceComplexEx: computed locally minimal complex after 5 rounds.
#I SCIsKStackedSphere: complex is a 1-stacked sphere.
#I SCIsInKd: checking link 2/11

#I SCIsKStackedSphere: checking if complex is a 1-stacked sphere...
#I SCIsKStackedSphere: try 1/1

#I round O

Reduced complex, F: [ 9, 26, 34, 17 ]

#I round 1

Reduced complex, F: [ 8, 22, 28, 14 ]

#I round 2

Reduced complex, F: [ 7, 18, 22, 11 ]

#I round 3

Reduced complex, F: [ 6, 14, 16, 8 ]

#I round 4

Reduced complex, F: [ 5, 10, 10, 5]

#I SCReduceComplexEx: computed locally minimal complex after 5 rounds.
#I SCIsKStackedSphere: complex is a 1-stacked sphere.
#I SCIsInKd: checking link 3/11

#I SCIsKStackedSphere: checking if complex is a 1-stacked sphere...
#I SCIsKStackedSphere: try 1/1

#I round O

Reduced complex, F: [ 9, 26, 34, 17 ]

#I round 1

Reduced complex, F: [ 8, 22, 28, 14 ]

#I round 2

Reduced complex, F: [ 7, 18, 22, 11 ]

#I round 3

Reduced complex, F: [ 6, 14, 16, 8 ]

#I round 4
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Reduced complex, F: [ 5, 10, 10, 5]

#I
#I
#I

SCReduceComplexEx: computed locally minimal complex after 5 rounds.
SCIsKStackedSphere: complex is a 1-stacked sphere.
SCIsInKd: checking link 4/11

#I SCIsKStackedSphere: checking if complex is a 1-stacked sphere...
#I SCIsKStackedSphere: try 1/1

#I round O

Reduced complex, F: [ 9, 26, 34, 17 ]
#I round 1

Reduced complex, F: [ 8, 22, 28, 14 ]
#I round 2

Reduced complex, F: [ 7, 18, 22, 11 ]
#I round 3

Reduced complex, F: [ 6, 14, 16, 8 ]
#I round 4

Reduced complex, F: [ 5, 10, 10, 5]

#I
#I
#I
#I
#I
#I

SCReduceComplexEx: computed locally minimal complex after 5 rounds.
SCIsKStackedSphere: complex is a l-stacked sphere.

SCIsInKd: checking link 5/11

SCIsKStackedSphere: checking if complex is a 1-stacked sphere...
SCIsKStackedSphere: try 1/1

round O

Reduced complex, F: [ 9, 26, 34, 17 ]

#I

round 1

Reduced complex, F: [ 8, 22, 28, 14 ]

#I

round 2

Reduced complex, F: [ 7, 18, 22, 11 ]

#I

round 3

Reduced complex, F: [ 6, 14, 16, 8 ]

#I

round 4

Reduced complex, F: [ 5, 10, 10, 5 ]

#I SCReduceComplexEx: computed locally minimal complex after 5 rounds.
#I SCIsKStackedSphere: complex is a 1-stacked sphere.

#I SCIsInKd: checking link 6/11

#I SCIsKStackedSphere: checking if complex is a 1-stacked sphere...
#I SCIsKStackedSphere: try 1/1

#I round O

Reduced complex, F: [ 9, 26, 34, 17 ]

#I round 1

Reduced complex, F: [ 8, 22, 28, 14 ]

#I round 2

Reduced complex, F: [ 7, 18, 22, 11 ]

#I round 3

Reduced complex, F: [ 6, 14, 16, 8 ]

#I round 4

Reduced complex, F: [ 5, 10, 10, 5 ]

#I
#I
#I
#I
#I
#I

SCReduceComplexEx: computed locally minimal complex after 5 rounds.
SCIsKStackedSphere: complex is a l-stacked sphere.

SCIsInKd: checking link 7/11

SCIsKStackedSphere: checking if complex is a 1-stacked sphere...
SCIsKStackedSphere: try 1/1

round O

136
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Reduced complex, F: [ 9, 26, 34, 17 ]

#I

round 1

Reduced complex, F: [ 8, 22, 28, 14 ]

#I

round 2

Reduced complex, F: [ 7, 18, 22, 11 ]

#I

round 3

Reduced complex, F: [ 6, 14, 16, 8 ]

#I

round 4

Reduced complex, F: [ 5, 10, 10, 5 ]

#I
#I
#I

SCReduceComplexEx: computed locally minimal complex after 5 rounds.
SCIsKStackedSphere: complex is a l-stacked sphere.
SCIsInKd: checking link 8/11

#I SCIsKStackedSphere: checking if complex is a 1-stacked sphere...
#I SCIsKStackedSphere: try 1/1

#I round O

Reduced complex, F: [ 9, 26, 34, 17 ]
#I round 1

Reduced complex, F: [ 8, 22, 28, 14 ]
#I round 2

Reduced complex, F: [ 7, 18, 22, 11 ]
#I round 3

Reduced complex, F: [ 6, 14, 16, 8 ]
#I round 4

Reduced complex, F: [ 5, 10, 10, 5 ]

#I
#I
#I
#I
#I
#I

SCReduceComplexEx: computed locally minimal complex after 5 rounds.
SCIsKStackedSphere: complex is a l-stacked sphere.

SCIsInKd: checking link 9/11

SCIsKStackedSphere: checking if complex is a 1-stacked sphere...
SCIsKStackedSphere: try 1/1

round 0

Reduced complex, F: [ 9, 26, 34, 17 ]

#I

round 1

Reduced complex, F: [ 8, 22, 28, 14 ]

#I

round 2

Reduced complex, F: [ 7, 18, 22, 11 ]

#I

round 3

Reduced complex, F: [ 6, 14, 16, 8 ]

#I

round 4

Reduced complex, F: [ 5, 10, 10, 5]

#I
#I
#I
#I

SCReduceComplexEx: computed locally minimal complex after 5 rounds.
SCIsKStackedSphere: complex is a 1-stacked sphere.

SCIsInKd: checking link 10/11

SCIsKStackedSphere: checking if complex is a l1-stacked sphere...

#I SCIsKStackedSphere: try 1/1

#I round O

Reduced complex, F: [ 9, 26, 34, 17 ]
#I round 1

Reduced complex, F: [ 8, 22, 28, 14 ]
#I round 2

Reduced complex, F: [ 7, 18, 22, 11 ]
#I round 3

Reduced complex, F: [ 6, 14, 16, 8 ]
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#I round 4

Reduced complex, F: [ 5, 10, 10, 5 1]

#I SCReduceComplexEx: computed locally minimal complex after 5 rounds.
#I SCIsKStackedSphere: complex is a 1-stacked sphere.

#I SCIsInKd: checking link 11/11

#I SCIsKStackedSphere: checking if complex is a 1-stacked sphere...

#I SCIsKStackedSphere: try 1/1

#I round O
Reduced complex, F: [ 9, 26, 34, 17 ]
#I round 1
Reduced complex, F: [ 8, 22, 28, 14 ]
#I round 2
Reduced complex, F: [ 7, 18, 22, 11 ]
#I round 3
Reduced complex, F: [ 6, 14, 16, 8 ]
#I round 4

Reduced complex, F: [ 5, 10, 10, 5]

#I SCReduceComplexEx: computed locally minimal complex after 5 rounds.
#I SCIsKStackedSphere: complex is a 1-stacked sphere.

#I SCIsInKd: all links are l-stacked.

#I SCIsTight: complex is in class K(1) and 2-neighborly, thus tight.
true

11.1.2 SCMorselsPerfect

> SCMorselIsPerfect(c, f) (method)

Returns: true or false upon success, fail otherwise.

Checks whether the rsl-function f is perfect on the simplicial complex c or not. A rsl-function is
said to be perfect, if it has the minimum number of critical points, i. e. if the sum of its critical points
equals the sum of the Betti numbers of c.

Example

gap> c:=SCBdCyclicPolytope(4,6);;

gap> SCMinimalNonFaces(c);

Cr 1,0 1,001,3,581,102,4,611]1
gap> SCMorseIsPerfect(c,[1..6]);

true

gap> SCMorselIsPerfect(c,[1,3,5,2,4,6]);
false

11.1.3 SCSlicing

> SCSlicing(complex, slicing) (method)
Returns: a facet list of a polyhedral complex or a SCNormalSurface object upon success, fail
otherwise.
Returns the pre-image f~!' () of a rsl-function f on the simplicial complex complex where f is
given in the second argument slicing by a partition of the set of vertices slicing=[V;,V,] such
that f(v1) (f(v2)) is smaller (greater) than o for all vy € V| (v, € V3).
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If complex is of dimension 3, a GAP object of type SCNormalSurface is returned. Otherwise
only the facet list is returned. See also SCNSSlicing (7.1.4).
The vertex labels of the returned slicing are of the form (v;,v,) where v; € V; and v; € V5. They

represent the center points of the edges vy, v, ( Edeﬁneld by the intersection of s1icing with complex.
xample

gap> c:=SCBdCyclicPolytope(4,6);;

gap> v:=SCVertices(c);

[1..6]

gap> SCMinimalNonFaces(c);

cr 1,01, [[01,3,51,[2,4,¢611]1

gap> ns:=SCSlicing(c, [v{[1,3,51},v{[2,4,6]1}]);

<NormalSurface: slicing [ [ 1, 3, 61, [ 2, 4, 6 1 1 of BA(C_4(6)) | dim = 2>

Example

gap> c:=SCBdSimplex(5);;
gap> v:=SCVertices(c);
[1..6]

gap> slicing:=SCSlicing(c, [v{[1,3,5]},v{[2,4,6]1}]1);
tcft1,21,01,41,03,21,03,41, (5,21, [5,411,
tf, 21,011,411, 01,61, 03,21, (3,41, [3,611,
(1, 21,01,61,03,21,038,61,[5,21, [5,61]1,
tf1,2731,01,41, 01,61, [5,21, 5,41, [5,61]1,
(rt+ 41,011,671, 03,41,[38,61,[5,41,[5,611,
(3 21,03,41, (3,61, [5,21,[5,41, [5,611]1
11.1.4 SCMorseMultiplicity Vector
> SCMorseMultiplicityVector(c, f) (method)

Returns: a list of (d + 1)-tuples if c is a d-dimensional simplicial complex upon success, fail
otherwise.

Computes all multiplicity vectors of a rsl-function £ on a simplicial complex c. £ is given as an
ordered list (v1,...v,) of all vertices of ¢ where £ is defined by £(v;) = %11 The i-th entry of the

i
n

returned list denotes the multiplicity vector of vertex v;.
Example

gap> SCLib.SearchByName ("K3");

[ [ 520, "K3_16" 1, [ 539, "K3_17" 1 ]

gap> c:=SCLib.Load (last[1][1]);;

gap> f:=SCVertices(c);

(1, 2, 3, 4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16 ]
gap> SCMorseMultiplicityVector(c,f)

[ [ 1, O, O! O’ O ], [ 0’ 0, O! O’ O ], [ O’ 0, O! 0, O ]’ [ O’ 0, 1’ 0, O ]’
fo,o0,2,0,01,[0,0,1,0,01,[0,0,4,0,01, [0,0,3,0,01,
I: 03 O’ 3) 03 O ]3 I: 03 O! 4) 03 O ]3 I: o} O! 1) 03 O ]3 I: O} O! 2) 03 O ]3
[ 0’ O, 1’ O’ O ]’ [ 0’ O, O’ O’ O ]’ [ O, O, O’ O’ O ]’ [ O, O, O) O’ 1 ] ]
11.1.5 SCMorseNumberOfCriticalPoints
> SCMorseNumberOfCriticalPoints(c, f) (method)

Returns: an integer and a list upon success, fail otherwise.
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Computes the number of critical points of each index of a rsl-function £ on a simplicial complex
c as well as the total number of critical points.

Example
gap> SCLib.SearchByName ("K3") ;

[ [ 520, "K3_16" 1, [ 539, "K3_17" 1 ]
gap> c:=SCLib.Load(last[1][1]);;
gap> f:=SCVertices(c);

(1,2, 3, 4, 5,6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16 ]
gap> SCMorseNumberOfCriticalPoints(c,f);
(24, [1,0,22, 0,1]]




Chapter 12

Forman’s discrete Morse theory

In this chapter a framework is provided to use Forman’s discrete Morse theory [For95] within simp-
comp. See Section 2.6 for a brief introduction.

Note: this is not to be confused with Banchoff and Kiihnel’s theory of regular simplexwise linear
functions which is described in Chapter 11.

12.1 Functions using discrete Morse theory

12.1.1 SCCollapseGreedy

D> SCCollapseGreedy (complex) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Employs a greedy collapsing algorithm to collapse the simplicial complex complex. See also

SCCollapseLex (12.1.2) and SCCollapseRevLex (12.1.3).

