▶NIntrepid2 | |
▶NExperimental | |
CComputeBasisCoeffsOnCell_HCurl | |
CComputeBasisCoeffsOnCells_HDiv | |
CComputeBasisCoeffsOnCells_HGRAD | |
CComputeBasisCoeffsOnCells_L2 | |
CComputeBasisCoeffsOnEdges_HCurl | |
CComputeBasisCoeffsOnEdges_HGRAD | |
CComputeBasisCoeffsOnEdges_L2 | |
CComputeBasisCoeffsOnFaces_HCurl | |
CComputeBasisCoeffsOnFaces_HGRAD | |
CComputeBasisCoeffsOnFaces_L2 | |
CComputeBasisCoeffsOnSides_HDiv | |
CComputeBasisCoeffsOnVertices_HGRAD | |
CComputeBasisCoeffsOnVertices_L2 | |
CcomputeDofCoordsAndCoeffs | |
CComputeHCurlBasisCoeffsOnCells_HDiv | |
CLagrangianInterpolation | A class providing static members to perform Lagrangian interpolation on a finite element |
CProjectionStruct | An helper class to compute the evaluation points and weights needed for performing projections |
▶CProjectionTools | A class providing static members to perform projection-based interpolations: |
CElemSystem | Class to solve a square system A x = b on each cell A is expected to be saddle a point (KKT) matrix of the form [C B; B^T 0], where C has size nxn and B nxm, with n>0, m>=0. B^T is copied from B, so one does not have to define the B^T portion of A. b will contain the solution x. The first n-entries of x are copied into the provided basis coefficients using the provided indexing. The system is solved either with a QR factorization implemented in KokkosKernels or with Lapack GELS function |
▶NFunctorArrayTools | |
CF_clone | Functor for clone see Intrepid2::ArrayTools for more |
CF_contractDataData | Functor to contractDataData see Intrepid2::ArrayTools for more |
CF_contractDataField | Functor to contractDataField see Intrepid2::ArrayTools for more |
CF_contractFieldField | Functor to contractFieldField see Intrepid2::ArrayTools for more |
CF_crossProduct | Functor for crossProduct see Intrepid2::ArrayTools for more |
CF_dotMultiply | Functor for dotMultiply see Intrepid2::ArrayTools for more |
CF_matmatProduct | Functor for matmatProduct see Intrepid2::ArrayTools for more |
CF_matvecProduct | Functor for matvecProduct see Intrepid2::ArrayTools for more |
CF_outerProduct | Functor for outerProduct see Intrepid2::ArrayTools for more |
CF_scalarMultiply | Functor for scalarMultiply see Intrepid2::ArrayTools for more |
▶NFunctorCellTools | |
CF_getSubcvCoords_Hexahedron | Functor for calculation of sub-control volume coordinates on hexahedra see Intrepid2::CellTools for more |
CF_getSubcvCoords_Polygon2D | Functor for calculation of sub-control volume coordinates on polygons see Intrepid2::CellTools for more |
CF_getSubcvCoords_Tetrahedron | Functor for calculation of sub-control volume coordinates on tetrahedra see Intrepid2::CellTools for more |
CF_mapToPhysicalFrame | Functor for mapping reference points to physical frame see Intrepid2::CellTools for more |
CF_setJacobian | Functor for calculation of Jacobian on cell workset see Intrepid2::CellTools for more |
▶NFunctorFunctionSpaceTools | |
CF_applyFieldSigns | Functor for applyFieldSigns, see Intrepid2::FunctionSpaceTools for more |
CF_applyLeftFieldSigns | Functor for applyLeftFieldSigns, see Intrepid2::FunctionSpaceTools for more |
CF_applyRightFieldSigns | Functor for applyRightFieldSigns, see Intrepid2::FunctionSpaceTools for more |
CF_computeCellMeasure | Functor for calculation of cell measure, see Intrepid2::FunctionSpaceTools for more |
CF_evaluate | Functor to evaluate functions, see Intrepid2::FunctionSpaceTools for more |
