
Boost.Asio
Christopher Kohlhoff
Copyright © 2003-2014 Christopher M. Kohlhoff

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Boost.Asio is a cross-platform C++ library for network and low-level I/O programming that provides developers with a consistent
asynchronous model using a modern C++ approach.

Overview An overview of the features included in Boost.Asio, plus rationale and design information.

Using Boost.Asio How to use Boost.Asio in your applications. Includes information on library dependencies and supported
platforms.

Tutorial A tutorial that introduces the fundamental concepts required to use Boost.Asio, and shows how to use
Boost.Asio to develop simple client and server programs.

Examples Examples that illustrate the use of Boost.Asio in more complex applications.

Reference Detailed class and function reference.

Revision History Log of Boost.Asio changes made in each Boost release.

Index Book-style text index of Boost.Asio documentation.

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview
• Rationale

• Core Concepts and Functionality

• Basic Boost.Asio Anatomy

• The Proactor Design Pattern: Concurrency Without Threads

• Threads and Boost.Asio

• Strands: Use Threads Without Explicit Locking

• Buffers

• Streams, Short Reads and Short Writes

• Reactor-Style Operations

• Line-Based Operations

• Custom Memory Allocation

• Handler Tracking

• Stackless Coroutines

• Stackful Coroutines

• Networking

• TCP, UDP and ICMP

• Support for Other Protocols

• Socket Iostreams

• The BSD Socket API and Boost.Asio

• Timers

• Serial Ports

• Signal Handling

• POSIX-Specific Functionality

• UNIX Domain Sockets

• Stream-Oriented File Descriptors

• Fork

• Windows-Specific Functionality

• Stream-Oriented HANDLEs

• Random-Access HANDLEs

• Object HANDLEs

2

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• SSL

• C++ 2011 Support

• Movable I/O Objects

• Movable Handlers

• Variadic Templates

• Array Container

• Atomics

• Shared Pointers

• Chrono

• Futures

• Platform-Specific Implementation Notes

Rationale
Most programs interact with the outside world in some way, whether it be via a file, a network, a serial cable, or the console.
Sometimes, as is the case with networking, individual I/O operations can take a long time to complete. This poses particular challenges
to application development.

Boost.Asio provides the tools to manage these long running operations, without requiring programs to use concurrency models based
on threads and explicit locking.

The Boost.Asio library is intended for programmers using C++ for systems programming, where access to operating system func-
tionality such as networking is often required. In particular, Boost.Asio addresses the following goals:

• Portability. The library should support a range of commonly used operating systems, and provide consistent behaviour across
these operating systems.

• Scalability. The library should facilitate the development of network applications that scale to thousands of concurrent connections.
The library implementation for each operating system should use the mechanism that best enables this scalability.

• Efficiency. The library should support techniques such as scatter-gather I/O, and allow programs to minimise data copying.

• Model concepts from established APIs, such as BSD sockets. The BSD socket API is widely implemented and understood, and
is covered in much literature. Other programming languages often use a similar interface for networking APIs. As far as is reasonable,
Boost.Asio should leverage existing practice.

• Ease of use. The library should provide a lower entry barrier for new users by taking a toolkit, rather than framework, approach.
That is, it should try to minimise the up-front investment in time to just learning a few basic rules and guidelines. After that, a
library user should only need to understand the specific functions that are being used.

• Basis for further abstraction. The library should permit the development of other libraries that provide higher levels of abstraction.
For example, implementations of commonly used protocols such as HTTP.

Although Boost.Asio started life focused primarily on networking, its concepts of asynchronous I/O have been extended to include
other operating system resources such as serial ports, file descriptors, and so on.

Core Concepts and Functionality
• Basic Boost.Asio Anatomy

3

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• The Proactor Design Pattern: Concurrency Without Threads

• Threads and Boost.Asio

• Strands: Use Threads Without Explicit Locking

• Buffers

• Streams, Short Reads and Short Writes

• Reactor-Style Operations

• Line-Based Operations

• Custom Memory Allocation

• Handler Tracking

• Stackless Coroutines

• Stackful Coroutines

Basic Boost.Asio Anatomy

Boost.Asio may be used to perform both synchronous and asynchronous operations on I/O objects such as sockets. Before using
Boost.Asio it may be useful to get a conceptual picture of the various parts of Boost.Asio, your program, and how they work together.

As an introductory example, let's consider what happens when you perform a connect operation on a socket. We shall start by ex-
amining synchronous operations.

Your program will have at least one io_service object. The io_service represents your program's link to the operating system's
I/O services.

boost::asio::io_service io_service;

To perform I/O operations your program will need an I/O object such as a TCP socket:

4

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);

When a synchronous connect operation is performed, the following sequence of events occurs:

1. Your program initiates the connect operation by calling the I/O object:

socket.connect(server_endpoint);

2. The I/O object forwards the request to the io_service.

3. The io_service calls on the operating system to perform the connect operation.

4. The operating system returns the result of the operation to the io_service.

5. The io_service translates any error resulting from the operation into an object of type boost::system::error_code. An er-
ror_code may be compared with specific values, or tested as a boolean (where a false result means that no error occurred). The
result is then forwarded back up to the I/O object.

6. The I/O object throws an exception of type boost::system::system_error if the operation failed. If the code to initiate the
operation had instead been written as:

boost::system::error_code ec;
socket.connect(server_endpoint, ec);

then the error_code variable ec would be set to the result of the operation, and no exception would be thrown.

When an asynchronous operation is used, a different sequence of events occurs.

1. Your program initiates the connect operation by calling the I/O object:

socket.async_connect(server_endpoint, your_completion_handler);

where your_completion_handler is a function or function object with the signature:

5

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void your_completion_handler(const boost::system::error_code& ec);

The exact signature required depends on the asynchronous operation being performed. The reference documentation indicates the
appropriate form for each operation.

2. The I/O object forwards the request to the io_service.

3. The io_service signals to the operating system that it should start an asynchronous connect.

Time passes. (In the synchronous case this wait would have been contained entirely within the duration of the connect operation.)

4. The operating system indicates that the connect operation has completed by placing the result on a queue, ready to be picked up
by the io_service.

5. Your program must make a call to io_service::run() (or to one of the similar io_service member functions) in order for
the result to be retrieved. A call to io_service::run() blocks while there are unfinished asynchronous operations, so you would
typically call it as soon as you have started your first asynchronous operation.

6. While inside the call to io_service::run(), the io_service dequeues the result of the operation, translates it into an error_code,
and then passes it to your completion handler.

This is a simplified picture of how Boost.Asio operates. You will want to delve further into the documentation if your needs are
more advanced, such as extending Boost.Asio to perform other types of asynchronous operations.

The Proactor Design Pattern: Concurrency Without Threads

The Boost.Asio library offers side-by-side support for synchronous and asynchronous operations. The asynchronous support is based
on the Proactor design pattern [POSA2]. The advantages and disadvantages of this approach, when compared to a synchronous-only
or Reactor approach, are outlined below.

Proactor and Boost.Asio

Let us examine how the Proactor design pattern is implemented in Boost.Asio, without reference to platform-specific details.

6

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Proactor design pattern (adapted from [POSA2])

— Asynchronous Operation

Defines an operation that is executed asynchronously, such as an asynchronous read or write on a socket.

— Asynchronous Operation Processor

Executes asynchronous operations and queues events on a completion event queue when operations complete.
From a high-level point of view, services like stream_socket_service are asynchronous operation processors.

— Completion Event Queue

Buffers completion events until they are dequeued by an asynchronous event demultiplexer.

— Completion Handler

Processes the result of an asynchronous operation. These are function objects, often created using boost::bind.

— Asynchronous Event Demultiplexer

Blocks waiting for events to occur on the completion event queue, and returns a completed event to its caller.

— Proactor

Calls the asynchronous event demultiplexer to dequeue events, and dispatches the completion handler (i.e. invokes
the function object) associated with the event. This abstraction is represented by the io_service class.

— Initiator

Application-specific code that starts asynchronous operations. The initiator interacts with an asynchronous operation
processor via a high-level interface such as basic_stream_socket, which in turn delegates to a service like
stream_socket_service.

7

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Implementation Using Reactor

On many platforms, Boost.Asio implements the Proactor design pattern in terms of a Reactor, such as select, epoll or kqueue.
This implementation approach corresponds to the Proactor design pattern as follows:

— Asynchronous Operation Processor

A reactor implemented using select, epoll or kqueue. When the reactor indicates that the resource is ready to
perform the operation, the processor executes the asynchronous operation and enqueues the associated completion
handler on the completion event queue.

— Completion Event Queue

A linked list of completion handlers (i.e. function objects).

— Asynchronous Event Demultiplexer

This is implemented by waiting on an event or condition variable until a completion handler is available in the
completion event queue.

Implementation Using Windows Overlapped I/O

On Windows NT, 2000 and XP, Boost.Asio takes advantage of overlapped I/O to provide an efficient implementation of the Proactor
design pattern. This implementation approach corresponds to the Proactor design pattern as follows:

— Asynchronous Operation Processor

This is implemented by the operating system. Operations are initiated by calling an overlapped function such as
AcceptEx.

— Completion Event Queue

This is implemented by the operating system, and is associated with an I/O completion port. There is one I/O
completion port for each io_service instance.

— Asynchronous Event Demultiplexer

Called by Boost.Asio to dequeue events and their associated completion handlers.

Advantages

— Portability.

Many operating systems offer a native asynchronous I/O API (such as overlapped I/O on Windows) as the preferred
option for developing high performance network applications. The library may be implemented in terms of native
asynchronous I/O. However, if native support is not available, the library may also be implemented using synchron-
ous event demultiplexors that typify the Reactor pattern, such as POSIX select().

— Decoupling threading from concurrency.

Long-duration operations are performed asynchronously by the implementation on behalf of the application.
Consequently applications do not need to spawn many threads in order to increase concurrency.

— Performance and scalability.

Implementation strategies such as thread-per-connection (which a synchronous-only approach would require) can
degrade system performance, due to increased context switching, synchronisation and data movement among
CPUs. With asynchronous operations it is possible to avoid the cost of context switching by minimising the number
of operating system threads — typically a limited resource — and only activating the logical threads of control
that have events to process.

8

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

— Simplified application synchronisation.

Asynchronous operation completion handlers can be written as though they exist in a single-threaded environment,
and so application logic can be developed with little or no concern for synchronisation issues.

— Function composition.

Function composition refers to the implementation of functions to provide a higher-level operation, such as sending
a message in a particular format. Each function is implemented in terms of multiple calls to lower-level read or
write operations.

For example, consider a protocol where each message consists of a fixed-length header followed by a variable
length body, where the length of the body is specified in the header. A hypothetical read_message operation could
be implemented using two lower-level reads, the first to receive the header and, once the length is known, the
second to receive the body.

To compose functions in an asynchronous model, asynchronous operations can be chained together. That is, a
completion handler for one operation can initiate the next. Starting the first call in the chain can be encapsulated
so that the caller need not be aware that the higher-level operation is implemented as a chain of asynchronous op-
erations.

The ability to compose new operations in this way simplifies the development of higher levels of abstraction above
a networking library, such as functions to support a specific protocol.

Disadvantages

— Program complexity.

It is more difficult to develop applications using asynchronous mechanisms due to the separation in time and space
between operation initiation and completion. Applications may also be harder to debug due to the inverted flow
of control.

— Memory usage.

Buffer space must be committed for the duration of a read or write operation, which may continue indefinitely,
and a separate buffer is required for each concurrent operation. The Reactor pattern, on the other hand, does not
require buffer space until a socket is ready for reading or writing.

References

[POSA2] D. Schmidt et al, Pattern Oriented Software Architecture, Volume 2. Wiley, 2000.

Threads and Boost.Asio

Thread Safety

In general, it is safe to make concurrent use of distinct objects, but unsafe to make concurrent use of a single object. However, types
such as io_service provide a stronger guarantee that it is safe to use a single object concurrently.

Thread Pools

Multiple threads may call io_service::run() to set up a pool of threads from which completion handlers may be invoked. This
approach may also be used with io_service::post() to use a means to perform any computational tasks across a thread pool.

Note that all threads that have joined an io_service's pool are considered equivalent, and the io_service may distribute work
across them in an arbitrary fashion.

Internal Threads

The implementation of this library for a particular platform may make use of one or more internal threads to emulate asynchronicity.
As far as possible, these threads must be invisible to the library user. In particular, the threads:

9

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• must not call the user's code directly; and

• must block all signals.

This approach is complemented by the following guarantee:

• Asynchronous completion handlers will only be called from threads that are currently calling io_service::run().

Consequently, it is the library user's responsibility to create and manage all threads to which the notifications will be delivered.

The reasons for this approach include:

• By only calling io_service::run() from a single thread, the user's code can avoid the development complexity associated
with synchronisation. For example, a library user can implement scalable servers that are single-threaded (from the user's point
of view).

• A library user may need to perform initialisation in a thread shortly after the thread starts and before any other application code
is executed. For example, users of Microsoft's COM must call CoInitializeEx before any other COM operations can be called
from that thread.

• The library interface is decoupled from interfaces for thread creation and management, and permits implementations on platforms
where threads are not available.

See Also

io_service.

Strands: Use Threads Without Explicit Locking

A strand is defined as a strictly sequential invocation of event handlers (i.e. no concurrent invocation). Use of strands allows execution
of code in a multithreaded program without the need for explicit locking (e.g. using mutexes).

Strands may be either implicit or explicit, as illustrated by the following alternative approaches:

• Calling io_service::run() from only one thread means all event handlers execute in an implicit strand, due to the io_service's
guarantee that handlers are only invoked from inside run().

• Where there is a single chain of asynchronous operations associated with a connection (e.g. in a half duplex protocol implement-
ation like HTTP) there is no possibility of concurrent execution of the handlers. This is an implicit strand.

• An explicit strand is an instance of io_service::strand. All event handler function objects need to be wrapped using
io_service::strand::wrap() or otherwise posted/dispatched through the io_service::strand object.

In the case of composed asynchronous operations, such as async_read() or async_read_until(), if a completion handler goes
through a strand, then all intermediate handlers should also go through the same strand. This is needed to ensure thread safe access
for any objects that are shared between the caller and the composed operation (in the case of async_read() it's the socket, which
the caller can close() to cancel the operation). This is done by having hook functions for all intermediate handlers which forward the
calls to the customisable hook associated with the final handler:

struct my_handler
{
void operator()() { ... }

};

template<class F>
void asio_handler_invoke(F f, my_handler*)
{
// Do custom invocation here.
// Default implementation calls f();

}

10

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The io_service::strand::wrap() function creates a new completion handler that defines asio_handler_invoke so that the
function object is executed through the strand.

See Also

io_service::strand, tutorial Timer.5, HTTP server 3 example.

Buffers

Fundamentally, I/O involves the transfer of data to and from contiguous regions of memory, called buffers. These buffers can be
simply expressed as a tuple consisting of a pointer and a size in bytes. However, to allow the development of efficient network ap-
plications, Boost.Asio includes support for scatter-gather operations. These operations involve one or more buffers:

• A scatter-read receives data into multiple buffers.

• A gather-write transmits multiple buffers.

Therefore we require an abstraction to represent a collection of buffers. The approach used in Boost.Asio is to define a type (actually
two types) to represent a single buffer. These can be stored in a container, which may be passed to the scatter-gather operations.

In addition to specifying buffers as a pointer and size in bytes, Boost.Asio makes a distinction between modifiable memory (called
mutable) and non-modifiable memory (where the latter is created from the storage for a const-qualified variable). These two types
could therefore be defined as follows:

typedef std::pair<void*, std::size_t> mutable_buffer;
typedef std::pair<const void*, std::size_t> const_buffer;

Here, a mutable_buffer would be convertible to a const_buffer, but conversion in the opposite direction is not valid.

However, Boost.Asio does not use the above definitions as-is, but instead defines two classes: mutable_buffer and const_buffer.
The goal of these is to provide an opaque representation of contiguous memory, where:

• Types behave as std::pair would in conversions. That is, a mutable_buffer is convertible to a const_buffer, but the opposite
conversion is disallowed.

• There is protection against buffer overruns. Given a buffer instance, a user can only create another buffer representing the same
range of memory or a sub-range of it. To provide further safety, the library also includes mechanisms for automatically determining
the size of a buffer from an array, boost::array or std::vector of POD elements, or from a std::string.

• Type safety violations must be explicitly requested using the buffer_cast function. In general an application should never need
to do this, but it is required by the library implementation to pass the raw memory to the underlying operating system functions.

Finally, multiple buffers can be passed to scatter-gather operations (such as read() or write()) by putting the buffer objects into a
container. The MutableBufferSequence and ConstBufferSequence concepts have been defined so that containers such as
std::vector, std::list, std::vector or boost::array can be used.

Streambuf for Integration with Iostreams

The class boost::asio::basic_streambuf is derived from std::basic_streambuf to associate the input sequence and output
sequence with one or more objects of some character array type, whose elements store arbitrary values. These character array objects
are internal to the streambuf object, but direct access to the array elements is provided to permit them to be used with I/O operations,
such as the send or receive operations of a socket:

• The input sequence of the streambuf is accessible via the data() member function. The return type of this function meets the
ConstBufferSequence requirements.

• The output sequence of the streambuf is accessible via the prepare() member function. The return type of this function meets the
MutableBufferSequence requirements.

• Data is transferred from the front of the output sequence to the back of the input sequence by calling the commit() member function.

11

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Data is removed from the front of the input sequence by calling the consume() member function.

The streambuf constructor accepts a size_t argument specifying the maximum of the sum of the sizes of the input sequence and
output sequence. Any operation that would, if successful, grow the internal data beyond this limit will throw a std::length_error
exception.

Bytewise Traversal of Buffer Sequences

The buffers_iterator<> class template allows buffer sequences (i.e. types meeting MutableBufferSequence or ConstBuf-
ferSequence requirements) to be traversed as though they were a contiguous sequence of bytes. Helper functions called buffers_be-
gin() and buffers_end() are also provided, where the buffers_iterator<> template parameter is automatically deduced.

As an example, to read a single line from a socket and into a std::string, you may write:

boost::asio::streambuf sb;
...
std::size_t n = boost::asio::read_until(sock, sb, '\n');
boost::asio::streambuf::const_buffers_type bufs = sb.data();
std::string line(

boost::asio::buffers_begin(bufs),
boost::asio::buffers_begin(bufs) + n);

Buffer Debugging

Some standard library implementations, such as the one that ships with Microsoft Visual C++ 8.0 and later, provide a feature called
iterator debugging. What this means is that the validity of iterators is checked at runtime. If a program tries to use an iterator that
has been invalidated, an assertion will be triggered. For example:

std::vector<int> v(1)
std::vector<int>::iterator i = v.begin();
v.clear(); // invalidates iterators
*i = 0; // assertion!

Boost.Asio takes advantage of this feature to add buffer debugging. Consider the following code:

void dont_do_this()
{
std::string msg = "Hello, world!";
boost::asio::async_write(sock, boost::asio::buffer(msg), my_handler);
}

When you call an asynchronous read or write you need to ensure that the buffers for the operation are valid until the completion
handler is called. In the above example, the buffer is the std::string variable msg. This variable is on the stack, and so it goes
out of scope before the asynchronous operation completes. If you're lucky then the application will crash, but random failures are
more likely.

When buffer debugging is enabled, Boost.Asio stores an iterator into the string until the asynchronous operation completes, and then
dereferences it to check its validity. In the above example you would observe an assertion failure just before Boost.Asio tries to call
the completion handler.

This feature is automatically made available for Microsoft Visual Studio 8.0 or later and for GCC when _GLIBCXX_DEBUG is defined.
There is a performance cost to this checking, so buffer debugging is only enabled in debug builds. For other compilers it may be
enabled by defining BOOST_ASIO_ENABLE_BUFFER_DEBUGGING. It can also be explicitly disabled by defining
BOOST_ASIO_DISABLE_BUFFER_DEBUGGING.

See Also

buffer, buffers_begin, buffers_end, buffers_iterator, const_buffer, const_buffers_1, mutable_buffer, mutable_buffers_1, streambuf,
ConstBufferSequence, MutableBufferSequence, buffers example (C++03), buffers example (c++11).

12

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Streams, Short Reads and Short Writes

Many I/O objects in Boost.Asio are stream-oriented. This means that:

• There are no message boundaries. The data being transferred is a continuous sequence of bytes.

• Read or write operations may transfer fewer bytes than requested. This is referred to as a short read or short write.

Objects that provide stream-oriented I/O model one or more of the following type requirements:

• SyncReadStream, where synchronous read operations are performed using a member function called read_some().

• AsyncReadStream, where asynchronous read operations are performed using a member function called async_read_some().

• SyncWriteStream, where synchronous write operations are performed using a member function called write_some().

• AsyncWriteStream, where synchronous write operations are performed using a member function called async_write_some().

Examples of stream-oriented I/O objects include ip::tcp::socket, ssl::stream<>, posix::stream_descriptor, win-
dows::stream_handle, etc.

Programs typically want to transfer an exact number of bytes. When a short read or short write occurs the program must restart the
operation, and continue to do so until the required number of bytes has been transferred. Boost.Asio provides generic functions that
do this automatically: read(), async_read(), write() and async_write().

Why EOF is an Error

• The end of a stream can cause read, async_read, read_until or async_read_until functions to violate their contract. E.g.
a read of N bytes may finish early due to EOF.

• An EOF error may be used to distinguish the end of a stream from a successful read of size 0.

See Also

async_read(), async_write(), read(), write(), AsyncReadStream, AsyncWriteStream, SyncReadStream, SyncWriteStream.

Reactor-Style Operations

Sometimes a program must be integrated with a third-party library that wants to perform the I/O operations itself. To facilitate this,
Boost.Asio includes a null_buffers type that can be used with both read and write operations. A null_buffers operation doesn't
return until the I/O object is "ready" to perform the operation.

As an example, to perform a non-blocking read something like the following may be used:

ip::tcp::socket socket(my_io_service);
...
socket.non_blocking(true);
...
socket.async_read_some(null_buffers(), read_handler);
...
void read_handler(boost::system::error_code ec)
{
if (!ec)
{
std::vector<char> buf(socket.available());
socket.read_some(buffer(buf));

}
}

These operations are supported for sockets on all platforms, and for the POSIX stream-oriented descriptor classes.

13

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

See Also

null_buffers, basic_socket::non_blocking(), basic_socket::native_non_blocking(), nonblocking example.

Line-Based Operations

Many commonly-used internet protocols are line-based, which means that they have protocol elements that are delimited by the
character sequence "\r\n". Examples include HTTP, SMTP and FTP. To more easily permit the implementation of line-based
protocols, as well as other protocols that use delimiters, Boost.Asio includes the functions read_until() and async_read_until().

The following example illustrates the use of async_read_until() in an HTTP server, to receive the first line of an HTTP request
from a client:

class http_connection
{
...

void start()
{
boost::asio::async_read_until(socket_, data_, "\r\n",

boost::bind(&http_connection::handle_request_line, this, _1));
}

void handle_request_line(boost::system::error_code ec)
{
if (!ec)
{
std::string method, uri, version;
char sp1, sp2, cr, lf;
std::istream is(&data_);
is.unsetf(std::ios_base::skipws);
is >> method >> sp1 >> uri >> sp2 >> version >> cr >> lf;
...

}
}

...

boost::asio::ip::tcp::socket socket_;
boost::asio::streambuf data_;

};

The streambuf data member serves as a place to store the data that has been read from the socket before it is searched for the de-
limiter. It is important to remember that there may be additional data after the delimiter. This surplus data should be left in the
streambuf so that it may be inspected by a subsequent call to read_until() or async_read_until().

The delimiters may be specified as a single char, a std::string or a boost::regex. The read_until() and
async_read_until() functions also include overloads that accept a user-defined function object called a match condition. For
example, to read data into a streambuf until whitespace is encountered:

14

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef boost::asio::buffers_iterator<
boost::asio::streambuf::const_buffers_type> iterator;

std::pair<iterator, bool>
match_whitespace(iterator begin, iterator end)
{
iterator i = begin;
while (i != end)
if (std::isspace(*i++))
return std::make_pair(i, true);

return std::make_pair(i, false);
}
...
boost::asio::streambuf b;
boost::asio::read_until(s, b, match_whitespace);

To read data into a streambuf until a matching character is found:

class match_char
{
public:
explicit match_char(char c) : c_(c) {}

template <typename Iterator>
std::pair<Iterator, bool> operator()(

Iterator begin, Iterator end) const
{
Iterator i = begin;
while (i != end)
if (c_ == *i++)

return std::make_pair(i, true);
return std::make_pair(i, false);

}

private:
char c_;

};

namespace boost { namespace asio {
template <> struct is_match_condition<match_char>
: public boost::true_type {};

} } // namespace boost::asio
...
boost::asio::streambuf b;
boost::asio::read_until(s, b, match_char('a'));

The is_match_condition<> type trait automatically evaluates to true for functions, and for function objects with a nested res-
ult_type typedef. For other types the trait must be explicitly specialised, as shown above.

See Also

async_read_until(), is_match_condition, read_until(), streambuf, HTTP client example.

Custom Memory Allocation

Many asynchronous operations need to allocate an object to store state associated with the operation. For example, a Win32 imple-
mentation needs OVERLAPPED-derived objects to pass to Win32 API functions.

Furthermore, programs typically contain easily identifiable chains of asynchronous operations. A half duplex protocol implementation
(e.g. an HTTP server) would have a single chain of operations per client (receives followed by sends). A full duplex protocol imple-

15

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

mentation would have two chains executing in parallel. Programs should be able to leverage this knowledge to reuse memory for
all asynchronous operations in a chain.

Given a copy of a user-defined Handler object h, if the implementation needs to allocate memory associated with that handler it
will execute the code:

void* pointer = asio_handler_allocate(size, &h);

Similarly, to deallocate the memory it will execute:

asio_handler_deallocate(pointer, size, &h);

These functions are located using argument-dependent lookup. The implementation provides default implementations of the above
functions in the asio namespace:

void* asio_handler_allocate(size_t, ...);
void asio_handler_deallocate(void*, size_t, ...);

which are implemented in terms of ::operator new() and ::operator delete() respectively.

The implementation guarantees that the deallocation will occur before the associated handler is invoked, which means the memory
is ready to be reused for any new asynchronous operations started by the handler.

The custom memory allocation functions may be called from any user-created thread that is calling a library function. The imple-
mentation guarantees that, for the asynchronous operations included the library, the implementation will not make concurrent calls
to the memory allocation functions for that handler. The implementation will insert appropriate memory barriers to ensure correct
memory visibility should allocation functions need to be called from different threads.

See Also

asio_handler_allocate, asio_handler_deallocate, custom memory allocation example (C++03), custom memory allocation example
(C++11).

Handler Tracking

To aid in debugging asynchronous programs, Boost.Asio provides support for handler tracking. When enabled by defining
BOOST_ASIO_ENABLE_HANDLER_TRACKING, Boost.Asio writes debugging output to the standard error stream. The output records
asynchronous operations and the relationships between their handlers.

This feature is useful when debugging and you need to know how your asynchronous operations are chained together, or what the
pending asynchronous operations are. As an illustration, here is the output when you run the HTTP Server example, handle a single
request, then shut down via Ctrl+C:

16

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

@asio|1298160085.070638|0*1|signal_set@0x7fff50528f40.async_wait
@asio|1298160085.070888|0*2|socket@0x7fff50528f60.async_accept
@asio|1298160085.070913|0|resolver@0x7fff50528e28.cancel
@asio|1298160118.075438|>2|ec=asio.system:0
@asio|1298160118.075472|2*3|socket@0xb39048.async_receive
@asio|1298160118.075507|2*4|socket@0x7fff50528f60.async_accept
@asio|1298160118.075527|<2|
@asio|1298160118.075540|>3|ec=asio.system:0,bytes_transferred=122
@asio|1298160118.075731|3*5|socket@0xb39048.async_send
@asio|1298160118.075778|<3|
@asio|1298160118.075793|>5|ec=asio.system:0,bytes_transferred=156
@asio|1298160118.075831|5|socket@0xb39048.close
@asio|1298160118.075855|<5|
@asio|1298160122.827317|>1|ec=asio.system:0,signal_number=2
@asio|1298160122.827333|1|socket@0x7fff50528f60.close
@asio|1298160122.827359|<1|
@asio|1298160122.827370|>4|ec=asio.system:125
@asio|1298160122.827378|<4|
@asio|1298160122.827394|0|signal_set@0x7fff50528f40.cancel

Each line is of the form:

<tag>|<timestamp>|<action>|<description>

The <tag> is always @asio, and is used to identify and extract the handler tracking messages from the program output.

The <timestamp> is seconds and microseconds from 1 Jan 1970 UTC.

The <action> takes one of the following forms:

>n The program entered the handler number n. The <description> shows the arguments to the handler.

<n The program left handler number n.

!n The program left handler number n due to an exception.

~n The handler number n was destroyed without having been invoked. This is usually the case for any unfinished asynchronous
operations when the io_service is destroyed.

n*m The handler number n created a new asynchronous operation with completion handler number m. The <description> shows
what asynchronous operation was started.

n The handler number n performed some other operation. The <description> shows what function was called. Currently
only close() and cancel() operations are logged, as these may affect the state of pending asynchronous operations.

Where the <description> shows a synchronous or asynchronous operation, the format is <object-type>@<pointer>.<oper-
ation>. For handler entry, it shows a comma-separated list of arguments and their values.

As shown above, Each handler is assigned a numeric identifier. Where the handler tracking output shows a handler number of 0, it
means that the action was performed outside of any handler.

Visual Representations

The handler tracking output may be post-processed using the included handlerviz.pl tool to create a visual representation of the
handlers (requires the GraphViz tool dot).

Stackless Coroutines

The coroutine class provides support for stackless coroutines. Stackless coroutines enable programs to implement asynchronous
logic in a synchronous manner, with minimal overhead, as shown in the following example:

17

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct session : boost::asio::coroutine
{
boost::shared_ptr<tcp::socket> socket_;
boost::shared_ptr<std::vector<char> > buffer_;

session(boost::shared_ptr<tcp::socket> socket)
: socket_(socket),
buffer_(new std::vector<char>(1024))

{
}

void operator()(boost::system::error_code ec = boost::system::error_code(), std::size_t n = 0)
{
if (!ec) reenter (this)
{
for (;;)
{

yield socket_->async_read_some(boost::asio::buffer(*buffer_), *this);
yield boost::asio::async_write(*socket_, boost::asio::buffer(*buffer_, n), *this);

}
}

}
};

The coroutine class is used in conjunction with the pseudo-keywords reenter, yield and fork. These are preprocessor macros,
and are implemented in terms of a switch statement using a technique similar to Duff's Device. The coroutine class's document-
ation provides a complete description of these pseudo-keywords.

See Also

coroutine, HTTP Server 4 example, Stackful Coroutines.

Stackful Coroutines

The spawn() function is a high-level wrapper for running stackful coroutines. It is based on the Boost.Coroutine library. The
spawn() function enables programs to implement asynchronous logic in a synchronous manner, as shown in the following example:

boost::asio::spawn(my_strand, do_echo);

// ...

void do_echo(boost::asio::yield_context yield)
{
try
{
char data[128];
for (;;)
{
std::size_t length =

my_socket.async_read_some(
boost::asio::buffer(data), yield);

boost::asio::async_write(my_socket,
boost::asio::buffer(data, length), yield);

}
}
catch (std::exception& e)
{
// ...

}
}

18

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The first argument to spawn() may be a strand, io_service, or completion handler. This argument determines the context in
which the coroutine is permitted to execute. For example, a server's per-client object may consist of multiple coroutines; they should
all run on the same strand so that no explicit synchronisation is required.

The second argument is a function object with signature:

void coroutine(boost::asio::yield_context yield);

that specifies the code to be run as part of the coroutine. The parameter yield may be passed to an asynchronous operation in place
of the completion handler, as in:

std::size_t length =
my_socket.async_read_some(
boost::asio::buffer(data), yield);

This starts the asynchronous operation and suspends the coroutine. The coroutine will be resumed automatically when the asynchronous
operation completes.

Where an asynchronous operation's handler signature has the form:

void handler(boost::system::error_code ec, result_type result);

the initiating function returns the result_type. In the async_read_some example above, this is size_t. If the asynchronous operation
fails, the error_code is converted into a system_error exception and thrown.

Where a handler signature has the form:

void handler(boost::system::error_code ec);

the initiating function returns void. As above, an error is passed back to the coroutine as a system_error exception.

To collect the error_code from an operation, rather than have it throw an exception, associate the output variable with the
yield_context as follows:

boost::system::error_code ec;
std::size_t length =
my_socket.async_read_some(
boost::asio::buffer(data), yield[ec]);

Note: if spawn() is used with a custom completion handler of type Handler, the function object signature is actually:

void coroutine(boost::asio::basic_yield_context<Handler> yield);

See Also

spawn, yield_context, basic_yield_context, Spawn example (C++03), Spawn example (C++11), Stackless Coroutines.

Networking
• TCP, UDP and ICMP

• Support for Other Protocols

• Socket Iostreams

• The BSD Socket API and Boost.Asio

19

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

TCP, UDP and ICMP

Boost.Asio provides off-the-shelf support for the internet protocols TCP, UDP and ICMP.

TCP Clients

Hostname resolution is performed using a resolver, where host and service names are looked up and converted into one or more en-
dpoints:

ip::tcp::resolver resolver(my_io_service);
ip::tcp::resolver::query query("www.boost.org", "http");
ip::tcp::resolver::iterator iter = resolver.resolve(query);
ip::tcp::resolver::iterator end; // End marker.
while (iter != end)
{
ip::tcp::endpoint endpoint = *iter++;
std::cout << endpoint << std::endl;

}

The list of endpoints obtained above could contain both IPv4 and IPv6 endpoints, so a program should try each of them until it finds
one that works. This keeps the client program independent of a specific IP version.

