-- |
-- Module      :  Text.Megaparsec
-- Copyright   :  © 2015–present Megaparsec contributors
--                © 2007 Paolo Martini
--                © 1999–2001 Daan Leijen
-- License     :  FreeBSD
--
-- Maintainer  :  Mark Karpov <markkarpov92@gmail.com>
-- Stability   :  experimental
-- Portability :  portable
--
-- This module includes everything you need to get started writing a parser.
-- If you are new to Megaparsec and don't know where to begin, take a look
-- at the tutorials
-- <https://markkarpov.com/learn-haskell.html#megaparsec-tutorials>.
--
-- In addition to the "Text.Megaparsec" module, which exports and re-exports
-- most everything that you may need, we advise to import
-- "Text.Megaparsec.Char" if you plan to work with a stream of 'Char' tokens
-- or "Text.Megaparsec.Byte" if you intend to parse binary data.
--
-- It is common to start working with the library by defining a type synonym
-- like this:
--
-- > type Parser = Parsec Void Text
-- >                      ^    ^
-- >                      |    |
-- > Custom error component    Input stream type
--
-- Then you can write type signatures like @Parser 'Int'@—for a parser that
-- returns an 'Int' for example.
--
-- Similarly (since it's known to cause confusion), you should use
-- 'ParseErrorBundle' type parametrized like this:
--
-- > ParseErrorBundle Text Void
-- >                  ^    ^
-- >                  |    |
-- >  Input stream type    Custom error component (the same you used in Parser)
--
-- Megaparsec uses some type-level machinery to provide flexibility without
-- compromising on type safety. Thus type signatures are sometimes necessary
-- to avoid ambiguous types. If you're seeing an error message that reads
-- like “Type variable @e0@ is ambiguous …”, you need to give an explicit
-- signature to your parser to resolve the ambiguity. It's a good idea to
-- provide type signatures for all top-level definitions.

{-# LANGUAGE FlexibleContexts      #-}
{-# LANGUAGE FlexibleInstances     #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RankNTypes            #-}
{-# LANGUAGE ScopedTypeVariables   #-}
{-# LANGUAGE TypeFamilies          #-}
{-# LANGUAGE UndecidableInstances  #-}

module Text.Megaparsec
  ( -- * Re-exports
    -- $reexports
    module Text.Megaparsec.Pos
  , module Text.Megaparsec.Error
  , module Text.Megaparsec.Stream
  , module Control.Monad.Combinators
    -- * Data types
  , State (..)
  , PosState (..)
  , Parsec
  , ParsecT
    -- * Running parser
  , parse
  , parseMaybe
  , parseTest
  , runParser
  , runParser'
  , runParserT
  , runParserT'
    -- * Primitive combinators
  , MonadParsec (..)
    -- * Signaling parse errors
    -- $parse-errors
  , failure
  , fancyFailure
  , unexpected
  , customFailure
  , region
  , registerParseError
  , registerFailure
  , registerFancyFailure
    -- * Derivatives of primitive combinators
  , single
  , satisfy
  , anySingle
  , anySingleBut
  , oneOf
  , noneOf
  , chunk
  , (<?>)
  , match
  , takeRest
  , atEnd
    -- * Parser state combinators
  , getInput
  , setInput
  , getSourcePos
  , getOffset
  , setOffset
  , setParserState )
where

import Control.Monad.Combinators
import Control.Monad.Identity
import Data.List.NonEmpty (NonEmpty (..))
import Data.Maybe (fromJust)
import Data.Set (Set)
import Text.Megaparsec.Class
import Text.Megaparsec.Error
import Text.Megaparsec.Internal
import Text.Megaparsec.Pos
import Text.Megaparsec.State
import Text.Megaparsec.Stream
import qualified Data.List.NonEmpty as NE
import qualified Data.Set as E

-- $reexports
--
-- Note that we re-export monadic combinators from
-- "Control.Monad.Combinators" because these are more efficient than
-- 'Applicative'-based ones. Thus 'many' and 'some' may clash with the
-- functions from "Control.Applicative". You need to hide the functions like
-- this:
--
-- > import Control.Applicative hiding (many, some)
--
-- Also note that you can import "Control.Monad.Combinators.NonEmpty" if you
-- wish that combinators like 'some' return 'NonEmpty' lists. The module
-- lives in the @parser-combinators@ package (you need at least version
-- /0.4.0/).
--
-- This module is intended to be imported qualified:
--
-- > import qualified Control.Monad.Combinators.NonEmpty as NE
--
-- Other modules of interest are:
--
--     * "Control.Monad.Combinators.Expr" for parsing of expressions.
--     * "Control.Applicative.Permutations" for parsing of permutations
--       phrases.