CF_HGRADtransformGRAD | Functor for calculation HGRADtransformGRAD, see Intrepid2::FunctionSpaceTools for more |
▶NFunctorRealSpaceTools | |
CF_absval | Functor to compute absolute value see Intrepid2::RealSpaceTools for more |
CF_add | Functor to add md arrays see Intrepid2::RealSpaceTools for more |
CF_clone | Functor for clone see Intrepid2::RealSpaceTools for more |
CF_det | Functor to compute determinant see Intrepid2::RealSpaceTools for more |
CF_dot | Functor to compute dot product see Intrepid2::RealSpaceTools for more |
CF_extractScalarValues | Functor for extractScalarValues see Intrepid2::RealSpaceTools for more |
CF_inverse | Functor to compute inverse see Intrepid2::RealSpaceTools for more |
CF_matvec | Functor to compute matvec see Intrepid2::RealSpaceTools for more |
CF_scale | Functor to scale md arrays see Intrepid2::RealSpaceTools for more |
CF_subtract | Functor to subtract md arrays see Intrepid2::RealSpaceTools for more |
CF_transpose | Functor to compute transpose see Intrepid2::RealSpaceTools for more |
CF_vecprod | Functor to compute vecprod see Intrepid2::RealSpaceTools for more |
CF_vectorNorm | Functor to compute vector norm see Intrepid2::RealSpaceTools for more |
▶NImpl | |
▶CBasis_HCURL_HEX_I1_FEM | See Intrepid2::Basis_HCURL_HEX_I1_FEM |
CFunctor | See Intrepid2::Basis_HCURL_HEX_I1_FEM |
CSerial | See Intrepid2::Basis_HCURL_HEX_I1_FEM |
▶CBasis_HCURL_HEX_In_FEM | See Intrepid2::Basis_HCURL_HEX_In_FEM |
CFunctor | See Intrepid2::Basis_HCURL_HEX_In_FEM |
CSerial | See Intrepid2::Basis_HCURL_HEX_In_FEM |
▶CBasis_HCURL_QUAD_I1_FEM | See Intrepid2::Basis_HCURL_QUAD_I1_FEM |
CFunctor | See Intrepid2::Basis_HCURL_QUAD_I1_FEM |
CSerial | See Intrepid2::Basis_HCURL_QUAD_I1_FEM |
▶CBasis_HCURL_QUAD_In_FEM | See Intrepid2::Basis_HCURL_QUAD_In_FEM |
CFunctor | See Intrepid2::Basis_HCURL_QUAD_In_FEM |
CSerial | See Intrepid2::Basis_HCURL_QUAD_In_FEM |
▶CBasis_HCURL_TET_I1_FEM | See Intrepid2::Basis_HCURL_TET_I1_FEM |
CFunctor | See Intrepid2::Basis_HCURL_TET_I1_FEM |
CSerial | See Intrepid2::Basis_HCURL_TET_I1_FEM |
▶CBasis_HCURL_TET_In_FEM | See Intrepid2::Basis_HCURL_TET_In_FEM |
CFunctor | See Intrepid2::Basis_HCURL_TET_In_FEM |
CSerial | See Intrepid2::Basis_HCURL_TET_In_FEM |
▶CBasis_HCURL_TRI_I1_FEM | See Intrepid2::Basis_HCURL_TRI_I1_FEM |
CFunctor | See Intrepid2::Basis_HCURL_TRI_I1_FEM |
CSerial | See Intrepid2::Basis_HCURL_TRI_I1_FEM |
▶CBasis_HCURL_TRI_In_FEM | See Intrepid2::Basis_HCURL_TRI_In_FEM |
CFunctor | See Intrepid2::Basis_HCURL_TRI_In_FEM |
CSerial | See Intrepid2::Basis_HCURL_TRI_In_FEM |
▶CBasis_HCURL_WEDGE_I1_FEM | See Intrepid2::Basis_HCURL_WEDGE_I1_FEM |
CFunctor | See Intrepid2::Basis_HCURL_WEDGE_I1_FEM |
CSerial | See Intrepid2::Basis_HCURL_WEDGE_I1_FEM |
▶CBasis_HDIV_HEX_I1_FEM | See Intrepid2::Basis_HDIV_HEX_I1_FEM |
CFunctor | See Intrepid2::Basis_HDIV_HEX_I1_FEM |
CSerial | See Intrepid2::Basis_HDIV_HEX_I1_FEM |
▶CBasis_HDIV_HEX_In_FEM | See Intrepid2::Basis_HDIV_HEX_In_FEM |
CFunctor | See Intrepid2::Basis_HDIV_HEX_In_FEM |
CSerial | See Intrepid2::Basis_HDIV_HEX_In_FEM |
▶CBasis_HDIV_QUAD_I1_FEM | See Intrepid2::Basis_HDIV_QUAD_I1_FEM |
CFunctor | See Intrepid2::Basis_HDIV_QUAD_I1_FEM |
CSerial | See Intrepid2::Basis_HDIV_QUAD_I1_FEM |
▶CBasis_HDIV_QUAD_In_FEM | See Intrepid2::Basis_HDIV_QUAD_In_FEM |
CFunctor | See Intrepid2::Basis_HDIV_QUAD_In_FEM |
CSerial | See Intrepid2::Basis_HDIV_QUAD_In_FEM |
▶CBasis_HDIV_TET_I1_FEM | See Intrepid2::Basis_HDIV_TET_I1_FEM |