To simplify the development of protocol-independent programs, TCP clients may establish connections using the free functions
connect() and async_connect(). These operations try each endpoint in a list until the socket is successfully connected. For example,
a single call:

ip::tcp::socket socket(my_io_service);
boost::asio::connect(socket, resolver.resolve(query));

will synchronously try all endpoints until one is successfully connected. Similarly, an asynchronous connect may be performed by
writing:

boost::asio::async_connect(socket_, iter,
boost::bind(&client::handle_connect, this,
boost::asio::placeholders::error));

// ...

void handle_connect(const error_code& error)
{
if (!error)
{
// Start read or write operations.

}
else
{
// Handle error.

}
}

When a specific endpoint is available, a socket can be created and connected:

ip::tcp::socket socket(my_io_service);
socket.connect(endpoint);

Data may be read from or written to a connected TCP socket using the receive(), async_receive(), send() or async_send() member
functions. However, as these could result in short writes or reads, an application will typically use the following operations instead:
read(), async_read(), write() and async_write().

20

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

TCP Servers

A program uses an acceptor to accept incoming TCP connections:

ip::tcp::acceptor acceptor(my_io_service, my_endpoint);
...
ip::tcp::socket socket(my_io_service);
acceptor.accept(socket);

After a socket has been successfully accepted, it may be read from or written to as illustrated for TCP clients above.

UDP

UDP hostname resolution is also performed using a resolver:

ip::udp::resolver resolver(my_io_service);
ip::udp::resolver::query query("localhost", "daytime");
ip::udp::resolver::iterator iter = resolver.resolve(query);
...

A UDP socket is typically bound to a local endpoint. The following code will create an IP version 4 UDP socket and bind it to the
"any" address on port 12345:

ip::udp::endpoint endpoint(ip::udp::v4(), 12345);
ip::udp::socket socket(my_io_service, endpoint);

Data may be read from or written to an unconnected UDP socket using the receive_from(), async_receive_from(), send_to() or
async_send_to() member functions. For a connected UDP socket, use the receive(), async_receive(), send() or async_send() member
functions.

ICMP

As with TCP and UDP, ICMP hostname resolution is performed using a resolver:

ip::icmp::resolver resolver(my_io_service);
ip::icmp::resolver::query query("localhost", "");
ip::icmp::resolver::iterator iter = resolver.resolve(query);
...

An ICMP socket may be bound to a local endpoint. The following code will create an IP version 6 ICMP socket and bind it to the
"any" address:

ip::icmp::endpoint endpoint(ip::icmp::v6(), 0);
ip::icmp::socket socket(my_io_service, endpoint);

The port number is not used for ICMP.

Data may be read from or written to an unconnected ICMP socket using the receive_from(), async_receive_from(), send_to() or
async_send_to() member functions.

See Also

ip::tcp, ip::udp, ip::icmp, daytime protocol tutorials, ICMP ping example.

21

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Support for Other Protocols

Support for other socket protocols (such as Bluetooth or IRCOMM sockets) can be added by implementing the protocol type require-
ments. However, in many cases these protocols may also be used with Boost.Asio's generic protocol support. For this, Boost.Asio
provides the following four classes:

• generic::datagram_protocol

• generic::raw_protocol

• generic::seq_packet_protocol

• generic::stream_protocol

These classes implement the protocol type requirements, but allow the user to specify the address family (e.g. AF_INET) and protocol
type (e.g. IPPROTO_TCP) at runtime. For example:

boost::asio::generic::stream_protocol::socket my_socket(my_io_service);
my_socket.open(boost::asio::generic::stream_protocol(AF_INET, IPPROTO_TCP));
...

An endpoint class template, boost::asio::generic::basic_endpoint, is included to support these protocol classes. This en-
dpoint can hold any other endpoint type, provided its native representation fits into a sockaddr_storage object. This class will
also convert from other types that implement the endpoint type requirements:

boost::asio::ip::tcp::endpoint my_endpoint1 = ...;
boost::asio::generic::stream_protocol::endpoint my_endpoint2(my_endpoint1);

The conversion is implicit, so as to support the following use cases:

boost::asio::generic::stream_protocol::socket my_socket(my_io_service);
boost::asio::ip::tcp::endpoint my_endpoint = ...;
my_socket.connect(my_endpoint);

C++11 Move Construction

When using C++11, it is possible to perform move construction from a socket (or acceptor) object to convert to the more generic
protocol's socket (or acceptor) type. If the protocol conversion is valid:

Protocol1 p1 = ...;
Protocol2 p2(p1);

then the corresponding socket conversion is allowed:

Protocol1::socket my_socket1(my_io_service);
...
Protocol2::socket my_socket2(std::move(my_socket1));

For example, one possible conversion is from a TCP socket to a generic stream-oriented socket:

boost::asio::ip::tcp::socket my_socket1(my_io_service);
...
boost::asio::generic::stream_protocol::socket my_socket2(std::move(my_socket1));

These conversions are also available for move-assignment.

22

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

These conversions are not limited to the above generic protocol classes. User-defined protocols may take advantage of this feature
by similarly ensuring the conversion from Protocol1 to Protocol2 is valid, as above.

Accepting Generic Sockets

As a convenience, a socket acceptor's accept() and async_accept() functions can directly accept into a different protocol's
socket type, provided the corresponding protocol conversion is valid. For example, the following is supported because the protocol
boost::asio::ip::tcp is convertible to boost::asio::generic::stream_protocol:

boost::asio::ip::tcp::acceptor my_acceptor(my_io_service);
...
boost::asio::generic::stream_protocol::socket my_socket(my_io_service);
my_acceptor.accept(my_socket);

See Also

generic::datagram_protocol, generic::raw_protocol, generic::seq_packet_protocol, generic::stream_pro-
tocol, protocol type requirements.

Socket Iostreams

Boost.Asio includes classes that implement iostreams on top of sockets. These hide away the complexities associated with endpoint
resolution, protocol independence, etc. To create a connection one might simply write:

ip::tcp::iostream stream("www.boost.org", "http");
if (!stream)
{
// Can't connect.

}

The iostream class can also be used in conjunction with an acceptor to create simple servers. For example:

io_service ios;

ip::tcp::endpoint endpoint(tcp::v4(), 80);
ip::tcp::acceptor acceptor(ios, endpoint);

for (;;)
{
ip::tcp::iostream stream;
acceptor.accept(*stream.rdbuf());
...

}

Timeouts may be set by calling expires_at() or expires_from_now() to establish a deadline. Any socket operations that occur
past the deadline will put the iostream into a "bad" state.

For example, a simple client program like this:

ip::tcp::iostream stream;
stream.expires_from_now(boost::posix_time::seconds(60));
stream.connect("www.boost.org", "http");
stream << "GET /LICENSE_1_0.txt HTTP/1.0\r\n";
stream << "Host: www.boost.org\r\n";
stream << "Accept: */*\r\n";
stream << "Connection: close\r\n\r\n";
stream.flush();
std::cout << stream.rdbuf();

23

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

will fail if all the socket operations combined take longer than 60 seconds.

If an error does occur, the iostream's error() member function may be used to retrieve the error code from the most recent system
call:

if (!stream)
{
std::cout << "Error: " << stream.error().message() << "\n";

}

See Also

ip::tcp::iostream, basic_socket_iostream, iostreams examples.

Notes

These iostream templates only support char, not wchar_t, and do not perform any code conversion.

The BSD Socket API and Boost.Asio

The Boost.Asio library includes a low-level socket interface based on the BSD socket API, which is widely implemented and sup-
ported by extensive literature. It is also used as the basis for networking APIs in other languages, like Java. This low-level interface
is designed to support the development of efficient and scalable applications. For example, it permits programmers to exert finer
control over the number of system calls, avoid redundant data copying, minimise the use of resources like threads, and so on.

Unsafe and error prone aspects of the BSD socket API not included. For example, the use of int to represent all sockets lacks type
safety. The socket representation in Boost.Asio uses a distinct type for each protocol, e.g. for TCP one would use
ip::tcp::socket, and for UDP one uses ip::udp::socket.

The following table shows the mapping between the BSD socket API and Boost.Asio:

24

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Equivalents in Boost.AsioBSD Socket API Elements

For TCP: ip::tcp::socket, ip::tcp::acceptorsocket descriptor - int (POSIX) or SOCKET (Windows)

For UDP: ip::udp::socket

basic_socket, basic_stream_socket, basic_datagram_socket,
basic_raw_socket

ip::address, ip::address_v4, ip::address_v6in_addr, in6_addr

For TCP: ip::tcp::endpointsockaddr_in, sockaddr_in6

For UDP: ip::udp::endpoint

ip::basic_endpoint

For TCP: ip::tcp::acceptor::accept()accept()

basic_socket_acceptor::accept()

For TCP: ip::tcp::acceptor::bind(), ip::tcp::socket::bind()bind()

For UDP: ip::udp::socket::bind()

basic_socket::bind()

For TCP: ip::tcp::acceptor::close(), ip::tcp::socket::close()close()

For UDP: ip::udp::socket::close()

basic_socket::close()

For TCP: ip::tcp::socket::connect()connect()

For UDP: ip::udp::socket::connect()

basic_socket::connect()

For TCP: ip::tcp::resolver::resolve(), ip::tcp::resolver::async_re-
solve()

getaddrinfo(), gethostbyaddr(), gethostbyname(),
getnameinfo(), getservbyname(), getservbyport()

For UDP: ip::udp::resolver::resolve(), ip::udp::resolver::async_re-
solve()

ip::basic_resolver::resolve(), ip::basic_resolver::async_resolve()

ip::host_name()gethostname()

For TCP: ip::tcp::socket::remote_endpoint()getpeername()

For UDP: ip::udp::socket::remote_endpoint()

basic_socket::remote_endpoint()

25

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Equivalents in Boost.AsioBSD Socket API Elements

For TCP: ip::tcp::acceptor::local_endpoint(), ip::tcp::socket::loc-
al_endpoint()

For UDP: ip::udp::socket::local_endpoint()

basic_socket::local_endpoint()

getsockname()

For TCP: ip::tcp::acceptor::get_option(), ip::tcp::socket::get_op-
tion()

For UDP: ip::udp::socket::get_option()

basic_socket::get_option()

getsockopt()

ip::address::from_string(), ip::address_v4::from_string(),
ip_address_v6::from_string()

inet_addr(), inet_aton(), inet_pton()

ip::address::to_string(), ip::address_v4::to_string(), ip_ad-
dress_v6::to_string()

inet_ntoa(), inet_ntop()

For TCP: ip::tcp::socket::io_control()

For UDP: ip::udp::socket::io_control()

basic_socket::io_control()

ioctl()

For TCP: ip::tcp::acceptor::listen()

basic_socket_acceptor::listen()

listen()

io_service::run(), io_service::run_one(), io_service::poll(),
io_service::poll_one()

Note: in conjunction with asynchronous operations.

poll(), select(), pselect()

For TCP: ip::tcp::socket::read_some(), ip::tcp::sock-
et::async_read_some(), ip::tcp::socket::receive(), ip::tcp::sock-
et::async_receive()

For UDP: ip::udp::socket::receive(), ip::udp::socket::async_re-
ceive()

basic_stream_socket::read_some(), basic_stream_sock-
et::async_read_some(), basic_stream_socket::receive(), ba-
sic_stream_socket::async_receive(), basic_datagram_socket::re-
ceive(), basic_datagram_socket::async_receive()

readv(), recv(), read()

For UDP: ip::udp::socket::receive_from(), ip::udp::sock-
et::async_receive_from()

basic_datagram_socket::receive_from(), basic_datagram_sock-
et::async_receive_from()

recvfrom()

26

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Equivalents in Boost.AsioBSD Socket API Elements

For TCP: ip::tcp::socket::write_some(), ip::tcp::sock-
et::async_write_some(), ip::tcp::socket::send(), ip::tcp::sock-
et::async_send()

For UDP: ip::udp::socket::send(), ip::udp::socket::async_send()

basic_stream_socket::write_some(), basic_stream_sock-
et::async_write_some(), basic_stream_socket::send(), ba-
sic_stream_socket::async_send(), basic_datagram_sock-
et::send(), basic_datagram_socket::async_send()

send(), write(), writev()

For UDP: ip::udp::socket::send_to(), ip::udp::sock-
et::async_send_to()

basic_datagram_socket::send_to(), basic_datagram_sock-
et::async_send_to()

sendto()

For TCP: ip::tcp::acceptor::set_option(), ip::tcp::socket::set_op-
tion()

For UDP: ip::udp::socket::set_option()

basic_socket::set_option()

setsockopt()

For TCP: ip::tcp::socket::shutdown()

For UDP: ip::udp::socket::shutdown()

basic_socket::shutdown()

shutdown()

For TCP: ip::tcp::socket::at_mark()

basic_socket::at_mark()

sockatmark()

For TCP: ip::tcp::acceptor::open(), ip::tcp::socket::open()

For UDP: ip::udp::socket::open()

basic_socket::open()

socket()

local::connect_pair()

Note: POSIX operating systems only.

socketpair()

Timers
Long running I/O operations will often have a deadline by which they must have completed. These deadlines may be expressed as
absolute times, but are often calculated relative to the current time.

As a simple example, to perform a synchronous wait operation on a timer using a relative time one may write:

io_service i;
...
deadline_timer t(i);
t.expires_from_now(boost::posix_time::seconds(5));
t.wait();

27

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

More commonly, a program will perform an asynchronous wait operation on a timer:

void handler(boost::system::error_code ec) { ... }
...
io_service i;
...
deadline_timer t(i);
t.expires_from_now(boost::posix_time::milliseconds(400));
t.async_wait(handler);
...
i.run();

The deadline associated with a timer may also be obtained as a relative time:

boost::posix_time::time_duration time_until_expiry
= t.expires_from_now();

or as an absolute time to allow composition of timers:

deadline_timer t2(i);
t2.expires_at(t.expires_at() + boost::posix_time::seconds(30));

See Also

basic_deadline_timer, deadline_timer, deadline_timer_service, timer tutorials.

Serial Ports
Boost.Asio includes classes for creating and manipulating serial ports in a portable manner. For example, a serial port may be opened
using:

serial_port port(my_io_service, name);

where name is something like "COM1" on Windows, and "/dev/ttyS0" on POSIX platforms.

Once opened, the serial port may be used as a stream. This means the objects can be used with any of the read(), async_read(), write(),
async_write(), read_until() or async_read_until() free functions.

The serial port implementation also includes option classes for configuring the port's baud rate, flow control type, parity, stop bits
and character size.

See Also

serial_port, serial_port_base, basic_serial_port, serial_port_service, serial_port_base::baud_rate, serial_port_base::flow_control,
serial_port_base::parity, serial_port_base::stop_bits, serial_port_base::character_size.

Notes

Serial ports are available on all POSIX platforms. For Windows, serial ports are only available at compile time when the I/O com-
pletion port backend is used (which is the default). A program may test for the macro BOOST_ASIO_HAS_SERIAL_PORT to determine
whether they are supported.

28

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Signal Handling
Boost.Asio supports signal handling using a class called signal_set. Programs may add one or more signals to the set, and then perform
an async_wait() operation. The specified handler will be called when one of the signals occurs. The same signal number may be
registered with multiple signal_set objects, however the signal number must be used only with Boost.Asio.

void handler(
const boost::system::error_code& error,
int signal_number)

{
if (!error)
{
// A signal occurred.

}
}

...

// Construct a signal set registered for process termination.
boost::asio::signal_set signals(io_service, SIGINT, SIGTERM);

// Start an asynchronous wait for one of the signals to occur.
signals.async_wait(handler);

Signal handling also works on Windows, as the Microsoft Visual C++ runtime library maps console events like Ctrl+C to the equi-
valent signal.

See Also

signal_set, HTTP server example (C++03), HTTP server example (C++11).

POSIX-Specific Functionality
UNIX Domain Sockets

Stream-Oriented File Descriptors

Fork

UNIX Domain Sockets

Boost.Asio provides basic support UNIX domain sockets (also known as local sockets). The simplest use involves creating a pair
of connected sockets. The following code:

local::stream_protocol::socket socket1(my_io_service);
local::stream_protocol::socket socket2(my_io_service);
local::connect_pair(socket1, socket2);

will create a pair of stream-oriented sockets. To do the same for datagram-oriented sockets, use:

local::datagram_protocol::socket socket1(my_io_service);
local::datagram_protocol::socket socket2(my_io_service);
local::connect_pair(socket1, socket2);

A UNIX domain socket server may be created by binding an acceptor to an endpoint, in much the same way as one does for a TCP
server:

29

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

::unlink("/tmp/foobar"); // Remove previous binding.
local::stream_protocol::endpoint ep("/tmp/foobar");
local::stream_protocol::acceptor acceptor(my_io_service, ep);
local::stream_protocol::socket socket(my_io_service);
acceptor.accept(socket);

A client that connects to this server might look like:

local::stream_protocol::endpoint ep("/tmp/foobar");
local::stream_protocol::socket socket(my_io_service);
socket.connect(ep);

Transmission of file descriptors or credentials across UNIX domain sockets is not directly supported within Boost.Asio, but may be
achieved by accessing the socket's underlying descriptor using the native_handle() member function.

See Also

local::connect_pair, local::datagram_protocol, local::datagram_protocol::endpoint, local::datagram_protocol::socket, local::stream_pro-
tocol, local::stream_protocol::acceptor, local::stream_protocol::endpoint, local::stream_protocol::iostream, local::stream_protocol::sock-
et, UNIX domain sockets examples.

Notes

UNIX domain sockets are only available at compile time if supported by the target operating system. A program may test for the
macro BOOST_ASIO_HAS_LOCAL_SOCKETS to determine whether they are supported.

Stream-Oriented File Descriptors

Boost.Asio includes classes added to permit synchronous and asynchronous read and write operations to be performed on POSIX
file descriptors, such as pipes, standard input and output, and various devices (but not regular files).

For example, to perform read and write operations on standard input and output, the following objects may be created:

posix::stream_descriptor in(my_io_service, ::dup(STDIN_FILENO));
posix::stream_descriptor out(my_io_service, ::dup(STDOUT_FILENO));

These are then used as synchronous or asynchronous read and write streams. This means the objects can be used with any of the
read(), async_read(), write(), async_write(), read_until() or async_read_until() free functions.

See Also

posix::stream_descriptor, posix::basic_stream_descriptor, posix::stream_descriptor_service, Chat example (C++03), Chat example
(C++11).

Notes

POSIX stream descriptors are only available at compile time if supported by the target operating system. A program may test for
the macro BOOST_ASIO_HAS_POSIX_STREAM_DESCRIPTOR to determine whether they are supported.

Fork

Boost.Asio supports programs that utilise the fork() system call. Provided the program calls io_service.notify_fork() at
the appropriate times, Boost.Asio will recreate any internal file descriptors (such as the "self-pipe trick" descriptor used for waking
up a reactor). The notification is usually performed as follows:

30

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

io_service_.notify_fork(boost::asio::io_service::fork_prepare);
if (fork() == 0)
{
io_service_.notify_fork(boost::asio::io_service::fork_child);
...

}
else
{
io_service_.notify_fork(boost::asio::io_service::fork_parent);
...

}

User-defined services can also be made fork-aware by overriding the io_service::service::fork_service() virtual function.

Note that any file descriptors accessible via Boost.Asio's public API (e.g. the descriptors underlying basic_socket<>,
posix::stream_descriptor, etc.) are not altered during a fork. It is the program's responsibility to manage these as required.

See Also

io_service::notify_fork(), io_service::fork_event, io_service::service::fork_service(), Fork examples.

Windows-Specific Functionality
Stream-Oriented HANDLEs

Random-Access HANDLEs

Object HANDLEs

Stream-Oriented HANDLEs

Boost.Asio contains classes to allow asynchronous read and write operations to be performed on Windows HANDLEs, such as named
pipes.

For example, to perform asynchronous operations on a named pipe, the following object may be created:

HANDLE handle = ::CreateFile(...);
windows::stream_handle pipe(my_io_service, handle);

These are then used as synchronous or asynchronous read and write streams. This means the objects can be used with any of the
read(), async_read(), write(), async_write(), read_until() or async_read_until() free functions.

The kernel object referred to by the HANDLE must support use with I/O completion ports (which means that named pipes are supported,
but anonymous pipes and console streams are not).

See Also

windows::stream_handle, windows::basic_stream_handle, windows::stream_handle_service.

Notes

Windows stream HANDLEs are only available at compile time when targeting Windows and only when the I/O completion port
backend is used (which is the default). A program may test for the macro BOOST_ASIO_HAS_WINDOWS_STREAM_HANDLE to determine
whether they are supported.

Random-Access HANDLEs

Boost.Asio provides Windows-specific classes that permit asynchronous read and write operations to be performed on HANDLEs
that refer to regular files.

31

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

For example, to perform asynchronous operations on a file the following object may be created:

HANDLE handle = ::CreateFile(...);
windows::random_access_handle file(my_io_service, handle);

Data may be read from or written to the handle using one of the read_some_at(), async_read_some_at(), write_some_at()
or async_write_some_at() member functions. However, like the equivalent functions (read_some(), etc.) on streams, these
functions are only required to transfer one or more bytes in a single operation. Therefore free functions called read_at(), async_read_at(),
write_at() and async_write_at() have been created to repeatedly call the corresponding *_some_at() function until all data has
been transferred.

See Also

windows::random_access_handle, windows::basic_random_access_handle, windows::random_access_handle_service.

Notes

Windows random-access HANDLEs are only available at compile time when targeting Windows and only when the I/O completion
port backend is used (which is the default). A program may test for the macro BOOST_ASIO_HAS_WINDOWS_RANDOM_ACCESS_HANDLE
to determine whether they are supported.

Object HANDLEs

Boost.Asio provides Windows-specific classes that permit asynchronous wait operations to be performed on HANDLEs to kernel
objects of the following types:

• Change notification

• Console input

• Event

• Memory resource notification

• Process

• Semaphore

• Thread

• Waitable timer

For example, to perform asynchronous operations on an event, the following object may be created:

HANDLE handle = ::CreateEvent(...);
windows::object_handle file(my_io_service, handle);

The wait() and async_wait() member functions may then be used to wait until the kernel object is signalled.

See Also

windows::object_handle, windows::basic_object_handle, windows::object_handle_service.

Notes

Windows object HANDLEs are only available at compile time when targeting Windows. Programs may test for the macro
BOOST_ASIO_HAS_WINDOWS_OBJECT_HANDLE to determine whether they are supported.

32

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SSL
Boost.Asio contains classes and class templates for basic SSL support. These classes allow encrypted communication to be layered
on top of an existing stream, such as a TCP socket.

Before creating an encrypted stream, an application must construct an SSL context object. This object is used to set SSL options
such as verification mode, certificate files, and so on. As an illustration, client-side initialisation may look something like:

ssl::context ctx(ssl::context::sslv23);
ctx.set_verify_mode(ssl::verify_peer);
ctx.load_verify_file("ca.pem");

To use SSL with a TCP socket, one may write:

ssl::stream<ip::tcp::socket> ssl_sock(my_io_service, ctx);

To perform socket-specific operations, such as establishing an outbound connection or accepting an incoming one, the underlying
socket must first be obtained using the ssl::stream template's lowest_layer() member function:

ip::tcp::socket::lowest_layer_type& sock = ssl_sock.lowest_layer();
sock.connect(my_endpoint);

In some use cases the underlying stream object will need to have a longer lifetime than the SSL stream, in which case the template
parameter should be a reference to the stream type:

ip::tcp::socket sock(my_io_service);
ssl::stream<ip::tcp::socket&> ssl_sock(sock, ctx);

SSL handshaking must be performed prior to transmitting or receiving data over an encrypted connection. This is accomplished using
the ssl::stream template's handshake() or async_handshake() member functions.

Once connected, SSL stream objects are used as synchronous or asynchronous read and write streams. This means the objects can
be used with any of the read(), async_read(), write(), async_write(), read_until() or async_read_until() free functions.

Certificate Verification

Boost.Asio provides various methods for configuring the way SSL certificates are verified:

• ssl::context::set_default_verify_paths()

• ssl::context::set_verify_mode()

• ssl::context::set_verify_callback()

• ssl::context::load_verify_file()

• ssl::stream::set_verify_mode()

• ssl::stream::set_verify_callback()

To simplify use cases where certificates are verified according to the rules in RFC 2818 (certificate verification for HTTPS),
Boost.Asio provides a reusable verification callback as a function object:

• ssl::rfc2818_verification

The following example shows verification of a remote host's certificate according to the rules used by HTTPS:

33

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using boost::asio::ip::tcp;
namespace ssl = boost::asio::ssl;
typedef ssl::stream<tcp::socket> ssl_socket;

// Create a context that uses the default paths for
// finding CA certificates.
ssl::context ctx(ssl::context::sslv23);
ctx.set_default_verify_paths();

// Open a socket and connect it to the remote host.
boost::asio::io_service io_service;
ssl_socket sock(io_service, ctx);
tcp::resolver resolver(io_service);
tcp::resolver::query query("host.name", "https");
boost::asio::connect(sock.lowest_layer(), resolver.resolve(query));
sock.lowest_layer().set_option(tcp::no_delay(true));

// Perform SSL handshake and verify the remote host's
// certificate.
sock.set_verify_mode(ssl::verify_peer);
sock.set_verify_callback(ssl::rfc2818_verification("host.name"));
sock.handshake(ssl_socket::client);

// ... read and write as normal ...

SSL and Threads

SSL stream objects perform no locking of their own. Therefore, it is essential that all asynchronous SSL operations are performed
in an implicit or explicit strand. Note that this means that no synchronisation is required (and so no locking overhead is incurred) in
single threaded programs.

See Also

ssl::context, ssl::rfc2818_verification, ssl::stream, SSL example.

Notes

OpenSSL is required to make use of Boost.Asio's SSL support. When an application needs to use OpenSSL functionality that is not
wrapped by Boost.Asio, the underlying OpenSSL types may be obtained by calling ssl::context::native_handle() or
ssl::stream::native_handle().

C++ 2011 Support
Movable I/O Objects

Movable Handlers

Variadic Templates

Array Container

Atomics

Shared Pointers

Chrono

Futures

34

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.openssl.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Movable I/O Objects

When move support is available (via rvalue references), Boost.Asio allows move construction and assignment of sockets, serial
ports, POSIX descriptors and Windows handles.

Move support allows you to write code like:

tcp::socket make_socket(io_service& i)
{
tcp::socket s(i);
...
std::move(s);

}

or:

class connection : public enable_shared_from_this<connection>
{
private:
tcp::socket socket_;
...

public:
connection(tcp::socket&& s) : socket_(std::move(s)) {}
...

};

...

class server
{
private:
tcp::acceptor acceptor_;
tcp::socket socket_;
...
void handle_accept(error_code ec)
{
if (!ec)
std::make_shared<connection>(std::move(socket_))->go();

acceptor_.async_accept(socket_, ...);
}
...

};

as well as:

std::vector<tcp::socket> sockets;
sockets.push_back(tcp::socket(...));

A word of warning: There is nothing stopping you from moving these objects while there are pending asynchronous operations, but
it is unlikely to be a good idea to do so. In particular, composed operations like async_read() store a reference to the stream object.
Moving during the composed operation means that the composed operation may attempt to access a moved-from object.

Move support is automatically enabled for g++ 4.5 and later, when the -std=c++0x or -std=gnu++0x compiler options are used.
It may be disabled by defining BOOST_ASIO_DISABLE_MOVE, or explicitly enabled for other compilers by defining
BOOST_ASIO_HAS_MOVE. Note that these macros also affect the availability of movable handlers.

35

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Movable Handlers

As an optimisation, user-defined completion handlers may provide move constructors, and Boost.Asio's implementation will use a
handler's move constructor in preference to its copy constructor. In certain circumstances, Boost.Asio may be able to eliminate all
calls to a handler's copy constructor. However, handler types are still required to be copy constructible.

When move support is enabled, asynchronous that are documented as follows:

template <typename Handler>
void async_XYZ(..., Handler handler);

are actually declared as:

template <typename Handler>
void async_XYZ(..., Handler&& handler);

The handler argument is perfectly forwarded and the move construction occurs within the body of async_XYZ(). This ensures that
all other function arguments are evaluated prior to the move. This is critical when the other arguments to async_XYZ() are members
of the handler. For example:

struct my_operation
{
shared_ptr<tcp::socket> socket;
shared_ptr<vector<char>> buffer;
...
void operator(error_code ec, size_t length)
{
...
socket->async_read_some(boost::asio::buffer(*buffer), std::move(*this));
...

}
};

Move support is automatically enabled for g++ 4.5 and later, when the -std=c++0x or -std=gnu++0x compiler options are used.
It may be disabled by defining BOOST_ASIO_DISABLE_MOVE, or explicitly enabled for other compilers by defining
BOOST_ASIO_HAS_MOVE. Note that these macros also affect the availability of movable I/O objects.

Variadic Templates

When supported by a compiler, Boost.Asio can use variadic templates to implement the basic_socket_streambuf::connect() and ba-
sic_socket_iostream::connect() functions.

Support for variadic templates is automatically enabled for g++ 4.3 and later, when the -std=c++0x or -std=gnu++0x compiler
options are used. It may be disabled by defining BOOST_ASIO_DISABLE_VARIADIC_TEMPLATES, or explicitly enabled for other
compilers by defining BOOST_ASIO_HAS_VARIADIC_TEMPLATES.

Array Container

Where the standard library provides std::array<>, Boost.Asio:

• Provides overloads for the buffer() function.

• Uses it in preference to boost::array<> for the ip::address_v4::bytes_type and ip::address_v6::bytes_type types.

• Uses it in preference to boost::array<> where a fixed size array type is needed in the implementation.

36

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Support for std::array<> is automatically enabled for g++ 4.3 and later, when the -std=c++0x or -std=gnu++0x compiler
options are used, as well as for Microsoft Visual C++ 10. It may be disabled by defining BOOST_ASIO_DISABLE_STD_ARRAY, or
explicitly enabled for other compilers by defining BOOST_ASIO_HAS_STD_ARRAY.

Atomics

Boost.Asio's implementation can use std::atomic<> in preference to boost::detail::atomic_count.

Support for the standard atomic integer template is automatically enabled for g++ 4.5 and later, when the -std=c++0x or
-std=gnu++0x compiler options are used. It may be disabled by defining BOOST_ASIO_DISABLE_STD_ATOMIC, or explicitly enabled
for other compilers by defining BOOST_ASIO_HAS_STD_ATOMIC.

Shared Pointers

Boost.Asio's implementation can use std::shared_ptr<> and std::weak_ptr<> in preference to the Boost equivalents.

Support for the standard smart pointers is automatically enabled for g++ 4.3 and later, when the -std=c++0x or -std=gnu++0x
compiler options are used, as well as for Microsoft Visual C++ 10. It may be disabled by defining BOOST_ASIO_DIS-
ABLE_STD_SHARED_PTR, or explicitly enabled for other compilers by defining BOOST_ASIO_HAS_STD_SHARED_PTR.

Chrono

Boost.Asio provides timers based on the std::chrono facilities via the basic_waitable_timer class template. The typedefs sys-
tem_timer, steady_timer and high_resolution_timer utilise the standard clocks system_clock, steady_clock and high_resol-
ution_clock respectively.

Support for the std::chrono facilities is automatically enabled for g++ 4.6 and later, when the -std=c++0x or -std=gnu++0x
compiler options are used. (Note that, for g++, the draft-standard monotonic_clock is used in place of steady_clock.) Support
may be disabled by defining BOOST_ASIO_DISABLE_STD_CHRONO, or explicitly enabled for other compilers by defining
BOOST_ASIO_HAS_STD_CHRONO.

When standard chrono is unavailable, Boost.Asio will otherwise use the Boost.Chrono library. The basic_waitable_timer class
template may be used with either.

Futures

The boost::asio::use_future special value provides first-class support for returning a C++11 std::future from an asyn-
chronous operation's initiating function.

To use boost::asio::use_future, pass it to an asynchronous operation instead of a normal completion handler. For example:

std::future<std::size_t> length =
my_socket.async_read_some(my_buffer, boost::asio::use_future);

Where a handler signature has the form:

void handler(boost::system::error_code ec, result_type result);

the initiating function returns a std::future templated on result_type. In the above example, this is std::size_t. If the
asynchronous operation fails, the error_code is converted into a system_error exception and passed back to the caller through
the future.

Where a handler signature has the form:

void handler(boost::system::error_code ec);

the initiating function returns std::future<void>. As above, an error is passed back in the future as a system_error exception.

37

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

use_future, use_future_t, Futures example (C++11).

Platform-Specific Implementation Notes
This section lists platform-specific implementation details, such as the default demultiplexing mechanism, the number of threads
created internally, and when threads are created.

Linux Kernel 2.4

Demultiplexing mechanism:

• Uses select for demultiplexing. This means that the number of file descriptors in the process cannot be permitted to exceed
FD_SETSIZE.

Threads:

• Demultiplexing using select is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

Linux Kernel 2.6

Demultiplexing mechanism:

• Uses epoll for demultiplexing.

Threads:

• Demultiplexing using epoll is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

Solaris

Demultiplexing mechanism:

• Uses /dev/poll for demultiplexing.

Threads:

• Demultiplexing using /dev/poll is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

38

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

QNX Neutrino

Demultiplexing mechanism:

• Uses select for demultiplexing. This means that the number of file descriptors in the process cannot be permitted to exceed
FD_SETSIZE.

Threads:

• Demultiplexing using select is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

Mac OS X

Demultiplexing mechanism:

• Uses kqueue for demultiplexing.

Threads:

• Demultiplexing using kqueue is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

FreeBSD

Demultiplexing mechanism:

• Uses kqueue for demultiplexing.