Example
gap> SCLib.SearchByName ("T~2"){[1..6]1};

(L[4, "T~2 (vD)" 1, [ 5, "T~2 (vO)" 1, [ 9, "T~2 (vDO)" 1, [ 10, "T"2 (VD" 1,
[ 17, "T~2 (vD)" 1, [ 20, "(T~2)#2" ] 1]

gap> torus:=SCLib.Load(last[1][1]);;

gap> bdtorus:=SCDifference(torus,SC([torus.Facets[1]]));;

gap> coll:=SCCollapseGreedy(bdtorus) ;

<SimplicialComplex: collapsed version of T~2 (VT) \ unnamed complex 8 | dim = \

11 n=4

gap> coll.Facets;

(2,51, 02,61, [2, 7], [5,61,[5,71]1

gap> sphere:=SCBdSimplex(4);;

gap> bdsphere:=SCDifference (sphere,SC([sphere.Facets[1]1]1));;

gap> coll:=SCCollapseGreedy(bdsphere) ;

<SimplicialComplex: collapsed version of S~3_5 \ unnamed complex 12 | dim = 0 \

| n = 1>
gap> coll.Facets;
(L2711

141
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12.1.2 SCCollapseLex

> SCCollapselex(complex) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Employs a greedy collapsing algorithm in lexicographical order to collapse the simplicial complex

complex. See also SCCollapseGreedy (12.1.1) and SCCollapseRevLex (12.1.3).

Example

gap> s:=SCSurface(l,true);;

gap> s:=SCDifference(s,SC([SCFacets(s) [1]11));;

gap> coll:=SCCollapseGreedy(s) ;

<SimplicialComplex: collapsed version of T~2 \ unnamed complex 18 | dim =1 | \
n = 5>

gap> coll.Facets;

tf1,e61, 01,71, 02,51, [2,7]1,[s, 71, [6,71]

gap> sphere:=SCBdSimplex(4);;

gap> ball:=SCDifference(sphere,SC([sphere.Facets[1]]1));;

gap> coll:=SCCollapseLex(ball);

<SimplicialComplex: collapsed version of S~3_5 \ unnamed complex 22 | dim = 0 \

| n = 1>
gap> coll.Facets;
(L5711

12.1.3 SCCollapseRevLex

> SCCollapseRevlex(complex) (method)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Employs a greedy collapsing algorithm in reverse lexicographical order to collapse the simplicial

complex complex. See also SCCollapseGreedy (12.1.1) and SCCollapseLex (12.1.2).

Example

gap> s:=SCSurface(l,true);;

gap> s:=SCDifference(s,SC([SCFacets(s) [111));;

gap> coll:=SCCollapseGreedy(s) ;

<SimplicialComplex: collapsed version of T~2 \ unnamed complex 28 | dim = 1 | \
n = 5>

gap> coll.Facets;

tf1+ 31,01, 71,003,411, 038,51, [4, 71, [5,71]1]

gap> sphere:=SCBdSimplex(4);;

gap> ball:=SCDifference(sphere,SC([sphere.Facets[1]]1));;

gap> coll:=SCCollapseRevLlex(ball);

<SimplicialComplex: collapsed version of S~3_5 \ unnamed complex 32 | dim = 0 \

| n = 1>
gap> coll.Facets;
(0111

12.1.4 SCHasseDiagram

> SCHasseDiagram(c) (function)
Returns: two lists of lists upon success, fail otherweise.
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Computes the Hasse diagram of SCSimplicialComplex object c. The Hasse diagram is returned
as two sets of lists. The first set of lists contains the upward part of the Hasse diagram, the second set
of lists contains the downward part of the Hasse diagram.

The i-th list of each set of lists represents the incidences between the (i — 1)-faces and the i-faces.
The faces are given by their indices of the face lattice.

Example
gap> c:=SCBdSimplex(3);;
gap> HD:=SCHasseDiagram(c);
ccftrft,2,31,01,4,51,0[02,4,61,[3,5,611,
tft+,21,01,31,02,31,0[01,41,02,471,[3,4111,
(cft2,11, 03,11, [4,1]1,[3,21,[4,21,104,311,
(C4,2,11,[5,3,11,[6,3,21,0[6,5,4]111]1
12.1.5 SCMorseEngstroem
> SCMorseEngstroem(complex) (function)

Returns: two lists of small integer lists upon success, fail otherweise.
Builds a discrete Morse function following the Engstroem method by reducing the input complex
to smaller complexes defined by minimal link and deletion operations. See [Eng(09] for details.

Example
gap> c:=SCBdSimplex(3);;
gap> f:=SCMorseEngstroem(c);
tff21,02,81,[02,41,02..41,[C1,031,[41, (3,41,
(1,31, 01,383,411, 011,011,471, 01,2,41,T[1,21,
t1+..311, 0021, [01..3111
12.1.6 SCMorseRandom
> SCMorseRandom(complex) (function)

Returns: two lists of small integer lists upon success, fail otherweise.

Builds a discrete Morse function following Lutz and Benedetti’s random discrete Morse theory
approach: Faces are paired with free co-dimension one faces until now free faces remain. Then a
critical face is removed at random. See [BL14] for details.

Example

gap> c:=SCBdSimplex(3);;
gap> f:=SCMorseRandom(c);;
gap> Size(f[2]);

2

12.1.7 SCMorseRandomLex

> SCMorseRandomLex (complex)
Returns: two lists of small integer lists upon success, fail otherweise.
Builds a discrete Morse function following Adiprasito, Benedetti and Lutz’ lexicographic random
discrete Morse theory approach. See [BL14], [KAL14] for details.

(function)
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Example
gap> c¢ := SCSurface(3,true);;

gap> f:=SCMorseRandomLex(c);;

gap> Size(f[2]);

8

12.1.8 SCMorseRandomRevLex

> SCMorseRandomRevLex (complex)
Returns: two lists of small integer lists upon success, fail otherweise.
Builds a discrete Morse function following Adiprasito, Benedetti and Lutz’ reverse lexicographic

random discrete Morse theory approach. See [BL14], [KAL14] for details.

Example

(function)

gap> ¢ := SCSurface(5,false);;
gap> f:=SCMorseRandomRevLex(c);;
gap> Size(£[2]);

7

12.1.9 SCMorseSpec

D> SCMorseSpec(complex, iter[, morsefunc])
Returns: a list upon success, fail otherweise.
Computes iter versions of a discrete Morse function of complex using a randomised method

specified by morsefunc (default choice is SCMorseRandom (12.1.6), other randomised methods avail-

able are SCMorseRandomLex (12.1.7) SCMorseRandomRevLex (12.1.8), and SCMorseUST (12.1.10)).

The result is referred to by the Morse spectrum of complex and is returned in form of a list containing

all Morse vectors sorted by number of critical points together with the actual vector of critical points

and how often they ocurred (see [BL14] for details).

(function)

Example
gap> c:=SCSeriesTorus(2);;
gap> f:=SCMorseSpec(c,30);
(04, 01,2,1]1,301]1
Example

gap> c:=SCSeriesHomologySphere(2,3,5);;

gap> f:=SCMorseSpec(c,30,SCMorseRandom) ;

e, 1,2,2,11,251, [8,[1,3,3,11,51]1

gap> f:=SCMorseSpec(c,30,SCMorseRandomLex) ;

(L6, [1,2,2,11,301]1

gap> f:=SCMorseSpec(c,30,SCMorseRandomRevLex) ;

(re, [1,2,2,121, 71, [8,[1,3,3,11, 1317,
[10, [ 1, 4, 4, 17,91, [10, [2,4,3,11]1, 111

gap> f:=SCMorseSpec(c,30,SCMorseUST) ;

rfe, 1,2,2,11]1, 181, (8, [1,3,3, 1171, 81,
[10, [ 1, 4, 4, 11, 411
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12.1.10 SCMorseUST

> SCMorseUST (complex) (function)

Returns: a random Morse function of a simplicial complex and a list of critical faces.

Builds a random Morse function by removing a uniformly sampled spanning tree from the dual
1-skeleton followed by a collapsing approach. complex needs to be a closed weak pseudomanifold
for this to work. For details of the algorithm, see [PS15].

Example

gap> c:=SCBdSimplex(3);;
gap> f:=SCMorseUST(c);;
gap> Size(f[2]);

2

12.1.11 SCSpanningTreeRandom

D> SCSpanningTreeRandom(HD, top) (function)

Returns: a list of edges upon success, fail otherweise.

Computes a uniformly sampled spanning tree of the complex belonging to the Hasse diagram HD
using Wilson’s algorithm (see [Wil96]). If top = true the output is a spanning tree of the dual graph
of the underlying complex. If top = false the output is a spanning tree of the primal graph (i.e., the
1-skeleton.

Example
gap> c:=SCSurface(1l,false);;

gap> HD:=SCHasseDiagram(c);;

gap> stTop:=SCSpanningTreeRandom(HD,true);
[ 15, 2, 6, 12, 7, 8, 1, 3, 11 ]

gap> stBot:=SCSpanningTreeRandom(HD,false);
[9, 5, 3,6, 111

12.1.12 SCHomology

> SCHomology (complex) (method)

Returns: a list of pairs of the form [ integer, list ] upon success

Computes the homology groups of a given simplicial complex complex using SCMorseRandom
(12.1.6) to obtain a Morse function and SmithNormalFormIntegerMat. Use SCHomologyEx
(12.1.13) to use alternative methods to compute discrete Morse functions (such as SCMorseEngstroem
(12.1.5), or SCMorseUST (12.1.10)) or the Smith normal form.

The output is a list of homology groups of the form [Hy,....,H;], where d is the dimension of
complex. The format of the homology groups H; is given in terms of their maximal cyclic subgroups,
i.e. a homology group H; = Z/ + Z/t| Z.x --- x Z.[t,Z is returned in form of a list [f, [t1,...,t,]], where f
is the (integer) free part of H; and #; denotes the torsion parts of H; ordered in weakly increasing size.

Example

gap> c:=SCSeriesTorus(2);;
gap> f:=SCHomology(c);
tfto, 0 11,02, 0 11,01, 111
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12.1.13 SCHomologyEx

D> SCHomologyEx(c, morsechoice, smithchoice)

Returns: a list of pairs of the form [ integer, list ] upon success, fail otherwise.

146

(method)

Computes the homology groups of a given simplicial complex ¢ using the function morsechoice

for discrete Morse function computations and smithchoice for Smith normal form computations.

The output is a list of homology groups of the form [Hy,....,H;], where d is the dimension of

Example

complex. The format of the homology groups Hi; is given in terms of their maximal cyclic subgroups,
i.e. a homology group H; = 7/ + 7/t Z. x ---x Z|t,Z. is returned in form of a list [ £, [t1,...,2,]], where f
is the (integer) free part of H; and ¢; denotes the torsion parts of H; ordered in weakly increasing size.

gap> c:=SCSeriesTorus(2);;
gap> f:=SCHomology(c);
tfo, L 11,02 [ 11,01, [ 111

Example

gap> c¢ := SCSeriesHomologySphere(2,3,5);;

gap> SCHomologyEx (c,SCMorseRandom, SmithNormalFormIntegerMat); time;
tto, € 131,00, C 11, 00,011,011, T 111

31

gap> ¢ := SCSeriesHomologySphere(2,3,5);;

gap> SCHomologyEx (c,SCMorseRandomLex,SmithNormalFormIntegerMat); time;
tcto, € 131,00, C 11, 00,011,011, T 111

30

gap> c := SCSeriesHomologySphere(2,3,5);;

gap> SCHomologyEx (c,SCMorseRandomRevLex,SmithNormalFormIntegerMat); time;
tco, € 11,00, 11,00, 0 11,01, 111

33

gap> c¢ := SCSeriesHomologySphere(2,3,5);;

gap> SCHomologyEx (c,SCMorseEngstroem, SmithNormalFormIntegerMat); time;
cco, € 11,00, 11,00, 0 11,01, 0 111

63

gap> c¢ := SCSeriesHomologySphere(2,3,5);;

gap> SCHomologyEx (c,SCMorseUST,SmithNormalFormIntegerMat) ; time;
tcto, € 131,00, C 11, 00,0311, 01t, T 111

74

12.1.14 SCIsSimplyConnected

> SCIsSimplyConnected(c)

Returns: a boolean value upon success, fail otherweise.

(function)

Computes if the SCSimplicialComplex object c is simply connected. The algorithm is a heuris-

tic method and is described in [PS15]. Internally calls SCIsSimplyConnectedEx (12.1.15).

Example
gap> rp2:=SCSurface(l,false);;

gap> SCIsSimplyConnected(rp2);

false

gap> c:=SCBdCyclicPolytope(8,18);;

gap> SCIsSimplyConnected(c);
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true

12.1.15 SCIsSimplyConnected Ex

> SCIsSimplyConnectedEx(c[, top, tries]) (function)

Returns: a boolean value upon success, fail otherweise.

Computes if the SCSimplicialComplex object ¢ is simply connected. The optional boolean
argument top determines whether a spanning graph in the dual or the primal graph of ¢ will be used
for a collapsing sequence. The optional positive integer argument tries determines the number of
times the algorithm will try to find a collapsing sequence. The algorithm is a heuristic method and is
described in [PS15].