CFunctor | See Intrepid2::Basis_HDIV_TET_I1_FEM |
CSerial | See Intrepid2::Basis_HDIV_TET_I1_FEM |
▶CBasis_HDIV_TET_In_FEM | See Intrepid2::Basis_HDIV_TET_In_FEM |
CFunctor | See Intrepid2::Basis_HDIV_TET_In_FEM |
CSerial | See Intrepid2::Basis_HDIV_TET_In_FEM |
▶CBasis_HDIV_TRI_I1_FEM | See Intrepid2::Basis_HDIV_TRI_I1_FEM |
CFunctor | See Intrepid2::Basis_HDIV_TRI_I1_FEM |
CSerial | See Intrepid2::Basis_HDIV_TRI_I1_FEM |
▶CBasis_HDIV_TRI_In_FEM | See Intrepid2::Basis_HDIV_TRI_In_FEM |
CFunctor | See Intrepid2::Basis_HDIV_TRI_In_FEM |
CSerial | See Intrepid2::Basis_HDIV_TRI_In_FEM |
▶CBasis_HDIV_WEDGE_I1_FEM | See Intrepid2::Basis_HDIV_WEDGE_I1_FEM |
CFunctor | See Intrepid2::Basis_HDIV_WEDGE_I1_FEM |
CSerial | See Intrepid2::Basis_HDIV_WEDGE_I1_FEM |
▶CBasis_HGRAD_HEX_C1_FEM | See Intrepid2::Basis_HGRAD_HEX_C1_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_HEX_C1_FEM |
CSerial | See Intrepid2::Basis_HGRAD_HEX_C1_FEM |
▶CBasis_HGRAD_HEX_C2_FEM | See Intrepid2::Basis_HGRAD_HEX_C2_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_HEX_C2_FEM |
CSerial | See Intrepid2::Basis_HGRAD_HEX_C2_FEM |
▶CBasis_HGRAD_HEX_Cn_FEM | See Intrepid2::Basis_HGRAD_HEX_Cn_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_HEX_Cn_FEM |
CSerial | See Intrepid2::Basis_HGRAD_HEX_Cn_FEM |
▶CBasis_HGRAD_LINE_C1_FEM | See Intrepid2::Basis_HGRAD_LINE_C1_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_LINE_C1_FEM |
CSerial | See Intrepid2::Basis_HGRAD_LINE_C1_FEM |
▶CBasis_HGRAD_LINE_Cn_FEM | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM |
CSerial | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM |
▶CBasis_HGRAD_LINE_Cn_FEM_JACOBI | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM_JACOBI |
CFunctor | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM_JACOBI |
CSerial | See Intrepid2::Basis_HGRAD_LINE_Cn_FEM_JACOBI |
▶CBasis_HGRAD_PYR_C1_FEM | See Intrepid2::Basis_HGRAD_PYR_C1_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_PYR_C1_FEM |
CSerial | See Intrepid2::Basis_HGRAD_PYR_C1_FEM |
▶CBasis_HGRAD_QUAD_C1_FEM | See Intrepid2::Basis_HGRAD_QUAD_C1_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_QUAD_C1_FEM |
CSerial | See Intrepid2::Basis_HGRAD_QUAD_C1_FEM |
▶CBasis_HGRAD_QUAD_C2_FEM | See Intrepid2::Basis_HGRAD_QUAD_C2_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_QUAD_C2_FEM |
CSerial | See Intrepid2::Basis_HGRAD_QUAD_C2_FEM |
▶CBasis_HGRAD_QUAD_Cn_FEM | See Intrepid2::Basis_HGRAD_QUAD_Cn_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_QUAD_Cn_FEM |
CSerial | See Intrepid2::Basis_HGRAD_QUAD_Cn_FEM work is a rank 1 view having the same value_type of inputPoints and having size equal to getWorkSizePerPoint()*inputPoints.extent(0); |
▶CBasis_HGRAD_TET_C1_FEM | See Intrepid2::Basis_HGRAD_TET_C1_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_TET_C1_FEM |
CSerial | See Intrepid2::Basis_HGRAD_TET_C1_FEM |
▶CBasis_HGRAD_TET_C2_FEM | See Intrepid2::Basis_HGRAD_TET_C2_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_TET_C2_FEM |
CSerial | See Intrepid2::Basis_HGRAD_TET_C2_FEM |
▶CBasis_HGRAD_TET_Cn_FEM | See Intrepid2::Basis_HGRAD_TET_Cn_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_TET_Cn_FEM |
CSerial | See Intrepid2::Basis_HGRAD_TET_Cn_FEM |
▶CBasis_HGRAD_TET_Cn_FEM_ORTH | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
CFunctor | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
CSerial | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