Threads:

• Demultiplexing using kqueue is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

AIX

Demultiplexing mechanism:

• Uses select for demultiplexing. This means that the number of file descriptors in the process cannot be permitted to exceed
FD_SETSIZE.

39

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Threads:

• Demultiplexing using select is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

HP-UX

Demultiplexing mechanism:

• Uses select for demultiplexing. This means that the number of file descriptors in the process cannot be permitted to exceed
FD_SETSIZE.

Threads:

• Demultiplexing using select is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

Tru64

Demultiplexing mechanism:

• Uses select for demultiplexing. This means that the number of file descriptors in the process cannot be permitted to exceed
FD_SETSIZE.

Threads:

• Demultiplexing using select is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• At most min(64,IOV_MAX) buffers may be transferred in a single operation.

Windows 95, 98 and Me

Demultiplexing mechanism:

• Uses select for demultiplexing.

Threads:

• Demultiplexing using select is performed in one of the threads that calls io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

40

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• For sockets, at most 16 buffers may be transferred in a single operation.

Windows NT, 2000, XP, 2003, Vista, 7 and 8

Demultiplexing mechanism:

• Uses overlapped I/O and I/O completion ports for all asynchronous socket operations except for asynchronous connect.

• Uses select for emulating asynchronous connect.

Threads:

• Demultiplexing using I/O completion ports is performed in all threads that call io_service::run(), io_service::run_one(),
io_service::poll() or io_service::poll_one().

• An additional thread per io_service is used to trigger timers. This thread is created on construction of the first deadline_timer
or deadline_timer_service objects.

• An additional thread per io_service is used for the select demultiplexing. This thread is created on the first call to
async_connect().

• An additional thread per io_service is used to emulate asynchronous host resolution. This thread is created on the first call to
either ip::tcp::resolver::async_resolve() or ip::udp::resolver::async_resolve().

Scatter-Gather:

• For sockets, at most 64 buffers may be transferred in a single operation.

• For stream-oriented handles, only one buffer may be transferred in a single operation.

Windows Runtime

Boost.Asio provides limited support for the Windows Runtime. It requires that the language extensions be enabled. Due to the re-
stricted facilities exposed by the Windows Runtime API, the support comes with the following caveats:

• The core facilities such as the io_service, strand, buffers, composed operations, timers, etc., should all work as normal.

• For sockets, only client-side TCP is supported.

• Explicit binding of a client-side TCP socket is not supported.

• The cancel() function is not supported for sockets. Asynchronous operations may only be cancelled by closing the socket.

• Operations that use null_buffers are not supported.

• Only tcp::no_delay and socket_base::keep_alive options are supported.

• Resolvers do not support service names, only numbers. I.e. you must use "80" rather than "http".

• Most resolver query flags have no effect.

Demultiplexing mechanism:

• Uses the Windows::Networking::Sockets::StreamSocket class to implement asynchronous TCP socket operations.

Threads:

41

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Event completions are delivered to the Windows thread pool and posted to the io_service for the handler to be executed.

• An additional thread per io_service is used to trigger timers. This thread is created on construction of the first timer objects.

Scatter-Gather:

• For sockets, at most one buffer may be transferred in a single operation.

42

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Using Boost.Asio
Supported Platforms

The following platforms and compilers have been tested:

• Win32 and Win64 using Visual C++ 7.1 and Visual C++ 8.0.

• Win32 using MinGW.

• Win32 using Cygwin. (__USE_W32_SOCKETS must be defined.)

• Linux (2.4 or 2.6 kernels) using g++ 3.3 or later.

• Solaris using g++ 3.3 or later.

• Mac OS X 10.4 using g++ 3.3 or later.

The following platforms may also work:

• AIX 5.3 using XL C/C++ v9.

• HP-UX 11i v3 using patched aC++ A.06.14.

• QNX Neutrino 6.3 using g++ 3.3 or later.

• Solaris using Sun Studio 11 or later.

• Tru64 v5.1 using Compaq C++ v7.1.

• Win32 using Borland C++ 5.9.2

Dependencies

The following libraries must be available in order to link programs that use Boost.Asio:

• Boost.System for the boost::system::error_code and boost::system::system_error classes.

• Boost.Regex (optional) if you use any of the read_until() or async_read_until() overloads that take a boost::regex
parameter.

• OpenSSL (optional) if you use Boost.Asio's SSL support.

Furthermore, some of the examples also require the Boost.Thread, Boost.Date_Time or Boost.Serialization libraries.

Note

With MSVC or Borland C++ you may want to add -DBOOST_DATE_TIME_NO_LIB and -DBOOST_REGEX_NO_LIB
to your project settings to disable autolinking of the Boost.Date_Time and Boost.Regex libraries respectively. Al-
ternatively, you may choose to build these libraries and link to them.

Building Boost Libraries

You may build the subset of Boost libraries required to use Boost.Asio and its examples by running the following command from
the root of the Boost download package:

bjam --with-system --with-thread --with-date_time --with-regex --with-serialization stage

43

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.openssl.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This assumes that you have already built bjam. Consult the Boost.Build documentation for more details.

Optional separate compilation

By default, Boost.Asio is a header-only library. However, some developers may prefer to build Boost.Asio using separately compiled
source code. To do this, add #include <boost/asio/impl/src.hpp> to one (and only one) source file in a program, then build
the program with BOOST_ASIO_SEPARATE_COMPILATION defined in the project/compiler settings. Alternatively,
BOOST_ASIO_DYN_LINK may be defined to build a separately-compiled Boost.Asio as part of a shared library.

If using Boost.Asio's SSL support, you will also need to add #include <boost/asio/ssl/impl/src.hpp>.

Macros

The macros listed in the table below may be used to control the behaviour of Boost.Asio.

44

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

Enables Boost.Asio's buffer debugging support, which can help
identify when invalid buffers are used in read or write operations

BOOST_ASIO_ENABLE_BUFFER_DEBUGGING

(e.g. if a std::string object being written is destroyed before the
write operation completes).

When using Microsoft Visual C++, this macro is defined auto-
matically if the compiler's iterator debugging support is enabled,
unless BOOST_ASIO_DISABLE_BUFFER_DEBUGGING has been
defined.

When using g++, this macro is defined automatically if standard
library debugging is enabled (_GLIBCXX_DEBUG is defined),
unless BOOST_ASIO_DISABLE_BUFFER_DEBUGGING has been
defined.

Explictly disables Boost.Asio's buffer debugging support.BOOST_ASIO_DISABLE_BUFFER_DEBUGGING

Explicitly disables /dev/poll support on Solaris, forcing the
use of a select-based implementation.

BOOST_ASIO_DISABLE_DEV_POLL

Explicitly disables epoll support on Linux, forcing the use of
a select-based implementation.

BOOST_ASIO_DISABLE_EPOLL

Explicitly disables eventfd support on Linux, forcing the use
of a pipe to interrupt blocked epoll/select system calls.

BOOST_ASIO_DISABLE_EVENTFD

Explicitly disables kqueue support on Mac OS X and BSD
variants, forcing the use of a select-based implementation.

BOOST_ASIO_DISABLE_KQUEUE

Explicitly disables I/O completion ports support on Windows,
forcing the use of a select-based implementation.

BOOST_ASIO_DISABLE_IOCP

Explicitly disables Boost.Asio's threading support, independent
of whether or not Boost as a whole supports threads.

BOOST_ASIO_DISABLE_THREADS

By default, Boost.Asio will automatically define
WIN32_LEAN_AND_MEAN when compiling for Windows, to

BOOST_ASIO_NO_WIN32_LEAN_AND_MEAN

minimise the number of Windows SDK header files and features
t h a t a r e i n c l u d e d . T h e p r e s e n c e o f
BOOST_ASIO_NO_WIN32_LEAN_AND_MEAN prevents
WIN32_LEAN_AND_MEAN from being defined.

By default, Boost.Asio will automatically define NOMINMAX
when compiling for Windows, to suppress the definition of the

BOOST_ASIO_NO_NOMINMAX

min() and max() macros. The presence of
BOOST_ASIO_NO_NOMINMAX prevents NOMINMAX from being
defined.

When compiling for Windows using Microsoft Visual C++ or
Borland C++, Boost.Asio will automatically link in the necessary

BOOST_ASIO_NO_DEFAULT_LINKED_LIBS

Windows SDK libraries for sockets support (i.e. ws2_32.lib
and mswsock.lib, or ws2.lib when building for Windows
CE). The BOOST_ASIO_NO_DEFAULT_LINKED_LIBS macro
prevents these libraries from being linked.

45

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionMacro

Determines the maximum number of arguments that may be
passed to the basic_socket_streambuf class template's
connect member function. Defaults to 5.

BOOST_ASIO_SOCKET_STREAMBUF_MAX_ARITY

Determines the maximum number of arguments that may be
passed to the basic_socket_iostream class template's con-
structor and connect member function. Defaults to 5.

BOOST_ASIO_SOCKET_IOSTREAM_MAX_ARITY

Enables use of the CancelIo function on older versions of
Windows. If not enabled, calls to cancel() on a socket object
will always fail with asio::error::operation_not_sup-
ported when run on Windows XP, Windows Server 2003, and
earlier versions of Windows. When running on Windows Vista,
Windows Server 2008, and later, the CancelIoEx function is
always used.

The CancelIo function has two issues that should be considered
before enabling its use:

* It will only cancel asynchronous operations that were initiated
in the current thread.

* It can appear to complete without error, but the request to
cancel the unfinished operations may be silently ignored by the
operating system. Whether it works or not seems to depend on
the drivers that are installed.

For portable cancellation, consider using one of the following
alternatives:

* Disable asio's I/O completion port backend by defining
BOOST_ASIO_DISABLE_IOCP.

* Use the socket object's close() function to simultaneously
cancel the outstanding operations and close the socket.

BOOST_ASIO_ENABLE_CANCELIO

Disables uses of the typeid operator in Boost.Asio. Defined
automatically if BOOST_NO_TYPEID is defined.

BOOST_ASIO_NO_TYPEID

Determines the number of buckets in Boost.Asio's internal
hash_map objects. The value should be a comma separated list
of prime numbers, in ascending order. The hash_map imple-
mentation will automatically increase the number of buckets as
the number of elements in the map increases.

Some examples:

* Defining BOOST_ASIO_HASH_MAP_BUCKETS to 1021 means
that the hash_map objects will always contain 1021 buckets,
irrespective of the number of elements in the map.

* Defining BOOST_ASIO_HASH_MAP_BUCKETS to
53,389,1543 means that the hash_map objects will initially
contain 53 buckets. The number of buckets will be increased to
389 and then 1543 as elements are added to the map.

BOOST_ASIO_HASH_MAP_BUCKETS

46

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mailing List

A mailing list specifically for Boost.Asio may be found on SourceForge.net. Newsgroup access is provided via Gmane.

Wiki

Users are encouraged to share examples, tips and FAQs on the Boost.Asio wiki, which is located at http://think-async.com/Asio/.

47

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://sourceforge.net/mail/?group_id=122478
http://dir.gmane.org/gmane.comp.lib.boost.asio.user
http://think-async.com/Asio/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Tutorial
Basic Skills

The tutorial programs in this first section introduce the fundamental concepts required to use the asio toolkit. Before plunging into
the complex world of network programming, these tutorial programs illustrate the basic skills using simple asynchronous timers.

• Timer.1 - Using a timer synchronously

• Timer.2 - Using a timer asynchronously

• Timer.3 - Binding arguments to a handler

• Timer.4 - Using a member function as a handler

• Timer.5 - Synchronising handlers in multithreaded programs

Introduction to Sockets

The tutorial programs in this section show how to use asio to develop simple client and server programs. These tutorial programs
are based around the daytime protocol, which supports both TCP and UDP.

The first three tutorial programs implement the daytime protocol using TCP.

• Daytime.1 - A synchronous TCP daytime client

• Daytime.2 - A synchronous TCP daytime server

• Daytime.3 - An asynchronous TCP daytime server

The next three tutorial programs implement the daytime protocol using UDP.

• Daytime.4 - A synchronous UDP daytime client

• Daytime.5 - A synchronous UDP daytime server

• Daytime.6 - An asynchronous UDP daytime server

The last tutorial program in this section demonstrates how asio allows the TCP and UDP servers to be easily combined into a single
program.

• Daytime.7 - A combined TCP/UDP asynchronous server

Timer.1 - Using a timer synchronously
This tutorial program introduces asio by showing how to perform a blocking wait on a timer.

We start by including the necessary header files.

All of the asio classes can be used by simply including the "asio.hpp" header file.

#include <iostream>
#include <boost/asio.hpp>

Since this example uses timers, we need to include the appropriate Boost.Date_Time header file for manipulating times.

#include <boost/date_time/posix_time/posix_time.hpp>

48

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.ietf.org/rfc/rfc867.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

All programs that use asio need to have at least one io_service object. This class provides access to I/O functionality. We declare an
object of this type first thing in the main function.

int main()
{
boost::asio::io_service io;

Next we declare an object of type boost::asio::deadline_timer. The core asio classes that provide I/O functionality (or as in this case
timer functionality) always take a reference to an io_service as their first constructor argument. The second argument to the constructor
sets the timer to expire 5 seconds from now.

boost::asio::deadline_timer t(io, boost::posix_time::seconds(5));

In this simple example we perform a blocking wait on the timer. That is, the call to deadline_timer::wait() will not return until the
timer has expired, 5 seconds after it was created (i.e. not from when the wait starts).

A deadline timer is always in one of two states: "expired" or "not expired". If the deadline_timer::wait() function is called on an expired
timer, it will return immediately.

t.wait();

Finally we print the obligatory "Hello, world!" message to show when the timer has expired.

std::cout << "Hello, world!\n";

return 0;
}

See the full source listing

Return to the tutorial index

Next: Timer.2 - Using a timer asynchronously

49

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Source listing for Timer.1

//
// timer.cpp
// ~~~~~~~~~
//
// Copyright (c) 2003-2014 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <iostream>
#include <boost/asio.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

int main()
{
boost::asio::io_service io;

boost::asio::deadline_timer t(io, boost::posix_time::seconds(5));
t.wait();

std::cout << "Hello, world!\n";

return 0;
}

Return to Timer.1 - Using a timer synchronously

Timer.2 - Using a timer asynchronously
This tutorial program demonstrates how to use asio's asynchronous callback functionality by modifying the program from tutorial
Timer.1 to perform an asynchronous wait on the timer.

#include <iostream>
#include <boost/asio.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

Using asio's asynchronous functionality means having a callback function that will be called when an asynchronous operation completes.
In this program we define a function called print to be called when the asynchronous wait finishes.

void print(const boost::system::error_code& /*e*/)
{
std::cout << "Hello, world!\n";

}

int main()
{
boost::asio::io_service io;

boost::asio::deadline_timer t(io, boost::posix_time::seconds(5));

Next, instead of doing a blocking wait as in tutorial Timer.1, we call the deadline_timer::async_wait() function to perform an asyn-
chronous wait. When calling this function we pass the print callback handler that was defined above.

t.async_wait(&print);

50

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Finally, we must call the io_service::run() member function on the io_service object.

The asio library provides a guarantee that callback handlers will only be called from threads that are currently calling io_service::run().
Therefore unless the io_service::run() function is called the callback for the asynchronous wait completion will never be invoked.

The io_service::run() function will also continue to run while there is still "work" to do. In this example, the work is the asynchronous
wait on the timer, so the call will not return until the timer has expired and the callback has completed.

It is important to remember to give the io_service some work to do before calling io_service::run(). For example, if we had omitted
the above call to deadline_timer::async_wait(), the io_service would not have had any work to do, and consequently io_service::run()
would have returned immediately.

io.run();

return 0;
}

See the full source listing

Return to the tutorial index

Previous: Timer.1 - Using a timer synchronously

Next: Timer.3 - Binding arguments to a handler

Source listing for Timer.2

//
// timer.cpp
// ~~~~~~~~~
//
// Copyright (c) 2003-2014 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <iostream>
#include <boost/asio.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

void print(const boost::system::error_code& /*e*/)
{
std::cout << "Hello, world!\n";

}

int main()
{
boost::asio::io_service io;

boost::asio::deadline_timer t(io, boost::posix_time::seconds(5));
t.async_wait(&print);

io.run();

return 0;
}

Return to Timer.2 - Using a timer asynchronously

51

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Timer.3 - Binding arguments to a handler
In this tutorial we will modify the program from tutorial Timer.2 so that the timer fires once a second. This will show how to pass
additional parameters to your handler function.

#include <iostream>
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

To implement a repeating timer using asio you need to change the timer's expiry time in your callback function, and to then start a
new asynchronous wait. Obviously this means that the callback function will need to be able to access the timer object. To this end
we add two new parameters to the print function:

• A pointer to a timer object.

• A counter so that we can stop the program when the timer fires for the sixth time.

void print(const boost::system::error_code& /*e*/,
boost::asio::deadline_timer* t, int* count)

{

As mentioned above, this tutorial program uses a counter to stop running when the timer fires for the sixth time. However you will
observe that there is no explicit call to ask the io_service to stop. Recall that in tutorial Timer.2 we learnt that the io_service::run()
function completes when there is no more "work" to do. By not starting a new asynchronous wait on the timer when count reaches
5, the io_service will run out of work and stop running.

if (*count < 5)
{
std::cout << *count << "\n";
++(*count);

Next we move the expiry time for the timer along by one second from the previous expiry time. By calculating the new expiry time
relative to the old, we can ensure that the timer does not drift away from the whole-second mark due to any delays in processing the
handler.

t->expires_at(t->expires_at() + boost::posix_time::seconds(1));

Then we start a new asynchronous wait on the timer. As you can see, the boost::bind() function is used to associate the extra para-
meters with your callback handler. The deadline_timer::async_wait() function expects a handler function (or function object) with
the signature void(const boost::system::error_code&). Binding the additional parameters converts your print function
into a function object that matches the signature correctly.

See the Boost.Bind documentation for more information on how to use boost::bind().

In this example, the boost::asio::placeholders::error argument to boost::bind() is a named placeholder for the error object passed to
the handler. When initiating the asynchronous operation, and if using boost::bind(), you must specify only the arguments that match
the handler's parameter list. In tutorial Timer.4 you will see that this placeholder may be elided if the parameter is not needed by the
callback handler.

52

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/bind/bind.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

t->async_wait(boost::bind(print,
boost::asio::placeholders::error, t, count));

}
}

int main()
{
boost::asio::io_service io;

A new count variable is added so that we can stop the program when the timer fires for the sixth time.

int count = 0;
boost::asio::deadline_timer t(io, boost::posix_time::seconds(1));

As in Step 4, when making the call to deadline_timer::async_wait() from main we bind the additional parameters needed for the
print function.

t.async_wait(boost::bind(print,
boost::asio::placeholders::error, &t, &count));

io.run();

Finally, just to prove that the count variable was being used in the print handler function, we will print out its new value.

std::cout << "Final count is " << count << "\n";

return 0;
}

See the full source listing

Return to the tutorial index

Previous: Timer.2 - Using a timer asynchronously

Next: Timer.4 - Using a member function as a handler

53

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Source listing for Timer.3

//
// timer.cpp
// ~~~~~~~~~
//
// Copyright (c) 2003-2014 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <iostream>
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

void print(const boost::system::error_code& /*e*/,
boost::asio::deadline_timer* t, int* count)

{
if (*count < 5)
{
std::cout << *count << "\n";
++(*count);

t->expires_at(t->expires_at() + boost::posix_time::seconds(1));
t->async_wait(boost::bind(print,

boost::asio::placeholders::error, t, count));
}

}

int main()
{
boost::asio::io_service io;

int count = 0;
boost::asio::deadline_timer t(io, boost::posix_time::seconds(1));
t.async_wait(boost::bind(print,

boost::asio::placeholders::error, &t, &count));

io.run();

std::cout << "Final count is " << count << "\n";

return 0;
}

Return to Timer.3 - Binding arguments to a handler

Timer.4 - Using a member function as a handler
In this tutorial we will see how to use a class member function as a callback handler. The program should execute identically to the
tutorial program from tutorial Timer.3.

#include <iostream>
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

54

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Instead of defining a free function print as the callback handler, as we did in the earlier tutorial programs, we now define a class
called printer.

class printer
{
public:

The constructor of this class will take a reference to the io_service object and use it when initialising the timer_ member. The
counter used to shut down the program is now also a member of the class.

printer(boost::asio::io_service& io)
: timer_(io, boost::posix_time::seconds(1)),
count_(0)

{

The boost::bind() function works just as well with class member functions as with free functions. Since all non-static class member
functions have an implicit this parameter, we need to bind this to the function. As in tutorial Timer.3, boost::bind() converts our
callback handler (now a member function) into a function object that can be invoked as though it has the signature void(const
boost::system::error_code&).

You will note that the boost::asio::placeholders::error placeholder is not specified here, as the print member function does not accept
an error object as a parameter.

timer_.async_wait(boost::bind(&printer::print, this));
}

In the class destructor we will print out the final value of the counter.

~printer()
{
std::cout << "Final count is " << count_ << "\n";

}

The print member function is very similar to the print function from tutorial Timer.3, except that it now operates on the class
data members instead of having the timer and counter passed in as parameters.

void print()
{
if (count_ < 5)
{
std::cout << count_ << "\n";
++count_;

timer_.expires_at(timer_.expires_at() + boost::posix_time::seconds(1));
timer_.async_wait(boost::bind(&printer::print, this));

}
}

private:
boost::asio::deadline_timer timer_;
int count_;

};

The main function is much simpler than before, as it now declares a local printer object before running the io_service as normal.

55

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int main()
{
boost::asio::io_service io;
printer p(io);
io.run();

return 0;
}

See the full source listing

Return to the tutorial index

Previous: Timer.3 - Binding arguments to a handler

Next: Timer.5 - Synchronising handlers in multithreaded programs

Source listing for Timer.4

//
// timer.cpp
// ~~~~~~~~~
//
// Copyright (c) 2003-2014 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <iostream>
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

class printer
{
public:
printer(boost::asio::io_service& io)
: timer_(io, boost::posix_time::seconds(1)),
count_(0)

{
timer_.async_wait(boost::bind(&printer::print, this));

}

~printer()
{
std::cout << "Final count is " << count_ << "\n";

}

void print()
{
if (count_ < 5)
{
std::cout << count_ << "\n";
++count_;

timer_.expires_at(timer_.expires_at() + boost::posix_time::seconds(1));
timer_.async_wait(boost::bind(&printer::print, this));

}
}

56

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

private:
boost::asio::deadline_timer timer_;
int count_;

};

int main()
{
boost::asio::io_service io;
printer p(io);
io.run();

return 0;
}

Return to Timer.4 - Using a member function as a handler

Timer.5 - Synchronising handlers in multithreaded programs
This tutorial demonstrates the use of the boost::asio::strand class to synchronise callback handlers in a multithreaded program.

The previous four tutorials avoided the issue of handler synchronisation by calling the io_service::run() function from one thread
only. As you already know, the asio library provides a guarantee that callback handlers will only be called from threads that are
currently calling io_service::run(). Consequently, calling io_service::run() from only one thread ensures that callback handlers cannot
run concurrently.

The single threaded approach is usually the best place to start when developing applications using asio. The downside is the limitations
it places on programs, particularly servers, including:

• Poor responsiveness when handlers can take a long time to complete.

• An inability to scale on multiprocessor systems.

If you find yourself running into these limitations, an alternative approach is to have a pool of threads calling io_service::run().
However, as this allows handlers to execute concurrently, we need a method of synchronisation when handlers might be accessing
a shared, thread-unsafe resource.

#include <iostream>
#include <boost/asio.hpp>
#include <boost/thread/thread.hpp>
#include <boost/bind.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

We start by defining a class called printer, similar to the class in the previous tutorial. This class will extend the previous tutorial
by running two timers in parallel.

class printer
{
public:

In addition to initialising a pair of boost::asio::deadline_timer members, the constructor initialises the strand_ member, an object
of type boost::asio::strand.

An boost::asio::strand guarantees that, for those handlers that are dispatched through it, an executing handler will be allowed to
complete before the next one is started. This is guaranteed irrespective of the number of threads that are calling io_service::run().
Of course, the handlers may still execute concurrently with other handlers that were not dispatched through an boost::asio::strand,
or were dispatched through a different boost::asio::strand object.

57

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

printer(boost::asio::io_service& io)
: strand_(io),
timer1_(io, boost::posix_time::seconds(1)),
timer2_(io, boost::posix_time::seconds(1)),
count_(0)

{

When initiating the asynchronous operations, each callback handler is "wrapped" using the boost::asio::strand object. The strand::wrap()
function returns a new handler that automatically dispatches its contained handler through the boost::asio::strand object. By wrapping
the handlers using the same boost::asio::strand, we are ensuring that they cannot execute concurrently.

timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this)));
timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this)));

}

~printer()
{
std::cout << "Final count is " << count_ << "\n";

}

In a multithreaded program, the handlers for asynchronous operations should be synchronised if they access shared resources. In
this tutorial, the shared resources used by the handlers (print1 and print2) are std::cout and the count_ data member.

void print1()
{
if (count_ < 10)
{
std::cout << "Timer 1: " << count_ << "\n";
++count_;

timer1_.expires_at(timer1_.expires_at() + boost::posix_time::seconds(1));
timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this)));

}
}

void print2()
{
if (count_ < 10)
{
std::cout << "Timer 2: " << count_ << "\n";
++count_;

timer2_.expires_at(timer2_.expires_at() + boost::posix_time::seconds(1));
timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this)));

}
}

private:
boost::asio::strand strand_;
boost::asio::deadline_timer timer1_;
boost::asio::deadline_timer timer2_;
int count_;

};

The main function now causes io_service::run() to be called from two threads: the main thread and one additional thread. This is
accomplished using an boost::thread object.

Just as it would with a call from a single thread, concurrent calls to io_service::run() will continue to execute while there is "work"
left to do. The background thread will not exit until all asynchronous operations have completed.

58

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int main()
{
boost::asio::io_service io;
printer p(io);
boost::thread t(boost::bind(&boost::asio::io_service::run, &io));
io.run();
t.join();

return 0;
}

See the full source listing

Return to the tutorial index

Previous: Timer.4 - Using a member function as a handler

Source listing for Timer.5

//
// timer.cpp
// ~~~~~~~~~
//
// Copyright (c) 2003-2014 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <iostream>
#include <boost/asio.hpp>
#include <boost/thread/thread.hpp>
#include <boost/bind.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>

class printer
{
public:
printer(boost::asio::io_service& io)
: strand_(io),
timer1_(io, boost::posix_time::seconds(1)),
timer2_(io, boost::posix_time::seconds(1)),
count_(0)

{
timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this)));
timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this)));

}

~printer()
{
std::cout << "Final count is " << count_ << "\n";

}

void print1()
{
if (count_ < 10)
{
std::cout << "Timer 1: " << count_ << "\n";
++count_;

timer1_.expires_at(timer1_.expires_at() + boost::posix_time::seconds(1));

59

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this)));
}

}

void print2()
{
if (count_ < 10)
{
std::cout << "Timer 2: " << count_ << "\n";
++count_;

timer2_.expires_at(timer2_.expires_at() + boost::posix_time::seconds(1));
timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this)));

}
}

private:
boost::asio::strand strand_;
boost::asio::deadline_timer timer1_;
boost::asio::deadline_timer timer2_;
int count_;

};

int main()
{
boost::asio::io_service io;
printer p(io);
boost::thread t(boost::bind(&boost::asio::io_service::run, &io));
io.run();
t.join();

return 0;
}

Return to Timer.5 - Synchronising handlers in multithreaded programs

Daytime.1 - A synchronous TCP daytime client
This tutorial program shows how to use asio to implement a client application with TCP.

We start by including the necessary header files.

#include <iostream>
#include <boost/array.hpp>
#include <boost/asio.hpp>

The purpose of this application is to access a daytime service, so we need the user to specify the server.

using boost::asio::ip::tcp;

int main(int argc, char* argv[])
{
try
{
if (argc != 2)
{
std::cerr << "Usage: client <host>" << std::endl;
return 1;

}

60

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

All programs that use asio need to have at least one io_service object.

boost::asio::io_service io_service;

We need to turn the server name that was specified as a parameter to the application, into a TCP endpoint. To do this we use an
ip::tcp::resolver object.

tcp::resolver resolver(io_service);

A resolver takes a query object and turns it into a list of endpoints. We construct a query using the name of the server, specified in
argv[1], and the name of the service, in this case "daytime".

tcp::resolver::query query(argv[1], "daytime");

The list of endpoints is returned using an iterator of type ip::tcp::resolver::iterator. (Note that a default constructed ip::tcp::resolv-
er::iterator object can be used as an end iterator.)

tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);

Now we create and connect the socket. The list of endpoints obtained above may contain both IPv4 and IPv6 endpoints, so we need
to try each of them until we find one that works. This keeps the client program independent of a specific IP version. The
boost::asio::connect() function does this for us automatically.

tcp::socket socket(io_service);
boost::asio::connect(socket, endpoint_iterator);

The connection is open. All we need to do now is read the response from the daytime service.

We use a boost::array to hold the received data. The boost::asio::buffer() function automatically determines the size of the array
to help prevent buffer overruns. Instead of a boost::array, we could have used a char [] or std::vector.

for (;;)
{
boost::array<char, 128> buf;
boost::system::error_code error;

size_t len = socket.read_some(boost::asio::buffer(buf), error);

When the server closes the connection, the ip::tcp::socket::read_some() function will exit with the boost::asio::error::eof error, which
is how we know to exit the loop.

if (error == boost::asio::error::eof)
break; // Connection closed cleanly by peer.

else if (error)
throw boost::system::system_error(error); // Some other error.

std::cout.write(buf.data(), len);
}

Finally, handle any exceptions that may have been thrown.

61

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;

}

See the full source listing

Return to the tutorial index

Next: Daytime.2 - A synchronous TCP daytime server

Source listing for Daytime.1

//
// client.cpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2014 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <iostream>
#include <boost/array.hpp>
#include <boost/asio.hpp>

using boost::asio::ip::tcp;

int main(int argc, char* argv[])
{
try
{
if (argc != 2)
{
std::cerr << "Usage: client <host>" << std::endl;
return 1;

}

boost::asio::io_service io_service;

tcp::resolver resolver(io_service);
tcp::resolver::query query(argv[1], "daytime");
tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);

tcp::socket socket(io_service);
boost::asio::connect(socket, endpoint_iterator);

for (;;)
{
boost::array<char, 128> buf;
boost::system::error_code error;

size_t len = socket.read_some(boost::asio::buffer(buf), error);

if (error == boost::asio::error::eof)
break; // Connection closed cleanly by peer.

else if (error)
throw boost::system::system_error(error); // Some other error.

62

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::cout.write(buf.data(), len);
}

}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;

}

return 0;
}

Return to Daytime.1 - A synchronous TCP daytime client

Daytime.2 - A synchronous TCP daytime server
This tutorial program shows how to use asio to implement a server application with TCP.

#include <ctime>
#include <iostream>
#include <string>
#include <boost/asio.hpp>

using boost::asio::ip::tcp;

We define the function make_daytime_string() to create the string to be sent back to the client. This function will be reused in
all of our daytime server applications.

std::string make_daytime_string()
{
using namespace std; // For time_t, time and ctime;
time_t now = time(0);
return ctime(&now);

}

int main()
{
try
{
boost::asio::io_service io_service;

A ip::tcp::acceptor object needs to be created to listen for new connections. It is initialised to listen on TCP port 13, for IP version
4.

tcp::acceptor acceptor(io_service, tcp::endpoint(tcp::v4(), 13));

This is an iterative server, which means that it will handle one connection at a time. Create a socket that will represent the connection
to the client, and then wait for a connection.

for (;;)
{
tcp::socket socket(io_service);
acceptor.accept(socket);

A client is accessing our service. Determine the current time and transfer this information to the client.

63

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::string message = make_daytime_string();

boost::system::error_code ignored_error;
boost::asio::write(socket, boost::asio::buffer(message), ignored_error);

}
}

Finally, handle any exceptions.

catch (std::exception& e)
{
std::cerr << e.what() << std::endl;

}

return 0;
}

See the full source listing

Return to the tutorial index

Previous: Daytime.1 - A synchronous TCP daytime client

Next: Daytime.3 - An asynchronous TCP daytime server

64

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Source listing for Daytime.2

//
// server.cpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2014 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <ctime>
#include <iostream>
#include <string>
#include <boost/asio.hpp>

using boost::asio::ip::tcp;

std::string make_daytime_string()
{
using namespace std; // For time_t, time and ctime;
time_t now = time(0);
return ctime(&now);

}

int main()
{
try
{
boost::asio::io_service io_service;

tcp::acceptor acceptor(io_service, tcp::endpoint(tcp::v4(), 13));

for (;;)
{
tcp::socket socket(io_service);
acceptor.accept(socket);

std::string message = make_daytime_string();

boost::system::error_code ignored_error;
boost::asio::write(socket, boost::asio::buffer(message), ignored_error);

}
}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;

}

return 0;
}

Return to Daytime.2 - A synchronous TCP daytime server

65

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Daytime.3 - An asynchronous TCP daytime server

The main() function

int main()
{
try
{

We need to create a server object to accept incoming client connections. The io_service object provides I/O services, such as sockets,
that the server object will use.

boost::asio::io_service io_service;
tcp_server server(io_service);

Run the io_service object so that it will perform asynchronous operations on your behalf.

io_service.run();
}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;

}

return 0;
}

The tcp_server class

class tcp_server
{
public:

The constructor initialises an acceptor to listen on TCP port 13.

tcp_server(boost::asio::io_service& io_service)
: acceptor_(io_service, tcp::endpoint(tcp::v4(), 13))

{
start_accept();

}

private:

The function start_accept() creates a socket and initiates an asynchronous accept operation to wait for a new connection.

void start_accept()
{
tcp_connection::pointer new_connection =
tcp_connection::create(acceptor_.get_io_service());

acceptor_.async_accept(new_connection->socket(),
boost::bind(&tcp_server::handle_accept, this, new_connection,
boost::asio::placeholders::error));

}

66

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The function handle_accept() is called when the asynchronous accept operation initiated by start_accept() finishes. It services
the client request, and then calls start_accept() to initiate the next accept operation.

void handle_accept(tcp_connection::pointer new_connection,
const boost::system::error_code& error)

{
if (!error)
{
new_connection->start();

}

start_accept();
}

The tcp_connection class

We will use shared_ptr and enable_shared_from_this because we want to keep the tcp_connection object alive as long
as there is an operation that refers to it.

class tcp_connection
: public boost::enable_shared_from_this<tcp_connection>

{
public:
typedef boost::shared_ptr<tcp_connection> pointer;

static pointer create(boost::asio::io_service& io_service)
{
return pointer(new tcp_connection(io_service));

}

tcp::socket& socket()
{
return socket_;

}

In the function start(), we call boost::asio::async_write() to serve the data to the client. Note that we are using
boost::asio::async_write(), rather than ip::tcp::socket::async_write_some(), to ensure that the entire block of data is sent.

void start()
{

The data to be sent is stored in the class member message_ as we need to keep the data valid until the asynchronous operation is
complete.

message_ = make_daytime_string();

When initiating the asynchronous operation, and if using boost::bind(), you must specify only the arguments that match the handler's
parameter list. In this program, both of the argument placeholders (boost::asio::placeholders::error and boost::asio::placehold-
ers::bytes_transferred) could potentially have been removed, since they are not being used in handle_write().

boost::asio::async_write(socket_, boost::asio::buffer(message_),
boost::bind(&tcp_connection::handle_write, shared_from_this(),
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));

Any further actions for this client connection are now the responsibility of handle_write().