Example
gap> rp2:=SCSurface(l,false);;

gap> SCIsSimplyConnectedEx(rp2);

false

gap> c:=SCBdCyclicPolytope(8,18);;

gap> SCIsSimplyConnectedEx(c);

true

12.1.16 SCIsSphere

> SCIsSphere(c) (function)
Returns: a boolean value upon success, fail otherweise.
Determines whether the SCSimplicialComplex object ¢ is a topological sphere. In dimension
# 4 the algorithm determines whether ¢ is PL-homeomorphic to the standard sphere. In dimension 4
the PL type is not specified. The algorithm uses a result due to [KS77] stating that, in dimension # 4,
any simply connected homology sphere with PL structure is a standard PL sphere. The function calls
SCIsSimplyConnected (12.1.14) which uses a heuristic method described in [PS15].
Example

gap> c:=SCBdCyclicPolytope(4,20);;
gap> SCIsSphere(c);

true

gap> c:=SCSurface(l,true);;

gap> SCIsSphere(c);

false

12.1.17 SClIsManifold

> SCIsManifold(c) (function)
Returns: a boolean value upon success, fail otherweise.
The algorithm is a heuristic method and is described in [PS15] in more detail. Internally calls

SCIsManifoldEx (12.1.18).
Example

gap> c:=SCBdCyclicPolytope(4,20);;
gap> SCIsManifold(c);
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true

12.1.18 SCIsManifoldEx

> SCIsManifoldEx(c/[, aut, quasi]) (function)

Returns: a boolean value upon success, fail otherweise.

If the boolean argument aut is true the automorphism group is computed and only one link
per orbit is checked to be a sphere. If aut is not provided symmetry information is only used if the
automorphism group is already known. If the boolean argument quasi is false the algorithm returns
whether or not c¢ is a combinatorial manifold. If quasi is true the 4-dimensional links are not
verified to be standard PL 4-spheres and ¢ is a combinatorial manifold modulo the smooth Poincare
conjecture. By default quasi is set to false. The algorithm is a heuristic method and is described in
[PS15] in more detail.

See SCBistellarIsManifold (9.2.6) for an alternative method for manifold verification.
Example

gap> c:=SCBdCyclicPolytope(4,20);;
gap> SCIsManifold(c);
true




Chapter 13

Library and 1/0

13.1 Simplicial complex library

simpcomp contains a library of simplicial complexes on few vertices, most of them (combinatorial)
triangulations of manifolds and pseudomanifolds. The user can load these known triangulations from
the library in order to study their properties or to construct new triangulations out of the known ones.
For example, a user could determine the topological type of a given triangulation — which can be quite
tedious if done by hand — by establishing a PL. equivalence to a complex in the library.

Among other known triangulations, the library contains all of the vertex transitive triangulations
of combinatorial manifolds with up to 15 vertices (for d € {2,3,9,10,11,12}) and up to 13 vertices (for
d €{4,5,6,7,8}) and all of the vertex transitive combinatorial pseudomanifolds with up to 15 vertices
(for d = 3) and up to 13 vertices (for d € {4,5,6,7}) classified by Frank Lutz that can be found on
his “Manifold Page” http://www.math.tu-berlin.de/diskregeom/stellar/, along with some
triangulations of sphere bundles and some bounded triangulated PL-manifolds.

See SCLib (13.1.2) for a naming convention used for the global library of simpcomp. Note:
Another way of storing and loading complexes is provided by the functions SCExportIsoSig (6.2.2),
SCExportToString (6.2.1) and SCFromIsoSig (6.2.3), see Section 6.2 for details.

13.1.1 SCIsLibRepository

> SCIsLibRepository(object) (filter)
Returns: true or false upon success, fail otherwise.
Filter for the category of a library repository SCIsLibRepository used by the simpcomp library.
The category SCLibRepository is derived from the category SCPropertyObject.

Example
gap> SCIsLibRepository(SCLib); #the global library is stored in SCLib
true
13.1.2 SCLib
> SCLib (global variable)
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The global variable SCLib contains the library object of the global library of simp-
comp through which the user can access the library. The path to the global library is
GAPROOT/pkg/simpcomp/complexes.

The naming convention in the global library is the following: complexes are usually named by
their topological type. As usual, * S°d’ denotes a d-sphere, ‘T’ a torus, ‘X’ the cartesian product,
the twisted product and ‘#’ the connected sum. The Klein Bottle is denoted by ‘K’ or ‘K™2’.

Example

gap> SCLib;

[Simplicial complex library. Properties:

CalculateIndexAttributes=true

Number of complexes in library=648

IndexAttributes=[ "Name", "Dim", "F", "G", "H", "Chi", "Homology", "IsPM",
"IsManifold" ]

Loaded=true

Path="/home/jonathan/bin/gap-4.11.1/pkg/simpcomp/complexes/"

]

gap> SCLib.Size;

648

gap> SCLib.SearchByName("S~47");

[ [ 203, "S~4~s~1 (vI)" 1, [ 330, "S~4~s~1 (vDO" 1, [ 332, "S"47s~1 (VD" 1,
[ 395, "S~4~s~1 (vD)" ], [ 451, "S~47s~1 (vD)" ], [ 452, "S~47s~1 (VD" ],
[ 453, "S~47s~1 (vD)" ], [ 454, "S~47s~1 (vD)" ], [ 455, "S~47s~1 (VD" ],
[ 458, "S~47s~1 (vD)" ], [ 459, "S~47s~1 (vD)" ], [ 460, "S"47S~1 (VD" ] ]
gap> SCLib.Load(last[1][1]);
<SimplicialComplex: S~47S~1 (VT) | dim =5 | n = 13>
13.1.3 SCLibAdd
D> SCLibAdd(repository, complex[, name]) (function)

Returns: true upon success, fail otherwise.

Adds a given simplicial complex complex to a given repository repository of type
SCIsLibRepository. complex is saved to a file with suffix .sc in the repositories base path, where
the file name is either formed from the optional argument name and the current time or taken from the

name of the complex, if it is named.

Example

gap> info:=InfolLevel (InfoSimpcomp);;

gap> SCInfoLevel(0);;

gap> myRepository:=SCLibInit("/tmp/repository");

[Simplicial complex library. Properties:

CalculateIndexAttributes=true

Number of complexes in library=0

IndexAttributes=[ "Name", "Dim", "F", "G", "H", "Chi", "Homology", "IsPM",
"IsManifold" ]

Loaded=true

Path="/tmp/repository/"

]

gap> complex1:=SCBdCrossPolytope(4);;

gap> SCLibAdd (myRepository,complexl) ;

true

gap> complex2:=SCBdCrossPolytope(4);;
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gap> myRepository.Add(complex2);; # alternative syntax
gap> SCInfolevel(info);;

13.1.4 SCLibAllComplexes

> SCLibAllComplexes (repository) (function)
Returns: list of entries of the form [ integer, string ] upon success, fail otherwise.
Returns a list with entries of the form [ ID, NAME ] of all the complexes in the given repository

repository of type SCIsLibRepository.

Example
gap> all:=SCLibAllComplexes(SCLib);;

gap> alll[1];

[ 1, "Moebius Strip" ]

gap> Length(all);

648

13.1.5 SCLibDelete

> SCLibDelete(repository, id) (function)
Returns: true upon success, fail otherwise.
Deletes the simplicial complex with the given id id from the given repository repository. Apart

from deleting the complexes’ index entry, the associated . sc file is also deleted.

Example

gap> myRepository:=SCLibInit("/tmp/repository");

[Simplicial complex library. Properties:

CalculateIndexAttributes=true

Number of complexes in library=2

IndexAttributes=[ "Name", "Dim", "F", "G", "H", "Chi", "Homology", "IsPM",
"IsManifold" ]

Loaded=true

Path="/tmp/repository/"

]

gap> SCLibAdd (myRepository,SCSimplex(2));;

gap> SCLibDelete (myRepository,1);

true

13.1.6 SCLibDetermineTopologicalType

> SCLibDetermineTopologicalType( [repository, ]complex) (function)

Returns: simplicial complex of type SCSimplicialComplex or a list of integers upon success,
fail otherwise.

Tries to determine the topological type of a given complex complex by first looking for com-
plexes with matching homology in the library repository repository (if no repository is passed, the
global repository SCLib is used) and either returns a simplicial complex object (that is combinatori-
ally isomorphic to the complex given) or a list of library ids of complexes in the library with the same
homology as the complex provided.
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The ids obtained in this way can then be used to compare the corresponding complexes with
complex via the function SCEquivalent (9.2.2).

If complex is a combinatorial manifold of dimension 1 or 2 its topological type is computed,
stored to the property TopologicalType and complex is returned.

If no complexes with matching homology can be found, the empty set is returned.

Example

gap> c:=SCFromFacets([[1,2,3],[1,2,6],[1,3,5],[1,4,5],[1,4,6],
[2,3,4],[2,4,51,[2,5,6],[3,4,61,[3,5,6]11);;

gap> SCLibDetermineTopologicalType(c);

<SimplicialComplex: unnamed complex 250 | dim = 2 | n = 6>

13.1.7 SCLibFlush

> SCLibFlush(repository, confirm) (function)
Returns: true upon success, fail otherwise.
Completely empties a given repository repository. The index and all simplicial complexes in
this repository are deleted. The second argument, confirm, must be the string "yes" in order to

confirm the deletion.

Example
gap> myRepository:=SCLibInit ("/tmp/repository");;
gap> SCLibFlush(myRepository,"yes") ;

#I SCLibInit: invalid parameters.

true

13.1.8 SCLiblInit

> SCLibInit(dir) (function)

Returns: library repository of type SCLibRepository upon success, fail otherwise.

This function initializes a library repository object for the given directory dir (which has to be
provided in form of a GAP object of type String or Directory) and returns that library repository
object in case of success. The returned object then provides a mean to access the library repository via
the SCLib-functions of simpcomp.

The global library repository of simpcomp is loaded automatically at startup and is stored in the
variable SCLib. User repositories can be created by calling SCLibInit with a desired destination
directory. Note that each repository must reside in a different path since otherwise data may get lost.

The function first tries to load the repository index for the given directory to rebuild it (by calling
SCLibUpdate) if loading the index fails. The library index of a library repository is stored in its base
path in the XML file complexes. idx, the complexes are stored in files with suffix . sc, also in XML

format.

Example
gap> myRepository:=SCLibInit("/tmp/repository");

#I SCLibInit: made directory "/tmp/repository/" for user library.

#I SCIntFunc.SCLibInit: index not found -- trying to reconstruct it.
#I SCLibUpdate: rebuilding index for /tmp/repository/.

#I SCLibUpdate: rebuilding index done.

[Simplicial complex library. Properties:
CalculateIndexAttributes=true
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Number of complexes in library=0

IndexAttributes=[ "Name", "Dim", "F", "G", "H", "Chi", "Homology", "IsPM",
"IsManifold" ]

Loaded=true

Path="/tmp/repository/"

]

13.1.9 SCLiblsLoaded

> SCLibIsLoaded(repository) (function)
Returns: true or false upon succes, fail otherwise.
Returns true when a given library repository repository is in loaded state. This means that
the directory of this repository is accessible and a repository index file for this repository exists in the

repositories’ path. If this is not the case false is returned.
Example

gap> SCLibIsLoaded(SCLib);
true

gap> SCLib.IsLoaded;

true

13.1.10 SCLibSearchByAttribute

D> SCLibSearchByAttribute(repository, expr) (function)
Returns: A list of items of the form [ integer, string ] upon success, fail otherwise.
Searches a given repository repository for complexes for which the boolean expression expr,

passed as string, evaluates to true and returns a list of complexes with entries of the form [ID,

NAME] or fail upon error. The expression may use all GAP functions and can access all the indexed

attributes of the complexes in the given repository for the query. The standard attributes are: Dim

(Dimension), F (f-vector), G (g-vector), H (h-vector), Chi (Euler characteristic), Homology, Name,

IsPM, IsManifold. See SCLib for the set of indexed attributes of the global library of simpcomp.
Example
gap> SCLibSearchByAttribute(SCLib, "Dim=4 and F[3]=Binomial(F[1],3)");
[ [16, "cp~2 (VD))" 1, [ 520, "K3_16" ] ]

gap> SCLib.SearchByAttribute("Dim=4 and F[3]=Binomial(F[1],3)");

[ [ 16, "cP~2 (VvT)" ], [ 520, "K3_16" ] 1]

13.1.11 SCLibSearchByName

D> SCLibSearchByName (repository, name) (function)
Returns: A list of items of the form [ integer, string ] upon success, fail otherwise.
Searches a given repository repository for complexes that contain the string name as a substring

of their name attribute and returns a list of the complexes found with entries of the form [ID, NAME].