----------------------------------------------------------------------------
-- Data types

-- | 'Parsec' is a non-transformer variant of the more general 'ParsecT'
-- monad transformer.

type Parsec e s = ParsecT e s Identity

----------------------------------------------------------------------------
-- Running a parser

-- | @'parse' p file input@ runs parser @p@ over 'Identity' (see
-- 'runParserT' if you're using the 'ParsecT' monad transformer; 'parse'
-- itself is just a synonym for 'runParser'). It returns either a
-- 'ParseErrorBundle' ('Left') or a value of type @a@ ('Right').
-- 'errorBundlePretty' can be used to turn 'ParseErrorBundle' into the
-- string representation of the error message. See "Text.Megaparsec.Error"
-- if you need to do more advanced error analysis.
--
-- > main = case parse numbers "" "11,2,43" of
-- >          Left bundle -> putStr (errorBundlePretty bundle)
-- >          Right xs -> print (sum xs)
-- >
-- > numbers = decimal `sepBy` char ','

parse
  :: Parsec e s a -- ^ Parser to run
  -> String       -- ^ Name of source file
  -> s            -- ^ Input for parser
  -> Either (ParseErrorBundle s e) a
parse :: Parsec e s a -> String -> s -> Either (ParseErrorBundle s e) a
parse = Parsec e s a -> String -> s -> Either (ParseErrorBundle s e) a
forall e s a.
Parsec e s a -> String -> s -> Either (ParseErrorBundle s e) a
runParser

-- | @'parseMaybe' p input@ runs the parser @p@ on @input@ and returns the
-- result inside 'Just' on success and 'Nothing' on failure. This function
-- also parses 'eof', so if the parser doesn't consume all of its input, it
-- will fail.
--
-- The function is supposed to be useful for lightweight parsing, where
-- error messages (and thus file names) are not important and entire input
-- should be parsed. For example, it can be used when parsing of a single
-- number according to a specification of its format is desired.

parseMaybe :: (Ord e, Stream s) => Parsec e s a -> s -> Maybe a
parseMaybe :: Parsec e s a -> s -> Maybe a
parseMaybe Parsec e s a
p s
s =
  case Parsec e s a -> String -> s -> Either (ParseErrorBundle s e) a
forall e s a.
Parsec e s a -> String -> s -> Either (ParseErrorBundle s e) a
parse (Parsec e s a
p Parsec e s a -> ParsecT e s Identity () -> Parsec e s a
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
<* ParsecT e s Identity ()
forall e s (m :: * -> *). MonadParsec e s m => m ()
eof) String
"" s
s of
    Left  ParseErrorBundle s e
_ -> Maybe a
forall a. Maybe a
Nothing
    Right a
x -> a -> Maybe a
forall a. a -> Maybe a
Just a
x

-- | The expression @'parseTest' p input@ applies the parser @p@ against the
-- input @input@ and prints the result to stdout. Useful for testing.

parseTest :: ( ShowErrorComponent e
             , Show a
             , Stream s
             )
  => Parsec e s a -- ^ Parser to run
  -> s            -- ^ Input for parser
  -> IO ()
parseTest :: Parsec e s a -> s -> IO ()
parseTest Parsec e s a
p s
input =
  case Parsec e s a -> String -> s -> Either (ParseErrorBundle s e) a
forall e s a.
Parsec e s a -> String -> s -> Either (ParseErrorBundle s e) a
parse Parsec e s a
p String
"" s
input of
    Left  ParseErrorBundle s e
e -> String -> IO ()
putStr (ParseErrorBundle s e -> String
forall s e.
(Stream s, ShowErrorComponent e) =>
ParseErrorBundle s e -> String
errorBundlePretty ParseErrorBundle s e
e)
    Right a
x -> a -> IO ()
forall a. Show a => a -> IO ()
print a
x

-- | @'runParser' p file input@ runs parser @p@ on the input stream of
-- tokens @input@, obtained from source @file@. The @file@ is only used in
-- error messages and may be the empty string. Returns either a
-- 'ParseErrorBundle' ('Left') or a value of type @a@ ('Right').
--
-- > parseFromFile p file = runParser p file <$> readFile file

runParser
  :: Parsec e s a -- ^ Parser to run
  -> String     -- ^ Name of source file
  -> s          -- ^ Input for parser
  -> Either (ParseErrorBundle s e) a
runParser :: Parsec e s a -> String -> s -> Either (ParseErrorBundle s e) a
runParser Parsec e s a
p String
name s
s = (State s e, Either (ParseErrorBundle s e) a)
-> Either (ParseErrorBundle s e) a
forall a b. (a, b) -> b
snd ((State s e, Either (ParseErrorBundle s e) a)
 -> Either (ParseErrorBundle s e) a)
-> (State s e, Either (ParseErrorBundle s e) a)
-> Either (ParseErrorBundle s e) a
forall a b. (a -> b) -> a -> b
$ Parsec e s a
-> State s e -> (State s e, Either (ParseErrorBundle s e) a)
forall e s a.
Parsec e s a
-> State s e -> (State s e, Either (ParseErrorBundle s e) a)
runParser' Parsec e s a
p (String -> s -> State s e
forall s e. String -> s -> State s e
initialState String
name s
s)

-- | The function is similar to 'runParser' with the difference that it
-- accepts and returns parser state. This allows to specify arbitrary
-- textual position at the beginning of parsing, for example. This is the
-- most general way to run a parser over the 'Identity' monad.
--
-- @since 4.2.0

runParser'
  :: Parsec e s a -- ^ Parser to run
  -> State s e    -- ^ Initial state
  -> (State s e, Either (ParseErrorBundle s e) a)
runParser' :: Parsec e s a
-> State s e -> (State s e, Either (ParseErrorBundle s e) a)
runParser' Parsec e s a
p = Identity (State s e, Either (ParseErrorBundle s e) a)
-> (State s e, Either (ParseErrorBundle s e) a)
forall a. Identity a -> a
runIdentity (Identity (State s e, Either (ParseErrorBundle s e) a)
 -> (State s e, Either (ParseErrorBundle s e) a))
-> (State s e
    -> Identity (State s e, Either (ParseErrorBundle s e) a))
-> State s e
-> (State s e, Either (ParseErrorBundle s e) a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Parsec e s a
-> State s e
-> Identity (State s e, Either (ParseErrorBundle s e) a)
forall (m :: * -> *) e s a.
Monad m =>
ParsecT e s m a
-> State s e -> m (State s e, Either (ParseErrorBundle s e) a)
runParserT' Parsec e s a
p