67

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

}

private:
tcp_connection(boost::asio::io_service& io_service)
: socket_(io_service)

{
}

void handle_write(const boost::system::error_code& /*error*/,
size_t /*bytes_transferred*/)

{
}

tcp::socket socket_;
std::string message_;

};

Removing unused handler parameters

You may have noticed that the error, and bytes_transferred parameters are not used in the body of the handle_write()
function. If parameters are not needed, it is possible to remove them from the function so that it looks like:

void handle_write()
{
}

The boost::asio::async_write() call used to initiate the call can then be changed to just:

boost::asio::async_write(socket_, boost::asio::buffer(message_),
boost::bind(&tcp_connection::handle_write, shared_from_this()));

See the full source listing

Return to the tutorial index

Previous: Daytime.2 - A synchronous TCP daytime server

Next: Daytime.4 - A synchronous UDP daytime client

68

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Source listing for Daytime.3

//
// server.cpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2014 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <ctime>
#include <iostream>
#include <string>
#include <boost/bind.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/enable_shared_from_this.hpp>
#include <boost/asio.hpp>

using boost::asio::ip::tcp;

std::string make_daytime_string()
{
using namespace std; // For time_t, time and ctime;
time_t now = time(0);
return ctime(&now);

}

class tcp_connection
: public boost::enable_shared_from_this<tcp_connection>

{
public:
typedef boost::shared_ptr<tcp_connection> pointer;

static pointer create(boost::asio::io_service& io_service)
{
return pointer(new tcp_connection(io_service));

}

tcp::socket& socket()
{
return socket_;

}

void start()
{
message_ = make_daytime_string();

boost::asio::async_write(socket_, boost::asio::buffer(message_),
boost::bind(&tcp_connection::handle_write, shared_from_this(),
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));

}

private:
tcp_connection(boost::asio::io_service& io_service)
: socket_(io_service)

{
}

void handle_write(const boost::system::error_code& /*error*/,
size_t /*bytes_transferred*/)

69

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

{
}

tcp::socket socket_;
std::string message_;

};

class tcp_server
{
public:
tcp_server(boost::asio::io_service& io_service)
: acceptor_(io_service, tcp::endpoint(tcp::v4(), 13))

{
start_accept();

}

private:
void start_accept()
{
tcp_connection::pointer new_connection =
tcp_connection::create(acceptor_.get_io_service());

acceptor_.async_accept(new_connection->socket(),
boost::bind(&tcp_server::handle_accept, this, new_connection,
boost::asio::placeholders::error));

}

void handle_accept(tcp_connection::pointer new_connection,
const boost::system::error_code& error)

{
if (!error)
{
new_connection->start();

}

start_accept();
}

tcp::acceptor acceptor_;
};

int main()
{
try
{
boost::asio::io_service io_service;
tcp_server server(io_service);
io_service.run();

}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;

}

return 0;
}

Return to Daytime.3 - An asynchronous TCP daytime server

Daytime.4 - A synchronous UDP daytime client
This tutorial program shows how to use asio to implement a client application with UDP.

70

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <iostream>
#include <boost/array.hpp>
#include <boost/asio.hpp>

using boost::asio::ip::udp;

The start of the application is essentially the same as for the TCP daytime client.

int main(int argc, char* argv[])
{
try
{
if (argc != 2)
{
std::cerr << "Usage: client <host>" << std::endl;
return 1;

}

boost::asio::io_service io_service;

We use an ip::udp::resolver object to find the correct remote endpoint to use based on the host and service names. The query is re-
stricted to return only IPv4 endpoints by the ip::udp::v4() argument.

udp::resolver resolver(io_service);
udp::resolver::query query(udp::v4(), argv[1], "daytime");

The ip::udp::resolver::resolve() function is guaranteed to return at least one endpoint in the list if it does not fail. This means it is
safe to dereference the return value directly.

udp::endpoint receiver_endpoint = *resolver.resolve(query);

Since UDP is datagram-oriented, we will not be using a stream socket. Create an ip::udp::socket and initiate contact with the remote
endpoint.

udp::socket socket(io_service);
socket.open(udp::v4());

boost::array<char, 1> send_buf = {{ 0 }};
socket.send_to(boost::asio::buffer(send_buf), receiver_endpoint);

Now we need to be ready to accept whatever the server sends back to us. The endpoint on our side that receives the server's response
will be initialised by ip::udp::socket::receive_from().

boost::array<char, 128> recv_buf;
udp::endpoint sender_endpoint;
size_t len = socket.receive_from(

boost::asio::buffer(recv_buf), sender_endpoint);

std::cout.write(recv_buf.data(), len);
}

Finally, handle any exceptions that may have been thrown.

71

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

catch (std::exception& e)
{
std::cerr << e.what() << std::endl;

}

return 0;
}

See the full source listing

Return to the tutorial index

Previous: Daytime.3 - An asynchronous TCP daytime server

Next: Daytime.5 - A synchronous UDP daytime server

Source listing for Daytime.4

//
// client.cpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2014 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <iostream>
#include <boost/array.hpp>
#include <boost/asio.hpp>

using boost::asio::ip::udp;

int main(int argc, char* argv[])
{
try
{
if (argc != 2)
{
std::cerr << "Usage: client <host>" << std::endl;
return 1;

}

boost::asio::io_service io_service;

udp::resolver resolver(io_service);
udp::resolver::query query(udp::v4(), argv[1], "daytime");
udp::endpoint receiver_endpoint = *resolver.resolve(query);

udp::socket socket(io_service);
socket.open(udp::v4());

boost::array<char, 1> send_buf = {{ 0 }};
socket.send_to(boost::asio::buffer(send_buf), receiver_endpoint);

boost::array<char, 128> recv_buf;
udp::endpoint sender_endpoint;
size_t len = socket.receive_from(

boost::asio::buffer(recv_buf), sender_endpoint);

72

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::cout.write(recv_buf.data(), len);
}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;

}

return 0;
}

Return to Daytime.4 - A synchronous UDP daytime client

Daytime.5 - A synchronous UDP daytime server
This tutorial program shows how to use asio to implement a server application with UDP.

int main()
{
try
{
boost::asio::io_service io_service;

Create an ip::udp::socket object to receive requests on UDP port 13.

udp::socket socket(io_service, udp::endpoint(udp::v4(), 13));

Wait for a client to initiate contact with us. The remote_endpoint object will be populated by ip::udp::socket::receive_from().

for (;;)
{
boost::array<char, 1> recv_buf;
udp::endpoint remote_endpoint;
boost::system::error_code error;
socket.receive_from(boost::asio::buffer(recv_buf),

remote_endpoint, 0, error);

if (error && error != boost::asio::error::message_size)
throw boost::system::system_error(error);

Determine what we are going to send back to the client.

std::string message = make_daytime_string();

Send the response to the remote_endpoint.

boost::system::error_code ignored_error;
socket.send_to(boost::asio::buffer(message),

remote_endpoint, 0, ignored_error);
}

}

Finally, handle any exceptions.

73

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

catch (std::exception& e)
{
std::cerr << e.what() << std::endl;

}

return 0;
}

See the full source listing

Return to the tutorial index

Previous: Daytime.4 - A synchronous UDP daytime client

Next: Daytime.6 - An asynchronous UDP daytime server

Source listing for Daytime.5

//
// server.cpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2014 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <ctime>
#include <iostream>
#include <string>
#include <boost/array.hpp>
#include <boost/asio.hpp>

using boost::asio::ip::udp;

std::string make_daytime_string()
{
using namespace std; // For time_t, time and ctime;
time_t now = time(0);
return ctime(&now);

}

int main()
{
try
{
boost::asio::io_service io_service;

udp::socket socket(io_service, udp::endpoint(udp::v4(), 13));

for (;;)
{
boost::array<char, 1> recv_buf;
udp::endpoint remote_endpoint;
boost::system::error_code error;
socket.receive_from(boost::asio::buffer(recv_buf),

remote_endpoint, 0, error);

if (error && error != boost::asio::error::message_size)
throw boost::system::system_error(error);

74

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::string message = make_daytime_string();

boost::system::error_code ignored_error;
socket.send_to(boost::asio::buffer(message),

remote_endpoint, 0, ignored_error);
}

}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;

}

return 0;
}

Return to Daytime.5 - A synchronous UDP daytime server

Daytime.6 - An asynchronous UDP daytime server

The main() function

int main()
{
try
{

Create a server object to accept incoming client requests, and run the io_service object.

boost::asio::io_service io_service;
udp_server server(io_service);
io_service.run();

}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;

}

return 0;
}

The udp_server class

class udp_server
{
public:

The constructor initialises a socket to listen on UDP port 13.

udp_server(boost::asio::io_service& io_service)
: socket_(io_service, udp::endpoint(udp::v4(), 13))

{
start_receive();

}

private:
void start_receive()
{

75

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The function ip::udp::socket::async_receive_from() will cause the application to listen in the background for a new request. When
such a request is received, the io_service object will invoke the handle_receive() function with two arguments: a value of type
boost::system::error_code indicating whether the operation succeeded or failed, and a size_t value bytes_transferred specifying
the number of bytes received.

socket_.async_receive_from(
boost::asio::buffer(recv_buffer_), remote_endpoint_,
boost::bind(&udp_server::handle_receive, this,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));

}

The function handle_receive() will service the client request.

void handle_receive(const boost::system::error_code& error,
std::size_t /*bytes_transferred*/)

{

The error parameter contains the result of the asynchronous operation. Since we only provide the 1-byte recv_buffer_ to contain
the client's request, the io_service object would return an error if the client sent anything larger. We can ignore such an error if it
comes up.

if (!error || error == boost::asio::error::message_size)
{

Determine what we are going to send.

boost::shared_ptr<std::string> message(
new std::string(make_daytime_string()));

We now call ip::udp::socket::async_send_to() to serve the data to the client.

socket_.async_send_to(boost::asio::buffer(*message), remote_endpoint_,
boost::bind(&udp_server::handle_send, this, message,

boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));

When initiating the asynchronous operation, and if using boost::bind(), you must specify only the arguments that match the handler's
parameter list. In this program, both of the argument placeholders (boost::asio::placeholders::error and boost::asio::placehold-
ers::bytes_transferred) could potentially have been removed.

Start listening for the next client request.

start_receive();

Any further actions for this client request are now the responsibility of handle_send().

}
}

The function handle_send() is invoked after the service request has been completed.

76

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handle_send(boost::shared_ptr<std::string> /*message*/,
const boost::system::error_code& /*error*/,
std::size_t /*bytes_transferred*/)

{
}

udp::socket socket_;
udp::endpoint remote_endpoint_;
boost::array<char, 1> recv_buffer_;

};

See the full source listing

Return to the tutorial index

Previous: Daytime.5 - A synchronous UDP daytime server

Next: Daytime.7 - A combined TCP/UDP asynchronous server

Source listing for Daytime.6

//
// server.cpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2014 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <ctime>
#include <iostream>
#include <string>
#include <boost/array.hpp>
#include <boost/bind.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/asio.hpp>

using boost::asio::ip::udp;

std::string make_daytime_string()
{
using namespace std; // For time_t, time and ctime;
time_t now = time(0);
return ctime(&now);

}

class udp_server
{
public:
udp_server(boost::asio::io_service& io_service)
: socket_(io_service, udp::endpoint(udp::v4(), 13))

{
start_receive();

}

private:
void start_receive()
{
socket_.async_receive_from(

77

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::buffer(recv_buffer_), remote_endpoint_,
boost::bind(&udp_server::handle_receive, this,
boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));

}

void handle_receive(const boost::system::error_code& error,
std::size_t /*bytes_transferred*/)

{
if (!error || error == boost::asio::error::message_size)
{
boost::shared_ptr<std::string> message(

new std::string(make_daytime_string()));

socket_.async_send_to(boost::asio::buffer(*message), remote_endpoint_,
boost::bind(&udp_server::handle_send, this, message,

boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));

start_receive();
}

}

void handle_send(boost::shared_ptr<std::string> /*message*/,
const boost::system::error_code& /*error*/,
std::size_t /*bytes_transferred*/)

{
}

udp::socket socket_;
udp::endpoint remote_endpoint_;
boost::array<char, 1> recv_buffer_;

};

int main()
{
try
{
boost::asio::io_service io_service;
udp_server server(io_service);
io_service.run();

}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;

}

return 0;
}

Return to Daytime.6 - An asynchronous UDP daytime server

Daytime.7 - A combined TCP/UDP asynchronous server
This tutorial program shows how to combine the two asynchronous servers that we have just written, into a single server application.

78

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The main() function

int main()
{
try
{
boost::asio::io_service io_service;

We will begin by creating a server object to accept a TCP client connection.

tcp_server server1(io_service);

We also need a server object to accept a UDP client request.

udp_server server2(io_service);

We have created two lots of work for the io_service object to do.

io_service.run();
}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;

}

return 0;
}

The tcp_connection and tcp_server classes

The following two classes are taken from Daytime.3 .

79

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class tcp_connection
: public boost::enable_shared_from_this<tcp_connection>

{
public:
typedef boost::shared_ptr<tcp_connection> pointer;

static pointer create(boost::asio::io_service& io_service)
{
return pointer(new tcp_connection(io_service));

}

tcp::socket& socket()
{
return socket_;

}

void start()
{
message_ = make_daytime_string();

boost::asio::async_write(socket_, boost::asio::buffer(message_),
boost::bind(&tcp_connection::handle_write, shared_from_this()));

}

private:
tcp_connection(boost::asio::io_service& io_service)
: socket_(io_service)

{
}

void handle_write()
{
}

tcp::socket socket_;
std::string message_;

};

class tcp_server
{
public:
tcp_server(boost::asio::io_service& io_service)
: acceptor_(io_service, tcp::endpoint(tcp::v4(), 13))

{
start_accept();

}

private:
void start_accept()
{
tcp_connection::pointer new_connection =
tcp_connection::create(acceptor_.get_io_service());

acceptor_.async_accept(new_connection->socket(),
boost::bind(&tcp_server::handle_accept, this, new_connection,
boost::asio::placeholders::error));

}

void handle_accept(tcp_connection::pointer new_connection,
const boost::system::error_code& error)

{
if (!error)
{

80

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

new_connection->start();
}

start_accept();
}

tcp::acceptor acceptor_;
};

The udp_server class

Similarly, this next class is taken from the previous tutorial step .

class udp_server
{
public:
udp_server(boost::asio::io_service& io_service)
: socket_(io_service, udp::endpoint(udp::v4(), 13))

{
start_receive();

}

private:
void start_receive()
{
socket_.async_receive_from(

boost::asio::buffer(recv_buffer_), remote_endpoint_,
boost::bind(&udp_server::handle_receive, this,
boost::asio::placeholders::error));

}

void handle_receive(const boost::system::error_code& error)
{
if (!error || error == boost::asio::error::message_size)
{
boost::shared_ptr<std::string> message(

new std::string(make_daytime_string()));

socket_.async_send_to(boost::asio::buffer(*message), remote_endpoint_,
boost::bind(&udp_server::handle_send, this, message));

start_receive();
}

}

void handle_send(boost::shared_ptr<std::string> /*message*/)
{
}

udp::socket socket_;
udp::endpoint remote_endpoint_;
boost::array<char, 1> recv_buffer_;

};

See the full source listing

Return to the tutorial index

Previous: Daytime.6 - An asynchronous UDP daytime server

81

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Source listing for Daytime.7

//
// server.cpp
// ~~~~~~~~~~
//
// Copyright (c) 2003-2014 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//

#include <ctime>
#include <iostream>
#include <string>
#include <boost/array.hpp>
#include <boost/bind.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/enable_shared_from_this.hpp>
#include <boost/asio.hpp>

using boost::asio::ip::tcp;
using boost::asio::ip::udp;

std::string make_daytime_string()
{
using namespace std; // For time_t, time and ctime;
time_t now = time(0);
return ctime(&now);

}

class tcp_connection
: public boost::enable_shared_from_this<tcp_connection>

{
public:
typedef boost::shared_ptr<tcp_connection> pointer;

static pointer create(boost::asio::io_service& io_service)
{
return pointer(new tcp_connection(io_service));

}

tcp::socket& socket()
{
return socket_;

}

void start()
{
message_ = make_daytime_string();

boost::asio::async_write(socket_, boost::asio::buffer(message_),
boost::bind(&tcp_connection::handle_write, shared_from_this()));

}

private:
tcp_connection(boost::asio::io_service& io_service)
: socket_(io_service)

{
}

void handle_write()
{

82

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

}

tcp::socket socket_;
std::string message_;

};

class tcp_server
{
public:
tcp_server(boost::asio::io_service& io_service)
: acceptor_(io_service, tcp::endpoint(tcp::v4(), 13))

{
start_accept();

}

private:
void start_accept()
{
tcp_connection::pointer new_connection =
tcp_connection::create(acceptor_.get_io_service());

acceptor_.async_accept(new_connection->socket(),
boost::bind(&tcp_server::handle_accept, this, new_connection,
boost::asio::placeholders::error));

}

void handle_accept(tcp_connection::pointer new_connection,
const boost::system::error_code& error)

{
if (!error)
{
new_connection->start();

}

start_accept();
}

tcp::acceptor acceptor_;
};

class udp_server
{
public:
udp_server(boost::asio::io_service& io_service)
: socket_(io_service, udp::endpoint(udp::v4(), 13))

{
start_receive();

}

private:
void start_receive()
{
socket_.async_receive_from(

boost::asio::buffer(recv_buffer_), remote_endpoint_,
boost::bind(&udp_server::handle_receive, this,
boost::asio::placeholders::error));

}

void handle_receive(const boost::system::error_code& error)
{
if (!error || error == boost::asio::error::message_size)
{
boost::shared_ptr<std::string> message(

83

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

new std::string(make_daytime_string()));

socket_.async_send_to(boost::asio::buffer(*message), remote_endpoint_,
boost::bind(&udp_server::handle_send, this, message));

start_receive();
}

}

void handle_send(boost::shared_ptr<std::string> /*message*/)
{
}

udp::socket socket_;
udp::endpoint remote_endpoint_;
boost::array<char, 1> recv_buffer_;

};

int main()
{
try
{
boost::asio::io_service io_service;
tcp_server server1(io_service);
udp_server server2(io_service);
io_service.run();

}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;

}

return 0;
}

Return to Daytime.7 - A combined TCP/UDP asynchronous server

84

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples
• C++03 Examples: Illustrates the use of Boost.Asio using only C++03 language and library features. Where necessary, the examples

make use of selected Boost C++ libraries.

• C++11 Examples: Contains a limited set of the C++03 Boost.Asio examples, updated to use only C++11 library and language
facilities. These examples do not make direct use of Boost C++ libraries.

C++03 Examples

Allocation

This example shows how to customise the allocation of memory associated with asynchronous operations.

• boost_asio/example/cpp03/allocation/server.cpp

Buffers

This example demonstrates how to create reference counted buffers that can be used with socket read and write operations.

• boost_asio/example/cpp03/buffers/reference_counted.cpp

Chat

This example implements a chat server and client. The programs use a custom protocol with a fixed length message header and
variable length message body.

• boost_asio/example/cpp03/chat/chat_message.hpp

• boost_asio/example/cpp03/chat/chat_client.cpp

• boost_asio/example/cpp03/chat/chat_server.cpp

The following POSIX-specific chat client demonstrates how to use the posix::stream_descriptor class to perform console input and
output.

• boost_asio/example/cpp03/chat/posix_chat_client.cpp

Echo

A collection of simple clients and servers, showing the use of both synchronous and asynchronous operations.

• boost_asio/example/cpp03/echo/async_tcp_echo_server.cpp

• boost_asio/example/cpp03/echo/async_udp_echo_server.cpp

• boost_asio/example/cpp03/echo/blocking_tcp_echo_client.cpp

• boost_asio/example/cpp03/echo/blocking_tcp_echo_server.cpp

• boost_asio/example/cpp03/echo/blocking_udp_echo_client.cpp

• boost_asio/example/cpp03/echo/blocking_udp_echo_server.cpp

Fork

These POSIX-specific examples show how to use Boost.Asio in conjunction with the fork() system call. The first example illustrates
the steps required to start a daemon process:

85

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/allocation/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/buffers/reference_counted.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/chat/chat_message.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/chat/chat_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/chat/chat_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/chat/posix_chat_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/echo/async_tcp_echo_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/echo/async_udp_echo_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/echo/blocking_tcp_echo_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/echo/blocking_tcp_echo_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/echo/blocking_udp_echo_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/echo/blocking_udp_echo_server.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• boost_asio/example/cpp03/fork/daemon.cpp

The second example demonstrates how it is possible to fork a process from within a completion handler.

• boost_asio/example/cpp03/fork/process_per_connection.cpp

HTTP Client

Example programs implementing simple HTTP 1.0 clients. These examples show how to use the read_until and async_read_until
functions.

• boost_asio/example/cpp03/http/client/sync_client.cpp

• boost_asio/example/cpp03/http/client/async_client.cpp

HTTP Server

This example illustrates the use of asio in a simple single-threaded server implementation of HTTP 1.0. It demonstrates how to perform
a clean shutdown by cancelling all outstanding asynchronous operations.

• boost_asio/example/cpp03/http/server/connection.cpp

• boost_asio/example/cpp03/http/server/connection.hpp

• boost_asio/example/cpp03/http/server/connection_manager.cpp

• boost_asio/example/cpp03/http/server/connection_manager.hpp

• boost_asio/example/cpp03/http/server/header.hpp

• boost_asio/example/cpp03/http/server/main.cpp

• boost_asio/example/cpp03/http/server/mime_types.cpp

• boost_asio/example/cpp03/http/server/mime_types.hpp

• boost_asio/example/cpp03/http/server/reply.cpp

• boost_asio/example/cpp03/http/server/reply.hpp

• boost_asio/example/cpp03/http/server/request.hpp

• boost_asio/example/cpp03/http/server/request_handler.cpp

• boost_asio/example/cpp03/http/server/request_handler.hpp

• boost_asio/example/cpp03/http/server/request_parser.cpp

• boost_asio/example/cpp03/http/server/request_parser.hpp

• boost_asio/example/cpp03/http/server/server.cpp

• boost_asio/example/cpp03/http/server/server.hpp

HTTP Server 2

An HTTP server using an io_service-per-CPU design.

• boost_asio/example/cpp03/http/server2/connection.cpp

• boost_asio/example/cpp03/http/server2/connection.hpp

86

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/fork/daemon.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/fork/process_per_connection.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/client/sync_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/client/async_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/connection.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/connection.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/connection_manager.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/connection_manager.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/header.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/main.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/mime_types.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/mime_types.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/reply.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/reply.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/request.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/request_handler.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/request_handler.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/request_parser.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/request_parser.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/server.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/connection.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/connection.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• boost_asio/example/cpp03/http/server2/header.hpp

• boost_asio/example/cpp03/http/server2/io_service_pool.cpp

• boost_asio/example/cpp03/http/server2/io_service_pool.hpp

• boost_asio/example/cpp03/http/server2/main.cpp

• boost_asio/example/cpp03/http/server2/mime_types.cpp

• boost_asio/example/cpp03/http/server2/mime_types.hpp

• boost_asio/example/cpp03/http/server2/reply.cpp

• boost_asio/example/cpp03/http/server2/reply.hpp

• boost_asio/example/cpp03/http/server2/request.hpp

• boost_asio/example/cpp03/http/server2/request_handler.cpp

• boost_asio/example/cpp03/http/server2/request_handler.hpp

• boost_asio/example/cpp03/http/server2/request_parser.cpp

• boost_asio/example/cpp03/http/server2/request_parser.hpp

• boost_asio/example/cpp03/http/server2/server.cpp

• boost_asio/example/cpp03/http/server2/server.hpp

HTTP Server 3

An HTTP server using a single io_service and a thread pool calling io_service::run().

• boost_asio/example/cpp03/http/server3/connection.cpp

• boost_asio/example/cpp03/http/server3/connection.hpp

• boost_asio/example/cpp03/http/server3/header.hpp

• boost_asio/example/cpp03/http/server3/main.cpp

• boost_asio/example/cpp03/http/server3/mime_types.cpp

• boost_asio/example/cpp03/http/server3/mime_types.hpp

• boost_asio/example/cpp03/http/server3/reply.cpp

• boost_asio/example/cpp03/http/server3/reply.hpp

• boost_asio/example/cpp03/http/server3/request.hpp

• boost_asio/example/cpp03/http/server3/request_handler.cpp

• boost_asio/example/cpp03/http/server3/request_handler.hpp

• boost_asio/example/cpp03/http/server3/request_parser.cpp

• boost_asio/example/cpp03/http/server3/request_parser.hpp

• boost_asio/example/cpp03/http/server3/server.cpp

• boost_asio/example/cpp03/http/server3/server.hpp

87

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/header.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/io_service_pool.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/io_service_pool.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/main.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/mime_types.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/mime_types.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/reply.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/reply.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/request.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/request_handler.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/request_handler.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/request_parser.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/request_parser.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/server.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/connection.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/connection.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/header.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/main.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/mime_types.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/mime_types.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/reply.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/reply.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/request.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/request_handler.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/request_handler.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/request_parser.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/request_parser.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/server.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

HTTP Server 4

A single-threaded HTTP server implemented using stackless coroutines.

• boost_asio/example/cpp03/http/server4/file_handler.cpp

• boost_asio/example/cpp03/http/server4/file_handler.hpp

• boost_asio/example/cpp03/http/server4/header.hpp

• boost_asio/example/cpp03/http/server4/main.cpp

• boost_asio/example/cpp03/http/server4/mime_types.cpp

• boost_asio/example/cpp03/http/server4/mime_types.hpp

• boost_asio/example/cpp03/http/server4/reply.cpp

• boost_asio/example/cpp03/http/server4/reply.hpp

• boost_asio/example/cpp03/http/server4/request.hpp

• boost_asio/example/cpp03/http/server4/request_parser.cpp

• boost_asio/example/cpp03/http/server4/request_parser.hpp

• boost_asio/example/cpp03/http/server4/server.cpp

• boost_asio/example/cpp03/http/server4/server.hpp

ICMP

This example shows how to use raw sockets with ICMP to ping a remote host.

• boost_asio/example/cpp03/icmp/ping.cpp

• boost_asio/example/cpp03/icmp/ipv4_header.hpp

• boost_asio/example/cpp03/icmp/icmp_header.hpp

Invocation

This example shows how to customise handler invocation. Completion handlers are added to a priority queue rather than executed
immediately.

• boost_asio/example/cpp03/invocation/prioritised_handlers.cpp

Iostreams

Two examples showing how to use ip::tcp::iostream.

• boost_asio/example/cpp03/iostreams/daytime_client.cpp

• boost_asio/example/cpp03/iostreams/daytime_server.cpp

• boost_asio/example/cpp03/iostreams/http_client.cpp

Multicast

An example showing the use of multicast to transmit packets to a group of subscribers.

• boost_asio/example/cpp03/multicast/receiver.cpp

88

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/file_handler.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/file_handler.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/header.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/main.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/mime_types.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/mime_types.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/reply.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/reply.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/request.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/request_parser.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/request_parser.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/server.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/icmp/ping.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/icmp/ipv4_header.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/icmp/icmp_header.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/invocation/prioritised_handlers.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/iostreams/daytime_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/iostreams/daytime_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/iostreams/http_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/multicast/receiver.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• boost_asio/example/cpp03/multicast/sender.cpp

Serialization

This example shows how Boost.Serialization can be used with asio to encode and decode structures for transmission over a socket.

• boost_asio/example/cpp03/serialization/client.cpp

• boost_asio/example/cpp03/serialization/connection.hpp

• boost_asio/example/cpp03/serialization/server.cpp

• boost_asio/example/cpp03/serialization/stock.hpp

Services

This example demonstrates how to integrate custom functionality (in this case, for logging) into asio's io_service, and how to use a
custom service with basic_stream_socket<>.

• boost_asio/example/cpp03/services/basic_logger.hpp

• boost_asio/example/cpp03/services/daytime_client.cpp

• boost_asio/example/cpp03/services/logger.hpp

• boost_asio/example/cpp03/services/logger_service.cpp

• boost_asio/example/cpp03/services/logger_service.hpp

• boost_asio/example/cpp03/services/stream_socket_service.hpp

SOCKS 4

Example client program implementing the SOCKS 4 protocol for communication via a proxy.

• boost_asio/example/cpp03/socks4/sync_client.cpp

• boost_asio/example/cpp03/socks4/socks4.hpp

SSL

Example client and server programs showing the use of the ssl::stream<> template with asynchronous operations.

• boost_asio/example/cpp03/ssl/client.cpp

• boost_asio/example/cpp03/ssl/server.cpp

Timeouts

A collection of examples showing how to cancel long running asynchronous operations after a period of time.

• boost_asio/example/cpp03/timeouts/async_tcp_client.cpp

• boost_asio/example/cpp03/timeouts/blocking_tcp_client.cpp

• boost_asio/example/cpp03/timeouts/blocking_udp_client.cpp

• boost_asio/example/cpp03/timeouts/server.cpp

89

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/multicast/sender.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/serialization/client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/serialization/connection.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/serialization/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/serialization/stock.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/services/basic_logger.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/services/daytime_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/services/logger.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/services/logger_service.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/services/logger_service.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/services/stream_socket_service.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/socks4/sync_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/socks4/socks4.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/ssl/client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/ssl/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/timeouts/async_tcp_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/timeouts/blocking_tcp_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/timeouts/blocking_udp_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/timeouts/server.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Timers

Examples showing how to customise deadline_timer using different time types.

• boost_asio/example/cpp03/timers/tick_count_timer.cpp

• boost_asio/example/cpp03/timers/time_t_timer.cpp

Porthopper

Example illustrating mixed synchronous and asynchronous operations, and how to use Boost.Lambda with Boost.Asio.

• boost_asio/example/cpp03/porthopper/protocol.hpp

• boost_asio/example/cpp03/porthopper/client.cpp

• boost_asio/example/cpp03/porthopper/server.cpp

Nonblocking

Example demonstrating reactor-style operations for integrating a third-party library that wants to perform the I/O operations itself.

• boost_asio/example/cpp03/nonblocking/third_party_lib.cpp

Spawn

Example of using the boost::asio::spawn() function, a wrapper around the Boost.Coroutine library, to implement a chain of asyn-
chronous operations using stackful coroutines.

• boost_asio/example/cpp03/spawn/echo_server.cpp

UNIX Domain Sockets

Examples showing how to use UNIX domain (local) sockets.

• boost_asio/example/cpp03/local/connect_pair.cpp

• boost_asio/example/cpp03/local/stream_server.cpp

• boost_asio/example/cpp03/local/stream_client.cpp

Windows

An example showing how to use the Windows-specific function TransmitFile with Boost.Asio.

• boost_asio/example/cpp03/windows/transmit_file.cpp

C++11 Examples

Allocation

This example shows how to customise the allocation of memory associated with asynchronous operations.

• boost_asio/example/cpp11/allocation/server.cpp

Buffers

This example demonstrates how to create reference counted buffers that can be used with socket read and write operations.

• boost_asio/example/cpp11/buffers/reference_counted.cpp

90

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/timers/tick_count_timer.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/timers/time_t_timer.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/porthopper/protocol.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/porthopper/client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/porthopper/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/nonblocking/third_party_lib.cpp
http://www.boost.org/doc/libs/release/libs/coroutine/index.html
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/spawn/echo_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/local/connect_pair.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/local/stream_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/local/stream_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/windows/transmit_file.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/allocation/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/buffers/reference_counted.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Chat

This example implements a chat server and client. The programs use a custom protocol with a fixed length message header and
variable length message body.

• boost_asio/example/cpp11/chat/chat_message.hpp

• boost_asio/example/cpp11/chat/chat_client.cpp

• boost_asio/example/cpp11/chat/chat_server.cpp

Echo

A collection of simple clients and servers, showing the use of both synchronous and asynchronous operations.