See SCLib (13.1.2) for a naming convention used for the global library of simpcomp.
Example

gap> SCLibSearchByName (SCLib, "K3");
[ [ 520, "K3_16" 1, [ 539, "K3_17" 1 ]
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gap> SCLib.SearchByName ("K3"); #alternative syntax

[ [ 520, "K3_16" 1, [ 539, "K3_17" ] |

gap> SCLib.SearchByName ("S~4x"); #search for products with S~4

[ [ 282, "s~4xS~1 (VT)" 1, [ 329, "S"4xS~1 (VT)" 1, [ 331, "S~4xS~1 (VD)" 1 1]

13.1.12 SCLibSize

> SCLibSize(repository) (function)
Returns: integer upon success, fail otherwise.
Returns the number of complexes contained in the given repository repository. Fails if the
library repository was not previously loaded with SCLibInit.

Example
gap> SCLibSize(SCLib); #SCLib is the repository of the global library
648
13.1.13 SCLibUpdate
> SCLibUpdate(repository[, recalc]) (function)

Returns: library repository of type SCLibRepository upon success, fail otherwise.
Recreates the index of a given repository (either via a repository object or a base path of a repos-
itory repository) by scanning the base path for all .sc files containing simplicial complexes of
the repository. Returns a repository object with the newly created index on success or fail in case
of an error. The optional boolean argument recalc forces simpcomp to recompute all the indexed
properties (such as f-vector, homology, etc.) of the simplicial complexes in the repository if set to
true.
Example
gap> myRepository:=SCLibInit("/tmp/repository");;
gap> SCLibUpdate (myRepository) ;
#I SCLibUpdate: rebuilding index for /tmp/repository/.
#I SCLibUpdate: rebuilding index done.
[Simplicial complex library. Properties:
CalculateIndexAttributes=true
Number of complexes in library=0
IndexAttributes=[ "Name", "Dim", "F", "G", "H", "Chi", "Homology", "IsPM",
"IsManifold" ]
Loaded=true
Path="/tmp/repository/"
]

13.1.14 SCLibStatus

> SCLibStatus(repository) (function)
Returns: library repository of type SCLibRepository upon success, fail otherwise.
Lets GAP print the status of a given library repository repository. IndexAttributes is the
list of attributes indexed for this repository. If CalculateIndexAttributes is true, the index at-
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tributes for a complex added to the library are calculated automatically upon addition of the complex,

otherwise this is left to the user and only pre-calculated attributes are indexed.
Example

gap> SCLibStatus(SCLib) ;

[Simplicial complex library. Properties:

CalculateIndexAttributes=true

Number of complexes in library=648

IndexAttributes=[ "Name", "Dim", "F", "G", "H", "Chi", "Homology", "IsPM",
"IsManifold" ]

Loaded=true

Path="/home/jonathan/bin/gap-4.11.1/pkg/simpcomp/complexes/"

]

13.2 simpcomp input / output functions

This section contains a description of the input/output-functionality provided by simpcomp. The
package provides the functionality to save and load simplicial complexes (and their known properties)
to, respectively from files in XML format. Furthermore, it provides the user with functions to export
simplicial complexes into polymake format (for this format there also exists rudimentary import func-
tionality), as JavaView geometry or in form of a I4TEX table. For importing more complex polymake
data the package polymaking [R13] can be used.

13.2.1 SCLoad

> SCLoad(filename) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Loads a simplicial complex stored in a binary format (using I0_Pickle) from a file specified in

filename (as string). If filename does not end in . scb, this suffix is appended to the file name.
Example

gap> c:=SCBdSimplex(3);;

gap> SCSave(c,"/tmp/bddelta3");

true

gap> d:=SCLoad("/tmp/bddelta3");
<SimplicialComplex: S°2_4 | dim = 2 | n = 4>
gap> c=d;

true

13.2.2 SCLoadXML

> SCLoadXML(filename) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Loads a simplicial complex stored in XML format from a file specified in filename (as string).

If filename does not end in . sc, this suffix is appended to the file name.
Example

gap> c:=SCBdSimplex(3);;
gap> SCSaveXML(c,"/tmp/bddelta3");
true
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gap> d:=SCLoadXML("/tmp/bddelta3") ;
<SimplicialComplex: S°2_4 | dim =2 | n = 4>
gap> c=d;

true

13.2.3 SCSave

> SCSave(complex, filename) (function)
Returns: true upon success, fail otherwise.
Saves a simplicial complex in a binary format (using I0_Pickle) to a file specified in filename

(as string). If filename does not end in .scb, this suffix is appended to the file name.
Example

gap> c:=SCBdSimplex(3);;
gap> SCSave(c,"/tmp/bddelta3");
true

13.2.4 SCSaveXML

> SCSaveXML(complex, filename) (function)
Returns: true upon success, fail otherwise.
Saves a simplicial complex complex to a file specified by filename (as string) in XML format.
If filename does not end in . sc, this suffix is appended to the file name.

Example
gap> c:=SCBdSimplex(3);;
gap> SCSaveXML(c,"/tmp/bddelta3");
true
13.2.5 SCExportMacaulay2
> SCExportMacaulay2(complex, ring, filename[, alphalabels]) (function)

Returns: true upon success, fail otherwise.

Exports the facet list of a given simplicial complex complex in Macaulay?2 format to a file speci-
fied by filename. The argument ring can either be the ring of integers (specified by Integers) or
the ring of rationals (sepcified by Rationals). The optional boolean argument alphalabels labels
the complex with characters from a,...,z in the exported file if a value of true is supplied, while

the standard labeling of the vertices is vy,...,v, where n is the number of vertices of complex. If
complex has more than 26 vertices, the argument alphalabels is ignored.
Example

gap> c:=SCBdCrossPolytope(4);;
gap> SCExportMacaulay2(c,Integers,"/tmp/bdbetad.m2");
true
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13.2.6 SCExportPolymake

D> SCExportPolymake (complex, filename) (function)
Returns: true upon success, fail otherwise.
Exports the facet list with vertex labels of a given simplicial complex complex in polymake
format to a file specified by filename. Currently, only the export in the format of polymake version
2.3 is supported.

Example
gap> c:=SCBdCrossPolytope(4);;

gap> SCExportPolymake(c,"/tmp/bdbeta4.poly");
true

13.2.7 SCImportPolymake

> SCImportPolymake (filename) (function)
Returns: simplicial complex of type SCSimplicialComplex upon success, fail otherwise.
Imports the facet list of a topaz polymake file specified by filename (discarding any vertex

labels) and creates a simplicial complex object from these facets.
Example

gap> c:=SCBdCrossPolytope(4);;

gap> SCExportPolymake(c,"/tmp/bdbeta4.poly");

true

gap> d:=SCImportPolymake("/tmp/bdbeta4.poly");

<SimplicialComplex: polymake import ’/tmp/bdbetad.poly’ | dim = 3 | n = 8>
gap> c=d;

true

13.2.8 SCExportLatexTable

> SCExportLatexTable(complex, filename, itemsperline) (function)
Returns: true on success, fail otherwise.
Exports the facet list of a given simplicial complex complex (or any list given as first argument)
in form of a IATEX table to a file specified by filename. The argument itemsperline specifies how

many columns the exported table should have. The faces are exported in the format (vy,...,vg).
Example

gap> c:=SCBdSimplex(5);;
gap> SCExportLatexTable(c,"/tmp/bd5simplex.tex",5);
true

13.2.9 SCExportJavaView

> SCExportJavaView(complex, file, coords) (function)
Returns: true on success, fail otherwise.
Exports the 2-skeleton of the given simplicial complex complex (or the facets if the complex is of
dimension 2 or less) in JavaView format (file name suffix . jvx) to a file specified by filename (as
string). The list coords must contain a 3-tuple of real coordinates for each vertex of complex, either
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as tuple of length three containing the coordinates (Warning: as GAP only has rudimentary support
for floating point values, currently only integer numbers can be used as coordinates when providing
coords as list of 3-tuples) or as string of the form "x.x y.y z.z" with decimal numbers x.x, y.y,

z .z for the three coordinates (i.e. "1.0 0.0 0.0").
Example
gap> coords:=[[1,0,0],[0,1,0],[0,0,1]1];;
gap> SCExportJavaView(SCBdSimplex(2),"/tmp/triangle.jvx",coords);
true

13.2.10 SCExportRecognizer

D> SCExportRecognizer (complex, filename) (function)
Returns: true upon success, fail otherwise.
Exports the gluings of the tetrahedra of a given combinatorial 3-manifold complex in a format
compatible with Matveev’s 3-manifold software Recognizer.
Example

gap> c:=SCBdCrossPolytope(4);;
gap> SCExportRecognizer(c,"/tmp/bdbetad.mv");
true

13.2.11 SCExportSnapPy

D> SCExportSnapPy(complex, filename) (function)
Returns: true upon success, fail otherwise.
Exports the facet list and orientability of a given combinatorial 3-pseudomanifold complex in
SnapPy format to a file specified by filename.
Example

gap> SCLib.SearchByAttribute("Dim=3 and F=[8,28,56,28]");
[ [ 8, "PM"3 - TransitiveGroup(8,43), No. 1" ] ]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCExportSnapPy(c,"/tmp/M38.tri") ;

true




Chapter 14

Interfaces to other software packages

simpcomp contains various interfaces to other software packages (see Chapter 13 for file-related
export and import formats). In this chapter, some more sophisticated interfaces to other software
packages are described.

Note that this chapter is subject to change and extension as it is planned to expand simpcomp’s
functionality in this area in the course of the next versions.

14.1 Interface to the GAP-package homalg

As of Version 1.5, simpcomp is equipped with an interface to the GAP-package homalg [BROS]
by Mohamed Barakat. This allows to use homalg’s powerful capabilities in the field of homological
algebra to compute topological properties of simplicial complexes.

For the time being, the only functions provided are ones allowing to compute the homology and
cohomology groups of simplicial complexes with arbitrary coefficients. It is planned to extend the
functionality in future releases of simpcomp. See below for a list of functions that provide an interface
to homalg.

14.1.1 SCHomalgBoundaryMatrices

> SCHomalgBoundaryMatrices(complex, modulus) (method)
Returns: a list of homalg objects upon success, fail otherwise.
This function computes the boundary operator matrices for the simplicial complex complex with
a ring of coefficients as specified by modulus: a value of O yields Q-matrices, a value of 1 yields
Z-matrices and a value of g, q a prime or a prime power, computes the [,-matrices.

Example

gap> SCLib.SearchByName ("CP~2 (VT)");

[ [ 16, "CP~2 (VD" 1 ]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCHomalgBoundaryMatrices(c,0);

[ <A 36 x 9 matrix over an internal ring>,
<A 84 x 36 matrix over an internal ring>,
<A 90 x 84 matrix over an internal ring>,
<A 36 x 90 matrix over an internal ring>,
<An unevaluated 0 x 36 zero matrix over an internal ring> ]

159
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14.1.2 SCHomalgCoboundaryMatrices

D> SCHomalgCoboundaryMatrices(complex, modulus) (method)
Returns: a list of homalg objects upon success, fail otherwise.
This function computes the coboundary operator matrices for the simplicial complex complex
with a ring of coefficients as specified by modulus: a value of 0 yields Q-matrices, a value of 1 yields
Z-matrices and a value of g, q a prime or a prime power, computes the F,-matrices.

Example

gap> SCLib.SearchByName ("CP~2 (VI)");

[ [ 16, "CP~2 (V)" ] ]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCHomalgCoboundaryMatrices(c,0);

[ <A 9 x 36 matrix over an internal ring>,
<A 36 x 84 matrix over an internal ring>,
<A 84 x 90 matrix over an internal ring>,
<A 90 x 36 matrix over an internal ring>,
<An unevaluated 36 x O zero matrix over an internal ring> ]

14.1.3 SCHomalgHomology

> SCHomalgHomology(complex, modulus) (method)

Returns: a list of integers upon success, fail otherwise.

This function computes the ranks of the homology groups of complex with a ring of coefficients as
specified by modulus: a value of 0 computes the (Q-homology, a value of 1 computes the Z-homology
and a value of g, q a prime or a prime power, computes the [F,-homology ranks.

Note that if you are interested not only in the ranks of the homology groups, but rather their full
structure, have a look at the function SCHomalgHomologyBasis (14.1.4).

Example

gap> SCLib.SearchByName ("K3") ;

[ [ 520, "k3_16" 1, [ 539, "K3_17" ] ]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCHomalgHomology(c,0);

#I SCHomalgHomologyOp: Q-homology ranks: [ 1, 0, 22, 0, 1 1]
[1, 0, 22, 0, 11

14.1.4 SCHomalgHomologyBasis

D> SCHomalgHomologyBasis(complex, modulus) (method)

Returns: a homalg object upon success, fail otherwise.

This function computes the homology groups (including explicit bases of the modules involved) of
complex with a ring of coefficients as specified by modulus: a value of O computes the Q-homology,
a value of 1 computes the Z-homology and a value of q, q a prime or a prime power, computes the
[F,-homology groups.

The k-th homology group hk can be obtained by calling hk:=CertainObject (homology,k) ;,
where homology is the homalg object returned by this function. The generators of hk can then be
obtained via Generators0fModule (hk) ;.
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Note that if you are only interested in the ranks of the homology groups, then it is better to use the
funtion SCHomalgHomology (14.1.3) which is way faster.
Example

gap> SCLib.SearchByName ("K3");

[ [ 520, "K3_16" 1, [ 539, "K3_17" ] ]

gap> c:=SCLib.Load(last[1][1]);;

gap> SCHomalgHomologyBasis(c,0) ;

#I SCHomalgHomologyBasis(Op: constructed Q-homology groups.