-- | @'runParserT' p file input@ runs parser @p@ on the input list of tokens
-- @input@, obtained from source @file@. The @file@ is only used in error
-- messages and may be the empty string. Returns a computation in the
-- underlying monad @m@ that returns either a 'ParseErrorBundle' ('Left') or
-- a value of type @a@ ('Right').

runParserT :: Monad m
  => ParsecT e s m a -- ^ Parser to run
  -> String        -- ^ Name of source file
  -> s             -- ^ Input for parser
  -> m (Either (ParseErrorBundle s e) a)
runParserT :: ParsecT e s m a
-> String -> s -> m (Either (ParseErrorBundle s e) a)
runParserT ParsecT e s m a
p String
name s
s = (State s e, Either (ParseErrorBundle s e) a)
-> Either (ParseErrorBundle s e) a
forall a b. (a, b) -> b
snd ((State s e, Either (ParseErrorBundle s e) a)
 -> Either (ParseErrorBundle s e) a)
-> m (State s e, Either (ParseErrorBundle s e) a)
-> m (Either (ParseErrorBundle s e) a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ParsecT e s m a
-> State s e -> m (State s e, Either (ParseErrorBundle s e) a)
forall (m :: * -> *) e s a.
Monad m =>
ParsecT e s m a
-> State s e -> m (State s e, Either (ParseErrorBundle s e) a)
runParserT' ParsecT e s m a
p (String -> s -> State s e
forall s e. String -> s -> State s e
initialState String
name s
s)

-- | This function is similar to 'runParserT', but like 'runParser'' it
-- accepts and returns parser state. This is thus the most general way to
-- run a parser.
--
-- @since 4.2.0

runParserT' :: Monad m
  => ParsecT e s m a -- ^ Parser to run
  -> State s e     -- ^ Initial state
  -> m (State s e, Either (ParseErrorBundle s e) a)
runParserT' :: ParsecT e s m a
-> State s e -> m (State s e, Either (ParseErrorBundle s e) a)
runParserT' ParsecT e s m a
p State s e
s = do
  (Reply State s e
s' Consumption
_ Result s e a
result) <- ParsecT e s m a -> State s e -> m (Reply e s a)
forall (m :: * -> *) e s a.
Monad m =>
ParsecT e s m a -> State s e -> m (Reply e s a)
runParsecT ParsecT e s m a
p State s e
s
  let toBundle :: NonEmpty (ParseError s e) -> ParseErrorBundle s e
toBundle NonEmpty (ParseError s e)
es = ParseErrorBundle :: forall s e.
NonEmpty (ParseError s e) -> PosState s -> ParseErrorBundle s e
ParseErrorBundle
        { bundleErrors :: NonEmpty (ParseError s e)
bundleErrors =
            (ParseError s e -> Int)
-> NonEmpty (ParseError s e) -> NonEmpty (ParseError s e)
forall o a. Ord o => (a -> o) -> NonEmpty a -> NonEmpty a
NE.sortWith ParseError s e -> Int
forall s e. ParseError s e -> Int
errorOffset NonEmpty (ParseError s e)
es
        , bundlePosState :: PosState s
bundlePosState = State s e -> PosState s
forall s e. State s e -> PosState s
statePosState State s e
s
        }
  (State s e, Either (ParseErrorBundle s e) a)
-> m (State s e, Either (ParseErrorBundle s e) a)
forall (m :: * -> *) a. Monad m => a -> m a
return ((State s e, Either (ParseErrorBundle s e) a)
 -> m (State s e, Either (ParseErrorBundle s e) a))
-> (State s e, Either (ParseErrorBundle s e) a)
-> m (State s e, Either (ParseErrorBundle s e) a)
forall a b. (a -> b) -> a -> b
$ case Result s e a
result of
    OK a
x ->
      case [ParseError s e] -> Maybe (NonEmpty (ParseError s e))
forall a. [a] -> Maybe (NonEmpty a)
NE.nonEmpty (State s e -> [ParseError s e]
forall s e. State s e -> [ParseError s e]
stateParseErrors State s e
s') of
        Maybe (NonEmpty (ParseError s e))
Nothing -> (State s e
s', a -> Either (ParseErrorBundle s e) a
forall a b. b -> Either a b
Right a
x)
        Just NonEmpty (ParseError s e)
de -> (State s e
s', ParseErrorBundle s e -> Either (ParseErrorBundle s e) a
forall a b. a -> Either a b
Left (NonEmpty (ParseError s e) -> ParseErrorBundle s e
toBundle NonEmpty (ParseError s e)
de))
    Error ParseError s e
e ->
      (State s e
s', ParseErrorBundle s e -> Either (ParseErrorBundle s e) a
forall a b. a -> Either a b
Left (NonEmpty (ParseError s e) -> ParseErrorBundle s e
toBundle (ParseError s e
e ParseError s e -> [ParseError s e] -> NonEmpty (ParseError s e)
forall a. a -> [a] -> NonEmpty a
:| State s e -> [ParseError s e]
forall s e. State s e -> [ParseError s e]
stateParseErrors State s e
s')))

