module XMonad.Actions.FlexibleResize (
XMonad.Actions.FlexibleResize.mouseResizeWindow,
XMonad.Actions.FlexibleResize.mouseResizeEdgeWindow
) where
import XMonad
import XMonad.Prelude (fi)
import Foreign.C.Types
mouseResizeWindow
:: Window
-> X ()
mouseResizeWindow :: Window -> X ()
mouseResizeWindow = Rational -> Window -> X ()
mouseResizeEdgeWindow Rational
0
mouseResizeEdgeWindow
:: Rational
-> Window
-> X ()
mouseResizeEdgeWindow :: Rational -> Window -> X ()
mouseResizeEdgeWindow Rational
edge Window
w = X Bool -> X () -> X ()
whenX (Window -> X Bool
isClient Window
w) (X () -> X ()) -> X () -> X ()
forall a b. (a -> b) -> a -> b
$ (Display -> X ()) -> X ()
forall a. (Display -> X a) -> X a
withDisplay ((Display -> X ()) -> X ()) -> (Display -> X ()) -> X ()
forall a b. (a -> b) -> a -> b
$ \Display
d -> do
WindowAttributes
wa <- IO WindowAttributes -> X WindowAttributes
forall (m :: * -> *) a. MonadIO m => IO a -> m a
io (IO WindowAttributes -> X WindowAttributes)
-> IO WindowAttributes -> X WindowAttributes
forall a b. (a -> b) -> a -> b
$ Display -> Window -> IO WindowAttributes
getWindowAttributes Display
d Window
w
SizeHints
sh <- IO SizeHints -> X SizeHints
forall (m :: * -> *) a. MonadIO m => IO a -> m a
io (IO SizeHints -> X SizeHints) -> IO SizeHints -> X SizeHints
forall a b. (a -> b) -> a -> b
$ Display -> Window -> IO SizeHints
getWMNormalHints Display
d Window
w
(Bool
_, Window
_, Window
_, CInt
_, CInt
_, CInt
ix, CInt
iy, Modifier
_) <- IO (Bool, Window, Window, CInt, CInt, CInt, CInt, Modifier)
-> X (Bool, Window, Window, CInt, CInt, CInt, CInt, Modifier)
forall (m :: * -> *) a. MonadIO m => IO a -> m a
io (IO (Bool, Window, Window, CInt, CInt, CInt, CInt, Modifier)
-> X (Bool, Window, Window, CInt, CInt, CInt, CInt, Modifier))
-> IO (Bool, Window, Window, CInt, CInt, CInt, CInt, Modifier)
-> X (Bool, Window, Window, CInt, CInt, CInt, CInt, Modifier)
forall a b. (a -> b) -> a -> b
$ Display
-> Window
-> IO (Bool, Window, Window, CInt, CInt, CInt, CInt, Modifier)
queryPointer Display
d Window
w
let
[Position
pos_x, Position
pos_y, Position
width, Position
height] = ((WindowAttributes -> CInt) -> Position)
-> [WindowAttributes -> CInt] -> [Position]
forall a b. (a -> b) -> [a] -> [b]
map (CInt -> Position
forall a b. (Integral a, Num b) => a -> b
fi (CInt -> Position)
-> ((WindowAttributes -> CInt) -> CInt)
-> (WindowAttributes -> CInt)
-> Position
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((WindowAttributes -> CInt) -> WindowAttributes -> CInt
forall a b. (a -> b) -> a -> b
$ WindowAttributes
wa)) [WindowAttributes -> CInt
wa_x, WindowAttributes -> CInt
wa_y, WindowAttributes -> CInt
wa_width, WindowAttributes -> CInt
wa_height]
west :: Maybe Bool
west = CInt -> Position -> Maybe Bool
findPos CInt
ix Position
width
north :: Maybe Bool
north = CInt -> Position -> Maybe Bool
findPos CInt
iy Position
height
(Position
cx, Window -> Position
fx, Position -> Window
gx) = Maybe Bool
-> Position
-> Position
-> (Position, Window -> Position, Position -> Window)
mkSel Maybe Bool
west Position
width Position
pos_x
(Position
cy, Window -> Position
fy, Position -> Window
gy) = Maybe Bool
-> Position
-> Position
-> (Position, Window -> Position, Position -> Window)
mkSel Maybe Bool
north Position
height Position
pos_y
IO () -> X ()
forall (m :: * -> *) a. MonadIO m => IO a -> m a
io (IO () -> X ()) -> IO () -> X ()
forall a b. (a -> b) -> a -> b
$ Display
-> Window
-> Window
-> Position
-> Position
-> Window
-> Window
-> Position
-> Position
-> IO ()
warpPointer Display
d Window
none Window
w Position
0 Position
0 Window
0 Window
0 Position
cx Position
cy
(Position -> Position -> X ()) -> X () -> X ()
mouseDrag (\Position
ex Position
ey -> do let (Window