▶CBasis_HGRAD_TET_COMP12_FEM | See Intrepid2::Basis_HGRAD_TET_COMP12_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_TET_COMP12_FEM |
CSerial | See Intrepid2::Basis_HGRAD_TET_COMP12_FEM |
▶CBasis_HGRAD_TRI_C1_FEM | See Intrepid2::Basis_HGRAD_TRI_C1_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_TRI_C1_FEM |
CSerial | See Intrepid2::Basis_HGRAD_TRI_C1_FEM |
▶CBasis_HGRAD_TRI_C2_FEM | See Intrepid2::Basis_HGRAD_TRI_C2_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_TRI_C2_FEM |
CSerial | See Intrepid2::Basis_HGRAD_TRI_C2_FEM |
▶CBasis_HGRAD_TRI_Cn_FEM | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM |
CSerial | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM work is a rank 1 view having the same value_type of inputPoints and having size equal to getWorkSizePerPoint()*inputPoints.extent(0); |
▶CBasis_HGRAD_TRI_Cn_FEM_ORTH | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
CFunctor | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
CSerial | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
▶CBasis_HGRAD_WEDGE_C1_FEM | See Intrepid2::Basis_HGRAD_WEDGE_C1_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_WEDGE_C1_FEM |
CSerial | See Intrepid2::Basis_HGRAD_WEDGE_C1_FEM |
▶CBasis_HGRAD_WEDGE_C2_FEM | See Intrepid2::Basis_HGRAD_WEDGE_C2_FEM |
CFunctor | See Intrepid2::Basis_HGRAD_WEDGE_C2_FEM |
CSerial | See Intrepid2::Basis_HGRAD_WEDGE_C2_FEM |
▶CBasis_HVOL_C0_FEM | See Intrepid2::Basis_HVOL_C0_FEM |
CFunctor | See Intrepid2::Basis_HVOL_C0_FEM |
CSerial | See Intrepid2::Basis_HVOL_C0_FEM |
▶CBasis_HVOL_HEX_Cn_FEM | See Intrepid2::Basis_HVOL_HEX_Cn_FEM |
CFunctor | See Intrepid2::Basis_HVOL_HEX_Cn_FEM |
CSerial | See Intrepid2::Basis_HVOL_HEX_Cn_FEM |
▶CBasis_HVOL_LINE_Cn_FEM | See Intrepid2::Basis_HVOL_LINE_Cn_FEM |
CFunctor | See Intrepid2::Basis_HVOL_LINE_Cn_FEM |
CSerial | See Intrepid2::Basis_HVOL_LINE_Cn_FEM |
▶CBasis_HVOL_QUAD_Cn_FEM | See Intrepid2::Basis_HVOL_QUAD_Cn_FEM |
CFunctor | See Intrepid2::Basis_HVOL_QUAD_Cn_FEM |
CSerial | See Intrepid2::Basis_HVOL_QUAD_Cn_FEM |
▶CBasis_HVOL_TET_Cn_FEM | See Intrepid2::Basis_HVOL_TET_Cn_FEM |
CFunctor | See Intrepid2::Basis_HVOL_TET_Cn_FEM |
CSerial | See Intrepid2::Basis_HVOL_TET_Cn_FEM |
▶CBasis_HVOL_TRI_Cn_FEM | See Intrepid2::Basis_HVOL_TRI_Cn_FEM |
CFunctor | See Intrepid2::Basis_HVOL_TRI_Cn_FEM |
CSerial | See Intrepid2::Basis_HVOL_TRI_Cn_FEM |
▶CCellTools | See Intrepid2::CellTools |
CReferenceNodeDataType | |
CSerial | |
CSubcellParamDataType | |
CHexahedron | |
CHexahedron< 20 > | Hexahedron topology, 20 nodes |
CHexahedron< 27 > | Hexahedron topology, 27 nodes |
CHexahedron< 8 > | Hexahedron topology, 8 nodes |
CLine | |
CLine< 2 > | Line topology, 2 nodes |
CLine< 3 > | Line topology, 3 nodes |
COrientationTools | Tools to compute orientations for degrees-of-freedom |
COrthPolynomialTet | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
COrthPolynomialTet< OutputViewType, inputViewType, workViewType, hasDeriv, 0 > | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
COrthPolynomialTet< OutputViewType, inputViewType, workViewType, hasDeriv, 1 > | See Intrepid2::Basis_HGRAD_TET_Cn_FEM_ORTH |
COrthPolynomialTri | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
COrthPolynomialTri< OutputViewType, inputViewType, workViewType, hasDeriv, 0 > | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
COrthPolynomialTri< OutputViewType, inputViewType, workViewType, hasDeriv, 1 > | See Intrepid2::Basis_HGRAD_TRI_Cn_FEM_ORTH |