-- | Given name of source file and input construct initial state for parser.

initialState :: String -> s -> State s e
initialState :: String -> s -> State s e
initialState String
name s
s = State :: forall s e. s -> Int -> PosState s -> [ParseError s e] -> State s e
State
  { stateInput :: s
stateInput  = s
s
  , stateOffset :: Int
stateOffset = Int
0
  , statePosState :: PosState s
statePosState = PosState :: forall s. s -> Int -> SourcePos -> Pos -> String -> PosState s
PosState
    { pstateInput :: s
pstateInput = s
s
    , pstateOffset :: Int
pstateOffset = Int
0
    , pstateSourcePos :: SourcePos
pstateSourcePos = String -> SourcePos
initialPos String
name
    , pstateTabWidth :: Pos
pstateTabWidth = Pos
defaultTabWidth
    , pstateLinePrefix :: String
pstateLinePrefix = String
""
    }
  , stateParseErrors :: [ParseError s e]
stateParseErrors = []
  }

----------------------------------------------------------------------------
-- Signaling parse errors

-- $parse-errors
--
-- The most general function to fail and end parsing is 'parseError'. These
-- are built on top of it. The section also includes functions starting with
-- the @register@ prefix which allow users to register “delayed”
-- 'ParseError's.

-- | Stop parsing and report a trivial 'ParseError'.
--
-- @since 6.0.0

failure
  :: MonadParsec e s m
  => Maybe (ErrorItem (Token s)) -- ^ Unexpected item (if any)
  -> Set (ErrorItem (Token s)) -- ^ Expected items
  -> m a
failure :: Maybe (ErrorItem (Token s)) -> Set (ErrorItem (Token s)) -> m a
failure Maybe (ErrorItem (Token s))
us Set (ErrorItem (Token s))
ps = do
  Int
o <- m Int
forall e s (m :: * -> *). MonadParsec e s m => m Int
getOffset
  ParseError s e -> m a
forall e s (m :: * -> *) a.
MonadParsec e s m =>
ParseError s e -> m a
parseError (Int
-> Maybe (ErrorItem (Token s))
-> Set (ErrorItem (Token s))
-> ParseError s e
forall s e.
Int
-> Maybe (ErrorItem (Token s))
-> Set (ErrorItem (Token s))
-> ParseError s e
TrivialError Int
o Maybe (ErrorItem (Token s))
us Set (ErrorItem (Token s))
ps)
{-# INLINE failure #-}

-- | Stop parsing and report a fancy 'ParseError'. To report a single custom
-- parse error, see 'Text.Megaparsec.customFailure'.
--
-- @since 6.0.0

fancyFailure
  :: MonadParsec e s m
  => Set (ErrorFancy e) -- ^ Fancy error components
  -> m a
fancyFailure :: Set (ErrorFancy e) -> m a
fancyFailure Set (ErrorFancy e)
xs = do
  Int
o <- m Int
forall e s (m :: * -> *). MonadParsec e s m => m Int
getOffset
  ParseError s e -> m a
forall e s (m :: * -> *) a.
MonadParsec e s m =>
ParseError s e -> m a
parseError (Int -> Set (ErrorFancy e) -> ParseError s e
forall s e. Int -> Set (ErrorFancy e) -> ParseError s e
FancyError Int
o Set (ErrorFancy e)
xs)
{-# INLINE fancyFailure #-}

-- | The parser @'unexpected' item@ fails with an error message telling
-- about unexpected item @item@ without consuming any input.
--
-- > unexpected item = failure (Just item) Set.empty

unexpected :: MonadParsec e s m => ErrorItem (Token s) -> m a
unexpected :: ErrorItem (Token s) -> m a
unexpected ErrorItem (Token s)
item = Maybe (ErrorItem (Token s)) -> Set (ErrorItem (Token s)) -> m a
forall e s (m :: * -> *) a.
MonadParsec e s m =>
Maybe (ErrorItem (Token s)) -> Set (ErrorItem (Token s)) -> m a
failure (ErrorItem (Token s) -> Maybe (ErrorItem (Token s))
forall a. a -> Maybe a
Just ErrorItem (Token s)
item) Set (ErrorItem (Token s))
forall a. Set a
E.empty
{-# INLINE unexpected #-}

-- | Report a custom parse error. For a more general version, see
-- 'fancyFailure'.
--
-- > customFailure = fancyFailure . Set.singleton . ErrorCustom
--
-- @since 6.3.0

customFailure :: MonadParsec e s m => e -> m a
customFailure :: e -> m a
customFailure = Set (ErrorFancy e) -> m a
forall e s (m :: * -> *) a.
MonadParsec e s m =>
Set (ErrorFancy e) -> m a
fancyFailure (Set (ErrorFancy e) -> m a)
-> (e -> Set (ErrorFancy e)) -> e -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ErrorFancy e -> Set (ErrorFancy e)
forall a. a -> Set a
E.singleton (ErrorFancy e -> Set (ErrorFancy e))
-> (e -> ErrorFancy e) -> e -> Set (ErrorFancy e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. e -> ErrorFancy e
forall e. e -> ErrorFancy e
ErrorCustom
{-# INLINE customFailure #-}