nw,Window
nh) = SizeHints -> (Window, Window) -> (Window, Window)
forall a. Integral a => SizeHints -> (a, a) -> (Window, Window)
applySizeHintsContents SizeHints
sh (Position -> Window
gx Position
ex, Position -> Window
gy Position
ey)
IO () -> X ()
forall (m :: * -> *) a. MonadIO m => IO a -> m a
io (IO () -> X ()) -> IO () -> X ()
forall a b. (a -> b) -> a -> b
$ Display
-> Window -> Position -> Position -> Window -> Window -> IO ()
moveResizeWindow Display
d Window
w (Window -> Position
fx Window
nw) (Window -> Position
fy Window
nh) Window
nw Window
nh
Window -> X ()
float Window
w)
(Window -> X ()
float Window
w)
where
findPos :: CInt -> Position -> Maybe Bool
findPos :: CInt -> Position -> Maybe Bool
findPos CInt
m Position
s
| Rational
p Rational -> Rational -> Bool
forall a. Ord a => a -> a -> Bool
< Rational
0.5 Rational -> Rational -> Rational
forall a. Num a => a -> a -> a
- Rational
edgeRational -> Rational -> Rational
forall a. Fractional a => a -> a -> a
/Rational
2 = Bool -> Maybe Bool
forall a. a -> Maybe a
Just Bool
True
| Rational
p Rational -> Rational -> Bool
forall a. Ord a => a -> a -> Bool
< Rational
0.5 Rational -> Rational -> Rational
forall a. Num a => a -> a -> a
+ Rational
edgeRational -> Rational -> Rational
forall a. Fractional a => a -> a -> a
/Rational
2 = Maybe Bool
forall a. Maybe a
Nothing
| Bool
otherwise = Bool -> Maybe Bool
forall a. a -> Maybe a
Just Bool
False
where
p :: Rational
p = CInt -> Rational
forall a b. (Integral a, Num b) => a -> b
fi CInt
m Rational -> Rational -> Rational
forall a. Fractional a => a -> a -> a
/ Position -> Rational
forall a b. (Integral a, Num b) => a -> b
fi Position
s
mkSel :: Maybe Bool -> Position -> Position -> (Position, Dimension -> Position, Position -> Dimension)
mkSel :: Maybe Bool
-> Position
-> Position
-> (Position, Window -> Position, Position -> Window)
mkSel Maybe Bool
b Position
k Position
p = case Maybe Bool
b of
Just Bool
True -> (Position
0, (Position -> Position
forall a b. (Integral a, Num b) => a -> b
fi Position
k Position -> Position -> Position
forall a. Num a => a -> a -> a
+ Position -> Position
forall a b. (Integral a, Num b) => a -> b
fi Position
p Position -> Position -> Position
forall a. Num a => a -> a -> a
-)(Position -> Position)
-> (Window -> Position) -> Window -> Position
forall b c a. (b -> c) -> (a -> b) -> a -> c
.Window -> Position
forall a b. (Integral a, Num b) => a -> b
fi, (Position -> Window
forall a b. (Integral a, Num b) => a -> b
fi Position
k Window -> Window -> Window
forall a. Num a => a -> a -> a
+ Position -> Window
forall a b. (Integral a, Num b) => a -> b
fi Position
p Window -> Window -> Window
forall a. Num a => a -> a -> a
-)(Window -> Window) -> (Position -> Window) -> Position -> Window
forall b c a. (b -> c) -> (a -> b) -> a -> c
.Position -> Window
forall a b. (Integral a, Num b) => a -> b
fi)
Maybe Bool
Nothing -> (Position
k Position -> Position -> Position
forall a. Integral a => a -> a -> a
`div` Position
2, Position -> Window -> Position
forall a b. a -> b -> a
const Position
p, Window -> Position -> Window
forall a b. a -> b -> a
const (Window -> Position -> Window) -> Window -> Position -> Window
forall a b. (a -> b) -> a -> b
$ Position -> Window
forall a b. (Integral a, Num b) => a -> b
fi Position
k)
Just Bool
False -> (Position
k, Position -> Window -> Position
forall a b. a -> b -> a
const Position
p, Window -> Window -> Window
forall a. Num a => a -> a -> a
subtract (Position -> Window
forall a b. (Integral a, Num b) => a -> b
fi Position
p) (Window -> Window) -> (Position -> Window) -> Position -> Window
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Position -> Window
forall a b. (Integral a, Num b) => a -> b
fi)