CPyramid | |
CPyramid< 13 > | Pyramid topology, 13 nodes |
CPyramid< 14 > | Pyramid topology, 14 nodes |
CPyramid< 5 > | Pyramid topology, 5 nodes |
CQuadrilateral | |
CQuadrilateral< 4 > | Quadrilateral topology, 4 nodes |
CQuadrilateral< 8 > | Quadrilateral topology, 8 nodes |
CQuadrilateral< 9 > | Quadrilateral topology, 9 nodes |
CTetrahedron | |
CTetrahedron< 10 > | Tetrahedron topology, 10 nodes |
CTetrahedron< 11 > | Tetrahedron topology, 11 nodes |
CTetrahedron< 4 > | Tetrahedron topology, 4 nodes |
CTetrahedron< 8 > | Tetrahedron topology, 8 nodes |
CTriangle | |
CTriangle< 3 > | Triangle topology, 3 nodes |
CTriangle< 4 > | Triangle topology, 4 nodes |
CTriangle< 6 > | Triangle topology, 6 nodes |
CWedge | |
CWedge< 15 > | Wedge topology, 15 nodes |
CWedge< 18 > | Wedge topology, 18 nodes |
CWedge< 6 > | Wedge topology, 6 nodes |
▶NKernels | |
CSerial | |
▶CArrayTools | Utility class that provides methods for higher-order algebraic manipulation of user-defined arrays, such as tensor contractions. For low-order operations, see Intrepid2::RealSpaceTools |
CInternal | |
CBasis | An abstract base class that defines interface for concrete basis implementations for Finite Element (FEM) and Finite Volume/Finite Difference (FVD) discrete spaces |
CBasis_Derived_HCURL_Family1_Family2_HEX | |
CBasis_Derived_HCURL_Family1_HEX | |
CBasis_Derived_HCURL_Family1_QUAD | |
CBasis_Derived_HCURL_Family2_HEX | |
CBasis_Derived_HCURL_Family2_QUAD | |
CBasis_Derived_HCURL_Family3_HEX | |
CBasis_Derived_HCURL_HEX | |
CBasis_Derived_HCURL_QUAD | |
CBasis_Derived_HDIV_Family1_HEX | |
CBasis_Derived_HDIV_Family1_QUAD | |
CBasis_Derived_HDIV_Family2_HEX | |
CBasis_Derived_HDIV_Family2_QUAD | |
CBasis_Derived_HDIV_Family3_Family1_HEX | |
CBasis_Derived_HDIV_Family3_HEX | |
CBasis_Derived_HDIV_HEX | |
CBasis_Derived_HDIV_QUAD | |
CBasis_Derived_HGRAD_HEX | |
CBasis_Derived_HGRAD_QUAD | |
CBasis_Derived_HVOL_HEX | |
CBasis_Derived_HVOL_QUAD | Implementation of H(vol) basis on the quadrilateral that is templated on H(vol) on the line |
CBasis_DirectSumBasis | A basis that is the direct sum of two other bases |
CBasis_HCURL_HEX_I1_FEM | Implementation of the default H(curl)-compatible FEM basis of degree 1 on Hexahedron cell |
CBasis_HCURL_HEX_In_FEM | Implementation of the default H(curl)-compatible FEM basis on Hexahedron cell |
CBasis_HCURL_QUAD_I1_FEM | Implementation of the default H(curl)-compatible FEM basis of degree 1 on Quadrilateral cell |
CBasis_HCURL_QUAD_In_FEM | Implementation of the default H(curl)-compatible FEM basis on Quadrilateral cell |
CBasis_HCURL_TET_I1_FEM | Implementation of the default H(curl)-compatible FEM basis of degree 1 on Tetrahedron cell |
CBasis_HCURL_TET_In_FEM | Implementation of the default H(curl)-compatible Nedelec (first kind) basis of arbitrary degree on Tetrahedron cell |
CBasis_HCURL_TRI_I1_FEM | Implementation of the default H(curl)-compatible FEM basis of degree 1 on Triangle cell |
CBasis_HCURL_TRI_In_FEM | Implementation of the default H(curl)-compatible Nedelec (first kind) basis of arbitrary degree on Triangle cell |
CBasis_HCURL_WEDGE_I1_FEM | Implementation of the default H(curl)-compatible FEM basis of degree 1 on Wedge cell |
▶CBasis_HDIV_HEX_I1_FEM | Implementation of the default H(div)-compatible FEM basis of degree 1 on Hexahedron cell |
CSerial | |
CBasis_HDIV_HEX_In_FEM | Implementation of the default H(div)-compatible FEM basis on Hexahedron cell |