<A graded homology object consisting of 5 left vector spaces at degrees
[O..41>

14.1.5 SCHomalgCohomology

> SCHomalgCohomology (complex, modulus) (method)
Returns: a list of integers upon success, fail otherwise.
This function computes the ranks of the cohomology groups of complex with a ring of coefficients
as specified by modulus: a value of 0 computes the Q-cohomology, a value of 1 computes the Z-
cohomology and a value of g, q a prime or a prime power, computes the IF,-cohomology ranks.
Note that if you are interested not only in the ranks of the cohomology groups, but rather their full
structure, have a look at the function SCHomalgCohomologyBasis (14.1.6).
Example

gap> SCLib.SearchByName ("K3");

[ [ 520, "K3_16" 1, [ 539, "K3_17" 1 ]

gap> c:=SCLib.Load (last[1][1]);;

gap> SCHomalgCohomology(c,0);

#I SCHomalgCohomologyOp: Q-cohomology ranks: [ 1, 0, 22, 0, 1]
[1, 0, 22, 0, 11

14.1.6 SCHomalgCohomologyBasis

> SCHomalgCohomologyBasis(complex, modulus) (method)

Returns: a homalg object upon success, fail otherwise.

This function computes the cohomology groups (including explicit bases of the modules involved)
of complex with a ring of coefficients as specified by modulus: a value of 0 computes the Q-
cohomology, a value of 1 computes the Z-cohomology and a value of g, q a prime or a prime power,
computes the F,-homology groups.

The k-th cohomology group ck can be obtained by calling
ck:=CertainObject (cohomology,k);, where cohomology is the homalg object returned by
this function. The generators of ck can then be obtained via Generators0OfModule (ck) ;.

Note that if you are only interested in the ranks of the cohomology groups, then it is better to use
the funtion SCHomalgCohomology (14.1.5) which is way faster.

Example

gap> SCLib.SearchByName ("K3") ;

[ [ 520, "K3_16" 1, [ 539, "K3_17" 1] 1]

gap> c:=SCLib.Load(last[1]1[1]);;

gap> SCHomalgCohomologyBasis(c,0);

#I SCHomalgCohomologyBasisOp: constructed Q-cohomology groups.
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<A graded cohomology object consisting of 5 left vector spaces at degrees
[1..5]1>




Chapter 15

Miscellaneous functions

The behaviour of simpcomp can be changed by setting cetain global options. This can be achieved
by the functions described in the following.

15.1 simpcomp logging

The verbosity of the output of information to the screen during calls to functions of the package sim-
pcomp can be controlled by setting the info level parameter via the function SCInfoLevel (15.1.1).

15.1.1 SClInfoLevel

> SCInfolLevel(level) (function)
Returns: true
Sets the logging verbosity of simpcomp. A level of 0 suppresses all output, a level of 1 lets
simpcomp output normal running information, whereas levels of 2 and higher display verbose running
information. Examples of functions using more verbose logging are bistellar flip-related functions.
Example

gap> SCInfolevel(3);

true

gap> c:=SCBdCrossPolytope(3);;

gap> SCReduceComplex(c);

#I round O, move: [ [ 4, 51, [ 1, 211

F: [ 6, 12, 8]

#I round 1, move: [ [ 51, [ 1, 2, 311

F: [ 5, 9, 61

#I round 1

Reduced complex, F: [ 5, 9, 6 ]

#I round 2, move: [ [ 31, [ 1, 2, 61 1]

F: [ 4, 6, 41

#I round 2

Reduced complex, F: [ 4, 6, 4 ]

#I SCReduceComplexEx: computed locally minimal complex after 3 rounds.
[ true, <SimplicialComplex: unnamed complex 3 | dim = 2 | n = 4>, 3 ]
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15.2 Email notification system

simpcomp comes with an email notification system that can be used for being notified of the progress
of lengthy computations (such as reducing a complex via bistellar flips). See below for a description
of the mail notification related functions. Note that this might not work on non-Unix systems.

See SCReduceComplexEx (9.2.14) for an example computation using the email notification sys-
tem.

15.2.1 SCMailClearPending

> SCMailClearPending() (function)
Returns: nothing.
Clears a pending mail message.

Example

gap> SCMailClearPending();

15.2.2 SCMaillsEnabled

> SCMailIsEnabled() (function)
Returns: true or false upon success, fail otherwise.
Returns true when the mail notification system of Simpcomp is enabled, false otherwise. De-
fault setting is false.

Example
gap> SCMailSetAddress("johndoe@somehost"); #enables mail notification
true

gap> SCMailIsEnabled();

true

15.2.3 SCMaillsPending

> SCMailIsPending() (function)
Returns: true or false upon success, fail otherwise.
Returns true when an email of the Simpcomp email notification system is pending, false oth-
erwise.

Example
gap> SCMailIsPending();
false
15.2.4 SCMailSend
> SCMailSend(message[, starttimel][, forcesend]) (function)

Returns: true when the message was sent, false if it was not send, £ail upon an error.
Tries to send an email to the address specified by SCMailSetAddress (15.2.6) using the Unix
program mail. The optional parameter starttime specifies the starting time (as the integer Unix
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timestamp) a calculation was started (then the duration of the calculation is included in the email),
the optional boolean parameter forcesend can be used to force the sending of an email, even if this
violates the minimal email sending interval, see SCMailSetMinInterval (15.2.8).

Example
gap> SCMailSetAddress("johndoe@somehost"); #enables mail notification
true

gap> SCMailIsEnabled();

true

gap> SCMailSend("Hello, this is simpcomp.");

true

15.2.5 SCMailSendPending

> SCMailSendPending() (function)
Returns: true upon success, fail otherwise.
Tries to send a pending email of the simpcomp email notification system. Returns true on
success or if there was no mail pending.
Example

gap> SCMailSendPending() ;
true

15.2.6 SCMailSetAddress

> SCMailSetAddress (address) (function)
Returns: true upon success, fail otherwise.
Sets the email address that should be used to send notification messages and enables the mail
notification system by calling SCMailSetEnabled (15.2.7)(true).

Example
gap> SCMailSetAddress("johndoe@somehost") ;
true

15.2.7 SCMailSetEnabled

> SCMailSetEnabled(flag) (function)
Returns: true upon success, fail otherwise.
Enables or disables the mail notification system of simpcomp. By default it is disabled. Returns
fail if no email message was previously set with SCMailSetAddress (15.2.6).
Example
gap> SCMailSetAddress("johndoe@somehost"); #enables mail notification
true
gap> SCMailSetEnabled(false);
true
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15.2.8 SCMailSetMinlInterval

> SCMailSetMinInterval(interval) (function)
Returns: true upon success, fail otherwise.
Sets the minimal time interval in seconds that mail messages can be sent by simpcomp. This
prevents a flooding of the specified email address with messages sent by simpcomp. Default is 3600,
i.e. one hour.

Example
gap> SCMailSetMinInterval(7200);
true

15.3 Testing the functionality of simpcomp

simpcomp makes use of the GAP internal testing mechanisms and provides the user with a function
to test the functionality of the package.

15.3.1 SCRunTest

> SCRunTest () (function)
Returns: true upon success, fail otherwise.
Test whether the package simpcomp is functional by calling
Test ("GAPROOT/pkg/simpcomp/tst/simpcomp.tst",rec(compareFunction :=
"uptowhitespace"));. The returned value of GAP4stones is a measure of your system per-

formance and differs from system to system.
Example

gap> SCRunTest();
simpcomp package test
msecs: 8850

true

On a modern computer, the function SCRunTest should take about a minute to complete when the
packages GRAPE [Soil12] and homology [DHSW11] are available. If these packages are missing,
the testing will take slightly longer.
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Property handlers

As explained in Chapter 5, objects of the types SCSimplicialComplex, SCNormalSurface and
SCLibRepository provide a set of property handlers for ease of access to sSimpcomp functions using
these objects. Accessing these property handlers is possible via the .-operator.

For example, the f-vector of a simplicial complex c that is stored as a SCSimplicialComplex
object can be accessed via the statement c.F; instead of writing the longer SCFVector(c) ;.
See below for a list of all properties supported by objects of the types SCPolyhedralComplex,
SCSimplicialComplex, SCNormalSurface and SCLibRepository (Note that the property handlers
of SCPolyhedralComplex can be used by both SCSimplicialComplex and SCNormalSurface).

16.1 Property handlers of SCPolyhedralComplex

This section contains a table of all property handlers of a SCPolyhedralComplex object.

PROPERTY HANDLER FUNCTION CALLED

AntiStar SCAntiStar (4.3.1)

Ast SCAntiStar (4.3.1)

Facets SCFacets (6.9.19)

FacetsEx SCFacetsEx (6.9.20)
LabelMax SCLabelMax (4.2.1)
LabelMin SCLabelMin (4.2.2)

Labels SCLabels (4.2.3)

Lk SCLink (4.3.2)

Link SCLink (4.3.2)

Links SCLinks (4.3.3)

Lks SCLinks (4.3.3)

Name SCName (4.2.4)

Reference SCReference (4.2.5)
Relabel SCRelabel (4.2.6)
RelabelStandard SCRelabelStandard (4.2.7)
RelabelTransposition =~ SCRelabelTransposition (4.2.8)
Rename SCRename (4.2.9)
SetReference SCSetReference (4.2.10)
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Str

Stars

Strs
UnlabelFace
Vertices
VerticesEx

PROPERTY HANDLER
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SCStar (4.3.4)

SCStar (4.3.4)

SCStars (4.3.5)
SCStars (4.3.5)
SCUnlabelFace (4.2.11)
SCVertices (4.1.3)
SCVerticesEx (4.1.4)

16.2 Property handlers of SCSimplicialComplex

This section contains a table of all property handlers of a SCSimplicialComplex object.

FUNCTION CALLED

ASDet

AlexanderDual
AutomorphismGroup
AutomorphismGrouplnternal
AutomorphismGroupSize
AutomorphismGroupStructure
AutomorphismGroupTransitivity
Bd

Boundary
BoundaryOperatorMatrix
Chi
CoboundaryOperatorMatrix
Cohomology
CohomologyBasis
CohomologyBasisAsSimplices
CollapseGreedy

Cone

ConnectedComponents

Copy

CupProduct
DehnSommervilleCheck
DeletedJoin
DetermineTopological Type
Difference

DifferenceCycles

Dim

DualGraph

Equivalent
EulerCharacteristic
ExportJavaView
ExportLatexTable
ExportPolymake

SCAltshulerSteinberg (6.9.1)
SCAlexanderDual (6.10.1)
SCAutomorphismGroup (6.9.2)
SCAutomorphismGroupInternal (6.9.3)
SCAutomorphismGroupSize (6.9.4)
SCAutomorphismGroupStructure (6.9.5)
SCAutomorphismGroupTransitivity (6.9.6)
SCBoundary (6.9.7)

SCBoundary (6.9.7)
SCBoundaryOperatorMatrix (8.1.1)
SCEulerCharacteristic (7.3.3)
SCCoboundaryOperatorMatrix (8.2.1)
SCCohomology (8.2.2)
SCCohomologyBasis (8.2.3)
SCCohomologyBasisAsSimplices (8.2.4)
SCCollapseGreedy (12.1.1)

SCCone (6.10.3)
SCConnectedComponents (7.3.1)

SCCopy (7.2.1)

SCCupProduct (8.2.5)
SCDehnSommervilleCheck (6.9.8)
SCDeletedJoin (6.10.4)
SCLibDetermineTopologicalType (13.1.6)
SCDifference (6.10.5)
SCDhifferenceCycles (6.9.10)

SCDim (7.3.2)

SCDualGraph (6.9.12)

SCEquivalent (9.2.2)
SCEulerCharacteristic (7.3.3)
SCExportJavaView (13.2.9)
SCExportLatexTable (13.2.8)
SCExportPolymake (13.2.6)



F

FaceLattice
FaceLatticeEx

Faces

FacesEx

FillSphere

FpBetti
FundamentalGroup

G

Generators
GeneratorsEx

H

HandleAddition
HasBd

HasBoundary

HasInt

HaslInterior
HasseDiagram
Homology
HomologyBasis
HomologyBasisAsSimplices
Homologylnternal
Incidences
IncidencesEx

Interior

Intersection
IntersectionForm
IntersectionFormDimensionality
IntersectionFormParity
IntersectionFormSignature
IsCentrallySymmetric
IsConnected

IsEmpty
IsEulerianManifold
IsFlag
IsHomologySphere
IsInKd

IsIsomorphic
IsKNeighborly
IsKStackedSphere
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SCFVector (7.3.4)

SCFaceLattice (7.3.5)
SCFaceLatticeEx (7.3.6)

SCFaces (6.9.17)

SCFacesEx (6.9.18)

SCFillSphere (6.10.6)
SCFpBettiNumbers (7.3.7)
SCFundamentalGroup (6.9.22)
SCGVector (6.9.23)