-- | Specify how to process 'ParseError's that happen inside of this
-- wrapper. This applies to both normal and delayed 'ParseError's.
--
-- As a side-effect of the implementation the inner computation will start
-- with empty collection of delayed errors and they will be updated and
-- “restored” on the way out of 'region'.
--
-- @since 5.3.0

region :: MonadParsec e s m
  => (ParseError s e -> ParseError s e)
     -- ^ How to process 'ParseError's
  -> m a               -- ^ The “region” that the processing applies to
  -> m a
region :: (ParseError s e -> ParseError s e) -> m a -> m a
region ParseError s e -> ParseError s e
f m a
m = do
  [ParseError s e]
deSoFar <- State s e -> [ParseError s e]
forall s e. State s e -> [ParseError s e]
stateParseErrors (State s e -> [ParseError s e])
-> m (State s e) -> m [ParseError s e]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m (State s e)
forall e s (m :: * -> *). MonadParsec e s m => m (State s e)
getParserState
  (State s e -> State s e) -> m ()
forall e s (m :: * -> *).
MonadParsec e s m =>
(State s e -> State s e) -> m ()
updateParserState ((State s e -> State s e) -> m ())
-> (State s e -> State s e) -> m ()
forall a b. (a -> b) -> a -> b
$ \State s e
s ->
    State s e
s { stateParseErrors :: [ParseError s e]
stateParseErrors = [] }
  Either (ParseError s e) a
r <- m a -> m (Either (ParseError s e) a)
forall e s (m :: * -> *) a.
MonadParsec e s m =>
m a -> m (Either (ParseError s e) a)
observing m a
m
  (State s e -> State s e) -> m ()
forall e s (m :: * -> *).
MonadParsec e s m =>
(State s e -> State s e) -> m ()
updateParserState ((State s e -> State s e) -> m ())
-> (State s e -> State s e) -> m ()
forall a b. (a -> b) -> a -> b
$ \State s e
s ->
    State s e
s { stateParseErrors :: [ParseError s e]
stateParseErrors = (ParseError s e -> ParseError s e
f (ParseError s e -> ParseError s e)
-> [ParseError s e] -> [ParseError s e]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> State s e -> [ParseError s e]
forall s e. State s e -> [ParseError s e]
stateParseErrors State s e
s) [ParseError s e] -> [ParseError s e] -> [ParseError s e]
forall a. [a] -> [a] -> [a]
++ [ParseError s e]
deSoFar }
  case Either (ParseError s e) a
r of
    Left ParseError s e
err -> ParseError s e -> m a
forall e s (m :: * -> *) a.
MonadParsec e s m =>
ParseError s e -> m a
parseError (ParseError s e -> ParseError s e
f ParseError s e
err)
    Right a
x -> a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
x
{-# INLINEABLE region #-}

-- | Register a 'ParseError' for later reporting. This action does not end
-- parsing and has no effect except for adding the given 'ParseError' to the
-- collection of “delayed” 'ParseError's which will be taken into
-- consideration at the end of parsing. Only if this collection is empty
-- parser will succeed. This is the main way to report several parse errors
-- at once.
--
-- @since 8.0.0

registerParseError :: MonadParsec e s m => ParseError s e -> m ()
registerParseError :: ParseError s e -> m ()
registerParseError ParseError s e
e = (State s e -> State s e) -> m ()
forall e s (m :: * -> *).
MonadParsec e s m =>
(State s e -> State s e) -> m ()
updateParserState ((State s e -> State s e) -> m ())
-> (State s e -> State s e) -> m ()
forall a b. (a -> b) -> a -> b
$ \State s e
s ->
  State s e
s { stateParseErrors :: [ParseError s e]
stateParseErrors = ParseError s e
e ParseError s e -> [ParseError s e] -> [ParseError s e]
forall a. a -> [a] -> [a]
: State s e -> [ParseError s e]
forall s e. State s e -> [ParseError s e]
stateParseErrors State s e
s }
{-# INLINE registerParseError #-}

-- | Like 'failure', but for delayed 'ParseError's.
--
-- @since 8.0.0

registerFailure
  :: MonadParsec e s m
  => Maybe (ErrorItem (Token s)) -- ^ Unexpected item (if any)
  -> Set (ErrorItem (Token s)) -- ^ Expected items
  -> m ()
registerFailure :: Maybe (ErrorItem (Token s)) -> Set (ErrorItem (Token s)) -> m ()
registerFailure Maybe (ErrorItem (Token s))
us Set (ErrorItem (Token s))
ps = do
  Int
o <- m Int
forall e s (m :: * -> *). MonadParsec e s m => m Int
getOffset
  ParseError s e -> m ()
forall e s (m :: * -> *).
MonadParsec e s m =>
ParseError s e -> m ()
registerParseError (Int
-> Maybe (ErrorItem (Token s))
-> Set (ErrorItem (Token s))
-> ParseError s e
forall s e.
Int
-> Maybe (ErrorItem (Token s))
-> Set (ErrorItem (Token s))
-> ParseError s e
TrivialError Int
o Maybe (ErrorItem (Token s))
us Set (ErrorItem (Token s))
ps)
{-# INLINE registerFailure #-}