CBasis_HDIV_QUAD_I1_FEM | Implementation of the default H(div)-compatible FEM basis of degree 1 on Quadrilateral cell |
CBasis_HDIV_QUAD_In_FEM | Implementation of the default H(div)-compatible FEM basis on Quadrilateral cell
|
CBasis_HDIV_TET_I1_FEM | Implementation of the default H(div)-compatible FEM basis of degree 1 on a Tetrahedron cell |
CBasis_HDIV_TET_In_FEM | Implementation of the default H(div)-compatible Raviart-Thomas basis of arbitrary degree on Tetrahedral cells |
CBasis_HDIV_TRI_I1_FEM | Implementation of the default H(div)-compatible FEM basis of degree 1 on a Triangle cell |
CBasis_HDIV_TRI_In_FEM | Implementation of the default H(div)-compatible Raviart-Thomas basis of arbitrary degree on Triangle cell |
CBasis_HDIV_WEDGE_I1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Wedge cell |
CBasis_HGRAD_HEX_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Hexahedron cell |
CBasis_HGRAD_HEX_C2_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Hexahedron cell |
CBasis_HGRAD_HEX_Cn_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Hexahedron cell |
CBasis_HGRAD_LINE_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Line cell |
CBasis_HGRAD_LINE_Cn_FEM | Implementation of the locally H(grad)-compatible FEM basis of variable order on the [-1,1] reference line cell, using Lagrange polynomials |
CBasis_HGRAD_LINE_Cn_FEM_JACOBI | Implementation of the locally H(grad)-compatible FEM basis of variable order on the [-1,1] reference line cell, using Jacobi polynomials |
CBasis_HGRAD_PYR_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Pyramid cell |
CBasis_HGRAD_QUAD_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Quadrilateral cell |
CBasis_HGRAD_QUAD_C2_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Quadrilateral cell |
CBasis_HGRAD_QUAD_Cn_FEM | Implementation of the default H(grad)-compatible FEM basis of degree n on Quadrilateral cell Implements Lagrangian basis of degree n on the reference Quadrilateral cell using a tensor product of points |
CBasis_HGRAD_TET_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Tetrahedron cell |
CBasis_HGRAD_TET_C2_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Tetrahedron cell |
CBasis_HGRAD_TET_Cn_FEM | Implementation of the default H(grad)-compatible Lagrange basis of arbitrary degree on Tetrahedron cell |
CBasis_HGRAD_TET_Cn_FEM_ORTH | Implementation of the default H(grad)-compatible orthogonal basis of arbitrary degree on tetrahedron |
CBasis_HGRAD_TET_COMP12_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Tetrahedron cell |
CBasis_HGRAD_TRI_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Triangle cell |
CBasis_HGRAD_TRI_C2_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Triangle cell |
CBasis_HGRAD_TRI_Cn_FEM | Implementation of the default H(grad)-compatible Lagrange basis of arbitrary degree on Triangle cell |
CBasis_HGRAD_TRI_Cn_FEM_ORTH | Implementation of the default H(grad)-compatible orthogonal basis (Dubiner) of arbitrary degree on triangle |
CBasis_HGRAD_WEDGE_C1_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 1 on Wedge cell |
CBasis_HGRAD_WEDGE_C2_FEM | Implementation of the default H(grad)-compatible FEM basis of degree 2 on Wedge cell |
CBasis_HVOL_C0_FEM | Implementation of the default HVOL-compatible FEM contstant basis on triangle, quadrilateral, hexahedron and tetrahedron cells |
CBasis_HVOL_HEX_Cn_FEM | Implementation of the default HVOL-compatible FEM basis of degree n on Hexahedron cell |