SCGenerators (6.9.24)
SCGeneratorsEx (6.9.25)
SCHVector (6.9.26)
SCHandleAddition (6.10.7)
SCHasBoundary (6.9.27)
SCHasBoundary (6.9.27)
SCHasInterior (6.9.28)
SCHasInterior (6.9.28)
SCHasseDiagram (12.1.4)
SCHomology (12.1.12)
SCHomologyBasis (8.1.3)
SCHomologyBasisAsSimplices (8.1.4)
SCHomologyInternal (8.1.5)
SCIncidences (6.9.32)
SCIncidencesEx (6.9.33)
SCInterior (6.9.34)
SCIntersection (6.10.8)
SCIntersectionForm (8.2.6)
SCIntersectionFormDimensionality (8.2.8)
SCIntersectionFormParity (8.2.7)
SCIntersectionFormSignature (8.2.9)
SCIsCentrallySymmetric (6.9.35)
SCIsConnected (7.3.10)

SCIsEmpty (7.3.11)
SCIsEulerianManifold (6.9.38)
SCIsFlag (6.9.39)
SCIsHomologySphere (6.9.41)
SCIsInKd (6.9.42)

SCIsIsomorphic (6.10.9)
SCIsKNeighborly (6.9.43)
SCIsKStackedSphere (9.2.5)



IsManifold
IsMovable
Isomorphism
IsomorphismEx
IsOrientable

IsPM

IsPure

IsSC
IsSimplyConnected
IsShellable

IsSphere
IsStronglyConnected
IsSubcomplex
IsTight

Join

Load
MinimalNonFaces
MinimalNonFacesEx
MorselsPerfect
MorseMultiplicity Vector
MorseNumberOfCriticalPoints
Move

Moves
Neighborliness
Neighbors
NeighborsEx
NumPFaces
Orientation
PropertiesDropped
Randomize

RMoves

Reduce
ReduceAsSubcomplex
ReduceEx

Save

Details

Shelling

ShellingExt
Shellings

Skel

SkelEx

Slicing

Span

SpanningTree
StronglyConnectedComponents
Suspension
Transitivity

Union
VertexIdentification
Wedge

simpcomp

SCIsManifold (12.1.17)
SCIsMovableComplex (9.2.7)
SCIsomorphism (6.10.11)
SCIsomorphismEx (6.10.12)
SCIsOrientable (7.3.12)
SCIsPseudoManifold (6.9.45)
SCIsPure (6.9.46)
SCIsSimplyConnected (12.1.14)
SCIsSimplyConnected (12.1.14)
SCIsShellable (6.9.47)

SCIsSphere (12.1.16)
SCIsStronglyConnected (6.9.48)
SCIsSubcomplex (6.10.10)

SCIsTight (11.1.1)

SCJoin (6.10.13)

SCLoad (13.2.1)

SCMinimalNonFaces (6.9.49)
SCMinimalNonFacesEx (6.9.50)
SCMorselIsPerfect (11.1.2)
SCMorseMultiplicityVector (11.1.4)
SCMorseNumber0fCriticalPoints (11.1.5)
SCMove (9.2.8)

SCMoves (9.2.9)

SCNeighborliness (6.9.51)
SCNeighbors (6.10.14)
SCNeighborsEx (6.10.15)

SCNumFaces (6.9.52)

SCOrientation (6.9.53)
SCPropertiesDropped (5.1.5)
SCRandomize (9.2.11)

SCRMoves (9.2.10)

SCReduceComplex (9.2.13)
SCReduceAsSubcomplex (9.2.12)
SCReduceComplexEx (9.2.14)

SCSave (13.2.3)

SCDetails (5.1.2)

SCShelling (6.10.16)

SCShellingExt (6.10.17)
SCShellings (6.10.18)

SCSkel (7.3.13)

SCSkelEx (7.3.14)

SCSlicing (11.1.3), SCNSSlicing (7.1.4)
SCSpan (6.10.19)

SCSpanningTree (6.9.56)
SCStronglyConnectedComponents (6.6.9)
SCSuspension (6.10.20)
SCAutomorphismGroupTransitivity (6.9.6)
SCUnion (7.3.16)
SCVertexIdentification (6.10.22)
SCWedge (6.10.23)
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16.3 Property handlers of SCNormalSurface

This section contains a table of all property handlers of a SCNormalSurface object.

PROPERTY HANDLER FUNCTION CALLED

Betti

SCFpBettiNumbers (7.3.7)

ConnectedComponents SCConnectedComponents (7.3.1)

FpBettiNumbers SCFpBettiNumbers (7.3.7)

Chi SCEulerCharacteristic (7.3.3)
EulerCharacteristic SCEulerCharacteristic (7.3.3)
Connected SCIsConnected (7.3.10)
IsConnected SCIsConnected (7.3.10)

Copy SCCopy (7.2.1)

D SCDim (7.3.2)

Dim SCDim (7.3.2)

F SCFVector (7.3.4)

FVector SCFVector (7.3.4)

FaceL attice SCFaceLattice (7.3.5)

Faces SCSkel (7.3.13)

Genus SCGenus (7.3.8)

Homology SCHomology (12.1.12)

IsEmpty SCIsEmpty (7.3.11)

Name SCName (4.2.4)

Triangulation SCNSTriangulation (7.2.2)
Topological Type SCTopologicalType (7.3.15)

PROPERTY HANDLER

16.4 Property handlers of SCLibRepository

This section contains a table of all property handlers of a SCLibRepository object.

FUNCTION CALLED

Update SCLibUpdate (13.1.13)

IsLoaded SCLibIsLoaded (13.1.9)

Size SCLibSize (13.1.12)

Status SCLibStatus (13.1.14)

Flush SCLibFlush (13.1.7)

Add SCLibAdd (13.1.3)

Delete SCLibDelete (13.1.5)

All SCLibAllComplexes (13.1.4)
SearchByName SCLibSearchByName (13.1.11)
SearchByAttribute SCLibSearchByAttribute (13.1.10)

DetermineTopological Type

SCLibDetermineTopologicalType (13.1.6)
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A demo session with simpcomp

This chapter contains the transcript of a demo session with simpcomp that is intended to give an
insight into what things can be done with this package.

Of course this only scratches the surface of the functions provided by simpcomp. See Chapters 4
through 15 for further functions provided by simpcomp.

17.1 Creating a SCSimplicialComplex object

Simplicial complex objects can either be created from a facet list (complex c1 below), orbit represen-
tatives together with a permutation group (complex c2) or difference cycles (complex c3, see Section
6.1), from a function generating triangulations of standard complexes (complex c4, see Section 6.3)
or from a function constructing infinite series for combinatorial (pseudo)manifolds (complexes c5,
c6, c7, see Section 6.4 and the function prefix SCSeries. . .). There are also functions creating new
simplicial complexes from old, see Section 6.6, which will be described in the next sections.

Example
gap> #first run functionality test on simpcomp
gap> SCRunTest () ;

+ test simpcomp package, version 0.0.0

true

gap> #all ok

gap> cl:=SCFromFacets([[1,2],[2,3],[3,111);
[SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels.

Name="unnamed complex 1"
Dim=1

/SimplicialComplex]

gap> G:=Group([(2,12,11,6,8,3)(4,7,10)(5,9),(1,11,6,4,5,3,10,8,9,7,2,12)]1);
Group([ (2,12,11,6,8,3)(4,7,10)(5,9), (1,11,6,4,5,3,10,8,9,7,2,12) 1)

gap> StructureDescription(G);

"S4 x S3"
gap> Size(G);
144

gap> c2:=SCFromGenerators(G, [[1,2,3]1]);;
gap> c2.IsManifold;
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true
gap> SCLibDetermineTopologicalType(c2);
[SimplicialComplex

Properties known: AutomorphismGroup, AutomorphismGroupSize,
AutomorphismGroupStructure, AutomorphismGroupTransitivity,\

Boundary, Dim, Faces, Facets, Generators, HasBoundary,
IsManifold, IsPM, Name, TopologicalType, VertexLabels,
Vertices.

Name="complex from generators under group S4 x S3"
Dim=2

AutomorphismGroupSize=144
AutomorphismGroupStructure="S4 x S3"
AutomorphismGroupTransitivity=1

HasBoundary=false

IsPM=true

TopologicalType="T"2"

/SimplicialComplex]
gap> c3:=SCFromDifferenceCycles([[1,1,6],[3,3,2]1]1);
[SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels.

Name="complex from diffcycles [ [ 1, 1, 61, [ 3, 3, 21 1"
Dim=2

/SimplicialComplex]
gap> c4:=SCBdSimplex(2);
[SimplicialComplex

Properties known: AutomorphismGroup, AutomorphismGroupOrder,
AutomorphismGroupStructure, AutomorphismGroupTransitivity,
Chi, Dim, F, Facets, Generators, HasBounday, Homology,
IsConnected, IsStronglyConnected, Name, TopologicalType,
VertexLabels.

Name="S~1_3"

Dim=1
AutomorphismGroupStructure="S3"
AutomorphismGroupTransitivity=3
Chi=0

F=[ 3, 3]

Homology=[ [ O, [ 11, [ 1, [ 111
IsConnected=true
IsStronglyConnected=true
TopologicalType="S"1"

/SimplicialComplex]
gap> c5:=SCSeriesCSTSurface(2,16);;
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gap> SCLibDetermineTopologicalType(c5);
[SimplicialComplex

Properties known: Boundary, Dim, Faces, Facets, HasBoundary, IsPM, Name,
TopologicalType, VertexLabels.

Name="cst surface S_{(2,16)} = { (2:2:12),(6:6:4) }"
Dim=2

HasBoundary=false

IsPM=true

TopologicalType="T"2 U T~2"

/SimplicialComplex]

gap> c6:=SCSeriesD2n(22);;

gap> c6.Homology;

tto, € 11,0+, C 311, L0, 02711, CL0,[ 111
gap> c6.F;

[ 44, 264, 440, 220 ]

gap> SCSeriesAGL(17);

[ AGL(1,17), [ [ 1, 2, 4,8, 1611 1]

gap> c7:=SCFromGenerators(last[1],last[2]);;
gap> c7.AutomorphismGroupTransitivity;

2

17.2 Working with a SCSimplicialComplex object

As described in Section 3.1 there are two several ways of accessing an object of type
SCSimplicialComplex. An example for the two equivalent ways is given below. The preference

will be given to the object oriented notation in this demo session. The code listed below
Example
gap> c:=SCBdSimplex(3);; # create a simplicial complex object
gap> SCFVector(c);

[ 4, 6, 41

gap> SCSkel(c,0);

(f11, 021,031, 04711

is equivalent to

Example
gap> c:=SCBdSimplex(3);; # create a simplicial complex object
gap> c.F;
[ 4,6, 4]

gap> c.Skel(0);
(11,021,031, 0411

17.3 Calculating properties of a SCSimplicialComplex object

simpcomp provides a variety of functions for calculating properties of simplicial complexes, see
Section 6.9. All these properties are only calculated once and stored in the SCSimplicialComplex
object.
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Example

gap> cl.F;

[3,3]

gap> cl.Facelattice;
tccrft+31,021, 03711, C0C0,21,[01,31,[02,311]1
gap> cl.AutomorphismGroup;

S3

gap> cl.Generators;

(rcrf1,21,311

gap> c3.Facets;
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gap> c3.ASDet;

186624

gap> c3.Chi;

0

gap> c3.Generators;
(0Cl1,2,3]1,161]
gap> c3.HasBoundary;

false

gap> c3.IsConnected;

true

gap> c3.IsCentrallySymmetric;
true

gap> c3.Vertices;

[1, 2, 3,4,5,6,7, 8]
gap> c3.ConnectedComponents;
[ [SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels.