• boost_asio/example/cpp11/echo/async_tcp_echo_server.cpp

• boost_asio/example/cpp11/echo/async_udp_echo_server.cpp

• boost_asio/example/cpp11/echo/blocking_tcp_echo_client.cpp

• boost_asio/example/cpp11/echo/blocking_tcp_echo_server.cpp

• boost_asio/example/cpp11/echo/blocking_udp_echo_client.cpp

• boost_asio/example/cpp11/echo/blocking_udp_echo_server.cpp

Futures

This example demonstrates how to use std::future in conjunction with Boost.Asio's asynchronous operations.

• boost_asio/example/cpp11/futures/daytime_client.cpp

HTTP Server

This example illustrates the use of asio in a simple single-threaded server implementation of HTTP 1.0. It demonstrates how to perform
a clean shutdown by cancelling all outstanding asynchronous operations.

• boost_asio/example/cpp11/http/server/connection.cpp

• boost_asio/example/cpp11/http/server/connection.hpp

• boost_asio/example/cpp11/http/server/connection_manager.cpp

• boost_asio/example/cpp11/http/server/connection_manager.hpp

• boost_asio/example/cpp11/http/server/header.hpp

• boost_asio/example/cpp11/http/server/main.cpp

• boost_asio/example/cpp11/http/server/mime_types.cpp

• boost_asio/example/cpp11/http/server/mime_types.hpp

• boost_asio/example/cpp11/http/server/reply.cpp

• boost_asio/example/cpp11/http/server/reply.hpp

• boost_asio/example/cpp11/http/server/request.hpp

• boost_asio/example/cpp11/http/server/request_handler.cpp

91

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/chat/chat_message.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/chat/chat_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/chat/chat_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/echo/async_tcp_echo_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/echo/async_udp_echo_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/echo/blocking_tcp_echo_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/echo/blocking_tcp_echo_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/echo/blocking_udp_echo_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/echo/blocking_udp_echo_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/futures/daytime_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/connection.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/connection.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/connection_manager.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/connection_manager.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/header.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/main.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/mime_types.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/mime_types.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/reply.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/reply.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/request.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/request_handler.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• boost_asio/example/cpp11/http/server/request_handler.hpp

• boost_asio/example/cpp11/http/server/request_parser.cpp

• boost_asio/example/cpp11/http/server/request_parser.hpp

• boost_asio/example/cpp11/http/server/server.cpp

• boost_asio/example/cpp11/http/server/server.hpp

Spawn

Example of using the boost::asio::spawn() function, a wrapper around the Boost.Coroutine library, to implement a chain of asyn-
chronous operations using stackful coroutines.

• boost_asio/example/cpp11/spawn/echo_server.cpp

92

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/request_handler.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/request_parser.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/request_parser.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/http/server/server.hpp
http://www.boost.org/doc/libs/release/libs/coroutine/index.html
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/spawn/echo_server.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference

93

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Core

Type Require-
ments

Special ValuesFree FunctionsClasses

use_futureadd_serviceconst_buffer

Boost.Bind Place-
holders

asio_handler_allocateconst_buffers_1 Asynchronous operations
asio_handler_deallocatecoroutine AsyncRandomAccessRead-

Deviceasio_handler_invokeinvalid_service_owner
asio_handler_is_continuationio_service AsyncRandomAccessWrite-

Deviceasync_readio_service::id
placeholders::bytes_trans-
ferred

async_read_atio_service::service AsyncReadStream
async_read_untilio_service::strand AsyncWriteStreamplaceholders::errorasync_writeio_service::work CompletionHandlerplaceholders::iteratorasync_write_atmutable_buffer ConstBufferSequenceplaceholders::signal_numberbuffermutable_buffers_1 ConvertibleToConstBuffer

Error Codesbuffer_castnull_buffers ConvertibleToMutableBuffer
buffer_copyservice_already_exists Handler
buffer_sizestreambuf IoObjectServiceerror::basic_errorsbuffers_beginuse_future_t MutableBufferSequenceerror::netdb_errorsbuffers_endyield_context ReadHandlererror::addrinfo_errors

Class Templates
has_service Serviceerror::misc_errorsread SyncRandomAccessRead-

DeviceType Traits
read_at
read_untilbasic_io_object SyncRandomAccessWrite-

Devicespawnbasic_streambuf
async_resulttransfer_allbasic_yield_context SyncReadStreamhandler_typetransfer_at_leastbuffered_read_stream SyncWriteStreamis_match_conditiontransfer_exactlybuffered_stream WriteHandleris_read_buffereduse_servicebuffered_write_stream
is_write_bufferedwritebuffers_iterator

write_at

94

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Networking

I/O Control Com-
mands

Socket OptionsFree FunctionsClasses

ip::multicast::enable_loopbackasync_connectgeneric::datagram_protocol
ip::multicast::hopsconnectgener ic : :da tagram_pro-

tocol::endpoint
socket_base::bytes_readable

ip::multicast::join_groupip::host_name socket_base::non_blocking_io

Class Templates
ip::multicast::leave_groupgener ic : :da tagram_pro-

tocol::socket Type Require-
ments

ip::multicast::outbound_inter-
facegeneric::raw_protocol
ip::tcp::no_delaygeneric::raw_protocol::end-

point
basic_datagram_socket

ip::unicast::hopsbasic_raw_socket
AcceptHandlerip::v6_onlygeneric::raw_protocol::socket basic_seq_packet_socket
ComposedConnectHandlersocket_base::broadcastgeneric::seq_packet_protocol basic_socket
ConnectHandlersocket_base::debuggeneric::seq_packet_pro-

tocol::endpoint
basic_socket_acceptor

DatagramSocketServicesocket_base::do_not_routebasic_socket_iostream
Endpointsocket_base::enable_connec-

tion_aborted
generic::seq_packet_pro-
tocol::socket

basic_socket_streambuf
GettableSocketOptionbasic_stream_socket
InternetProtocolsocket_base::keep_alivegeneric::stream_protocol generic::basic_endpoint
IoControlCommandsocket_base::lingergeneric::stream_protocol::end-

point
ip::basic_endpoint

Protocolsocket_base::receive_buf-
fer_size

ip::basic_resolver
RawSocketServiceg e n e r i c : : s t r e a m _ p r o -

tocol::iostream
ip::basic_resolver_entry

ResolveHandlersocket_base::receive_low_wa-
termark

ip::basic_resolver_iterator
ResolverServicegeneric::stream_protocol::sock-

et
ip::basic_resolver_query

SeqPacketSocketServicesocket_base::reuse_address

Services SettableSocketOptionsocket_base::send_buffer_sizeip::address
SocketAcceptorServicesocket_base::send_low_water-

mark
ip::address_v4

SocketServiceip::address_v6 datagram_socket_service
StreamSocketServiceip::icmp ip::resolver_service

ip::icmp::endpoint raw_socket_service
ip::icmp::resolver seq_packet_socket_service
ip::icmp::socket socket_acceptor_service
ip::resolver_query_base stream_socket_service
ip::tcp
ip::tcp::acceptor
ip::tcp::endpoint
ip::tcp::iostream
ip::tcp::resolver
ip::tcp::socket
ip::udp
ip::udp::endpoint
ip::udp::resolver
ip::udp::socket
socket_base

95

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Signal Hand-
ling

Serial PortsSSLTimers

ClassesClassesClassesClasses

signal_setserial_portssl::contextdeadline_timer

Class Templates
serial_port_basessl::context_basehigh_resolution_timer

Class Templates
ssl::rfc2818_verificationsteady_timer
ssl::stream_basesystem_timer

Class Templates
ssl::verify_context basic_signal_set

Class Templates Services
basic_serial_port

Servicesbasic_deadline_timer
ssl::streambasic_waitable_timer signal_set_service

Type Require-
ments

time_traits

Type Require-
ments

serial_port_service
wait_traits

Serial Port Op-
tionsServices

BufferedHandshakeHandler SignalSetServicedeadline_timer_service HandshakeHandler serial_port_base::baud_rate SignalHandlerwaitable_timer_service ShutdownHandler serial_port_base::flow_control

Type Require-
ments

serial_port_base::parity
serial_port_base::stop_bits
serial_port_base::charac-
ter_size

TimerService

Type Require-
ments

TimeTraits
WaitableTimerService
WaitHandler
WaitTraits

GettableSerialPortOption
SerialPortService
SettableSerialPortOption

96

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Windows-specificPOSIX-specific

ClassesClass TemplatesClasses

windows::object_handlelocal::basic_endpointlocal::stream_protocol
windows::overlapped_ptrposix::basic_descriptorlocal::stream_protocol::accept-

or windows::random_access_handleposix::basic_stream_descriptor

Services
local::stream_protocol::end-
point

windows::stream_handle

Class Templatesl o c a l : : s t r e a m _ p r o -
tocol::iostream posix::stream_descriptor_ser-

vicelocal::stream_protocol::socket windows::basic_handle
local::datagram_protocol

Type Require-
ments

windows::basic_object_handle
local::datagram_protocol::end-
point

windows::basic_random_access_handle
windows::basic_stream_handle

local::datagram_protocol::sock-
et ServicesDescriptorServiceposix::descriptor_base

StreamDescriptorServiceposix::stream_descriptor windows::object_handle_service

Free Functions
windows::random_access_handle_service
windows::stream_handle_service

Type Requirementslocal::connect_pair

HandleService
ObjectHandleService
RandomAccessHandleService
StreamHandleService

Requirements on asynchronous operations
In Boost.Asio, an asynchronous operation is initiated by a function that is named with the prefix async_. These functions will be
referred to as initiating functions.

All initiating functions in Boost.Asio take a function object meeting handler requirements as the final parameter. These handlers
accept as their first parameter an lvalue of type const error_code.

Implementations of asynchronous operations in Boost.Asio may call the application programming interface (API) provided by the
operating system. If such an operating system API call results in an error, the handler will be invoked with a const error_code

lvalue that evaluates to true. Otherwise the handler will be invoked with a const error_code lvalue that evaluates to false.

Unless otherwise noted, when the behaviour of an asynchronous operation is defined "as if" implemented by a POSIX function, the
handler will be invoked with a value of type error_code that corresponds to the failure condition described by POSIX for that
function, if any. Otherwise the handler will be invoked with an implementation-defined error_code value that reflects the operating
system error.

Asynchronous operations will not fail with an error condition that indicates interruption by a signal (POSIX EINTR). Asynchronous
operations will not fail with any error condition associated with non-blocking operations (POSIX EWOULDBLOCK, EAGAIN or EIN-
PROGRESS; Windows WSAEWOULDBLOCK or WSAEINPROGRESS).

All asynchronous operations have an associated io_service object. Where the initiating function is a member function, the asso-
ciated io_service is that returned by the get_io_service() member function on the same object. Where the initiating function
is not a member function, the associated io_service is that returned by the get_io_service() member function of the first ar-
gument to the initiating function.

Arguments to initiating functions will be treated as follows:

97

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

— If the parameter is declared as a const reference or by-value, the program is not required to guarantee the validity of the argument
after the initiating function completes. The implementation may make copies of the argument, and all copies will be destroyed no
later than immediately after invocation of the handler.

— If the parameter is declared as a non-const reference, const pointer or non-const pointer, the program must guarantee the validity
of the argument until the handler is invoked.

The library implementation is only permitted to make calls to an initiating function's arguments' copy constructors or destructors
from a thread that satisfies one of the following conditions:

— The thread is executing any member function of the associated io_service object.

— The thread is executing the destructor of the associated io_service object.

— The thread is executing one of the io_service service access functions use_service, add_service or has_service, where
the first argument is the associated io_service object.

— The thread is executing any member function, constructor or destructor of an object of a class defined in this clause, where the
object's get_io_service() member function returns the associated io_service object.

— The thread is executing any function defined in this clause, where any argument to the function has an get_io_service()
member function that returns the associated io_service object.

Boost.Asio may use one or more hidden threads to emulate asynchronous functionality. The above requirements are intended
to prevent these hidden threads from making calls to program code. This means that a program can, for example, use thread-
unsafe reference counting in handler objects, provided the program ensures that all calls to an io_service and related objects
occur from the one thread.

The io_service object associated with an asynchronous operation will have unfinished work, as if by maintaining the existence
of one or more objects of class io_service::work constructed using the io_service, until immediately after the handler for the
asynchronous operation has been invoked.

When an asynchronous operation is complete, the handler for the operation will be invoked as if by:

1. Constructing a bound completion handler bch for the handler, as described below.

2. Calling ios.post(bch) to schedule the handler for deferred invocation, where ios is the associated io_service.

This implies that the handler must not be called directly from within the initiating function, even if the asynchronous operation
completes immediately.

A bound completion handler is a handler object that contains a copy of a user-supplied handler, where the user-supplied handler
accepts one or more arguments. The bound completion handler does not accept any arguments, and contains values to be passed as
arguments to the user-supplied handler. The bound completion handler forwards the asio_handler_allocate(), asio_hand-
ler_deallocate(), and asio_handler_invoke() calls to the corresponding functions for the user-supplied handler. A bound
completion handler meets the requirements for a completion handler.

For example, a bound completion handler for a ReadHandler may be implemented as follows:

98

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<class ReadHandler>
struct bound_read_handler
{
bound_read_handler(ReadHandler handler, const error_code& ec, size_t s)
: handler_(handler), ec_(ec), s_(s)

{
}

void operator()()
{
handler_(ec_, s_);

}

ReadHandler handler_;
const error_code ec_;
const size_t s_;

};

template<class ReadHandler>
void* asio_handler_allocate(size_t size,

bound_read_handler<ReadHandler>* this_handler)
{
using boost::asio::asio_handler_allocate;
return asio_handler_allocate(size, &this_handler->handler_);

}

template<class ReadHandler>
void asio_handler_deallocate(void* pointer, std::size_t size,

bound_read_handler<ReadHandler>* this_handler)
{
using boost::asio::asio_handler_deallocate;
asio_handler_deallocate(pointer, size, &this_handler->handler_);

}

template<class F, class ReadHandler>
void asio_handler_invoke(const F& f,

bound_read_handler<ReadHandler>* this_handler)
{
using boost::asio::asio_handler_invoke;
asio_handler_invoke(f, &this_handler->handler_);

}

If the thread that initiates an asynchronous operation terminates before the associated handler is invoked, the behaviour is implement-
ation-defined. Specifically, on Windows versions prior to Vista, unfinished operations are cancelled when the initiating thread exits.

The handler argument to an initiating function defines a handler identity. That is, the original handler argument and any copies of
the handler argument will be considered equivalent. If the implementation needs to allocate storage for an asynchronous operation,
the implementation will perform asio_handler_allocate(size, &h), where size is the required size in bytes, and h is the
handler. The implementation will perform asio_handler_deallocate(p, size, &h), where p is a pointer to the storage, to
deallocate the storage prior to the invocation of the handler via asio_handler_invoke. Multiple storage blocks may be allocated
for a single asynchronous operation.

Return type of an initiating function

By default, initiating functions return void. This is always the case when the handler is a function pointer, C++11 lambda, or a
function object produced by boost::bind or std::bind.

For other types, the return type may be customised via a two-step process:

1. A specialisation of the handler_type template, which is used to determine the true handler type based on the asynchronous
operation's handler's signature.

99

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

2. A specialisation of the async_result template, which is used both to determine the return type and to extract the return value
from the handler.

These two templates have been specialised to provide support for stackful coroutines and the C++11 std::future class.

As an example, consider what happens when enabling std::future support by using the boost::asio::use_future special
value, as in:

std::future<std::size_t> length =
my_socket.async_read_some(my_buffer, boost::asio::use_future);

When a handler signature has the form:

void handler(error_code ec, result_type result);

the initiating function returns a std::future templated on result_type. In the above async_read_some example, this is
std::size_t. If the asynchronous operation fails, the error_code is converted into a system_error exception and passed back
to the caller through the future.

Where a handler signature has the form:

void handler(error_code ec);

the initiating function instead returns std::future<void>.

Accept handler requirements
An accept handler must meet the requirements for a handler. A value h of an accept handler class should work correctly in the ex-
pression h(ec), where ec is an lvalue of type const error_code.

Examples

A free function as an accept handler:

void accept_handler(
const boost::system::error_code& ec)

{
...

}

An accept handler function object:

struct accept_handler
{
...
void operator()(

const boost::system::error_code& ec)
{
...

}
...

};

A non-static class member function adapted to an accept handler using bind():

100

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void my_class::accept_handler(
const boost::system::error_code& ec)

{
...

}
...
acceptor.async_accept(...,

boost::bind(&my_class::accept_handler,
this, boost::asio::placeholders::error));

Buffer-oriented asynchronous random-access read device require-
ments
In the table below, a denotes an asynchronous random access read device object, o denotes an offset of type boost::uint64_t,
mb denotes an object satisfying mutable buffer sequence requirements, and h denotes an object satisfying read handler requirements.

Table 1. Buffer-oriented asynchronous random-access read device requirements

semantics, pre/post-conditionstypeoperation

Returns the io_service object through
which the async_read_some_at hand-
ler h will be invoked.

io_service&a.get_io_service();

Initiates an asynchronous operation to
read one or more bytes of data from the
device a at the offset o. The operation is
performed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The async_read_some_at operation
shall always fill a buffer in the sequence
completely before proceeding to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous read
operation is invoked,
whichever comes first.
If the total size of all buffers in the se-
quence mb is 0, the asynchronous read
operation shall complete immediately and
pass 0 as the argument to the handler that
specifies the number of bytes read.

voida.async_read_some_at(o, mb, h);

101

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Buffer-oriented asynchronous random-access write device re-
quirements
In the table below, a denotes an asynchronous write stream object, o denotes an offset of type boost::uint64_t, cb denotes an
object satisfying constant buffer sequence requirements, and h denotes an object satisfying write handler requirements.

Table 2. Buffer-oriented asynchronous random-access write device requirements

semantics, pre/post-conditionstypeoperation

Returns the io_service object through
which the async_write_some_at

handler h will be invoked.

io_service&a.get_io_service();

Initiates an asynchronous operation to
write one or more bytes of data to the
device a at offset o. The operation is per-
formed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The async_write_some_at
operation shall always write a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous write
operation is invoked,
whichever comes first.
If the total size of all buffers in the se-
quence cb is 0, the asynchronous write
operation shall complete immediately and
pass 0 as the argument to the handler that
specifies the number of bytes written.

voida.async_write_some_at(o, cb,

h);

Buffer-oriented asynchronous read stream requirements
In the table below, a denotes an asynchronous read stream object, mb denotes an object satisfying mutable buffer sequence requirements,
and h denotes an object satisfying read handler requirements.

102

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 3. Buffer-oriented asynchronous read stream requirements

semantics, pre/post-conditionstypeoperation

Returns the io_service object through
which the async_read_some handler h
will be invoked.

io_service&a.get_io_service();

Initiates an asynchronous operation to
read one or more bytes of data from the
stream a. The operation is performed via
the io_service object a.get_io_ser-
vice() and behaves according to asyn-
chronous operation requirements.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The async_read_some operation shall
always fill a buffer in the sequence com-
pletely before proceeding to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous read
operation is invoked,
whichever comes first.
If the total size of all buffers in the se-
quence mb is 0, the asynchronous read
operation shall complete immediately and
pass 0 as the argument to the handler that
specifies the number of bytes read.

voida.async_read_some(mb, h);

Buffer-oriented asynchronous write stream requirements
In the table below, a denotes an asynchronous write stream object, cb denotes an object satisfying constant buffer sequence require-
ments, and h denotes an object satisfying write handler requirements.

103

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 4. Buffer-oriented asynchronous write stream requirements

semantics, pre/post-conditionstypeoperation

Returns the io_service object through
which the async_write_some handler
h will be invoked.

io_service&a.get_io_service();

Initiates an asynchronous operation to
write one or more bytes of data to the
stream a. The operation is performed via
the io_service object a.get_io_ser-
vice() and behaves according to asyn-
chronous operation requirements.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The async_write_some opera-
tion shall always write a buffer in the se-
quence completely before proceeding to
the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous write
operation is invoked,
whichever comes first.
If the total size of all buffers in the se-
quence cb is 0, the asynchronous write
operation shall complete immediately and
pass 0 as the argument to the handler that
specifies the number of bytes written.

voida.async_write_some(cb, h);

Buffered handshake handler requirements
A buffered handshake handler must meet the requirements for a handler. A value h of a buffered handshake handler class should
work correctly in the expression h(ec, s), where ec is an lvalue of type const error_code and s is an lvalue of type const
size_t.

Examples

A free function as a buffered handshake handler:

void handshake_handler(
const boost::system::error_code& ec,
std::size_t bytes_transferred)

{
...

}

A buffered handshake handler function object:

104

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct handshake_handler
{
...
void operator()(

const boost::system::error_code& ec,
std::size_t bytes_transferred)

{
...

}
...

};

A non-static class member function adapted to a buffered handshake handler using bind():

void my_class::handshake_handler(
const boost::system::error_code& ec,
std::size_t bytes_transferred)

{
...

}
...
socket.async_handshake(...,

boost::bind(&my_class::handshake_handler,
this, boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));

Completion handler requirements
A completion handler must meet the requirements for a handler. A value h of a completion handler class should work correctly in
the expression h().

Examples

A free function as a completion handler:

void completion_handler()
{
...

}

A completion handler function object:

struct completion_handler
{
...
void operator()()
{
...

}
...

};

A non-static class member function adapted to a completion handler using bind():

105

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void my_class::completion_handler()
{
...

}
...
my_io_service.post(boost::bind(&my_class::completion_handler, this));

Composed connect handler requirements
A composed connect handler must meet the requirements for a handler. A value h of a composed connect handler class should work
correctly in the expression h(ec, i), where ec is an lvalue of type const error_code and i is an lvalue of the type Iterator
used in the corresponding connect() or async_connect()` function.

Examples

A free function as a composed connect handler:

void connect_handler(
const boost::system::error_code& ec,
boost::asio::ip::tcp::resolver::iterator iterator)

{
...

}

A composed connect handler function object:

struct connect_handler
{
...
template <typename Iterator>
void operator()(

const boost::system::error_code& ec,
Iterator iterator)

{
...

}
...

};

A non-static class member function adapted to a composed connect handler using bind():

void my_class::connect_handler(
const boost::system::error_code& ec,
boost::asio::ip::tcp::resolver::iterator iterator)

{
...

}
...
boost::asio::async_connect(...,

boost::bind(&my_class::connect_handler,
this, boost::asio::placeholders::error,
boost::asio::placeholders::iterator));

Connect handler requirements
A connect handler must meet the requirements for a handler. A value h of a connect handler class should work correctly in the ex-
pression h(ec), where ec is an lvalue of type const error_code.

106

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples

A free function as a connect handler:

void connect_handler(
const boost::system::error_code& ec)

{
...

}

A connect handler function object:

struct connect_handler
{
...
void operator()(

const boost::system::error_code& ec)
{
...

}
...

};

A non-static class member function adapted to a connect handler using bind():

void my_class::connect_handler(
const boost::system::error_code& ec)

{
...

}
...
socket.async_connect(...,

boost::bind(&my_class::connect_handler,
this, boost::asio::placeholders::error));

Constant buffer sequence requirements
In the table below, X denotes a class containing objects of type T, a denotes a value of type X and u denotes an identifier.

107

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 5. ConstBufferSequence requirements

assertion/note
pre/post-condition

return typeexpression

T meets the requirements for Convertib-
leToConstBuffer.

TX::value_type

const_iterator meets the requirements
for bidirectional iterators (C++ Std,
24.1.4).

iterator type pointing to TX::const_iterator

post: equal_const_buffer_seq(a,

X(a)) where the binary predicate
X(a);

equal_const_buffer_seq is defined
as

bool equal_const_buffer_seq(
const X& x1, const X& x2)

{
return
distance(x1.be↵

gin(), x1.end())
== distance(x2.be↵

gin(), x2.end())
&& equal(x1.be↵

gin(), x1.end(),
x2.be↵

gin(), equal_buffer);
}

and the binary predicate equal_buffer
is defined as

bool equal_buffer(
const X::value_type& v1,
const X::value_type& v2)

{
const_buffer b1(v1);
const_buffer b2(v2);
return
buf↵

fer_cast<const void*>(b1)
== buf↵

fer_cast<const void*>(b2)
&& buf↵

fer_size(b1) == buf↵
fer_size(b2);
}

108

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

post:

distance(a.begin(), a.end())
== distance(u.be↵

gin(), u.end())
&& equal(a.be↵

gin(), a.end(),
u.be↵

gin(), equal_buffer)

where the binary predicate equal_buf-
fer is defined as

bool equal_buffer(
const X::value_type& v1,
const X::value_type& v2)

{
const_buffer b1(v1);
const_buffer b2(v2);
return
buf↵

fer_cast<const void*>(b1)
== buf↵

fer_cast<const void*>(b2)
&& buf↵

fer_size(b1) == buf↵
fer_size(b2);
}

X u(a);

note: the destructor is applied to every
element of a; all the memory is dealloc-
ated.

void(&a)->~X();

const_iterator or convertible to
const_iterator

a.begin();

const_iterator or convertible to
const_iterator

a.end();

Convertible to const buffer requirements
A type that meets the requirements for convertibility to a const buffer must meet the requirements of CopyConstructible types
(C++ Std, 20.1.3), and the requirements of Assignable types (C++ Std, 23.1).

In the table below, X denotes a class meeting the requirements for convertibility to a const buffer, a and b denote values of type X,
and u, v and w denote identifiers.

109

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 6. ConvertibleToConstBuffer requirements

postconditionexpression

buffer_cast<const void*>(u) == buf↵
fer_cast<const void*>(v)

&& buffer_size(u) == buffer_size(v)

const_buffer u(a);
const_buffer v(a);

buffer_cast<const void*>(u) == buf↵
fer_cast<const void*>(v)

&& buffer_size(u) == buffer_size(v)

const_buffer u(a);
const_buffer v = a;

buffer_cast<const void*>(u) == buf↵
fer_cast<const void*>(v)

&& buffer_size(u) == buffer_size(v)

const_buffer u(a);
const_buffer v; v = a;

buffer_cast<const void*>(u) == buf↵
fer_cast<const void*>(w)

&& buffer_size(u) == buffer_size(w)

const_buffer u(a);
const X& v = a;
const_buffer w(v);

buffer_cast<const void*>(u) == buf↵
fer_cast<const void*>(w)

&& buffer_size(u) == buffer_size(w)

const_buffer u(a);
X v(a);
const_buffer w(v);

buffer_cast<const void*>(u) == buf↵
fer_cast<const void*>(w)

&& buffer_size(u) == buffer_size(w)

const_buffer u(a);
X v = a;
const_buffer w(v);

buffer_cast<const void*>(u) == buf↵
fer_cast<const void*>(w)

&& buffer_size(u) == buffer_size(w)

const_buffer u(a);
X v(b); v = a;
const_buffer w(v);

Convertible to mutable buffer requirements
A type that meets the requirements for convertibility to a mutable buffer must meet the requirements of CopyConstructible types
(C++ Std, 20.1.3), and the requirements of Assignable types (C++ Std, 23.1).

In the table below, X denotes a class meeting the requirements for convertibility to a mutable buffer, a and b denote values of type
X, and u, v and w denote identifiers.

110

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 7. ConvertibleToMutableBuffer requirements

postconditionexpression

buffer_cast<void*>(u) == buffer_cast<void*>(v)
&& buffer_size(u) == buffer_size(v)

mutable_buffer u(a);
mutable_buffer v(a);

buffer_cast<void*>(u) == buffer_cast<void*>(v)
&& buffer_size(u) == buffer_size(v)

mutable_buffer u(a);
mutable_buffer v = a;

buffer_cast<void*>(u) == buffer_cast<void*>(v)
&& buffer_size(u) == buffer_size(v)

mutable_buffer u(a);
mutable_buffer v; v = a;

buffer_cast<void*>(u) == buffer_cast<void*>(w)
&& buffer_size(u) == buffer_size(w)

mutable_buffer u(a);
const X& v = a;
mutable_buffer w(v);

buffer_cast<void*>(u) == buffer_cast<void*>(w)
&& buffer_size(u) == buffer_size(w)

mutable_buffer u(a);
X v(a);
mutable_buffer w(v);

buffer_cast<void*>(u) == buffer_cast<void*>(w)
&& buffer_size(u) == buffer_size(w)

mutable_buffer u(a);
X v = a;
mutable_buffer w(v);

buffer_cast<void*>(u) == buffer_cast<void*>(w)
&& buffer_size(u) == buffer_size(w)

mutable_buffer u(a);
X v(b); v = a;
mutable_buffer w(v);

Datagram socket service requirements
A datagram socket service must meet the requirements for a socket service, as well as the additional requirements listed below.

In the table below, X denotes a datagram socket service class for protocol Protocol, a denotes a value of type X, b denotes a value
of type X::implementation_type, e denotes a value of type Protocol::endpoint, ec denotes a value of type error_code,
f denotes a value of type socket_base::message_flags, mb denotes a value satisfying mutable buffer sequence requirements,
rh denotes a value meeting ReadHandler requirements, cb denotes a value satisfying constant buffer sequence requirements, and
wh denotes a value meeting WriteHandler requirements.

111

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 8. DatagramSocketService requirements

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Reads one or more bytes of data from a
connected socket b.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.receive(b, mb, f, ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0.

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from a

voida.async_receive(b, mb, f, rh);

connected socket b. The operation is per-
formed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

pre: a.is_open(b).
Reads one or more bytes of data from an
unconnected socket b.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.receive_from(b, mb, e, f,

ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0.

112

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from an
unconnected socket b. The operation is
performed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
The program must ensure the object e is
valid until the handler for the asynchron-
ous operation is invoked.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_receive_from(b, mb, e,

f, rh);

pre: a.is_open(b).
Writes one or more bytes of data to a
connected socket b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0.

size_ta.send(b, cb, f, ec);

113

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to a con-
nected socket b. The operation is per-
formed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_send(b, cb, f, wh);

pre: a.is_open(b).
Writes one or more bytes of data to an
unconnected socket b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0.

size_t
const typename Protocol::end↵
point& u = e;
a.send_to(b, cb, u, f, ec);

114

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to an un-
connected socket b. The operation is per-
formed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

void
const typename Protocol::end↵
point& u = e;
a.async_send(b, cb, u, f, wh);

Descriptor service requirements
A descriptor service must meet the requirements for an I/O object service with support for movability, as well as the additional re-
quirements listed below.

In the table below, X denotes a descriptor service class, a and ao denote values of type X, b and c denote values of type X::imple-
mentation_type, n denotes a value of type X::native_handle_type, ec denotes a value of type error_code, i denotes a
value meeting IoControlCommand requirements, and u and v denote identifiers.

115

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 9. DescriptorService requirements

assertion/note
pre/post-condition

return typeexpression

The implementation-defined native repres-
entation of a descriptor. Must satisfy the

X::native_handle_type

requirements of CopyConstructible
types (C++ Std, 20.1.3), and the require-
ments of Assignable types (C++ Std,
23.1).

From IoObjectService requirements.
post: !a.is_open(b).

a.construct(b);

From IoObjectService requirements. Im-
plicitly cancels asynchronous operations,
as if by calling a.close(b, ec).

a.destroy(b);

From IoObjectService requirements. The
underlying native representation is moved
from c to b.

a.move_construct(b, c);

From IoObjectService requirements. Im-
plicitly cancels asynchronous operations

a.move_assign(b, ao, c);

associated with b, as if by calling
a.close(b, ec). Then the underlying
native representation is moved from c to
b.

pre: !a.is_open(b).
post: !!ec || a.is_open(b).

error_code
a.assign(b, n, ec);

bool
a.is_open(b);

bool
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.is_open(v);

If a.is_open() is true, causes any out-
standing asynchronous operations to

error_code
a.close(b, ec);

complete as soon as possible. Handlers
for cancelled operations shall be passed
the error code error::opera-

tion_aborted.
post: !a.is_open(b).

X::native_handle_type
a.native_handle(b);

116

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Causes any outstanding asynchronous
operations to complete as soon as pos-
sible. Handlers for cancelled operations
shall be passed the error code error::op-
eration_aborted.

error_code
a.cancel(b, ec);

pre: a.is_open(b).error_code
a.io_control(b, i, ec);

Endpoint requirements
An endpoint must meet the requirements of CopyConstructible types (C++ Std, 20.1.3), and the requirements of Assignable
types (C++ Std, 23.1).

In the table below, X denotes an endpoint class, a denotes a value of type X, s denotes a size in bytes, and u denotes an identifier.

117

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 10. Endpoint requirements

assertion/note
pre/post-conditions

typeexpression

type meeting protocol requirementsX::protocol_type

X u;

X();

protocol_typea.protocol();

Returns a pointer suitable for passing as
the address argument to POSIX functions
such as accept(), getpeername(),
getsockname() and recvfrom(). The
implementation shall perform a reinter-
pret_cast on the pointer to convert it
to sockaddr*.

a pointera.data();

Returns a pointer suitable for passing as
the address argument to POSIX functions
such as connect(), or as the dest_addr
argument to POSIX functions such as
sendto(). The implementation shall
perform a reinterpret_cast on the
pointer to convert it to const sockad-

dr*.

a pointerconst X& u = a; u.data();

Returns a value suitable for passing as the
address_len argument to POSIX functions
such as connect(), or as the dest_len
argument to POSIX functions such as
sendto(), after appropriate integer con-
version has been performed.

size_ta.size();

post: a.size() == s

Passed the value contained in the ad-
dress_len argument to POSIX functions
such as accept(), getpeername(),
getsockname() and recvfrom(), after
successful completion of the function.
Permitted to throw an exception if the
protocol associated with the endpoint ob-
ject a does not support the specified size.

a.resize(s);

Returns a value suitable for passing as the
address_len argument to POSIX functions
such as accept(), getpeername(),
getsockname() and recvfrom(), after
appropriate integer conversion has been
performed.

size_ta.capacity();

118

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.opengroup.org/onlinepubs/000095399/functions/accept.html
http://www.opengroup.org/onlinepubs/000095399/functions/getpeername.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockname.html
http://www.opengroup.org/onlinepubs/000095399/functions/recvfrom.html
http://www.opengroup.org/onlinepubs/000095399/functions/connect.html
http://www.opengroup.org/onlinepubs/000095399/functions/sendto.html
http://www.opengroup.org/onlinepubs/000095399/functions/connect.html
http://www.opengroup.org/onlinepubs/000095399/functions/sendto.html
http://www.opengroup.org/onlinepubs/000095399/functions/accept.html
http://www.opengroup.org/onlinepubs/000095399/functions/getpeername.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockname.html
http://www.opengroup.org/onlinepubs/000095399/functions/recvfrom.html
http://www.opengroup.org/onlinepubs/000095399/functions/accept.html
http://www.opengroup.org/onlinepubs/000095399/functions/getpeername.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockname.html
http://www.opengroup.org/onlinepubs/000095399/functions/recvfrom.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Gettable serial port option requirements
In the table below, X denotes a serial port option class, a denotes a value of X, ec denotes a value of type error_code, and s denotes
a value of implementation-defined type storage (where storage is the type DCB on Windows and termios on POSIX platforms),
and u denotes an identifier.