CBasis_HVOL_LINE_Cn_FEM | Implementation of the locally HVOL-compatible FEM basis of variable order on the [-1,1] reference line cell, using Lagrange polynomials |
CBasis_HVOL_QUAD_Cn_FEM | Implementation of the default HVOL-compatible FEM basis of degree n on Quadrilateral cell Implements Lagrangian basis of degree n on the reference Quadrilateral cell using a tensor product of points. The degrees of freedom are point evaluation at points in the interior of the Quadrilateral |
CBasis_HVOL_TET_Cn_FEM | Implementation of the default HVOL-compatible Lagrange basis of arbitrary degree on Tetrahedron cell |
CBasis_HVOL_TRI_Cn_FEM | Implementation of the default HVOL-compatible Lagrange basis of arbitrary degree on Triangle cell |
CBasis_TensorBasis | Basis defined as the tensor product of two component bases |
CBasis_TensorBasis3 | |
▶CCellTools | A stateless class for operations on cell data. Provides methods for: |
CReferenceNodeData | Reference node data for each supported topology |
CReferenceNodeDataStatic | Reference node containers for each supported topology |
CSubcellParamData | Parametrization coefficients of edges and faces of reference cells |
CCubature | Defines the base class for cubature (integration) rules in Intrepid |
▶CCubatureControlVolume | Defines cubature (integration) rules over control volumes |
CFunctor | |
▶CCubatureControlVolumeBoundary | Defines cubature (integration) rules over Neumann boundaries for control volume method |
CFunctor | |
▶CCubatureControlVolumeSide | Defines cubature (integration) rules over control volumes |
CFunctor | |
▶CCubatureDirect | Defines direct cubature (integration) rules in Intrepid |
CCubatureData | Cubature data is defined on exec space and deep-copied when an object is created |
CCubatureDataStatic | Cubature data is defined on the host space and is static |
CCubatureDirectLineGauss | Defines Gauss integration rules on a line |
CCubatureDirectLineGaussJacobi20 | Defines GaussJacobi20 integration rules on a line used for Pyramid only |
CCubatureDirectTetDefault | Defines direct integration rules on a tetrahedron |
CCubatureDirectTriDefault | Defines direct integration rules on a triangle |
CCubaturePolylib | Utilizes cubature (integration) rules contained in the library Polylib (Spencer Sherwin, Aeronautics, Imperial College London) within Intrepid |
CCubatureTensor | Defines tensor-product cubature (integration) rules in Intrepid |
▶CCubatureTensorPyr | Defines tensor-product cubature (integration) rules in Intrepid |
CFunctor | |
CDeduceLayout | Layout deduction (temporary meta-function) |
CDefaultCubatureFactory | A factory class that generates specific instances of cubatures |
CDerivedBasisFamily | A family of basis functions, constructed from H(vol) and H(grad) bases on the line |
CDerivedNodalBasisFamily | A family of nodal basis functions which is related to, but not identical with, the Lagrangian basis family that Intrepid2 has historically supported |
CEmptyBasisFamily | EmptyBasisFamily allows us to set a default void family for a given topology |
CExecSpace | Space overload |
CExecSpace< ViewSpaceType, void > | Space overload |
CF_modifyBasisByOrientation | |
CFunctionSpaceTools | Defines expert-level interfaces for the evaluation of functions and operators in physical space (supported for FE, FV, and FD methods) and FE reference space; in addition, provides several function transformation utilities |