Name="Connected component #1 of complex from diffcycles [ [ 1, 1, 6 1, [ \
3,3,211"
Dim=2

/SimplicialComplex] ]
gap> c3.UnknownProperty;
#I SCPropertyObject: unhandled property ’UnknownProperty’. Handled properties\
are [ "Equivalent", "IsKStackedSphere", "IsManifold", "IsMovable", "Move",
"Moves", "RMoves", "ReduceAsSubcomplex", "Reduce", "ReduceEx", "Copy",
"Recalc", "ASDet", "AutomorphismGroup", "AutomorphismGroupInternal",

"Boundary", "ConnectedComponents", "Dim", "DualGraph", "Chi", "F",
"FaceLattice", "FaceLatticeEx", "Faces", "Faceskx", "Facets", "FacetsEx",
"FpBetti", "FundamentalGroup", "G", "Generators", "GeneratorsEx", "H",

"HasBoundary", "HasInterior", "Homology", "Incidences", "IncidencesEx",
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"Interior", "IsCentrallySymmetric", "IsConnected", "IsEmpty",
"IsEulerianManifold", "IsHomologySphere", "IsInKd", "IsKNeighborly",
"IsOrientable", "IsPM", "IsPure", "IsShellable", "IsStronglyConnected",
"MinimalNonFaces", "MinimalNonFacesEx", "Name", "Neighborliness",
"Orientation", "Skel", "SkelEx", "SpanningTree",
"StronglyConnectedComponents", "Vertices", "VerticesEx",
"BoundaryOperatorMatrix", "HomologyBasis", "HomologyBasisAsSimplices",
"HomologyInternal", "CoboundaryOperatorMatrix", "Cohomology",
"CohomologyBasis", "CohomologyBasisAsSimplices", "CupProduct",
"IntersectionForm", "IntersectionFormParity",

"IntersectionFormDimensionality", "Load", "Save", "ExportPolymake",
"ExportLatexTable", "ExportJavaView", "LabelMax", "LabelMin", "Labels",
"Relabel", "RelabelStandard", "RelabelTransposition", "Rename",

"SortComplex", "UnlabelFace", "AlexanderDual", "CollapseGreedy", "Cone",
"DeletedJoin", "Difference", "HandleAddition", "Intersection",
"IsIsomorphic", "IsSubcomplex", "Isomorphism", "IsomorphismEx", "Join",
"Link", "Links", "Neighbors", "NeighborsEx", "Shelling", "ShellingExt",
"Shellings", "Span", "Star", "Stars", "Suspension", "Union",
"VertexIdentification", "Wedge", "DetermineTopologicalType", "Dim",
"Facets", "VertexLabels", "Name", "Vertices", "IsConnected",
"ConnectedComponents" ].

fail

17.4 Creating new complexes from a SCSimplicialComplex object

As already mentioned, there is the possibility to generate new objects of type SCSimplicialComplex
from existing ones using standard constructions. The functions used in this section are described in

more detail in Section 6.6.
Example

gap> d:=c3+c3;
[SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels, Vertices.

Name="complex from diffcycles [ [ 1, 1, 6 1, [ 3, 3, 2 ] J#+-complex from dif\
fcycles [ [ 1, 1,61, [3,3,211"
Dim=2

/SimplicialComplex]

gap> SCRename (d, "T~2#T~2") ;
true

gap> SCLink(d,1);
[SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels.

Name="1k(1) in T~2#T~2"
Dim=1

/SimplicialComplex]
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gap> SCStar(d, [1,2]);
[SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels.

Name="star([ 1, 2 ]) in T~2#T~2"
Dim=2

/SimplicialComplex]

gap> SCRename(c3,"T~2");

true

gap> SCConnectedProduct(c3,4);
[SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels, Vertices.

Name="T"2#+-T~2#+-T " 2#+-T~2"
Dim=2

/SimplicialComplex]
gap> SCCartesianProduct (c4,c4);
[SimplicialComplex

Properties known: Dim, Facets, Name, TopologicalType, VertexLabels.
Name="S5"1_3x5"1_3"

Dim=2

TopologicalType="S"1xS~1"

/SimplicialComplex]

gap> SCCartesianPower(c4,3);

[SimplicialComplex

Properties known: Dim, Facets, Name, TopologicalType, VertexLabels.
Name="(S~1_3)"3"

Dim=3

TopologicalType="(S"~1)~3"

/SimplicialComplex]
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17.5 Homology related calculations

simpcomp relies on the GAP package homology [DHSW11] for its homology computations but pro-

vides further (co-)homology related functions, see Chapter 8.

Example
gap> s2s2:=SCCartesianProduct (SCBdSimplex(3) ,SCBdSimplex(3));

[SimplicialComplex

Properties known: Dim, Facets, Name, TopologicalType, VertexLabels.
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Name="8"2_4x8"2_4"
Dim=4
TopologicalType="S"2xS"2"

/SimplicialComplex]
gap> SCHomology (s2s2) ;
tfto, L 11,00, C 11,02, 0 11,00, [ 171,01, 111
gap> SCHomologyInternal (s2s2);
tfto,C 11,00, C 111,02, 011, Co,C 171,01, 111
gap> SCHomologyBasis(s2s2,2);
ccs,CCt,701,[0-1,121, 1,271, [-1,11711,
(1, 0C1,143],0-1,581], 01,2917, [-1,25]111]1
gap> SCHomologyBasisAsSimplices(s2s2,2);
([,
tf1,02,3,411,0-1,01,38,4171,01,[1,2,411,[-1,T[1
,2,31111,
(1, 001,059,311, [-1,01,9,1311,[1,[1,5,13]1]1,
[-1, [1,5,91111]1
gap> SCCohomologyBasis(s2s2,2);

[[1,

[C1,1221, (1, 1151, (1, 1121, [ 1, 1111, [ 1, 931, [ 1, 901,
(1,891, [1,871,0[1,831, [1,81],[1, 461, [1, 431,
(1,421, 1,371, 01,31, [1,31]1,[1,281, [1, 271,
1,261, [1,25]11]1,

L1, [ [1, 2137, [1,2011], [1, 1921, [1, 18971, [1, 1591,
[1, 1501, [ 1, 1471, [ 1, 1311, [ 1, 1281, [ 1, 1251,
(1,671, [1,587], 1,551, [1, 39] 1, 361, [ 1, 331,

» [
(1,101, 01,71, 01,471,[01,1111]1]
gap> SCCohomologyBasisAsSimplices(s2s2,2);

tf:, CC1, 04,8, 1211, [01,038,8,1271171, 1, [3,7,121]]

(1, [3,7,1111, 01, [2,8,1211, [1,[2,7,1211,
(1, [2,7,1111, (1, [2,6,1211, [1,[2,6, 1111,
(1, [2,6,101 1, [1,[1,8,121 1, (1, [1,7,12711,
(1, 01,7,11211, 1, [1,6,121 1, [1,[1,86, 1111,
(1, [1,6,12011, 1, [1,5,1211, 1, [1,5, 1111,
(1, [1,5,1011,C1,[1,5,91111,
(1, 021, [ 13, 14,1517, [1, 009, 14,1511, [1,[9, 10,1571,
(1, [ 9, 10, 1111, [ 1, [ 5, 14 1511, 1, [5, 10, 15611,
(1, [ 5,10, 1111, [1,[5,6,1511, 1, [5,6, 1171,
(1, [5,6, 711, [1, [1, 14 1511, 1, [1, 10, 1561 1,
(1, [ 1,10, 11211, [ 1, [ 1 6, 15611, [ 1, [ 1,6, 1111,
(1, [1,6,711,[1,[1,2,1611, 1, [1,2, 11711,
(1, [1,2,711,[1,[1,2,31111]1
gap> PrintArray(SCIntersectionForm(s2s2));
([ o, 11,
[ 1, 011
gap> c:=s8282+s2s2;
[SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels, Vertices.

Name="S"2_4xS"2_4#+-5S~2_4xS~2_4"
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Dim=4

/SimplicialComplex]
gap> PrintArray(SCIntersectionForm(c));
[ [ O: _1: O: O ]:

[ -1, o, o0, 01,
[ 09 O: O) _1 ]9
[ O’ Oa _1’ O ] ]
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17.6 Bistellar flips

For a more detailed description of functions related to bistellar flips as well as a very short introduction

into the topic, see Chapter 9.
Example

gap> beta4:=SCBdCrossPolytope(4);;

gap> s3:=SCBdSimplex(4);;

gap> SCEquivalent(beta4,s3);

#I round O, move: [ [ 2, 6, 71, [ 3, 411

[ 8, 25, 34, 17 ]

#I round 1, move: [ [ 2, 71, [ 3, 4, 51 ]

[ 8, 24, 32, 16 ]

#I round 2, move: [ [ 2, 51, [ 3, 4, 81 1

[ 8, 23, 30, 15 ]

#I round 3, move: [ [ 21, [ 3, 4, 6, 81 ]

[ 7, 19, 24, 12 ]

#I round 4, move: [ [ 6, 81, [ 1, 3, 41 ]

[ 7, 18, 22, 11 ]

#I round 5, move: [ [ 81, [ 1, 3, 4, 51 ]

[ 6, 14, 16, 8]

#I round 6, move: [ [ 51, [ 1, 3, 4, 71 1]

[ 5, 10, 10, 51

#I SCReduceComplexEx: complexes are bistellarly equivalent.
true

gap> SCBistellarOptions.WriteLevel;

0

gap> SCBistellarOptions.WritelLevel:=1;

1

gap> SCEquivalent(beta4,s3);

#I SCLibInit: made directory "~7/PATH" for user library.
#I SCIntFunc.SCLibInit: index not found -- trying to reconstruct it.
#I SCLibUpdate: rebuilding index for ~/PATH.

#I SCLibUpdate: rebuilding index done.

#I round O, move: [ [ 2, 4,61, [ 7, 81 ]
[ 8, 25, 34, 17 ]
#I round 1, move: [ [ 2, 4], [ 5,7, 811
[ 8, 24, 32, 16 ]
#I round 2, move: [ [ 4, 5], [ 1,7, 811
[ 8, 23, 30, 15 1]
#I round 3, move: [ [ 4], [ 1, 6, 7, 811
[ 7, 19, 24, 12 ]
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#I SCLibAdd: saving complex to file "complex_ReducedComplex_7_vertices_3_2009\
-10-27_11-40-00.sc".

#I round 4, move: [ [ 2, 61, [ 3, 7, 811

[ 7, 18, 22, 11 ]

#I round 5, move: [ [ 21, [ 3, 5, 7, 81 ]

[ 6, 14, 16, 8]

#I SCLibAdd: saving complex to file "complex_ReducedComplex_6_vertices_5_2009\
-10-27_11-40-00.sc".

#I round 6, move: [ [ 51, [ 1, 3,7, 81 1]

[ 5, 10, 10, 51

#I SCLibAdd: saving complex to file "complex_ReducedComplex_5_vertices_6_2009\
-10-27_11-40-00.sc".

#I SCLibAdd: saving complex to file "complex_ReducedComplex_5_vertices_7_2009\
-10-27_11-40-00.sc".

#I SCReduceComplexEx: complexes are bistellarly equivalent.

true

gap> myLib:=SCLibInit("~/PATH"); # copy path from above

[Simplicial complex library. Properties:

CalculateIndexAttributes=true

Number of complexes in library=4

IndexAttributes=[ "Name", "Date", "Dim", "F", "G", "H", "Chi", "Homology" ]
Loaded=true

Path="/home/spreerjn/reducedComplexes/2009-10-27_11-40-00/"

]

gap> s3:=myLib.Load(3);

[SimplicialComplex

Properties known: Chi, Date, Dim, F, Faces, Facets, G, H, Homology,
IsConnected, Name, VertexLabels.

Name="ReducedComplex_5_vertices_6"

Dim=3

Chi=0

F=[ 5, 10, 10, 5]

G=[ 0, 0]

H=[ 1, 1, 1, 1]

Homology=[ [0, [ 11, [0, [ 11,00, 17,01, [17]

IsConnected=true
/SimplicialComplex]
gap> s3:=myLib.Load(2);
[SimplicialComplex

Properties known: Chi, Date, Dim, F, Faces, Facets, G, H, Homology,
IsConnected, Name, VertexLabels.

Name="ReducedComplex_6_vertices_5"

Dim=3

Chi=0

F=[ 6, 14, 16, 8 ]
G=[1, 0]

H=[ 2, 2, 2, 1]
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Homology=[ [ O, [ 11, Lo, [11, Lo, 011,01, [11]1

IsConnected=true

/SimplicialComplex]

gap> t2:=SCCartesianProduct (SCBdSimplex(2),SCBdSimplex(2));;
gap> t2.F;

[ 9, 27, 18]

gap> SCBistellarOptions.WriteLevel:=0;

0

gap> SCBistellarOptions.LoglLevel:=0;

0

gap> mint2:=SCReduceComplex (t2) ;

[ true, [SimplicialComplex

Properties known: Dim, Facets, Name, VertexLabels.

Name="unnamed complex 85"
Dim=2

/SimplicialComplex], 32 ]

17.7 Simplicial blowups

For a more detailed description of functions related to simplicial blowups see Chapter 10.
Example

gap> list:=SCLib.SearchByName ("Kummer") ;

[ [ 7493, "4-dimensional Kummer variety (VT)" ] ]
gap> c:=SCLib.Load(7493);

[SimplicialComplex

Properties known: AltshulerSteinberg, AutomorphismGroup,
AutomorphismGroupSize, AutomorphismGroupStructure,
AutomorphismGroupTransitivity,
ConnectedComponents, Date, Dim, DualGraph,
EulerCharacteristic, FacetsEx, GVector,
GeneratorsEx, HVector, HasBoundary, HasInterior,
Homology, Interior, IsCentrallySymmetric,
IsConnected, IsEulerianManifold, IsManifold,
IsOrientable, IsPseudoManifold, IsPure,
IsStronglyConnected, MinimalNonFacesEx, Name,
Neighborliness, NumFaces[], Orientation,
SkelExs[], Vertices.