Table 11. GettableSerialPortOption requirements

assertion/note
pre/post-conditions

typeexpression

Retrieves the value of the serial port op-
tion from the storage.
If successful, sets ec such that !ec is true.
If an error occurred, sets ec such that
!!ec is true. Returns ec.

error_codeconst storage& u = s;

a.load(u, ec);

Gettable socket option requirements
In the table below, X denotes a socket option class, a denotes a value of X, p denotes a value that meets the protocol requirements,
and u denotes an identifier.

Table 12. GettableSocketOption requirements

assertion/note
pre/post-conditions

typeexpression

Returns a value suitable for passing as the
level argument to POSIX getsockopt()

(or equivalent).

inta.level(p);

Returns a value suitable for passing as the
option_name argument to POSIX get-

sockopt() (or equivalent).

inta.name(p);

Returns a pointer suitable for passing as
the option_value argument to POSIX
getsockopt() (or equivalent).

a pointer, convertible to void*a.data(p);

Returns a value suitable for passing as the
option_len argument to POSIX getsock-

opt() (or equivalent), after appropriate
integer conversion has been performed.

size_ta.size(p);

post: a.size(p) == s.
Passed the value contained in the op-
tion_len argument to POSIX getsock-

opt() (or equivalent) after successful
completion of the function. Permitted to
throw an exception if the socket option
object a does not support the specified
size.

a.resize(p, s);

119

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.opengroup.org/onlinepubs/000095399/functions/getsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/getsockopt.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Handlers
A handler must meet the requirements of CopyConstructible types (C++ Std, 20.1.3).

In the table below, X denotes a handler class, h denotes a value of X, p denotes a pointer to a block of allocated memory of type
void*, s denotes the size for a block of allocated memory, and f denotes a function object taking no arguments.

Table 13. Handler requirements

assertion/note
pre/post-conditions

return typeexpression

Returns a pointer to a block of memory
of size s. The pointer must satisfy the
same alignment requirements as a pointer
returned by ::operator new(). Throws
bad_alloc on failure.
The asio_handler_allocate() func-
tion is located using argument-dependent
l o o k u p . T h e f u n c t i o n
boost::asio::asio_handler_alloc-

ate() serves as a default if no user-sup-
plied function is available.

void*
using boost::asio::asio_hand↵
ler_allocate;
asio_handler_allocate(s, &h);

Frees a block of memory associated with
a pointer p, of at least size s, that was
previously allocated using asio_hand-
ler_allocate().
The asio_handler_deallocate()

function is located using argument-depend-
ent lookup. The funct ion
boost::asio::asio_handler_deal-

locate() serves as a default if no user-
supplied function is available.

using boost::asio::asio_hand↵
ler_deallocate;
asio_handler_dealloc↵
ate(p, s, &h);

Causes the function object f to be ex-
ecuted as if by calling f().
The asio_handler_invoke() function
is located using argument-dependent
l o o k u p . T h e f u n c t i o n
boost::asio::asio_handler_in-

voke() serves as a default if no user-
supplied function is available.

using boost::asio::asio_hand↵
ler_invoke;
asio_handler_invoke(f, &h);

Handle service requirements
A handle service must meet the requirements for an I/O object service with support for movability, as well as the additional requirements
listed below.

In the table below, X denotes a handle service class, a and ao denote values of type X, b and c denote values of type X::implement-
ation_type, n denotes a value of type X::native_handle_type, ec denotes a value of type error_code, and u and v denote
identifiers.

120

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 14. HandleService requirements

assertion/note
pre/post-condition

return typeexpression

The implementation-defined native repres-
entation of a handle. Must satisfy the re-

X::native_handle_type

quirements of CopyConstructible

types (C++ Std, 20.1.3), and the require-
ments of Assignable types (C++ Std,
23.1).

From IoObjectService requirements.
post: !a.is_open(b).

a.construct(b);

From IoObjectService requirements. Im-
plicitly cancels asynchronous operations,
as if by calling a.close(b, ec).

a.destroy(b);

From IoObjectService requirements. The
underlying native representation is moved
from c to b.

a.move_construct(b, c);

From IoObjectService requirements. Im-
plicitly cancels asynchronous operations

a.move_assign(b, ao, c);

associated with b, as if by calling
a.close(b, ec). Then the underlying
native representation is moved from c to
b.

pre: !a.is_open(b).
post: !!ec || a.is_open(b).

error_code
a.assign(b, n, ec);

bool
a.is_open(b);

bool
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.is_open(v);

If a.is_open() is true, causes any out-
standing asynchronous operations to

error_code
a.close(b, ec);

complete as soon as possible. Handlers
for cancelled operations shall be passed
the error code error::opera-

tion_aborted.
post: !a.is_open(b).

X::native_handle_type
a.native_handle(b);

121

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Causes any outstanding asynchronous
operations to complete as soon as pos-
sible. Handlers for cancelled operations
shall be passed the error code error::op-
eration_aborted.

error_code
a.cancel(b, ec);

SSL handshake handler requirements
A handshake handler must meet the requirements for a handler. A value h of a handshake handler class should work correctly in the
expression h(ec), where ec is an lvalue of type const error_code.

Examples

A free function as a handshake handler:

void handshake_handler(
const boost::system::error_code& ec)

{
...

}

A handshake handler function object:

struct handshake_handler
{
...
void operator()(

const boost::system::error_code& ec)
{
...

}
...

};

A non-static class member function adapted to a handshake handler using bind():

void my_class::handshake_handler(
const boost::system::error_code& ec)

{
...

}
...
ssl_stream.async_handshake(...,

boost::bind(&my_class::handshake_handler,
this, boost::asio::placeholders::error));

Internet protocol requirements
An internet protocol must meet the requirements for a protocol as well as the additional requirements listed below.

In the table below, X denotes an internet protocol class, a denotes a value of type X, and b denotes a value of type X.

122

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 15. InternetProtocol requirements

assertion/note
pre/post-conditions

return typeexpression

The type of a resolver for the protocol.ip::basic_resolver<X>X::resolver

Returns an object representing the IP
version 4 protocol.

XX::v4()

Returns an object representing the IP
version 6 protocol.

XX::v6()

Returns whether two protocol objects are
equal.

convertible to boola == b

Returns !(a == b).convertible to boola != b

I/O control command requirements
In the table below, X denotes an I/O control command class, a denotes a value of X, and u denotes an identifier.

Table 16. IoControlCommand requirements

assertion/note
pre/post-conditions

typeexpression

Returns a value suitable for passing as the
request argument to POSIX ioctl() (or
equivalent).

inta.name();

a pointer, convertible to void*a.data();

I/O object service requirements
An I/O object service must meet the requirements for a service, as well as the requirements listed below.

In the table below, X denotes an I/O object service class, a and ao denote values of type X, b and c denote values of type X::imple-
mentation_type, and u denotes an identifier.

123

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.opengroup.org/onlinepubs/000095399/functions/ioctl.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 17. IoObjectService requirements

assertion/note
pre/post-condition

return typeexpression

X::implementation_type

note: X::implementation_type has a
public default constructor and destructor.

X::implementation_type u;

a.construct(b);

note: destroy() will only be called on
a value that has previously been initialised
with construct() or move_con-

struct().

a.destroy(b);

note: only required for I/O objects that
support movability.

a.move_construct(b, c);

note: only required for I/O objects that
support movability.

a.move_assign(b, ao, c);

Mutable buffer sequence requirements
In the table below, X denotes a class containing objects of type T, a denotes a value of type X and u denotes an identifier.

124

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 18. MutableBufferSequence requirements

assertion/note
pre/post-condition

return typeexpression

T meets the requirements for Convertib-
leToMutableBuffer.

TX::value_type

const_iterator meets the requirements
for bidirectional iterators (C++ Std,
24.1.4).

iterator type pointing to TX::const_iterator

post: equal_mutable_buffer_seq(a,
X(a)) where the binary predicate

X(a);

equal_mutable_buffer_seq is
defined as

bool equal_mutable_buf↵
fer_seq(

const X& x1, const X& x2)
{

return
distance(x1.be↵

gin(), x1.end())
== distance(x2.be↵

gin(), x2.end())
&& equal(x1.be↵

gin(), x1.end(),
x2.be↵

gin(), equal_buffer);
}

and the binary predicate equal_buffer
is defined as

bool equal_buffer(
const X::value_type& v1,
const X::value_type& v2)

{
mutable_buffer b1(v1);
mutable_buffer b2(v2);
return
buf↵

fer_cast<const void*>(b1)
== buf↵

fer_cast<const void*>(b2)
&& buf↵

fer_size(b1) == buf↵
fer_size(b2);
}

125

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

post:

distance(a.begin(), a.end())
== distance(u.be↵

gin(), u.end())
&& equal(a.be↵

gin(), a.end(),
u.be↵

gin(), equal_buffer)

where the binary predicate equal_buf-
fer is defined as

bool equal_buffer(
const X::value_type& v1,
const X::value_type& v2)

{
mutable_buffer b1(v1);
mutable_buffer b2(v2);
return
buf↵

fer_cast<const void*>(b1)
== buf↵

fer_cast<const void*>(b2)
&& buf↵

fer_size(b1) == buf↵
fer_size(b2);
}

X u(a);

note: the destructor is applied to every
element of a; all the memory is dealloc-
ated.

void(&a)->~X();

const_iterator or convertible to
const_iterator

a.begin();

const_iterator or convertible to
const_iterator

a.end();

Object handle service requirements
An object handle service must meet the requirements for a handle service, as well as the additional requirements listed below.

In the table below, X denotes an object handle service class, a denotes a value of type X, b denotes a value of type X::implement-
ation_type, ec denotes a value of type error_code, and wh denotes a value meeting WaitHandler requirements.

126

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 19. ObjectHandleService requirements

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Synchronously waits for the object repres-
ented by handle b to become signalled.

error_codea.wait(b, ec);

pre: a.is_open(b).
Initiates an asynchronous operation to
wait for the object represented by handle
b to become signalled. The operation is
performed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.

voida.async_wait(b, wh);

Protocol requirements
A protocol must meet the requirements of CopyConstructible types (C++ Std, 20.1.3), and the requirements of Assignable
types (C++ Std, 23.1).

In the table below, X denotes a protocol class, and a denotes a value of X.

Table 20. Protocol requirements

assertion/note
pre/post-conditions

return typeexpression

type meeting endpoint requirementsX::endpoint

Returns a value suitable for passing as the
domain argument to POSIX socket()

(or equivalent).

inta.family()

Returns a value suitable for passing as the
type argument to POSIX socket() (or
equivalent).

inta.type()

Returns a value suitable for passing as the
protocol argument to POSIX socket()

(or equivalent).

inta.protocol()

Random access handle service requirements
A random access handle service must meet the requirements for a handle service, as well as the additional requirements listed below.

In the table below, X denotes a random access handle service class, a denotes a value of type X, b denotes a value of type X::imple-
mentation_type, ec denotes a value of type error_code, o denotes an offset of type boost::uint64_t, mb denotes a value satisfying
mutable buffer sequence requirements, rh denotes a value meeting ReadHandler requirements, cb denotes a value satisfying constant
buffer sequence requirements, and wh denotes a value meeting WriteHandler requirements.

127

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.opengroup.org/onlinepubs/000095399/functions/socket.html
http://www.opengroup.org/onlinepubs/000095399/functions/socket.html
http://www.opengroup.org/onlinepubs/000095399/functions/socket.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 21. RandomAccessHandleService requirements

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Reads one or more bytes of data from a
handle b at offset o.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.read_some_at(b, o, mb, ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0. If the total size
of all buffers in the sequence mb is 0, the
function shall return 0 immediately.

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from a

voida.async_read_some_at(b, o, mb,

rh);

handle b at offset o. The operation is per-
formed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence mb is 0, the
asynchronous read operation shall com-
plete immediately and pass 0 as the argu-
ment to the handler that specifies the
number of bytes read.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

128

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Writes one or more bytes of data to a
handle b at offset o.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0. If the total
size of all buffers in the sequence cb is 0,
the function shall return 0 immediately.

size_ta.write_some_at(b, o, cb, ec);

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to a
handle b at offset o. The operation is per-
formed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence cb is 0, the
asynchronous operation shall complete
immediately and pass 0 as the argument
to the handler that specifies the number
of bytes read.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_write_some_at(b, o, cb,

wh);

Raw socket service requirements
A raw socket service must meet the requirements for a socket service, as well as the additional requirements listed below.

In the table below, X denotes a raw socket service class for protocol Protocol, a denotes a value of type X, b denotes a value of
type X::implementation_type, e denotes a value of type Protocol::endpoint, ec denotes a value of type error_code, f
denotes a value of type socket_base::message_flags, mb denotes a value satisfying mutable buffer sequence requirements, rh

129

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

denotes a value meeting ReadHandler requirements, cb denotes a value satisfying constant buffer sequence requirements, and wh
denotes a value meeting WriteHandler requirements.

130

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 22. RawSocketService requirements

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Reads one or more bytes of data from a
connected socket b.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.receive(b, mb, f, ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0.

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from a

voida.async_receive(b, mb, f, rh);

connected socket b. The operation is per-
formed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

pre: a.is_open(b).
Reads one or more bytes of data from an
unconnected socket b.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.receive_from(b, mb, e, f,

ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0.

131

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from an
unconnected socket b. The operation is
performed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
The program must ensure the object e is
valid until the handler for the asynchron-
ous operation is invoked.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_receive_from(b, mb, e,

f, rh);

pre: a.is_open(b).
Writes one or more bytes of data to a
connected socket b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0.

size_ta.send(b, cb, f, ec);

132

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to a con-
nected socket b. The operation is per-
formed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_send(b, cb, f, wh);

pre: a.is_open(b).
Writes one or more bytes of data to an
unconnected socket b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0.

size_t
const typename Protocol::end↵
point& u = e;
a.send_to(b, cb, u, f, ec);

133

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to an un-
connected socket b. The operation is per-
formed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

void
const typename Protocol::end↵
point& u = e;
a.async_send(b, cb, u, f, wh);

Read handler requirements
A read handler must meet the requirements for a handler. A value h of a read handler class should work correctly in the expression
h(ec, s), where ec is an lvalue of type const error_code and s is an lvalue of type const size_t.

Examples

A free function as a read handler:

void read_handler(
const boost::system::error_code& ec,
std::size_t bytes_transferred)

{
...

}

A read handler function object:

134

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct read_handler
{
...
void operator()(

const boost::system::error_code& ec,
std::size_t bytes_transferred)

{
...

}
...

};

A non-static class member function adapted to a read handler using bind():

void my_class::read_handler(
const boost::system::error_code& ec,
std::size_t bytes_transferred)

{
...

}
...
socket.async_read(...,

boost::bind(&my_class::read_handler,
this, boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));

Resolve handler requirements
A resolve handler must meet the requirements for a handler. A value h of a resolve handler class should work correctly in the expression
h(ec, i), where ec is an lvalue of type const error_code and i is an lvalue of type const ip::basic_resolver_iterat-

or<InternetProtocol>. InternetProtocol is the template parameter of the resolver_service which is used to initiate the
asynchronous operation.

Examples

A free function as a resolve handler:

void resolve_handler(
const boost::system::error_code& ec,
boost::asio::ip::tcp::resolver::iterator iterator)

{
...

}

A resolve handler function object:

struct resolve_handler
{
...
void operator()(

const boost::system::error_code& ec,
boost::asio::ip::tcp::resolver::iterator iterator)

{
...

}
...

};

135

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

A non-static class member function adapted to a resolve handler using bind():

void my_class::resolve_handler(
const boost::system::error_code& ec,
boost::asio::ip::tcp::resolver::iterator iterator)

{
...

}
...
resolver.async_resolve(...,

boost::bind(&my_class::resolve_handler,
this, boost::asio::placeholders::error,
boost::asio::placeholders::iterator));

Resolver service requirements
A resolver service must meet the requirements for an I/O object service, as well as the additional requirements listed below.

In the table below, X denotes a resolver service class for protocol InternetProtocol, a denotes a value of type X, b denotes a
value of type X::implementation_type, q denotes a value of type ip::basic_resolver_query<InternetProtocol>, e
denotes a value of type ip::basic_endpoint<InternetProtocol>, ec denotes a value of type error_code, and h denotes a
value meeting ResolveHandler requirements.

136

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 23. ResolverService requirements

assertion/note
pre/post-condition

return typeexpression

From IoObjectService requirements. Im-
plicitly cancels asynchronous resolve op-
erations, as if by calling a.cancel(b,
ec).

a.destroy(b);

Causes any outstanding asynchronous re-
solve operations to complete as soon as
possible. Handlers for cancelled opera-
tions shall be passed the error code er-
ror::operation_aborted.

error_code
a.cancel(b, ec);

On success, returns an iterator i such that
i != ip::basic_resolver_iterat-

or<InternetProtocol>(). Otherwise
returns ip::basic_resolver_iterat-
or<InternetProtocol>().

ip::basic_resolver_iterator<
InternetProtocol>

a.resolve(b, q, ec);

Initiates an asynchronous resolve opera-
tion that is performed via the io_ser-
vice object a.get_io_service() and
behaves according to asynchronous oper-
ation requirements.
If the operation completes successfully,
the ResolveHandler object h shall be
invoked with an iterator object i such that
the condition i != ip::basic_resolv-

er_iterator<InternetProtocol>()

holds. Otherwise it is invoked with
ip::basic_resolver_iterator<In-

ternetProtocol>().

a.async_resolve(b, q, h);

On success, returns an iterator i such that
i != ip::basic_resolver_iterat-

or<InternetProtocol>(). Otherwise
returns ip::basic_resolver_iterat-
or<InternetProtocol>().

ip::basic_resolver_iterator<
InternetProtocol>

a.resolve(b, e, ec);

Initiates an asynchronous resolve opera-
tion that is performed via the io_ser-
vice object a.get_io_service() and
behaves according to asynchronous oper-
ation requirements.
If the operation completes successfully,
the ResolveHandler object h shall be
invoked with an iterator object i such that
the condition i != ip::basic_resolv-

er_iterator<InternetProtocol>()

holds. Otherwise it is invoked with
ip::basic_resolver_iterator<In-

ternetProtocol>().

a.async_resolve(b, e, h);

137

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Sequenced packet socket service requirements
A sequenced packet socket service must meet the requirements for a socket service, as well as the additional requirements listed
below.

In the table below, X denotes a stream socket service class, a denotes a value of type X, b denotes a value of type X::implementa-
tion_type, ec denotes a value of type error_code, f denotes a value of type socket_base::message_flags, g denotes an
lvalue of type socket_base::message_flags, mb denotes a value satisfying mutable buffer sequence requirements, rh denotes
a value meeting ReadHandler requirements, cb denotes a value satisfying constant buffer sequence requirements, and wh denotes
a value meeting WriteHandler requirements.

138

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 24. StreamSocketService requirements

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Reads one or more bytes of data from a
connected socket b.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.receive(b, mb, f, g, ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, sets g to the flags associated
with the received data, and returns the
number of bytes read. Otherwise, sets g
to 0 and returns 0.

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from a

voida.async_receive(b, mb, f, g,

rh);

connected socket b. The operation is per-
formed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
If the operation completes successfully,
sets g to the flags associated with the re-
ceived data, then invokes the ReadHand-
ler object rh with the number of bytes
transferred. Otherwise, sets g to 0 and in-
vokes rh with 0 bytes transferred.

139

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Writes one or more bytes of data to a
connected socket b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0.

size_ta.send(b, cb, f, ec);

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to a con-
nected socket b. The operation is per-
formed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_send(b, cb, f, wh);

Serial port service requirements
A serial port service must meet the requirements for an I/O object service with support for movability, as well as the additional re-
quirements listed below.

In the table below, X denotes a serial port service class, a and ao denote values of type X, d denotes a serial port device name of type
std::string, b and c denote values of type X::implementation_type, n denotes a value of type X::native_handle_type,
ec denotes a value of type error_code, s denotes a value meeting SettableSerialPortOption requirements, g denotes a value
meeting GettableSerialPortOption requirements, mb denotes a value satisfying mutable buffer sequence requirements, rh
denotes a value meeting ReadHandler requirements, cb denotes a value satisfying constant buffer sequence requirements, and wh
denotes a value meeting WriteHandler requirements. and u and v denote identifiers.

140

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 25. SerialPortService requirements

assertion/note
pre/post-condition

return typeexpression

The implementation-defined native repres-
entation of a serial port. Must satisfy the

X::native_handle_type

requirements of CopyConstructible
types (C++ Std, 20.1.3), and the require-
ments of Assignable types (C++ Std,
23.1).

From IoObjectService requirements.
post: !a.is_open(b).

a.construct(b);

From IoObjectService requirements. Im-
plicitly cancels asynchronous operations,
as if by calling a.close(b, ec).

a.destroy(b);

From IoObjectService requirements. The
underlying native representation is moved
from c to b.

a.move_construct(b, c);

From IoObjectService requirements. Im-
plicitly cancels asynchronous operations

a.move_assign(b, ao, c);

associated with b, as if by calling
a.close(b, ec). Then the underlying
native representation is moved from c to
b.

pre: !a.is_open(b).
post: !!ec || a.is_open(b).

error_code
const std::string& u = d;
a.open(b, u, ec);

pre: !a.is_open(b).
post: !!ec || a.is_open(b).

error_code
a.assign(b, n, ec);

bool
a.is_open(b);

bool
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.is_open(v);

If a.is_open() is true, causes any out-
standing asynchronous operations to

error_code
a.close(b, ec);

complete as soon as possible. Handlers
for cancelled operations shall be passed
the error code error::opera-

tion_aborted.
post: !a.is_open(b).

141

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

X::native_handle_type
a.native_handle(b);

pre: a.is_open(b).
Causes any outstanding asynchronous
operations to complete as soon as pos-
sible. Handlers for cancelled operations
shall be passed the error code error::op-
eration_aborted.

error_code
a.cancel(b, ec);

pre: a.is_open(b).error_code
a.set_option(b, s, ec);

pre: a.is_open(b).error_code
a.get_option(b, g, ec);

pre: a.is_open(b).error_code
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.get_option(v, g, ec);

pre: a.is_open(b).error_code
a.send_break(b, ec);

pre: a.is_open(b).
Reads one or more bytes of data from a
serial port b.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0. If the total size
of all buffers in the sequence mb is 0, the
function shall return 0 immediately.
If the operation completes due to graceful
connection closure by the peer, the opera-
tion shall fail with error::eof.

size_ta.read_some(b, mb, ec);

142

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from a
serial port b. The operation is performed
via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence mb is 0, the
asynchronous read operation shall com-
plete immediately and pass 0 as the argu-
ment to the handler that specifies the
number of bytes read.
If the operation completes due to graceful
connection closure by the peer, the opera-
tion shall fail with error::eof.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_read_some(b, mb, rh);

pre: a.is_open(b).
Writes one or more bytes of data to a
serial port b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0. If the total
size of all buffers in the sequence cb is 0,
the function shall return 0 immediately.

size_ta.write_some(b, cb, ec);

143

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to a serial
port b. The operation is performed via the
io_service object a.get_io_ser-
vice() and behaves according to asyn-
chronous operation requirements.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence cb is 0, the
asynchronous operation shall complete
immediately and pass 0 as the argument
to the handler that specifies the number
of bytes read.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_write_some(b, cb, wh);

Service requirements
A class is a service if it is publicly derived from another service, or if it is a class derived from io_service::service and contains
a publicly-accessible declaration as follows:

static io_service::id id;

All services define a one-argument constructor that takes a reference to the io_service object that owns the service. This constructor
is explicit, preventing its participation in automatic conversions. For example:

class my_service : public io_service::service
{
public:
static io_service::id id;
explicit my_service(io_service& ios);

private:
virtual void shutdown_service();
...

};

144

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

A service's shutdown_service member function must cause all copies of user-defined handler objects that are held by the service
to be destroyed.

Settable serial port option requirements
In the table below, X denotes a serial port option class, a denotes a value of X, ec denotes a value of type error_code, and s denotes
a value of implementation-defined type storage (where storage is the type DCB on Windows and termios on POSIX platforms),
and u denotes an identifier.

Table 26. SettableSerialPortOption requirements

assertion/note
pre/post-conditions

typeexpression

Saves the value of the serial port option
to the storage.
If successful, sets ec such that !ec is true.
If an error occurred, sets ec such that
!!ec is true. Returns ec.

error_codeconst X& u = a;

u.store(s, ec);

Settable socket option requirements
In the table below, X denotes a socket option class, a denotes a value of X, p denotes a value that meets the protocol requirements,
and u denotes an identifier.

Table 27. SettableSocketOption requirements

assertion/note
pre/post-conditions

typeexpression

Returns a value suitable for passing as the
level argument to POSIX setsockopt()

(or equivalent).

inta.level(p);

Returns a value suitable for passing as the
option_name argument to POSIX set-

sockopt() (or equivalent).

inta.name(p);

Returns a pointer suitable for passing as
the option_value argument to POSIX
setsockopt() (or equivalent).

a pointer, convertible to const void*const X& u = a; u.data(p);

Returns a value suitable for passing as the
option_len argument to POSIX setsock-

opt() (or equivalent), after appropriate
integer conversion has been performed.

size_ta.size(p);

SSL shutdown handler requirements
A shutdown handler must meet the requirements for a handler. A value h of a shutdown handler class should work correctly in the
expression h(ec), where ec is an lvalue of type const error_code.

Examples

A free function as a shutdown handler:

145

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.opengroup.org/onlinepubs/000095399/functions/setsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/setsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/setsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/setsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/setsockopt.html
http://www.opengroup.org/onlinepubs/000095399/functions/setsockopt.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void shutdown_handler(
const boost::system::error_code& ec)

{
...

}

A shutdown handler function object:

struct shutdown_handler
{
...
void operator()(

const boost::system::error_code& ec)
{
...

}
...

};

A non-static class member function adapted to a shutdown handler using bind():

void my_class::shutdown_handler(
const boost::system::error_code& ec)

{
...

}
...
ssl_stream.async_shutdown(

boost::bind(&my_class::shutdown_handler,
this, boost::asio::placeholders::error));

Signal handler requirements
A signal handler must meet the requirements for a handler. A value h of a signal handler class should work correctly in the expression
h(ec, n), where ec is an lvalue of type const error_code and n is an lvalue of type const int.

Examples

A free function as a signal handler:

void signal_handler(
const boost::system::error_code& ec,
int signal_number)

{
...

}

A signal handler function object:

146

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct signal_handler
{
...
void operator()(

const boost::system::error_code& ec,
int signal_number)

{
...

}
...

};

A non-static class member function adapted to a signal handler using bind():

void my_class::signal_handler(
const boost::system::error_code& ec,
int signal_number)

{
...

}
...
my_signal_set.async_wait(

boost::bind(&my_class::signal_handler,
this, boost::asio::placeholders::error,
boost::asio::placeholders::signal_number));

Signal set service requirements
A signal set service must meet the requirements for an I/O object service, as well as the additional requirements listed below.

In the table below, X denotes a signal set service class, a denotes a value of type X, b denotes a value of type X::implementa-
tion_type, ec denotes a value of type error_code, n denotes a value of type int, and sh denotes a value meeting SignalHandler
requirements.

147

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 28. SignalSetService requirements

assertion/note
pre/post-condition

return typeexpression

From IoObjectService requirements.a.construct(b);

From IoObjectService requirements. Im-
plicitly clears the registered signals as if
by calling a.clear(b, ec), then impli-
citly cancels outstanding asynchronous
operations as if by calling a.cancel(b,
ec).

a.destroy(b);

error_code
a.add(b, n, ec);

error_code
a.remove(b, n, ec);

error_code
a.clear(b, ec);

error_code
a.cancel(b, ec);

pre: a.is_open(b).
Initiates an asynchronous operation to
wait for the delivery of one of the signals
registered for the signal set b. The opera-
tion is performed via the io_service
object a.get_io_service() and be-
haves according to asynchronous opera-
tion requirements.
If the operation completes successfully,
the SignalHandler object sh is invoked
with the number identifying the delivered
signal. Otherwise it is invoked with 0.

voida.async_wait(b, sh);

Socket acceptor service requirements
A socket acceptor service must meet the requirements for an I/O object service, as well as the additional requirements listed below.

In the table below, X denotes a socket acceptor service class for protocol Protocol, a and ao denote values of type X, b and c denote
values of type X::implementation_type, p denotes a value of type Protocol, n denotes a value of type X::nat-
ive_handle_type, e denotes a value of type Protocol::endpoint, ec denotes a value of type error_code, s denotes a value
meeting SettableSocketOption requirements, g denotes a value meeting GettableSocketOption requirements, i denotes a
value meeting IoControlCommand requirements, k denotes a value of type basic_socket<Protocol, SocketService> where
SocketService is a type meeting socket service requirements, ah denotes a value meeting AcceptHandler requirements, and u
and v denote identifiers.

148

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 29. SocketAcceptorService requirements

assertion/note
pre/post-condition

return typeexpression

The implementation-defined native repres-
entation of a socket acceptor. Must satisfy

X::native_handle_type

the requirements of CopyConstruct-
ible types (C++ Std, 20.1.3), and the re-
quirements of Assignable types (C++
Std, 23.1).

From IoObjectService requirements.
post: !a.is_open(b).

a.construct(b);

From IoObjectService requirements. Im-
plicitly cancels asynchronous operations,
as if by calling a.close(b, ec).

a.destroy(b);

From IoObjectService requirements. The
underlying native representation is moved
from c to b.

a.move_construct(b, c);

From IoObjectService requirements. Im-
plicitly cancels asynchronous operations

a.move_assign(b, ao, c);

associated with b, as if by calling
a.close(b, ec). Then the underlying
native representation is moved from c to
b.

pre: !a.is_open(b).
post: !!ec || a.is_open(b).

error_code
a.open(b, p, ec);

pre: !a.is_open(b).
post: !!ec || a.is_open(b).

error_code
a.assign(b, p, n, ec);

bool
a.is_open(b);

bool
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.is_open(v);

If a.is_open() is true, causes any out-
standing asynchronous operations to

error_code
a.close(b, ec);

complete as soon as possible. Handlers
for cancelled operations shall be passed
the error code error::opera-

tion_aborted.
post: !a.is_open(b).

X::native_handle_type
a.native_handle(b);

149

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Causes any outstanding asynchronous
operations to complete as soon as pos-
sible. Handlers for cancelled operations
shall be passed the error code error::op-
eration_aborted.

error_code
a.cancel(b, ec);

pre: a.is_open(b).error_code
a.set_option(b, s, ec);

pre: a.is_open(b).error_code
a.get_option(b, g, ec);

pre: a.is_open(b).error_code
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.get_option(v, g, ec);

pre: a.is_open(b).error_code
a.io_control(b, i, ec);

pre: a.is_open(b).error_code
const typename Protocol::end↵
point& u = e;
a.bind(b, u, ec);

pre: a.is_open(b).Protocol::endpoint
a.local_endpoint(b, ec);

pre: a.is_open(b).Protocol::endpoint
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.local_endpoint(v, ec);

pre : a.is_open(b) &&

!k.is_open().
post: k.is_open()

error_code
a.accept(b, k, &e, ec);

pre : a.is_open(b) &&

!k.is_open().
post: k.is_open()

error_code
a.accept(b, k, 0, ec);

150

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre : a.is_open(b) &&

!k.is_open().
Initiates an asynchronous accept operation
that is performed via the io_service
object a.get_io_service() and be-
haves according to asynchronous opera-
tion requirements.
The program must ensure the objects k
and e are valid until the handler for the
asynchronous operation is invoked.

a.async_accept(b, k, &e, ah);

pre : a.is_open(b) &&

!k.is_open().
Initiates an asynchronous accept operation
that is performed via the io_service
object a.get_io_service() and be-
haves according to asynchronous opera-
tion requirements.
The program must ensure the object k is
valid until the handler for the asynchron-
ous operation is invoked.

a.async_accept(b, k, 0, ah);

Socket service requirements
A socket service must meet the requirements for an I/O object service with support for movability, as well as the additional requirements
listed below.

In the table below, X denotes a socket service class for protocol Protocol, a and ao denote values of type X, b and c denote values
of type X::implementation_type, p denotes a value of type Protocol, n denotes a value of type X::native_handle_type,
e denotes a value of type Protocol::endpoint, ec denotes a value of type error_code, s denotes a value meeting SettableSock-
etOption requirements, g denotes a value meeting GettableSocketOption requirements, i denotes a value meeting IoControl-
Command requirements, h denotes a value of type socket_base::shutdown_type, ch denotes a value meeting ConnectHandler
requirements, and u and v denote identifiers.