-- | Like 'fancyFailure', but for delayed 'ParseError's.
--
-- @since 8.0.0

registerFancyFailure
  :: MonadParsec e s m
  => Set (ErrorFancy e) -- ^ Fancy error components
  -> m ()
registerFancyFailure :: Set (ErrorFancy e) -> m ()
registerFancyFailure Set (ErrorFancy e)
xs = do
  Int
o <- m Int
forall e s (m :: * -> *). MonadParsec e s m => m Int
getOffset
  ParseError s e -> m ()
forall e s (m :: * -> *).
MonadParsec e s m =>
ParseError s e -> m ()
registerParseError (Int -> Set (ErrorFancy e) -> ParseError s e
forall s e. Int -> Set (ErrorFancy e) -> ParseError s e
FancyError Int
o Set (ErrorFancy e)
xs)
{-# INLINE registerFancyFailure #-}

----------------------------------------------------------------------------
-- Derivatives of primitive combinators

-- | @'single' t@ only matches the single token @t@.
--
-- > semicolon = single ';'
--
-- See also: 'token', 'anySingle', 'Text.Megaparsec.Byte.char',
-- 'Text.Megaparsec.Char.char'.
--
-- @since 7.0.0

single :: MonadParsec e s m
  => Token s           -- ^ Token to match
  -> m (Token s)
single :: Token s -> m (Token s)
single Token s
t = (Token s -> Maybe (Token s))
-> Set (ErrorItem (Token s)) -> m (Token s)
forall e s (m :: * -> *) a.
MonadParsec e s m =>
(Token s -> Maybe a) -> Set (ErrorItem (Token s)) -> m a
token Token s -> Maybe (Token s)
testToken Set (ErrorItem (Token s))
expected
  where
    testToken :: Token s -> Maybe (Token s)
testToken Token s
x = if Token s
x Token s -> Token s -> Bool
forall a. Eq a => a -> a -> Bool
== Token s
t then Token s -> Maybe (Token s)
forall a. a -> Maybe a
Just Token s
x else Maybe (Token s)
forall a. Maybe a
Nothing
    expected :: Set (ErrorItem (Token s))
expected    = ErrorItem (Token s) -> Set (ErrorItem (Token s))
forall a. a -> Set a
E.singleton (NonEmpty (Token s) -> ErrorItem (Token s)
forall t. NonEmpty t -> ErrorItem t
Tokens (Token s
tToken s -> [Token s] -> NonEmpty (Token s)
forall a. a -> [a] -> NonEmpty a
:|[]))
{-# INLINE single #-}

-- | The parser @'satisfy' f@ succeeds for any token for which the supplied
-- function @f@ returns 'True'.
--
-- > digitChar = satisfy isDigit <?> "digit"
-- > oneOf cs  = satisfy (`elem` cs)
--
-- See also: 'anySingle', 'anySingleBut', 'oneOf', 'noneOf'.
--
-- @since 7.0.0

satisfy :: MonadParsec e s m
  => (Token s -> Bool) -- ^ Predicate to apply
  -> m (Token s)
satisfy :: (Token s -> Bool) -> m (Token s)
satisfy Token s -> Bool
f = (Token s -> Maybe (Token s))
-> Set (ErrorItem (Token s)) -> m (Token s)
forall e s (m :: * -> *) a.
MonadParsec e s m =>
(Token s -> Maybe a) -> Set (ErrorItem (Token s)) -> m a
token Token s -> Maybe (Token s)
testChar Set (ErrorItem (Token s))
forall a. Set a
E.empty
  where
    testChar :: Token s -> Maybe (Token s)
testChar Token s
x = if Token s -> Bool
f Token s
x then Token s -> Maybe (Token s)
forall a. a -> Maybe a
Just Token s
x else Maybe (Token s)
forall a. Maybe a
Nothing
{-# INLINE satisfy #-}

-- | Parse and return a single token. It's a good idea to attach a 'label'
-- to this parser.
--
-- > anySingle = satisfy (const True)
--
-- See also: 'satisfy', 'anySingleBut'.
--
-- @since 7.0.0

anySingle :: MonadParsec e s m => m (Token s)
anySingle :: m (Token s)
anySingle = (Token s -> Bool) -> m (Token s)
forall e s (m :: * -> *).
MonadParsec e s m =>
(Token s -> Bool) -> m (Token s)
satisfy (Bool -> Token s -> Bool
forall a b. a -> b -> a
const Bool
True)
{-# INLINE anySingle #-}

-- | Match any token but the given one. It's a good idea to attach a 'label'
-- to this parser.
--
-- > anySingleBut t = satisfy (/= t)
--
-- See also: 'single', 'anySingle', 'satisfy'.
--
-- @since 7.0.0

anySingleBut :: MonadParsec e s m
  => Token s           -- ^ Token we should not match
  -> m (Token s)
anySingleBut :: Token s -> m (Token s)
anySingleBut Token s
t = (Token s -> Bool) -> m (Token s)
forall e s (m :: * -> *).
MonadParsec e s m =>
(Token s -> Bool) -> m (Token s)
satisfy (Token s -> Token s -> Bool
forall a. Eq a => a -> a -> Bool
/= Token s
t)
{-# INLINE anySingleBut #-}