Name="4-dimensional Kummer variety (VI)"

Dim=4

AltshulerSteinberg=45137758519296000000000000
AutomorphismGroupSize=1920

AutomorphismGroupStructure="((C2 x C2 x C2 x C2) : A5) : C2"
AutomorphismGroupTransitivity=1

EulerCharacteristic=8
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GVector=[ 10, 55, 60 ]
HVector=[ 11, 66, 126, -19, 7 ]
HasBoundary=false
HasInterior=true

Homology=[ [0, [ 11, [0, [ 11, [6, [2,2,2,2,211, [0, [ 11, [1, [171]
IsCentrallySymmetric=false
IsConnected=true
IsEulerianManifold=true
IsOrientable=true
IsPseudoManifold=true
IsPure=true
IsStronglyConnected=true
Neighborliness=2

/SimplicialComplex]
gap> 1lk:=SCLink(c,1);
[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="1k([ 1 ]) in 4-dimensional Kummer variety (VI)"
Dim=3

/SimplicialComplex]

gap> SCHomology (1k) ;

tco, € 11, 00,0211, C0,C 11,01, [ 111

gap> SCLibDetermineTopologicalType (1k) ;

[ 45, 113, 2426, 2502, 7470 ]

gap> d:=SCLib.Load(45);;

gap> d.Name;

"RP~3"

gap> SCEquivalent (1k,d);

#I SCReduceComplexEx: complexes are bistellarly equivalent.

true

gap> e:=SCBlowup(c,1);

#I SCBlowup: checking if singularity is a combinatorial manifold...

#I SCBlowup: ...true

#I SCBlowup: checking type of singularity...

#I SCReduceComplexEx: complexes are bistellarly equivalent.

#I SCBlowup: ...ordinary double point (supported type).

#I SCBlowup: starting blowup...

#I SCBlowup: map boundaries...

#I SCBlowup: boundaries not isomorphic, initializing bistellar moves...
#I SCBlowup: found complex with smaller boundary: f = [ 15, 74, 118, 59
#I SCBlowup: found complex with smaller boundary: 14, 70, 112, 56
#I SCBlowup: found complex with smaller boundary: 14, 69, 110, 55
#I SCBlowup: found complex with smaller boundary: 14, 68, 108, 54
#I SCBlowup: found complex with smaller boundary: 13, 64, 102, 51
#I SCBlowup: found complex with smaller boundary: 13, 63, 100, 50
#I SCBlowup: found complex with smaller boundary: 13, 62, 98, 49 ].
#I SCBlowup: found complex with smaller boundary: 12, 58, 92, 46 ].
#I SCBlowup: found complex with smaller boundary: 12, 57, 90, 45 1.

[ W T S Y I
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#I SCBlowup: found complex with smaller boundary: f = [ 12, 56, 88, 44 ].
#I SCBlowup: found complex with smaller boundary: f = [ 11, 52, 82, 41 ].
#I SCBlowup: found complex with smaller boundary: f [ 11, 51, 80, 40 ].
#I SCBlowup: found complex with isomorphic boundaries.

#I SCBlowup: ...boundaries mapped succesfully.
#I SCBlowup: build complex...

#I SCBlowup: ...done.

#I SCBlowup: ...blowup completed.

#I SCBlowup: You may now want to reduce the complex via ’SCReduceComplex’.
[SimplicialComplex

Properties known: Dim, FacetsEx, Name, Vertices.

Name="unnamed complex 6315 \ star([ 1 ]) in unnamed complex 6315 cup unnamed\
complex 6319 cup unnamed complex 6317"
Dim=4

/SimplicialComplex]

gap> SCHomology(c);

rco,C 11, Lo, [ 11,06,02,2,2,2,2171, 00, [ 11,01, [ 111
gap> SCHomology(e) ;

rco, € 11, Co0,C 11, 07,02,2,2,211, 0, 11,01, [ 111

17.8 Discrete normal surfaces and slicings

For a more detailed description of functions related to discrete normal surfaces and slicings see the
Sections 2.4 and 2.5.

Example

gap> # the boundary of the cyclic 4-polytope with 6 vertices
gap> c:=SCBdCyclicPolytope(4,6);
[SimplicialComplex

Properties known: Dim, EulerCharacteristic, FacetsEx, HasBoundary, Homology,\
IsConnected, IsStronglyConnected, Name, NumFaces[], TopologicalType, Vertices.

Name="Bd(C_4(6))"

Dim=3

EulerCharacteristic=0

HasBoundary=false

Homology=[ [ O, [ 11, Lo, [ 11, Co, 011,01, (111
IsConnected=true

IsStronglyConnected=true

TopologicalType="8"3"

/SimplicialComplex]

gap> # slicing in between the odd and the even vertex labels, a polyhedral torus
gap> sl:=SCSlicing(c, [[2,4,6],[1,3,511);

[NormalSurface
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Properties known: ConnectedComponents, Dim, EulerCharacteristic, FVector,\
FacetsEx, Genus, IsConnected, IsOrientable, NSTriangulation, Name,\
TopologicalType, Vertices.

Name="slicing [ [ 2, 4, 6 1, [ 1, 3, 51 1 of Bd(C_4(6))"
Dim=2

FVector=[ 9, 18, 0, 9 1]

EulerCharacteristic=0

IsOrientable=true

TopologicalType="T"2"

/NormalSurface]

gap> sl.Homology;

tcto, € 11,02, 011,01, 111

gap> sl.Genus;

1

gap> sl.F; # the slicing constists of 9 quadrilaterals and O triangles
[9, 18, 0, 9]

gap> PrintArray(sl.Facets);

(C 02,11, (2,31, [4, 11, [4,311,
( 2,11, (2,31, [6,11, [6,3]11,
[ 02,11, (2,51, [4,1]1, [4,511,
( 02,11, (2,51, [6,11, [6,511,
[ 02,31, [2,51, [4,3]1, [4,511,
( 02,31, (2,51, [6,31, [6,511,
[ 4,11, [4,31, [6,11, [6,311,
[ (4,11, [4, 51, [6,1]1, [6,5]11,
[ (4,31, [4,51, [6,3]1, [6,511]1]

Further example computations can be found in the slides of various talks about Simpcomp, avail-
able from the simpcomp homepage (https://github.com/simpcomp-team/simpcomp), and in
Appendix A of [Sprlla].



Chapter 18

simpcomp internals

The package simpcomp works with geometric objects for which the GAP object types
SCSimplicialComplex and SCNormalSurface are defined and calculates properties of these ob-
jects via so called property handlers. This chapter describes how to extend Simpcomp by writing own
property handlers.

If you extended simpcomp and want to share your extension with other users please send your
extension to one of the authors and we will consider including it (of course with giving credit) in a
future release of simpcomp.

18.1 The GAP object type SCPropertyObject

In the following, we present a number of functions to manage a GAP object of type
SCProperty0bject. Since most properties of SCPolyhedralComplex, SCSimplicialComplex and
SCNormalSurface are managed by the GAP4 type system (cf. [BL98]), the functions described below
are mainly used by the object type SCLibRepository and to store temporary properties.

18.1.1 SCProperties

> SCProperties(po) (method)
Returns: a record upon success.
Returns the record of all stored properties of the SCPropertyObject po.

18.1.2 SCPropertiesFlush

> SCPropertiesFlush(po) (method)
Returns: true upon success.
Drops all properties and temporary properties of the SCPropertyObject po.

18.1.3 SCPropertiesManaged

> SCPropertiesManaged(po) (method)
Returns: a list of managed properties upon success, fail otherwise.
Returns a list of all properties that are managed for the SCPropertyQObject po via property han-
dler functions. See SCPropertyHandlersSet (18.1.9).
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18.1.4 SCPropertiesNames

> SCPropertiesNames (po) (method)
Returns: a list upon success.
Returns a list of all the names of the stored properties of the SCPropertyObject po. These can
be accessed via SCPropertySet (18.1.10) and SCPropertyDrop (18.1.8).

18.1.5 SCPropertiesTmp

> SCPropertiesTmp (po) (method)
Returns: arecord upon success.
Returns the record of all stored temporary properties (these are mutable in contrast to regular
properties and not serialized when the object is serialized to XML) of the SCPropertyQObject po.

18.1.6 SCPropertiesTmpNames

> SCPropertiesTmpNames (po) (method)
Returns: a list upon success.
Returns a list of all the names of the stored temporary properties of the SCPropertyObject po.
These can be accessed via SCPropertyTmpSet (18.1.14) and SCPropertyTmpDrop (18.1.13).

18.1.7 SCPropertyByName

D> SCPropertyByName (po, name) (method)
Returns: any value upon success, fail otherwise.
Returns the value of the property with name name of the SCPropertyQ0bject po if this property
is known for po and fail otherwise. The names of known properties can be accessed via the function
SCPropertiesNames (18.1.4)

18.1.8 SCPropertyDrop

> SCPropertyDrop(po, name) (method)
Returns: true upopn success, fail otherwise
Drops the property with name name of the SCProperty0bject po. Returns true if the property
is successfully dropped and fail if a property with that name did not exist.

18.1.9 SCPropertyHandlersSet

> SCPropertyHandlersSet(po, handlers) (method)
Returns: true
Sets the property handling functions for a SCPropertyObject po to the functions described
in the record handlers. The record handlers has to contain entries of the following struc-
ture: [Property Name] :=[Function name computing and returning the property]. For
SCSimplicialComplex for example sSimpcomp defines (among many others): F:=SCFVector. See
the file 1ib/prophandler.gd.
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18.1.10 SCPropertySet

D> SCPropertySet(po, name, data) (method)
Returns: true upon success.
Sets the value of the property with name name of the SCPropertyObject po to data. Note
that the argument becomes immutable. If this behaviour is not desired, use SCPropertySetMutable
(18.1.11) instead.

18.1.11 SCPropertySetMutable

> SCPropertySetMutable(po, name, data) (method)
Returns: true upon success.
Sets the value of the property with name name of the SCPropertyObject po to data. Note
that the argument does not become immutable. If this behaviour is not desired, use SCPropertySet
(18.1.10) instead.

18.1.12 SCPropertyTmpByName

D> SCPropertyTmpByName (po, name) (method)
Returns: any value upon success, fail otherwise.
Returns the value of the temporary property with the name name of the SCProperty0Object po
if this temporary property is known for po and fail otherwise. The names of known temporary
properties can be accessed via the function SCPropertiesTmpNames (18.1.6)

18.1.13 SCPropertyTmpDrop

> SCPropertyTmpDrop(po, name) (method)
Returns: true upon success, fail otherwise
Drops the temporary property with name name of the SCProperty0Object po. Returns true if
the property is successfully dropped and fail if a temporary property with that name did not exist.

18.1.14 SCPropertyT'mpSet

> SCPropertyTmpSet (po, name, data) (method)
Returns: true upon success.
Sets the value of the temporary property with name name of the SCProperty0bject po to data.
Note that the argument does not become immutable. This is the standard behaviour for temporary
properties.

18.2 Example of a common attribute

In this section we will have a look at the property handler SCEulerCharacteristic (7.3.3) in order to
explain the inner workings of property handlers. This is the code of the property handler for calculating
the Euler characteristic of a complex in simpcomp:

Example
DeclareAttribute("SCEulerCharacteristic",SCIsPolyhedralComplex) ;

InstallMethod (SCEulerCharacteristic,
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"for SCSimplicialComplex",
[SCIsSimplicialComplex],
function(complex)

local £, chi, i;

f :=SCFVector (complex) ;
if f=fail then

return fail;
fi;
chi:=0;

for i in [1..Size(f)] do
chi:=chi + ((-1)~(i+1))=*£[i];
od;

return chi;
end) ;

InstallMethod (SCEulerCharacteristic,
"for SCNormalSurface",
[SCIsNormalSurface],

function(sl)

local facets, f, chi;

f:=SCFVector(sl);

if (f=fail) then
return fail;

fi;

if Length(f) = 1 then
return f[1];
elif Length(f) =3 then
return f[1]-f[2]+f[3];
elif Length(f) =4 then
return f[1]-f[2]+f[3]+f[4];
else

return fail,;
fi;

end) ;

When looking at the code one already sees the structure that such a handler needs to have:

1. Each property handler (a GAP operation) needs to be defined. This is done by the first
line of code. Once an operation is defined, multiple methods can by implemented for var-
ious types of GAP objects (here two methods are implemented for the GAP object types
SCSimplicialComplex and SCNormalSurface).

Info(InfoSimpcomp,1,"SCEulerCharacteristic: illegal f-vector found:

ll,f’ll‘

")
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2. First note that the validity of the arguments is checked by GAP. For example, the first method
only accepts an argument of type SCSimplicialComplex.

3. If the property was already computed, the GAP4 type system automatically returns the cached
property avoiding unnecessary double calculations.

4. If the property is not already known. it is computed and returned (and automatically cached by
the GAP4 type system).

18.3 Writing a method for an attribute

This section provides the skeleton of a method that can be used when writing own methods:

Example

DeclareAttribute ("SCMyPropertyHandler",SCPolyhedralComplex) ;
InstallMethod (SCMyPropertyHandler,

"for SCSimplicialComplex[ and further arguments]",
[SCIsSimplicialComplex[, further arguments]],
function(complex[, further arguments])

local myprop, ...;

# compute the property
[ do property computation here]

return myprop;

end) ;
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