151

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 30. SocketService requirements

assertion/note
pre/post-condition

return typeexpression

The implementation-defined native repres-
entation of a socket. Must satisfy the re-

X::native_handle_type

quirements of CopyConstructible

types (C++ Std, 20.1.3), and the require-
ments of Assignable types (C++ Std,
23.1).

From IoObjectService requirements.
post: !a.is_open(b).

a.construct(b);

From IoObjectService requirements. Im-
plicitly cancels asynchronous operations,
as if by calling a.close(b, ec).

a.destroy(b);

From IoObjectService requirements. The
underlying native representation is moved
from c to b.

a.move_construct(b, c);

From IoObjectService requirements. Im-
plicitly cancels asynchronous operations

a.move_assign(b, ao, c);

associated with b, as if by calling
a.close(b, ec). Then the underlying
native representation is moved from c to
b.

pre: !a.is_open(b).
post: !!ec || a.is_open(b).

error_code
a.open(b, p, ec);

pre: !a.is_open(b).
post: !!ec || a.is_open(b).

error_code
a.assign(b, p, n, ec);

bool
a.is_open(b);

bool
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.is_open(v);

If a.is_open() is true, causes any out-
standing asynchronous operations to

error_code
a.close(b, ec);

complete as soon as possible. Handlers
for cancelled operations shall be passed
the error code error::opera-

tion_aborted.
post: !a.is_open(b).

X::native_handle_type
a.native_handle(b);

152

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Causes any outstanding asynchronous
operations to complete as soon as pos-
sible. Handlers for cancelled operations
shall be passed the error code error::op-
eration_aborted.

error_code
a.cancel(b, ec);

pre: a.is_open(b).error_code
a.set_option(b, s, ec);

pre: a.is_open(b).error_code
a.get_option(b, g, ec);

pre: a.is_open(b).error_code
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.get_option(v, g, ec);

pre: a.is_open(b).error_code
a.io_control(b, i, ec);

pre: a.is_open(b).bool
a.at_mark(b, ec);

pre: a.is_open(b).bool
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.at_mark(v, ec);

pre: a.is_open(b).size_t
a.available(b, ec);

pre: a.is_open(b).size_t
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.available(v, ec);

pre: a.is_open(b).error_code
const typename Protocol::end↵
point& u = e;
a.bind(b, u, ec);

pre: a.is_open(b).error_code
a.shutdown(b, h, ec);

153

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).Protocol::endpoint
a.local_endpoint(b, ec);

pre: a.is_open(b).Protocol::endpoint
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.local_endpoint(v, ec);

pre: a.is_open(b).Protocol::endpoint
a.remote_endpoint(b, ec);

pre: a.is_open(b).Protocol::endpoint
const X& u = a;
const X::implementa↵
tion_type& v = b;
u.remote_endpoint(v, ec);

pre: a.is_open(b).error_code
const typename Protocol::end↵
point& u = e;
a.connect(b, u, ec);

pre: a.is_open(b).
Initiates an asynchronous connect opera-
tion that is performed via the io_ser-
vice object a.get_io_service() and
behaves according to asynchronous oper-
ation requirements.

const typename Protocol::end↵
point& u = e;
a.async_connect(b, u, ch);

Stream descriptor service requirements
A stream descriptor service must meet the requirements for a descriptor service, as well as the additional requirements listed below.

In the table below, X denotes a stream descriptor service class, a denotes a value of type X, b denotes a value of type X::implement-
ation_type, ec denotes a value of type error_code, mb denotes a value satisfying mutable buffer sequence requirements, rh
denotes a value meeting ReadHandler requirements, cb denotes a value satisfying constant buffer sequence requirements, and wh
denotes a value meeting WriteHandler requirements.

154

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 31. StreamDescriptorService requirements

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Reads one or more bytes of data from a
descriptor b.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.read_some(b, mb, ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0. If the total size
of all buffers in the sequence mb is 0, the
function shall return 0 immediately.
If the operation completes due to graceful
connection closure by the peer, the opera-
tion shall fail with error::eof.

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from a

voida.async_read_some(b, mb, rh);

descriptor b. The operation is performed
via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence mb is 0, the
asynchronous read operation shall com-
plete immediately and pass 0 as the argu-
ment to the handler that specifies the
number of bytes read.
If the operation completes due to graceful
connection closure by the peer, the opera-
tion shall fail with error::eof.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

155

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Writes one or more bytes of data to a
descriptor b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0. If the total
size of all buffers in the sequence cb is 0,
the function shall return 0 immediately.

size_ta.write_some(b, cb, ec);

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to a
descriptor b. The operation is performed
via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence cb is 0, the
asynchronous operation shall complete
immediately and pass 0 as the argument
to the handler that specifies the number
of bytes read.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_write_some(b, cb, wh);

Stream handle service requirements
A stream handle service must meet the requirements for a handle service, as well as the additional requirements listed below.

In the table below, X denotes a stream handle service class, a denotes a value of type X, b denotes a value of type X::implementa-
tion_type, ec denotes a value of type error_code, mb denotes a value satisfying mutable buffer sequence requirements, rh denotes
a value meeting ReadHandler requirements, cb denotes a value satisfying constant buffer sequence requirements, and wh denotes
a value meeting WriteHandler requirements.

156

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 32. StreamHandleService requirements

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Reads one or more bytes of data from a
handle b.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.read_some(b, mb, ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0. If the total size
of all buffers in the sequence mb is 0, the
function shall return 0 immediately.
If the operation completes due to graceful
connection closure by the peer, the opera-
tion shall fail with error::eof.

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from a

voida.async_read_some(b, mb, rh);

handle b. The operation is performed via
the io_service object a.get_io_ser-
vice() and behaves according to asyn-
chronous operation requirements.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence mb is 0, the
asynchronous read operation shall com-
plete immediately and pass 0 as the argu-
ment to the handler that specifies the
number of bytes read.
If the operation completes due to graceful
connection closure by the peer, the opera-
tion shall fail with error::eof.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

157

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Writes one or more bytes of data to a
handle b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0. If the total
size of all buffers in the sequence cb is 0,
the function shall return 0 immediately.

size_ta.write_some(b, cb, ec);

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to a
handle b. The operation is performed via
the io_service object a.get_io_ser-
vice() and behaves according to asyn-
chronous operation requirements.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence cb is 0, the
asynchronous operation shall complete
immediately and pass 0 as the argument
to the handler that specifies the number
of bytes read.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_write_some(b, cb, wh);

Stream socket service requirements
A stream socket service must meet the requirements for a socket service, as well as the additional requirements listed below.

In the table below, X denotes a stream socket service class, a denotes a value of type X, b denotes a value of type X::implementa-
tion_type, ec denotes a value of type error_code, f denotes a value of type socket_base::message_flags, mb denotes a
value satisfying mutable buffer sequence requirements, rh denotes a value meeting ReadHandler requirements, cb denotes a value
satisfying constant buffer sequence requirements, and wh denotes a value meeting WriteHandler requirements.

158

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 33. StreamSocketService requirements

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Reads one or more bytes of data from a
connected socket b.
The mutable buffer sequence mb specifies
memory where the data should be placed.

size_ta.receive(b, mb, f, ec);

The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
If successful, returns the number of bytes
read. Otherwise returns 0. If the total size
of all buffers in the sequence mb is 0, the
function shall return 0 immediately.
If the operation completes due to graceful
connection closure by the peer, the opera-
tion shall fail with error::eof.

pre: a.is_open(b).
Initiates an asynchronous operation to
read one or more bytes of data from a

voida.async_receive(b, mb, f, rh);

connected socket b. The operation is per-
formed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The operation shall always fill a buffer in
the sequence completely before proceed-
ing to the next.
The implementation shall maintain one
or more copies of mb until such time as
the read operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of mb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence mb is 0, the
asynchronous read operation shall com-
plete immediately and pass 0 as the argu-
ment to the handler that specifies the
number of bytes read.
If the operation completes due to graceful
connection closure by the peer, the opera-
tion shall fail with error::eof.
If the operation completes successfully,
the ReadHandler object rh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

159

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

assertion/note
pre/post-condition

return typeexpression

pre: a.is_open(b).
Writes one or more bytes of data to a
connected socket b.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
If successful, returns the number of bytes
written. Otherwise returns 0. If the total
size of all buffers in the sequence cb is 0,
the function shall return 0 immediately.

size_ta.send(b, cb, f, ec);

pre: a.is_open(b).
Initiates an asynchronous operation to
write one or more bytes of data to a con-
nected socket b. The operation is per-
formed via the io_service object
a.get_io_service() and behaves ac-
cording to asynchronous operation require-
ments.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The operation shall always write
a buffer in the sequence completely before
proceeding to the next.
The implementation shall maintain one
or more copies of cb until such time as
the write operation no longer requires ac-
cess to the memory specified by the buf-
fers in the sequence. The program must
ensure the memory is valid until:
— the last copy of cb is destroyed, or
— the handler for the asynchronous oper-
ation is invoked,
whichever comes first. If the total size of
all buffers in the sequence cb is 0, the
asynchronous operation shall complete
immediately and pass 0 as the argument
to the handler that specifies the number
of bytes read.
If the operation completes successfully,
the WriteHandler object wh is invoked
with the number of bytes transferred.
Otherwise it is invoked with 0.

voida.async_send(b, cb, f, wh);

Buffer-oriented synchronous random-access read device require-
ments
In the table below, a denotes a synchronous random-access read device object, o denotes an offset of type boost::uint64_t, mb
denotes an object satisfying mutable buffer sequence requirements, and ec denotes an object of type error_code.

160

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 34. Buffer-oriented synchronous random-access read device requirements

semantics, pre/post-conditionstypeoperation

Equivalent to:

error_code ec;
size_t s = a.read_some_at(o, mb, ec);
if (ec) throw system_er↵
ror(ec);
return s;

size_ta.read_some_at(o, mb);

Reads one or more bytes of data from the
device a at offset o.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The read_some_at operation shall al-
ways fill a buffer in the sequence com-
pletely before proceeding to the next.
If successful, returns the number of bytes
read and sets ec such that !ec is true. If
an error occurred, returns 0 and sets ec
such that !!ec is true.
If the total size of all buffers in the se-
quence mb is 0, the function shall return
0 immediately.

size_ta.read_some_at(o, mb, ec);

Buffer-oriented synchronous random-access write device require-
ments
In the table below, a denotes a synchronous random-access write device object, o denotes an offset of type boost::uint64_t, cb
denotes an object satisfying constant buffer sequence requirements, and ec denotes an object of type error_code.

161

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 35. Buffer-oriented synchronous random-access write device requirements

semantics, pre/post-conditionstypeoperation

Equivalent to:

error_code ec;
size_t s = a.write_some(o, cb, ec);
if (ec) throw system_er↵
ror(ec);
return s;

size_ta.write_some_at(o, cb);

Writes one or more bytes of data to the
device a at offset o.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The write_some_at operation
shall always write a buffer in the sequence
completely before proceeding to the next.
If successful, returns the number of bytes
written and sets ec such that !ec is true.
If an error occurred, returns 0 and sets ec
such that !!ec is true.
If the total size of all buffers in the se-
quence cb is 0, the function shall return
0 immediately.

size_ta.write_some_at(o, cb, ec);

Buffer-oriented synchronous read stream requirements
In the table below, a denotes a synchronous read stream object, mb denotes an object satisfying mutable buffer sequence requirements,
and ec denotes an object of type error_code.

162

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 36. Buffer-oriented synchronous read stream requirements

semantics, pre/post-conditionstypeoperation

Equivalent to:

error_code ec;
size_t s = a.read_some(mb, ec);
if (ec) throw system_er↵
ror(ec);
return s;

size_ta.read_some(mb);

Reads one or more bytes of data from the
stream a.
The mutable buffer sequence mb specifies
memory where the data should be placed.
The read_some operation shall always
fill a buffer in the sequence completely
before proceeding to the next.
If successful, returns the number of bytes
read and sets ec such that !ec is true. If
an error occurred, returns 0 and sets ec
such that !!ec is true.
If the total size of all buffers in the se-
quence mb is 0, the function shall return
0 immediately.

size_ta.read_some(mb, ec);

Buffer-oriented synchronous write stream requirements
In the table below, a denotes a synchronous write stream object, cb denotes an object satisfying constant buffer sequence requirements,
and ec denotes an object of type error_code.

163

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 37. Buffer-oriented synchronous write stream requirements

semantics, pre/post-conditionstypeoperation

Equivalent to:

error_code ec;
size_t s = a.write_some(cb, ec);
if (ec) throw system_er↵
ror(ec);
return s;

size_ta.write_some(cb);

Writes one or more bytes of data to the
stream a.
The constant buffer sequence cb specifies
memory where the data to be written is
located. The write_some operation shall
always write a buffer in the sequence
completely before proceeding to the next.
If successful, returns the number of bytes
written and sets ec such that !ec is true.
If an error occurred, returns 0 and sets ec
such that !!ec is true.
If the total size of all buffers in the se-
quence cb is 0, the function shall return
0 immediately.

size_ta.write_some(cb, ec);

Time traits requirements
In the table below, X denotes a time traits class for time type Time, t, t1, and t2 denote values of type Time, and d denotes a value
of type X::duration_type.

164

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 38. TimeTraits requirements

assertion/note
pre/post-condition

return typeexpression

Represents an absolute time. Must support
default construction, and meet the require-
ments for CopyConstructible and As-
signable.

TimeX::time_type

Represents the difference between two
absolute times. Must support default con-
struction, and meet the requirements for
CopyConstructible and Assignable.
A duration can be positive, negative, or
zero.

X::duration_type

Returns the current time.time_typeX::now();

Returns a new absolute time resulting
from adding the duration d to the absolute
time t.

time_typeX::add(t, d);

Returns the duration resulting from sub-
tracting t2 from t1.

duration_typeX::subtract(t1, t2);

Returns whether t1 is to be treated as less
than t2.

boolX::less_than(t1, t2);

Returns the date_time::time_dura-
tion_type value that most closely rep-
resents the duration d.

date_time::time_duration_typeX::to_posix_duration(d);

Timer service requirements
A timer service must meet the requirements for an I/O object service, as well as the additional requirements listed below.

In the table below, X denotes a timer service class for time type Time and traits type TimeTraits, a denotes a value of type X, b
denotes a value of type X::implementation_type, t denotes a value of type Time, d denotes a value of type
TimeTraits::duration_type, e denotes a value of type error_code, and h denotes a value meeting WaitHandler requirements.

165

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 39. TimerService requirements

assertion/note
pre/post-condition

return typeexpression

From IoObjectService requirements. Im-
plicitly cancels asynchronous wait opera-
tions, as if by calling a.cancel(b, e).

a.destroy(b);

Causes any outstanding asynchronous
wait operations to complete as soon as
possible. Handlers for cancelled opera-
tions shall be passed the error code er-
ror::operation_aborted. Sets e to
indicate success or failure. Returns the
number of operations that were cancelled.

size_t
a.cancel(b, e);

Timea.expires_at(b);

Implicitly cancels asynchronous wait op-
erations, as if by calling a.cancel(b,
e). Returns the number of operations that
were cancelled.
post: a.expires_at(b) == t.

size_t
a.expires_at(b, t, e);

Returns a value equivalent to
TimeTraits::subtract(a.ex-

pires_at(b), TimeTraits::now()).

TimeTraits::duration_typea.expires_from_now(b);

Equivalent to a.expires_at(b,

TimeTraits::add(TimeTraits::now(),

d), e).

size_t
a.expires_from_now(b, d, e);

Sets e to indicate success or failure. Re-
turns e.
p o s t : ! ! e | |

!TimeTraits::lt(TimeTraits::now(),

a.expires_at(b)).

error_code
a.wait(b, e);

Initiates an asynchronous wait operation
that is performed via the io_service
object a.get_io_service() and be-
haves according to asynchronous opera-
tion requirements.
The handler shall be posted for execution
only if the condition !!ec ||

!TimeTraits::lt(TimeTraits::now(),

a.expires_at(b)) holds, where ec is
the error code to be passed to the handler.

a.async_wait(b, h);

Waitable timer service requirements
A waitable timer service must meet the requirements for an I/O object service, as well as the additional requirements listed below.

In the table below, X denotes a waitable timer service class for clock type Clock, where Clock meets the C++11 clock type require-
ments, a denotes a value of type X, b denotes a value of type X::implementation_type, t denotes a value of type

166

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Clock::time_point, d denotes a value of type Clock::duration, e denotes a value of type error_code, and h denotes a value
meeting WaitHandler requirements.

Table 40. WaitableTimerService requirements

assertion/note
pre/post-condition

return typeexpression

From IoObjectService requirements. Im-
plicitly cancels asynchronous wait opera-
tions, as if by calling a.cancel(b, e).

a.destroy(b);

Causes any outstanding asynchronous
wait operations to complete as soon as
possible. Handlers for cancelled opera-
tions shall be passed the error code er-
ror::operation_aborted. Sets e to
indicate success or failure. Returns the
number of operations that were cancelled.

size_t
a.cancel(b, e);

Clock::time_pointa.expires_at(b);

Implicitly cancels asynchronous wait op-
erations, as if by calling a.cancel(b,
e). Returns the number of operations that
were cancelled.
post: a.expires_at(b) == t.

size_t
a.expires_at(b, t, e);

Returns a value equivalent to a.ex-
pires_at(b) - Clock::now().

Clock::durationa.expires_from_now(b);

Equivalent to a.expires_at(b,

Clock::now() + d, e).
size_t

a.expires_from_now(b, d, e);

Sets e to indicate success or failure. Re-
turns e.
post: !!e || !(Clock::now() <

a.expires_at(b)).

error_code
a.wait(b, e);

Initiates an asynchronous wait operation
that is performed via the io_service
object a.get_io_service() and be-
haves according to asynchronous opera-
tion requirements.
The handler shall be posted for execution
only if the condition !!ec ||

!(Clock::now() < a.ex-

pires_at(b)) holds, where ec is the
error code to be passed to the handler.

a.async_wait(b, h);

Wait handler requirements
A wait handler must meet the requirements for a handler. A value h of a wait handler class should work correctly in the expression
h(ec), where ec is an lvalue of type const error_code.

167

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples

A free function as a wait handler:

void wait_handler(
const boost::system::error_code& ec)

{
...

}

A wait handler function object:

struct wait_handler
{
...
void operator()(

const boost::system::error_code& ec)
{
...

}
...

};

A non-static class member function adapted to a wait handler using bind():

void my_class::wait_handler(
const boost::system::error_code& ec)

{
...

}
...
socket.async_wait(...,

boost::bind(&my_class::wait_handler,
this, boost::asio::placeholders::error));

Wait traits requirements
In the table below, X denotes a wait traits class for clock type Clock, where Clock meets the C++11 type requirements for a clock,
and d denotes a value of type Clock::duration.

Table 41. WaitTraits requirements

assertion/note
pre/post-condition

return typeexpression

Returns the maximum duration to be used
for an individual, implementation-defined
wait operation.

Clock::durationX::to_wait_duration(d);

Write handler requirements
A write handler must meet the requirements for a handler. A value h of a write handler class should work correctly in the expression
h(ec, s), where ec is an lvalue of type const error_code and s is an lvalue of type const size_t.

Examples

A free function as a write handler:

168

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void write_handler(
const boost::system::error_code& ec,
std::size_t bytes_transferred)

{
...

}

A write handler function object:

struct write_handler
{
...
void operator()(

const boost::system::error_code& ec,
std::size_t bytes_transferred)

{
...

}
...

};

A non-static class member function adapted to a write handler using bind():

void my_class::write_handler(
const boost::system::error_code& ec,
std::size_t bytes_transferred)

{
...

}
...
socket.async_write(...,

boost::bind(&my_class::write_handler,
this, boost::asio::placeholders::error,
boost::asio::placeholders::bytes_transferred));

add_service

template<
typename Service>

void add_service(
io_service & ios,
Service * svc);

This function is used to add a service to the io_service.

Parameters

ios The io_service object that owns the service.

svc The service object. On success, ownership of the service object is transferred to the io_service. When the io_service
object is destroyed, it will destroy the service object by performing:

delete static_cast<io_service::service*>(svc)

169

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::asio::service_already_exists Thrown if a service of the given type is already present in the io_service.

boost::asio::invalid_service_owner Thrown if the service's owning io_service is not the io_service object specified by the
ios parameter.

Requirements

Header: boost/asio/io_service.hpp

Convenience header: boost/asio.hpp

asio_handler_allocate
Default allocation function for handlers.

void * asio_handler_allocate(
std::size_t size,
...);

Asynchronous operations may need to allocate temporary objects. Since asynchronous operations have a handler function object,
these temporary objects can be said to be associated with the handler.

Implement asio_handler_allocate and asio_handler_deallocate for your own handlers to provide custom allocation for these temporary
objects.

The default implementation of these allocation hooks uses operator new and operator delete.

Remarks

All temporary objects associated with a handler will be deallocated before the upcall to the handler is performed. This allows the
same memory to be reused for a subsequent asynchronous operation initiated by the handler.

Example

class my_handler;

void* asio_handler_allocate(std::size_t size, my_handler* context)
{
return ::operator new(size);

}

void asio_handler_deallocate(void* pointer, std::size_t size,
my_handler* context)

{
::operator delete(pointer);

}

Requirements

Header: boost/asio/handler_alloc_hook.hpp

Convenience header: boost/asio.hpp

asio_handler_deallocate
Default deallocation function for handlers.

170

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void asio_handler_deallocate(
void * pointer,
std::size_t size,
...);

Implement asio_handler_allocate and asio_handler_deallocate for your own handlers to provide custom allocation for the associated
temporary objects.

The default implementation of these allocation hooks uses operator new and operator delete.

Requirements

Header: boost/asio/handler_alloc_hook.hpp

Convenience header: boost/asio.hpp

asio_handler_invoke
Default invoke function for handlers.

template<
typename Function>

void asio_handler_invoke(
Function & function,
...);

» more...

template<
typename Function>

void asio_handler_invoke(
const Function & function,
...);

» more...

Completion handlers for asynchronous operations are invoked by the io_service associated with the corresponding object (e.g. a
socket or deadline_timer). Certain guarantees are made on when the handler may be invoked, in particular that a handler can only
be invoked from a thread that is currently calling run() on the corresponding io_service object. Handlers may subsequently be
invoked through other objects (such as io_service::strand objects) that provide additional guarantees.

When asynchronous operations are composed from other asynchronous operations, all intermediate handlers should be invoked using
the same method as the final handler. This is required to ensure that user-defined objects are not accessed in a way that may violate
the guarantees. This hooking function ensures that the invoked method used for the final handler is accessible at each intermediate
step.

Implement asio_handler_invoke for your own handlers to specify a custom invocation strategy.

This default implementation invokes the function object like so:

function();

If necessary, the default implementation makes a copy of the function object so that the non-const operator() can be used.

171

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

class my_handler;

template <typename Function>
void asio_handler_invoke(Function function, my_handler* context)
{
context->strand_.dispatch(function);

}

Requirements

Header: boost/asio/handler_invoke_hook.hpp

Convenience header: boost/asio.hpp

asio_handler_invoke (1 of 2 overloads)

Default handler invocation hook used for non-const function objects.

template<
typename Function>

void asio_handler_invoke(
Function & function,
...);

asio_handler_invoke (2 of 2 overloads)

Default handler invocation hook used for const function objects.

template<
typename Function>

void asio_handler_invoke(
const Function & function,
...);

asio_handler_is_continuation
Default continuation function for handlers.

bool asio_handler_is_continuation(
...);

Asynchronous operations may represent a continuation of the asynchronous control flow associated with the current handler. The
implementation can use this knowledge to optimise scheduling of the handler.

Implement asio_handler_is_continuation for your own handlers to indicate when a handler represents a continuation.

The default implementation of the continuation hook returns false.

172

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

class my_handler;

bool asio_handler_is_continuation(my_handler* context)
{
return true;

}

Requirements

Header: boost/asio/handler_continuation_hook.hpp

Convenience header: boost/asio.hpp

async_connect
Asynchronously establishes a socket connection by trying each endpoint in a sequence.

template<
typename Protocol,
typename SocketService,
typename Iterator,
typename ComposedConnectHandler>

void-or-deduced async_connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
ComposedConnectHandler handler);

» more...

template<
typename Protocol,
typename SocketService,
typename Iterator,
typename ComposedConnectHandler>

void-or-deduced async_connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
Iterator end,
ComposedConnectHandler handler);

» more...

template<
typename Protocol,
typename SocketService,
typename Iterator,
typename ConnectCondition,
typename ComposedConnectHandler>

void-or-deduced async_connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
ConnectCondition connect_condition,
ComposedConnectHandler handler);

» more...

template<
typename Protocol,
typename SocketService,
typename Iterator,
typename ConnectCondition,
typename ComposedConnectHandler>

173

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void-or-deduced async_connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
Iterator end,
ConnectCondition connect_condition,
ComposedConnectHandler handler);

» more...

Requirements

Header: boost/asio/connect.hpp

Convenience header: boost/asio.hpp

async_connect (1 of 4 overloads)

Asynchronously establishes a socket connection by trying each endpoint in a sequence.

template<
typename Protocol,
typename SocketService,
typename Iterator,
typename ComposedConnectHandler>

void-or-deduced async_connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
ComposedConnectHandler handler);

This function attempts to connect a socket to one of a sequence of endpoints. It does this by repeated calls to the socket's
async_connect member function, once for each endpoint in the sequence, until a connection is successfully established.

Parameters

s The socket to be connected. If the socket is already open, it will be closed.

begin An iterator pointing to the start of a sequence of endpoints.

handler The handler to be called when the connect operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
// Result of operation. if the sequence is empty, set to
// boost::asio::error::not_found. Otherwise, contains the
// error from the last connection attempt.
const boost::system::error_code& error,

// On success, an iterator denoting the successfully
// connected endpoint. Otherwise, the end iterator.
Iterator iterator

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

This overload assumes that a default constructed object of type Iterator represents the end of the sequence. This is a valid assumption
for iterator types such as boost::asio::ip::tcp::resolver::iterator.

174

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

tcp::resolver r(io_service);
tcp::resolver::query q("host", "service");
tcp::socket s(io_service);

// ...

r.async_resolve(q, resolve_handler);

// ...

void resolve_handler(
const boost::system::error_code& ec,
tcp::resolver::iterator i)

{
if (!ec)
{
boost::asio::async_connect(s, i, connect_handler);

}
}

// ...

void connect_handler(
const boost::system::error_code& ec,
tcp::resolver::iterator i)

{
// ...

}

async_connect (2 of 4 overloads)

Asynchronously establishes a socket connection by trying each endpoint in a sequence.

template<
typename Protocol,
typename SocketService,
typename Iterator,
typename ComposedConnectHandler>

void-or-deduced async_connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
Iterator end,
ComposedConnectHandler handler);

This function attempts to connect a socket to one of a sequence of endpoints. It does this by repeated calls to the socket's
async_connect member function, once for each endpoint in the sequence, until a connection is successfully established.

Parameters

s The socket to be connected. If the socket is already open, it will be closed.

begin An iterator pointing to the start of a sequence of endpoints.

end An iterator pointing to the end of a sequence of endpoints.

handler The handler to be called when the connect operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

175

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
// Result of operation. if the sequence is empty, set to
// boost::asio::error::not_found. Otherwise, contains the
// error from the last connection attempt.
const boost::system::error_code& error,

// On success, an iterator denoting the successfully
// connected endpoint. Otherwise, the end iterator.
Iterator iterator

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

tcp::resolver r(io_service);
tcp::resolver::query q("host", "service");
tcp::socket s(io_service);

// ...

r.async_resolve(q, resolve_handler);

// ...

void resolve_handler(
const boost::system::error_code& ec,
tcp::resolver::iterator i)

{
if (!ec)
{
tcp::resolver::iterator end;
boost::asio::async_connect(s, i, end, connect_handler);

}
}

// ...

void connect_handler(
const boost::system::error_code& ec,
tcp::resolver::iterator i)

{
// ...

}

async_connect (3 of 4 overloads)

Asynchronously establishes a socket connection by trying each endpoint in a sequence.

176

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename SocketService,
typename Iterator,
typename ConnectCondition,
typename ComposedConnectHandler>

void-or-deduced async_connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
ConnectCondition connect_condition,
ComposedConnectHandler handler);

This function attempts to connect a socket to one of a sequence of endpoints. It does this by repeated calls to the socket's
async_connect member function, once for each endpoint in the sequence, until a connection is successfully established.

Parameters

s The socket to be connected. If the socket is already open, it will be closed.

begin An iterator pointing to the start of a sequence of endpoints.

connect_condition A function object that is called prior to each connection attempt. The signature of the function object
must be:

Iterator connect_condition(
const boost::system::error_code& ec,
Iterator next);

The ec parameter contains the result from the most recent connect operation. Before the first connection
attempt, ec is always set to indicate success. The next parameter is an iterator pointing to the next end-
point to be tried. The function object should return the next iterator, but is permitted to return a different
iterator so that endpoints may be skipped. The implementation guarantees that the function object will
never be called with the end iterator.

handler The handler to be called when the connect operation completes. Copies will be made of the handler as
required. The function signature of the handler must be:

void handler(
// Result of operation. if the sequence is empty, set to
// boost::asio::error::not_found. Otherwise, contains the
// error from the last connection attempt.
const boost::system::error_code& error,

// On success, an iterator denoting the successfully
// connected endpoint. Otherwise, the end iterator.
Iterator iterator

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not
be invoked from within this function. Invocation of the handler will be performed in a manner equivalent
to using boost::asio::io_service::post().

Remarks

This overload assumes that a default constructed object of type Iterator represents the end of the sequence. This is a valid assumption
for iterator types such as boost::asio::ip::tcp::resolver::iterator.

177

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

The following connect condition function object can be used to output information about the individual connection attempts:

struct my_connect_condition
{
template <typename Iterator>
Iterator operator()(

const boost::system::error_code& ec,
Iterator next)

{
if (ec) std::cout << "Error: " << ec.message() << std::endl;
std::cout << "Trying: " << next->endpoint() << std::endl;
return next;

}
};

It would be used with the boost::asio::connect function as follows:

tcp::resolver r(io_service);
tcp::resolver::query q("host", "service");
tcp::socket s(io_service);

// ...

r.async_resolve(q, resolve_handler);

// ...

void resolve_handler(
const boost::system::error_code& ec,
tcp::resolver::iterator i)

{
if (!ec)
{
boost::asio::async_connect(s, i,

my_connect_condition(),
connect_handler);

}
}

// ...

void connect_handler(
const boost::system::error_code& ec,
tcp::resolver::iterator i)

{
if (ec)
{
// An error occurred.

}
else
{
std::cout << "Connected to: " << i->endpoint() << std::endl;

}
}

async_connect (4 of 4 overloads)

Asynchronously establishes a socket connection by trying each endpoint in a sequence.

178

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename SocketService,
typename Iterator,
typename ConnectCondition,
typename ComposedConnectHandler>

void-or-deduced async_connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
Iterator end,
ConnectCondition connect_condition,
ComposedConnectHandler handler);

This function attempts to connect a socket to one of a sequence of endpoints. It does this by repeated calls to the socket's
async_connect member function, once for each endpoint in the sequence, until a connection is successfully established.

Parameters

s The socket to be connected. If the socket is already open, it will be closed.

begin An iterator pointing to the start of a sequence of endpoints.

end An iterator pointing to the end of a sequence of endpoints.

connect_condition A function object that is called prior to each connection attempt. The signature of the function object
must be:

Iterator connect_condition(
const boost::system::error_code& ec,
Iterator next);

The ec parameter contains the result from the most recent connect operation. Before the first connection
attempt, ec is always set to indicate success. The next parameter is an iterator pointing to the next end-
point to be tried. The function object should return the next iterator, but is permitted to return a different
iterator so that endpoints may be skipped. The implementation guarantees that the function object will
never be called with the end iterator.

handler The handler to be called when the connect operation completes. Copies will be made of the handler as
required. The function signature of the handler must be:

void handler(
// Result of operation. if the sequence is empty, set to
// boost::asio::error::not_found. Otherwise, contains the
// error from the last connection attempt.
const boost::system::error_code& error,

// On success, an iterator denoting the successfully
// connected endpoint. Otherwise, the end iterator.
Iterator iterator

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not
be invoked from within this function. Invocation of the handler will be performed in a manner equivalent
to using boost::asio::io_service::post().

Example

The following connect condition function object can be used to output information about the individual connection attempts:

179

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct my_connect_condition
{
template <typename Iterator>
Iterator operator()(

const boost::system::error_code& ec,
Iterator next)

{
if (ec) std::cout << "Error: " << ec.message() << std::endl;
std::cout << "Trying: " << next->endpoint() << std::endl;
return next;

}
};

It would be used with the boost::asio::connect function as follows:

tcp::resolver r(io_service);
tcp::resolver::query q("host", "service");
tcp::socket s(io_service);

// ...

r.async_resolve(q, resolve_handler);

// ...

void resolve_handler(
const boost::system::error_code& ec,
tcp::resolver::iterator i)

{
if (!ec)
{
tcp::resolver::iterator end;
boost::asio::async_connect(s, i, end,

my_connect_condition(),
connect_handler);

}
}

// ...

void connect_handler(
const boost::system::error_code& ec,
tcp::resolver::iterator i)

{
if (ec)
{
// An error occurred.

}
else
{
std::cout << "Connected to: " << i->endpoint() << std::endl;

}
}

async_read
Start an asynchronous operation to read a certain amount of data from a stream.