-- | @'oneOf' ts@ succeeds if the current token is in the supplied
-- collection of tokens @ts@. Returns the parsed token. Note that this
-- parser cannot automatically generate the “expected” component of error
-- message, so usually you should label it manually with 'label' or ('<?>').
--
-- > oneOf cs = satisfy (`elem` cs)
--
-- See also: 'satisfy'.
--
-- > digit = oneOf ['0'..'9'] <?> "digit"
--
-- __Performance note__: prefer 'satisfy' when you can because it's faster
-- when you have only a couple of tokens to compare to:
--
-- > quoteFast = satisfy (\x -> x == '\'' || x == '\"')
-- > quoteSlow = oneOf "'\""
--
-- @since 7.0.0

oneOf :: (Foldable f, MonadParsec e s m)
  => f (Token s)       -- ^ Collection of matching tokens
  -> m (Token s)
oneOf :: f (Token s) -> m (Token s)
oneOf f (Token s)
cs = (Token s -> Bool) -> m (Token s)
forall e s (m :: * -> *).
MonadParsec e s m =>
(Token s -> Bool) -> m (Token s)
satisfy (Token s -> f (Token s) -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` f (Token s)
cs)
{-# INLINE oneOf #-}

-- | As the dual of 'oneOf', @'noneOf' ts@ succeeds if the current token
-- /not/ in the supplied list of tokens @ts@. Returns the parsed character.
-- Note that this parser cannot automatically generate the “expected”
-- component of error message, so usually you should label it manually with
-- 'label' or ('<?>').
--
-- > noneOf cs = satisfy (`notElem` cs)
--
-- See also: 'satisfy'.
--
-- __Performance note__: prefer 'satisfy' and 'anySingleBut' when you can
-- because it's faster.
--
-- @since 7.0.0

noneOf :: (Foldable f, MonadParsec e s m)
  => f (Token s)       -- ^ Collection of taken we should not match
  -> m (Token s)
noneOf :: f (Token s) -> m (Token s)
noneOf f (Token s)
cs = (Token s -> Bool) -> m (Token s)
forall e s (m :: * -> *).
MonadParsec e s m =>
(Token s -> Bool) -> m (Token s)
satisfy (Token s -> f (Token s) -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`notElem` f (Token s)
cs)
{-# INLINE noneOf #-}

-- | @'chunk' chk@ only matches the chunk @chk@.
--
-- > divOrMod = chunk "div" <|> chunk "mod"
--
-- See also: 'tokens', 'Text.Megaparsec.Char.string',
-- 'Text.Megaparsec.Byte.string'.
--
-- @since 7.0.0

chunk :: MonadParsec e s m
  => Tokens s          -- ^ Chunk to match
  -> m (Tokens s)
chunk :: Tokens s -> m (Tokens s)
chunk = (Tokens s -> Tokens s -> Bool) -> Tokens s -> m (Tokens s)
forall e s (m :: * -> *).
MonadParsec e s m =>
(Tokens s -> Tokens s -> Bool) -> Tokens s -> m (Tokens s)
tokens Tokens s -> Tokens s -> Bool
forall a. Eq a => a -> a -> Bool
(==)
{-# INLINE chunk #-}

-- | A synonym for 'label' in the form of an operator.

infix 0 <?>

(<?>) :: MonadParsec e s m => m a -> String -> m a
<?> :: m a -> String -> m a
(<?>) = (String -> m a -> m a) -> m a -> String -> m a
forall a b c. (a -> b -> c) -> b -> a -> c
flip String -> m a -> m a
forall e s (m :: * -> *) a.
MonadParsec e s m =>
String -> m a -> m a
label
{-# INLINE (<?>) #-}

-- | Return both the result of a parse and a chunk of input that was
-- consumed during parsing. This relies on the change of the 'stateOffset'
-- value to evaluate how many tokens were consumed. If you mess with it
-- manually in the argument parser, prepare for troubles.
--
-- @since 5.3.0

match :: MonadParsec e s m => m a -> m (Tokens s, a)
match :: m a -> m (Tokens s, a)
match m a
p = do
  Int
o  <- m Int
forall e s (m :: * -> *). MonadParsec e s m => m Int
getOffset
  s
s  <- m s
forall e s (m :: * -> *). MonadParsec e s m => m s
getInput
  a
r  <- m a
p
  Int
o' <- m Int
forall e s (m :: * -> *). MonadParsec e s m => m Int
getOffset
  -- NOTE The 'fromJust' call here should never fail because if the stream
  -- is empty before 'p' (the only case when 'takeN_' can return 'Nothing'
  -- as per its invariants), (tp' - tp) won't be greater than 0, and in that
  -- case 'Just' is guaranteed to be returned as per another invariant of
  -- 'takeN_'.
  (Tokens s, a) -> m (Tokens s, a)
forall (m :: * -> *) a. Monad m => a -> m a
return (((Tokens s, s) -> Tokens s
forall a b. (a, b) -> a
fst ((Tokens s, s) -> Tokens s)
-> (Maybe (Tokens s, s) -> (Tokens s, s))
-> Maybe (Tokens s, s)
-> Tokens s
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Maybe (Tokens s, s) -> (Tokens s, s)
forall a. HasCallStack => Maybe a -> a
fromJust) (Int -> s -> Maybe (Tokens s, s)
forall s. Stream s => Int -> s -> Maybe (Tokens s, s)
takeN_ (Int
o' Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
o) s
s), a
r)
{-# INLINEABLE match #-}