CHierarchical_HGRAD_LINE_Functor | Functor for computing values for the IntegratedLegendreBasis_HGRAD_LINE class |
CHierarchical_HGRAD_TET_Functor | Functor for computing values for the IntegratedLegendreBasis_HGRAD_TET class |
CHierarchical_HGRAD_TRI_Functor | Functor for computing values for the IntegratedLegendreBasis_HGRAD_TRI class |
CHierarchical_HVOL_LINE_Functor | Functor for computing values for the LegendreBasis_HVOL_LINE class |
CHierarchicalBasisFamily | A family of hierarchical basis functions, constructed in a way that follows work by Fuentes et al |
CHierarchicalTetrahedronBasisFamily | |
CHierarchicalTriangleBasisFamily | |
CIntegratedLegendreBasis_HGRAD_LINE | Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line |
CIntegratedLegendreBasis_HGRAD_TET | Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line |
CIntegratedLegendreBasis_HGRAD_TRI | Basis defining integrated Legendre basis on the line, a polynomial subspace of H(grad) on the line |
CLegendreBasis_HVOL_LINE | Basis defining Legendre basis on the line, a polynomial subspace of L^2 (a.k.a. H(vol)) on the line |
CNaturalLayoutForType | Define layout that will allow us to wrap Sacado Scalar objects in Views without copying |
CNodalBasisFamily | A family of nodal basis functions representing the higher-order Lagrangian basis family that Intrepid2 has historically supported |
COrientation | Orientation encoding and decoding |
COrientationTools | Tools to compute orientations for degrees-of-freedom |
CParameters | Define constants |
CPointTools | Utility class that provides methods for calculating distributions of points on different cells |
▶CPolylib | Providing orthogonal polynomial calculus and interpolation, created by Spencer Sherwin, Aeronautics, Imperial College London, modified and redistributed by D. Ridzal |
▶CSerial | |
CCubature | Gauss-Jacobi/Gauss-Radau-Jacobi/Gauss-Lobatto zeros and weights |
CDerivative | Compute the Derivative Matrix and its transpose associated with the Gauss-Jacobi/Gauss-Radau-Jacobi/Gauss-Lobatto-Jacobi zeros |
CInterpolationOperator | Interpolation Operator from Gauss-Jacobi points to an arbitrary distribution at points zm |
CLagrangianInterpolant | Compute the value of the i th Lagrangian interpolant through the np Gauss-Jacobi/Gauss-Radau-Jacobi/Gauss-Lobatto points zgj at the arbitrary location z |
▶CRealSpaceTools | Implementation of basic linear algebra functionality in Euclidean space |
CSerial | |
CScalarTraits | Scalar type traits |
CScalarTraits< double > | Built in support for double |
CScalarTraits< float > | Built in support for float |
CScalarTraits< int > | Built in support for int |
CScalarTraits< long int > | Built in support for long int |
CScalarTraits< long long > | Built in support for long long |
CTensorBasis3_Functor | Functor for computing values for the TensorBasis3 class |
CTensorTopologyMap | For two cell topologies whose tensor product is a third, this class establishes a mapping from subcell pairs in the component topologies to the tensor product topology |
CTensorViewFunctor | Functor for computing values for the TensorBasis class |
CTensorViewIterator | A helper class that allows iteration over three Kokkos Views simultaneously, according to tensor combination rules: |
CUtil | Small utility functions |
CViewIterator | A helper class that allows iteration over some part of a Kokkos View, while allowing the calling code to remain agnostic as to the rank of the view |