-- | Consume the rest of the input and return it as a chunk. This parser
-- never fails, but may return the empty chunk.
--
-- > takeRest = takeWhileP Nothing (const True)
--
-- @since 6.0.0

takeRest :: MonadParsec e s m => m (Tokens s)
takeRest :: m (Tokens s)
takeRest = Maybe String -> (Token s -> Bool) -> m (Tokens s)
forall e s (m :: * -> *).
MonadParsec e s m =>
Maybe String -> (Token s -> Bool) -> m (Tokens s)
takeWhileP Maybe String
forall a. Maybe a
Nothing (Bool -> Token s -> Bool
forall a b. a -> b -> a
const Bool
True)
{-# INLINE takeRest #-}

-- | Return 'True' when end of input has been reached.
--
-- > atEnd = option False (True <$ hidden eof)
--
-- @since 6.0.0

atEnd :: MonadParsec e s m => m Bool
atEnd :: m Bool
atEnd = Bool -> m Bool -> m Bool
forall (m :: * -> *) a. Alternative m => a -> m a -> m a
option Bool
False (Bool
True Bool -> m () -> m Bool
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ m () -> m ()
forall e s (m :: * -> *) a. MonadParsec e s m => m a -> m a
hidden m ()
forall e s (m :: * -> *). MonadParsec e s m => m ()
eof)
{-# INLINE atEnd #-}

----------------------------------------------------------------------------
-- Parser state combinators

-- | Return the current input.

getInput :: MonadParsec e s m => m s
getInput :: m s
getInput = State s e -> s
forall s e. State s e -> s
stateInput (State s e -> s) -> m (State s e) -> m s
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m (State s e)
forall e s (m :: * -> *). MonadParsec e s m => m (State s e)
getParserState
{-# INLINE getInput #-}

-- | @'setInput' input@ continues parsing with @input@.

setInput :: MonadParsec e s m => s -> m ()
setInput :: s -> m ()
setInput s
s = (State s e -> State s e) -> m ()
forall e s (m :: * -> *).
MonadParsec e s m =>
(State s e -> State s e) -> m ()
updateParserState (\(State s
_ Int
o PosState s
pst [ParseError s e]
de) -> s -> Int -> PosState s -> [ParseError s e] -> State s e
forall s e. s -> Int -> PosState s -> [ParseError s e] -> State s e
State s
s Int
o PosState s
pst [ParseError s e]
de)
{-# INLINE setInput #-}

-- | Return the current source position. This function /is not cheap/, do
-- not call it e.g. on matching of every token, that's a bad idea. Still you
-- can use it to get 'SourcePos' to attach to things that you parse.
--
-- The function works under the assumption that we move in the input stream
-- only forwards and never backwards, which is always true unless the user
-- abuses the library.
--
-- @since 7.0.0

getSourcePos :: MonadParsec e s m => m SourcePos
getSourcePos :: m SourcePos
getSourcePos = do
  State s e
st <- m (State s e)
forall e s (m :: * -> *). MonadParsec e s m => m (State s e)
getParserState
  let pst :: PosState s
pst = Int -> PosState s -> PosState s
forall s. Stream s => Int -> PosState s -> PosState s
reachOffsetNoLine (State s e -> Int
forall s e. State s e -> Int
stateOffset State s e
st) (State s e -> PosState s
forall s e. State s e -> PosState s
statePosState State s e
st)
  State s e -> m ()
forall e s (m :: * -> *). MonadParsec e s m => State s e -> m ()
setParserState State s e
st { statePosState :: PosState s
statePosState = PosState s
pst }
  SourcePos -> m SourcePos
forall (m :: * -> *) a. Monad m => a -> m a
return (PosState s -> SourcePos
forall s. PosState s -> SourcePos
pstateSourcePos PosState s
pst)
{-# INLINE getSourcePos #-}

-- | Get the number of tokens processed so far.
--
-- See also: 'setOffset'.
--
-- @since 7.0.0

getOffset :: MonadParsec e s m => m Int
getOffset :: m Int
getOffset = State s e -> Int
forall s e. State s e -> Int
stateOffset (State s e -> Int) -> m (State s e) -> m Int
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m (State s e)
forall e s (m :: * -> *). MonadParsec e s m => m (State s e)
getParserState
{-# INLINE getOffset #-}

-- | Set the number of tokens processed so far.
--
-- See also: 'getOffset'.
--
-- @since 7.0.0

setOffset :: MonadParsec e s m => Int -> m ()
setOffset :: Int -> m ()
setOffset Int
o = (State s e -> State s e) -> m ()
forall e s (m :: * -> *).
MonadParsec e s m =>
(State s e -> State s e) -> m ()
updateParserState ((State s e -> State s e) -> m ())
-> (State s e -> State s e) -> m ()
forall a b. (a -> b) -> a -> b
$ \(State s
s Int
_ PosState s
pst [ParseError s e]
de) ->
  s -> Int -> PosState s -> [ParseError s e] -> State s e
forall s e. s -> Int -> PosState s -> [ParseError s e] -> State s e
State s
s Int
o PosState s
pst [ParseError s e]
de
{-# INLINE setOffset #-}

-- | @'setParserState' st@ sets the parser state to @st@.
--
-- See also: 'getParserState', 'updateParserState'.

setParserState :: MonadParsec e s m => State s e -> m ()
setParserState :: State s e -> m ()
setParserState State s e
st = (State s e -> State s e) -> m ()
forall e s (m :: * -> *).
MonadParsec e s m =>
(State s e -> State s e) -> m ()
updateParserState (State s e -> State s e -> State s e
forall a b. a -> b -> a
const State s e
st)
{-# INLINE setParserState #-}