180

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncReadStream,
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read(
AsyncReadStream & s,
const MutableBufferSequence & buffers,
ReadHandler handler);

» more...

template<
typename AsyncReadStream,
typename MutableBufferSequence,
typename CompletionCondition,
typename ReadHandler>

void-or-deduced async_read(
AsyncReadStream & s,
const MutableBufferSequence & buffers,
CompletionCondition completion_condition,
ReadHandler handler);

» more...

template<
typename AsyncReadStream,
typename Allocator,
typename ReadHandler>

void-or-deduced async_read(
AsyncReadStream & s,
basic_streambuf< Allocator > & b,
ReadHandler handler);

» more...

template<
typename AsyncReadStream,
typename Allocator,
typename CompletionCondition,
typename ReadHandler>

void-or-deduced async_read(
AsyncReadStream & s,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition,
ReadHandler handler);

» more...

Requirements

Header: boost/asio/read.hpp

Convenience header: boost/asio.hpp

async_read (1 of 4 overloads)

Start an asynchronous operation to read a certain amount of data from a stream.

181

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncReadStream,
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read(
AsyncReadStream & s,
const MutableBufferSequence & buffers,
ReadHandler handler);

This function is used to asynchronously read a certain number of bytes of data from a stream. The function call always returns im-
mediately. The asynchronous operation will continue until one of the following conditions is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's async_read_some function, and is known as a composed
operation. The program must ensure that the stream performs no other read operations (such as async_read, the stream's
async_read_some function, or any other composed operations that perform reads) until this operation completes.

Parameters

s The stream from which the data is to be read. The type must support the AsyncReadStream concept.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the maximum number of
bytes to read from the stream. Although the buffers object may be copied as necessary, ownership of the underlying
memory blocks is retained by the caller, which must guarantee that they remain valid until the handler is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

std::size_t bytes_transferred // Number of bytes copied into the
// buffers. If an error occurred,
// this will be the number of
// bytes successfully transferred
// prior to the error.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

To read into a single data buffer use the buffer function as follows:

boost::asio::async_read(s, boost::asio::buffer(data, size), handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

Remarks

This overload is equivalent to calling:

182

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::async_read(
s, buffers,
boost::asio::transfer_all(),
handler);

async_read (2 of 4 overloads)

Start an asynchronous operation to read a certain amount of data from a stream.

template<
typename AsyncReadStream,
typename MutableBufferSequence,
typename CompletionCondition,
typename ReadHandler>

void-or-deduced async_read(
AsyncReadStream & s,
const MutableBufferSequence & buffers,
CompletionCondition completion_condition,
ReadHandler handler);

This function is used to asynchronously read a certain number of bytes of data from a stream. The function call always returns im-
mediately. The asynchronous operation will continue until one of the following conditions is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns 0.

Parameters

s The stream from which the data is to be read. The type must support the AsyncReadStream concept.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the
maximum number of bytes to read from the stream. Although the buffers object may be copied as
necessary, ownership of the underlying memory blocks is retained by the caller, which must guar-
antee that they remain valid until the handler is called.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest async_read_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the stream's async_read_some function.

handler The handler to be called when the read operation completes. Copies will be made of the handler as
required. The function signature of the handler must be:

183

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error, // Result of operation.

std::size_t bytes_transferred // Number of bytes copied in↵
to the

// buffers. If an error oc↵
curred,

// this will be the number of
// bytes successfully trans↵

ferred
// prior to the error.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will
not be invoked from within this function. Invocation of the handler will be performed in a manner
equivalent to using boost::asio::io_service::post().

Example

To read into a single data buffer use the buffer function as follows:

boost::asio::async_read(s,
boost::asio::buffer(data, size),
boost::asio::transfer_at_least(32),
handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

async_read (3 of 4 overloads)

Start an asynchronous operation to read a certain amount of data from a stream.

template<
typename AsyncReadStream,
typename Allocator,
typename ReadHandler>

void-or-deduced async_read(
AsyncReadStream & s,
basic_streambuf< Allocator > & b,
ReadHandler handler);

This function is used to asynchronously read a certain number of bytes of data from a stream. The function call always returns im-
mediately. The asynchronous operation will continue until one of the following conditions is true:

• The supplied buffer is full (that is, it has reached maximum size).

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's async_read_some function, and is known as a composed
operation. The program must ensure that the stream performs no other read operations (such as async_read, the stream's
async_read_some function, or any other composed operations that perform reads) until this operation completes.

Parameters

s The stream from which the data is to be read. The type must support the AsyncReadStream concept.

b A basic_streambuf object into which the data will be read. Ownership of the streambuf is retained by the caller,
which must guarantee that it remains valid until the handler is called.

184

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

std::size_t bytes_transferred // Number of bytes copied into the
// buffers. If an error occurred,
// this will be the number of
// bytes successfully transferred
// prior to the error.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

This overload is equivalent to calling:

boost::asio::async_read(
s, b,
boost::asio::transfer_all(),
handler);

async_read (4 of 4 overloads)

Start an asynchronous operation to read a certain amount of data from a stream.

template<
typename AsyncReadStream,
typename Allocator,
typename CompletionCondition,
typename ReadHandler>

void-or-deduced async_read(
AsyncReadStream & s,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition,
ReadHandler handler);

This function is used to asynchronously read a certain number of bytes of data from a stream. The function call always returns im-
mediately. The asynchronous operation will continue until one of the following conditions is true:

• The supplied buffer is full (that is, it has reached maximum size).

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the stream's async_read_some function, and is known as a composed
operation. The program must ensure that the stream performs no other read operations (such as async_read, the stream's
async_read_some function, or any other composed operations that perform reads) until this operation completes.

Parameters

s The stream from which the data is to be read. The type must support the AsyncReadStream concept.

b A basic_streambuf object into which the data will be read. Ownership of the streambuf is retained
by the caller, which must guarantee that it remains valid until the handler is called.

185

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest async_read_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the stream's async_read_some function.

handler The handler to be called when the read operation completes. Copies will be made of the handler as
required. The function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

std::size_t bytes_transferred // Number of bytes copied in↵
to the

// buffers. If an error oc↵
curred,

// this will be the number of
// bytes successfully trans↵

ferred
// prior to the error.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will
not be invoked from within this function. Invocation of the handler will be performed in a manner
equivalent to using boost::asio::io_service::post().

async_read_at
Start an asynchronous operation to read a certain amount of data at the specified offset.

186

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncRandomAccessReadDevice,
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read_at(
AsyncRandomAccessReadDevice & d,
uint64_t offset,
const MutableBufferSequence & buffers,
ReadHandler handler);

» more...

template<
typename AsyncRandomAccessReadDevice,
typename MutableBufferSequence,
typename CompletionCondition,
typename ReadHandler>

void-or-deduced async_read_at(
AsyncRandomAccessReadDevice & d,
uint64_t offset,
const MutableBufferSequence & buffers,
CompletionCondition completion_condition,
ReadHandler handler);

» more...

template<
typename AsyncRandomAccessReadDevice,
typename Allocator,
typename ReadHandler>

void-or-deduced async_read_at(
AsyncRandomAccessReadDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
ReadHandler handler);

» more...

template<
typename AsyncRandomAccessReadDevice,
typename Allocator,
typename CompletionCondition,
typename ReadHandler>

void-or-deduced async_read_at(
AsyncRandomAccessReadDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition,
ReadHandler handler);

» more...

Requirements

Header: boost/asio/read_at.hpp

Convenience header: boost/asio.hpp

async_read_at (1 of 4 overloads)

Start an asynchronous operation to read a certain amount of data at the specified offset.

187

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncRandomAccessReadDevice,
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read_at(
AsyncRandomAccessReadDevice & d,
uint64_t offset,
const MutableBufferSequence & buffers,
ReadHandler handler);

This function is used to asynchronously read a certain number of bytes of data from a random access device at the specified offset.
The function call always returns immediately. The asynchronous operation will continue until one of the following conditions is
true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's async_read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the AsyncRandomAccessReadDevice concept.

offset The offset at which the data will be read.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the maximum number of
bytes to read from the device. Although the buffers object may be copied as necessary, ownership of the underlying
memory blocks is retained by the caller, which must guarantee that they remain valid until the handler is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
// Result of operation.
const boost::system::error_code& error,

// Number of bytes copied into the buffers. If an error
// occurred, this will be the number of bytes successfully
// transferred prior to the error.
std::size_t bytes_transferred

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

To read into a single data buffer use the buffer function as follows:

boost::asio::async_read_at(d, 42, boost::asio::buffer(data, size), handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

Remarks

This overload is equivalent to calling:

188

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::async_read_at(
d, 42, buffers,
boost::asio::transfer_all(),
handler);

async_read_at (2 of 4 overloads)

Start an asynchronous operation to read a certain amount of data at the specified offset.

template<
typename AsyncRandomAccessReadDevice,
typename MutableBufferSequence,
typename CompletionCondition,
typename ReadHandler>

void-or-deduced async_read_at(
AsyncRandomAccessReadDevice & d,
uint64_t offset,
const MutableBufferSequence & buffers,
CompletionCondition completion_condition,
ReadHandler handler);

This function is used to asynchronously read a certain number of bytes of data from a random access device at the specified offset.
The function call always returns immediately. The asynchronous operation will continue until one of the following conditions is
true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns 0.

Parameters

d The device from which the data is to be read. The type must support the AsyncRandomAccessRe-
adDevice concept.

offset The offset at which the data will be read.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the
maximum number of bytes to read from the device. Although the buffers object may be copied as
necessary, ownership of the underlying memory blocks is retained by the caller, which must guar-
antee that they remain valid until the handler is called.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest async_read_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the device's async_read_some_at
function.

handler The handler to be called when the read operation completes. Copies will be made of the handler as
required. The function signature of the handler must be:

189

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
// Result of operation.
const boost::system::error_code& error,

// Number of bytes copied into the buffers. If an error
// occurred, this will be the number of bytes successfully
// transferred prior to the error.
std::size_t bytes_transferred

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will
not be invoked from within this function. Invocation of the handler will be performed in a manner
equivalent to using boost::asio::io_service::post().

Example

To read into a single data buffer use the buffer function as follows:

boost::asio::async_read_at(d, 42,
boost::asio::buffer(data, size),
boost::asio::transfer_at_least(32),
handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

async_read_at (3 of 4 overloads)

Start an asynchronous operation to read a certain amount of data at the specified offset.

template<
typename AsyncRandomAccessReadDevice,
typename Allocator,
typename ReadHandler>

void-or-deduced async_read_at(
AsyncRandomAccessReadDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
ReadHandler handler);

This function is used to asynchronously read a certain number of bytes of data from a random access device at the specified offset.
The function call always returns immediately. The asynchronous operation will continue until one of the following conditions is
true:

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's async_read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the AsyncRandomAccessReadDevice concept.

offset The offset at which the data will be read.

b A basic_streambuf object into which the data will be read. Ownership of the streambuf is retained by the caller,
which must guarantee that it remains valid until the handler is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

190

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
// Result of operation.
const boost::system::error_code& error,

// Number of bytes copied into the buffers. If an error
// occurred, this will be the number of bytes successfully
// transferred prior to the error.
std::size_t bytes_transferred

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

This overload is equivalent to calling:

boost::asio::async_read_at(
d, 42, b,
boost::asio::transfer_all(),
handler);

async_read_at (4 of 4 overloads)

Start an asynchronous operation to read a certain amount of data at the specified offset.

template<
typename AsyncRandomAccessReadDevice,
typename Allocator,
typename CompletionCondition,
typename ReadHandler>

void-or-deduced async_read_at(
AsyncRandomAccessReadDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition,
ReadHandler handler);

This function is used to asynchronously read a certain number of bytes of data from a random access device at the specified offset.
The function call always returns immediately. The asynchronous operation will continue until one of the following conditions is
true:

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the device's async_read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the AsyncRandomAccessRe-
adDevice concept.

offset The offset at which the data will be read.

b A basic_streambuf object into which the data will be read. Ownership of the streambuf is retained
by the caller, which must guarantee that it remains valid until the handler is called.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

191

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t completion_condition(
// Result of latest async_read_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the device's async_read_some_at
function.

handler The handler to be called when the read operation completes. Copies will be made of the handler as
required. The function signature of the handler must be:

void handler(
// Result of operation.
const boost::system::error_code& error,

// Number of bytes copied into the buffers. If an error
// occurred, this will be the number of bytes successfully
// transferred prior to the error.
std::size_t bytes_transferred

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will
not be invoked from within this function. Invocation of the handler will be performed in a manner
equivalent to using boost::asio::io_service::post().

async_read_until
Start an asynchronous operation to read data into a streambuf until it contains a delimiter, matches a regular expression, or a function
object indicates a match.

192

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncReadStream,
typename Allocator,
typename ReadHandler>

void-or-deduced async_read_until(
AsyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
char delim,
ReadHandler handler);

» more...

template<
typename AsyncReadStream,
typename Allocator,
typename ReadHandler>

void-or-deduced async_read_until(
AsyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
const std::string & delim,
ReadHandler handler);

» more...

template<
typename AsyncReadStream,
typename Allocator,
typename ReadHandler>

void-or-deduced async_read_until(
AsyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
const boost::regex & expr,
ReadHandler handler);

» more...

template<
typename AsyncReadStream,
typename Allocator,
typename MatchCondition,
typename ReadHandler>

void-or-deduced async_read_until(
AsyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
MatchCondition match_condition,
ReadHandler handler,
typename enable_if< is_match_condition< MatchCondition >::value >::type * = 0);

» more...

Requirements

Header: boost/asio/read_until.hpp

Convenience header: boost/asio.hpp

async_read_until (1 of 4 overloads)

Start an asynchronous operation to read data into a streambuf until it contains a specified delimiter.

193

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncReadStream,
typename Allocator,
typename ReadHandler>

void-or-deduced async_read_until(
AsyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
char delim,
ReadHandler handler);

This function is used to asynchronously read data into the specified streambuf until the streambuf's get area contains the specified
delimiter. The function call always returns immediately. The asynchronous operation will continue until one of the following conditions
is true:

• The get area of the streambuf contains the specified delimiter.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's async_read_some function, and is known as a composed
operation. If the streambuf's get area already contains the delimiter, this asynchronous operation completes immediately. The program
must ensure that the stream performs no other read operations (such as async_read, async_read_until, the stream's async_read_some
function, or any other composed operations that perform reads) until this operation completes.

Parameters

s The stream from which the data is to be read. The type must support the AsyncReadStream concept.

b A streambuf object into which the data will be read. Ownership of the streambuf is retained by the caller, which must
guarantee that it remains valid until the handler is called.

delim The delimiter character.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
// Result of operation.
const boost::system::error_code& error,

// The number of bytes in the streambuf's get
// area up to and including the delimiter.
// 0 if an error occurred.
std::size_t bytes_transferred

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

After a successful async_read_until operation, the streambuf may contain additional data beyond the delimiter. An application will
typically leave that data in the streambuf for a subsequent async_read_until operation to examine.

Example

To asynchronously read data into a streambuf until a newline is encountered:

194

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::streambuf b;
...
void handler(const boost::system::error_code& e, std::size_t size)
{
if (!e)
{
std::istream is(&b);
std::string line;
std::getline(is, line);
...

}
}
...
boost::asio::async_read_until(s, b, '\n', handler);

After the async_read_until operation completes successfully, the buffer b contains the delimiter:

{ 'a', 'b', ..., 'c', '\n', 'd', 'e', ... }

The call to std::getline then extracts the data up to and including the delimiter, so that the string line contains:

{ 'a', 'b', ..., 'c', '\n' }

The remaining data is left in the buffer b as follows:

{ 'd', 'e', ... }

This data may be the start of a new line, to be extracted by a subsequent async_read_until operation.

async_read_until (2 of 4 overloads)

Start an asynchronous operation to read data into a streambuf until it contains a specified delimiter.

template<
typename AsyncReadStream,
typename Allocator,
typename ReadHandler>

void-or-deduced async_read_until(
AsyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
const std::string & delim,
ReadHandler handler);

This function is used to asynchronously read data into the specified streambuf until the streambuf's get area contains the specified
delimiter. The function call always returns immediately. The asynchronous operation will continue until one of the following conditions
is true:

• The get area of the streambuf contains the specified delimiter.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's async_read_some function, and is known as a composed
operation. If the streambuf's get area already contains the delimiter, this asynchronous operation completes immediately. The program
must ensure that the stream performs no other read operations (such as async_read, async_read_until, the stream's async_read_some
function, or any other composed operations that perform reads) until this operation completes.

195

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

s The stream from which the data is to be read. The type must support the AsyncReadStream concept.

b A streambuf object into which the data will be read. Ownership of the streambuf is retained by the caller, which must
guarantee that it remains valid until the handler is called.

delim The delimiter string.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
// Result of operation.
const boost::system::error_code& error,

// The number of bytes in the streambuf's get
// area up to and including the delimiter.
// 0 if an error occurred.
std::size_t bytes_transferred

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

After a successful async_read_until operation, the streambuf may contain additional data beyond the delimiter. An application will
typically leave that data in the streambuf for a subsequent async_read_until operation to examine.

Example

To asynchronously read data into a streambuf until a newline is encountered:

boost::asio::streambuf b;
...
void handler(const boost::system::error_code& e, std::size_t size)
{
if (!e)
{
std::istream is(&b);
std::string line;
std::getline(is, line);
...

}
}
...
boost::asio::async_read_until(s, b, "\r\n", handler);

After the async_read_until operation completes successfully, the buffer b contains the delimiter:

{ 'a', 'b', ..., 'c', '\r', '\n', 'd', 'e', ... }

The call to std::getline then extracts the data up to and including the delimiter, so that the string line contains:

{ 'a', 'b', ..., 'c', '\r', '\n' }

The remaining data is left in the buffer b as follows:

196

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

{ 'd', 'e', ... }

This data may be the start of a new line, to be extracted by a subsequent async_read_until operation.

async_read_until (3 of 4 overloads)

Start an asynchronous operation to read data into a streambuf until some part of its data matches a regular expression.

template<
typename AsyncReadStream,
typename Allocator,
typename ReadHandler>

void-or-deduced async_read_until(
AsyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
const boost::regex & expr,
ReadHandler handler);

This function is used to asynchronously read data into the specified streambuf until the streambuf's get area contains some data that
matches a regular expression. The function call always returns immediately. The asynchronous operation will continue until one of
the following conditions is true:

• A substring of the streambuf's get area matches the regular expression.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's async_read_some function, and is known as a composed
operation. If the streambuf's get area already contains data that matches the regular expression, this asynchronous operation completes
immediately. The program must ensure that the stream performs no other read operations (such as async_read, async_read_until,
the stream's async_read_some function, or any other composed operations that perform reads) until this operation completes.

Parameters

s The stream from which the data is to be read. The type must support the AsyncReadStream concept.

b A streambuf object into which the data will be read. Ownership of the streambuf is retained by the caller, which must
guarantee that it remains valid until the handler is called.

expr The regular expression.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
// Result of operation.
const boost::system::error_code& error,

// The number of bytes in the streambuf's get
// area up to and including the substring
// that matches the regular. expression.
// 0 if an error occurred.
std::size_t bytes_transferred

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

197

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

After a successful async_read_until operation, the streambuf may contain additional data beyond that which matched the regular
expression. An application will typically leave that data in the streambuf for a subsequent async_read_until operation to examine.

Example

To asynchronously read data into a streambuf until a CR-LF sequence is encountered:

boost::asio::streambuf b;
...
void handler(const boost::system::error_code& e, std::size_t size)
{
if (!e)
{
std::istream is(&b);
std::string line;
std::getline(is, line);
...

}
}
...
boost::asio::async_read_until(s, b, boost::regex("\r\n"), handler);

After the async_read_until operation completes successfully, the buffer b contains the data which matched the regular expression:

{ 'a', 'b', ..., 'c', '\r', '\n', 'd', 'e', ... }

The call to std::getline then extracts the data up to and including the match, so that the string line contains:

{ 'a', 'b', ..., 'c', '\r', '\n' }

The remaining data is left in the buffer b as follows:

{ 'd', 'e', ... }

This data may be the start of a new line, to be extracted by a subsequent async_read_until operation.

async_read_until (4 of 4 overloads)

Start an asynchronous operation to read data into a streambuf until a function object indicates a match.

template<
typename AsyncReadStream,
typename Allocator,
typename MatchCondition,
typename ReadHandler>

void-or-deduced async_read_until(
AsyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
MatchCondition match_condition,
ReadHandler handler,
typename enable_if< is_match_condition< MatchCondition >::value >::type * = 0);

This function is used to asynchronously read data into the specified streambuf until a user-defined match condition function object,
when applied to the data contained in the streambuf, indicates a successful match. The function call always returns immediately.
The asynchronous operation will continue until one of the following conditions is true:

198

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• The match condition function object returns a std::pair where the second element evaluates to true.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's async_read_some function, and is known as a composed
operation. If the match condition function object already indicates a match, this asynchronous operation completes immediately.
The program must ensure that the stream performs no other read operations (such as async_read, async_read_until, the stream's
async_read_some function, or any other composed operations that perform reads) until this operation completes.

Parameters

s The stream from which the data is to be read. The type must support the AsyncReadStream concept.

b A streambuf object into which the data will be read.

match_condition The function object to be called to determine whether a match exists. The signature of the function object
must be:

pair<iterator, bool> match_condition(iterator begin, iterator end);

where iterator represents the type:

buffers_iterator<basic_streambuf<Allocator>::const_buffers_type>

The iterator parameters begin and end define the range of bytes to be scanned to determine whether there
is a match. The first member of the return value is an iterator marking one-past-the-end of the bytes that
have been consumed by the match function. This iterator is used to calculate the begin parameter for any
subsequent invocation of the match condition. The second member of the return value is true if a match
has been found, false otherwise.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required.
The function signature of the handler must be:

void handler(
// Result of operation.
const boost::system::error_code& error,

// The number of bytes in the streambuf's get
// area that have been fully consumed by the
// match function. O if an error occurred.
std::size_t bytes_transferred

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be
invoked from within this function. Invocation of the handler will be performed in a manner equivalent to
using boost::asio::io_service::post().

Remarks

After a successful async_read_until operation, the streambuf may contain additional data beyond that which matched the function
object. An application will typically leave that data in the streambuf for a subsequent async_read_until operation to examine.

The default implementation of the is_match_condition type trait evaluates to true for function pointers and function objects with
a result_type typedef. It must be specialised for other user-defined function objects.

Examples

To asynchronously read data into a streambuf until whitespace is encountered:

199

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef boost::asio::buffers_iterator<
boost::asio::streambuf::const_buffers_type> iterator;

std::pair<iterator, bool>
match_whitespace(iterator begin, iterator end)
{
iterator i = begin;
while (i != end)
if (std::isspace(*i++))
return std::make_pair(i, true);

return std::make_pair(i, false);
}
...
void handler(const boost::system::error_code& e, std::size_t size);
...
boost::asio::streambuf b;
boost::asio::async_read_until(s, b, match_whitespace, handler);

To asynchronously read data into a streambuf until a matching character is found:

class match_char
{
public:
explicit match_char(char c) : c_(c) {}

template <typename Iterator>
std::pair<Iterator, bool> operator()(

Iterator begin, Iterator end) const
{
Iterator i = begin;
while (i != end)
if (c_ == *i++)

return std::make_pair(i, true);
return std::make_pair(i, false);

}

private:
char c_;

};

namespace asio {
template <> struct is_match_condition<match_char>
: public boost::true_type {};

} // namespace asio
...
void handler(const boost::system::error_code& e, std::size_t size);
...
boost::asio::streambuf b;
boost::asio::async_read_until(s, b, match_char('a'), handler);

async_result
An interface for customising the behaviour of an initiating function.

template<
typename Handler>

class async_result

200

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The return type of the initiating function.type

Member Functions

DescriptionName

Construct an async result from a given handler.async_result

Obtain the value to be returned from the initiating function.get

This template may be specialised for user-defined handler types.

Requirements

Header: boost/asio/async_result.hpp

Convenience header: boost/asio.hpp

async_result::async_result

Construct an async result from a given handler.

async_result(
Handler &);

When using a specalised async_result, the constructor has an opportunity to initialise some state associated with the handler,
which is then returned from the initiating function.

async_result::get

Obtain the value to be returned from the initiating function.

type get();

async_result::type

The return type of the initiating function.

typedef void type;

Requirements

Header: boost/asio/async_result.hpp

Convenience header: boost/asio.hpp

async_write
Start an asynchronous operation to write a certain amount of data to a stream.

201

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncWriteStream,
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write(
AsyncWriteStream & s,
const ConstBufferSequence & buffers,
WriteHandler handler);

» more...

template<
typename AsyncWriteStream,
typename ConstBufferSequence,
typename CompletionCondition,
typename WriteHandler>

void-or-deduced async_write(
AsyncWriteStream & s,
const ConstBufferSequence & buffers,
CompletionCondition completion_condition,
WriteHandler handler);

» more...

template<
typename AsyncWriteStream,
typename Allocator,
typename WriteHandler>

void-or-deduced async_write(
AsyncWriteStream & s,
basic_streambuf< Allocator > & b,
WriteHandler handler);

» more...

template<
typename AsyncWriteStream,
typename Allocator,
typename CompletionCondition,
typename WriteHandler>

void-or-deduced async_write(
AsyncWriteStream & s,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition,
WriteHandler handler);

» more...

Requirements

Header: boost/asio/write.hpp

Convenience header: boost/asio.hpp

async_write (1 of 4 overloads)

Start an asynchronous operation to write all of the supplied data to a stream.

202

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncWriteStream,
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write(
AsyncWriteStream & s,
const ConstBufferSequence & buffers,
WriteHandler handler);

This function is used to asynchronously write a certain number of bytes of data to a stream. The function call always returns imme-
diately. The asynchronous operation will continue until one of the following conditions is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's async_write_some function, and is known as a composed
operation. The program must ensure that the stream performs no other write operations (such as async_write, the stream's
async_write_some function, or any other composed operations that perform writes) until this operation completes.

Parameters

s The stream to which the data is to be written. The type must support the AsyncWriteStream concept.

buffers One or more buffers containing the data to be written. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

std::size_t bytes_transferred // Number of bytes written from the
// buffers. If an error occurred,
// this will be less than the sum
// of the buffer sizes.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

To write a single data buffer use the buffer function as follows:

boost::asio::async_write(s, boost::asio::buffer(data, size), handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

async_write (2 of 4 overloads)

Start an asynchronous operation to write a certain amount of data to a stream.

203

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncWriteStream,
typename ConstBufferSequence,
typename CompletionCondition,
typename WriteHandler>

void-or-deduced async_write(
AsyncWriteStream & s,
const ConstBufferSequence & buffers,
CompletionCondition completion_condition,
WriteHandler handler);

This function is used to asynchronously write a certain number of bytes of data to a stream. The function call always returns imme-
diately. The asynchronous operation will continue until one of the following conditions is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the stream's async_write_some function, and is known as a composed
operation. The program must ensure that the stream performs no other write operations (such as async_write, the stream's
async_write_some function, or any other composed operations that perform writes) until this operation completes.

Parameters

s The stream to which the data is to be written. The type must support the AsyncWriteStream concept.

buffers One or more buffers containing the data to be written. Although the buffers object may be copied
as necessary, ownership of the underlying memory blocks is retained by the caller, which must
guarantee that they remain valid until the handler is called.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest async_write_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the stream's async_write_some
function.

handler The handler to be called when the write operation completes. Copies will be made of the handler
as required. The function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

std::size_t bytes_transferred // Number of bytes written ↵
from the

// buffers. If an error oc↵
curred,

// this will be less than the ↵
sum

// of the buffer sizes.
);

204

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Regardless of whether the asynchronous operation completes immediately or not, the handler will
not be invoked from within this function. Invocation of the handler will be performed in a manner
equivalent to using boost::asio::io_service::post().

Example

To write a single data buffer use the buffer function as follows:

boost::asio::async_write(s,
boost::asio::buffer(data, size),
boost::asio::transfer_at_least(32),
handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

async_write (3 of 4 overloads)

Start an asynchronous operation to write all of the supplied data to a stream.

template<
typename AsyncWriteStream,
typename Allocator,
typename WriteHandler>

void-or-deduced async_write(
AsyncWriteStream & s,
basic_streambuf< Allocator > & b,
WriteHandler handler);

This function is used to asynchronously write a certain number of bytes of data to a stream. The function call always returns imme-
diately. The asynchronous operation will continue until one of the following conditions is true:

• All of the data in the supplied basic_streambuf has been written.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's async_write_some function, and is known as a composed
operation. The program must ensure that the stream performs no other write operations (such as async_write, the stream's
async_write_some function, or any other composed operations that perform writes) until this operation completes.

Parameters

s The stream to which the data is to be written. The type must support the AsyncWriteStream concept.

b A basic_streambuf object from which data will be written. Ownership of the streambuf is retained by the caller,
which must guarantee that it remains valid until the handler is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.

std::size_t bytes_transferred // Number of bytes written from the
// buffers. If an error occurred,
// this will be less than the sum
// of the buffer sizes.

);

205

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

async_write (4 of 4 overloads)

Start an asynchronous operation to write a certain amount of data to a stream.

template<
typename AsyncWriteStream,
typename Allocator,
typename CompletionCondition,
typename WriteHandler>

void-or-deduced async_write(
AsyncWriteStream & s,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition,
WriteHandler handler);

This function is used to asynchronously write a certain number of bytes of data to a stream. The function call always returns imme-
diately. The asynchronous operation will continue until one of the following conditions is true:

• All of the data in the supplied basic_streambuf has been written.

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the stream's async_write_some function, and is known as a composed
operation. The program must ensure that the stream performs no other write operations (such as async_write, the stream's
async_write_some function, or any other composed operations that perform writes) until this operation completes.

Parameters

s The stream to which the data is to be written. The type must support the AsyncWriteStream concept.

b A basic_streambuf object from which data will be written. Ownership of the streambuf is retained
by the caller, which must guarantee that it remains valid until the handler is called.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest async_write_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the stream's async_write_some
function.

handler The handler to be called when the write operation completes. Copies will be made of the handler
as required. The function signature of the handler must be:

206

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error, // Result of operation.

std::size_t bytes_transferred // Number of bytes written ↵
from the

// buffers. If an error oc↵
curred,

// this will be less than the ↵
sum

// of the buffer sizes.
);

Regardless of whether the asynchronous operation completes immediately or not, the handler will
not be invoked from within this function. Invocation of the handler will be performed in a manner
equivalent to using boost::asio::io_service::post().

async_write_at
Start an asynchronous operation to write a certain amount of data at the specified offset.

template<
typename AsyncRandomAccessWriteDevice,
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write_at(
AsyncRandomAccessWriteDevice & d,
uint64_t offset,
const ConstBufferSequence & buffers,
WriteHandler handler);

» more...

template<
typename AsyncRandomAccessWriteDevice,
typename ConstBufferSequence,
typename CompletionCondition,
typename WriteHandler>

void-or-deduced async_write_at(
AsyncRandomAccessWriteDevice & d,
uint64_t offset,
const ConstBufferSequence & buffers,
CompletionCondition completion_condition,
WriteHandler handler);

» more...

template<
typename AsyncRandomAccessWriteDevice,
typename Allocator,
typename WriteHandler>

void-or-deduced async_write_at(
AsyncRandomAccessWriteDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
WriteHandler handler);

» more...

template<
typename AsyncRandomAccessWriteDevice,
typename Allocator,
typename CompletionCondition,
typename WriteHandler>

void-or-deduced async_write_at(

207

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

AsyncRandomAccessWriteDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition,
WriteHandler handler);

» more...

Requirements

Header: boost/asio/write_at.hpp

Convenience header: boost/asio.hpp

async_write_at (1 of 4 overloads)

Start an asynchronous operation to write all of the supplied data at the specified offset.

template<
typename AsyncRandomAccessWriteDevice,
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write_at(
AsyncRandomAccessWriteDevice & d,
uint64_t offset,
const ConstBufferSequence & buffers,
WriteHandler handler);

This function is used to asynchronously write a certain number of bytes of data to a random access device at a specified offset. The
function call always returns immediately. The asynchronous operation will continue until one of the following conditions is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's async_write_some_at function, and is known as a composed
operation. The program must ensure that the device performs no overlapping write operations (such as async_write_at, the device's
async_write_some_at function, or any other composed operations that perform writes) until this operation completes. Operations
are overlapping if the regions defined by their offsets, and the numbers of bytes to write, intersect.

Parameters

d The device to which the data is to be written. The type must support the AsyncRandomAccessWriteDevice concept.

offset The offset at which the data will be written.

buffers One or more buffers containing the data to be written. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

208

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
// Result of operation.
const boost::system::error_code& error,

// Number of bytes written from the buffers. If an error
// occurred, this will be less than the sum of the buffer sizes.
std::size_t bytes_transferred

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

To write a single data buffer use the buffer function as follows:

boost::asio::async_write_at(d, 42, boost::asio::buffer(data, size), handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

async_write_at (2 of 4 overloads)

Start an asynchronous operation to write a certain amount of data at the specified offset.

template<
typename AsyncRandomAccessWriteDevice,
typename ConstBufferSequence,
typename CompletionCondition,
typename WriteHandler>

void-or-deduced async_write_at(
AsyncRandomAccessWriteDevice & d,
uint64_t offset,
const ConstBufferSequence & buffers,
CompletionCondition completion_condition,
WriteHandler handler);

This function is used to asynchronously write a certain number of bytes of data to a random access device at a specified offset. The
function call always returns immediately. The asynchronous operation will continue until one of the following conditions is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the device's async_write_some_at function, and is known as a composed
operation. The program must ensure that the device performs no overlapping write operations (such as async_write_at, the device's
async_write_some_at function, or any other composed operations that perform writes) until this operation completes. Operations
are overlapping if the regions defined by their offsets, and the numbers of bytes to write, intersect.

Parameters

d The device to which the data is to be written. The type must support the AsyncRandomAccessWrite-
Device concept.

offset The offset at which the data will be written.

209

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffers One or more buffers containing the data to be written. Although the buffers object may be copied
as necessary, ownership of the underlying memory blocks is retained by the caller, which must
guarantee that they remain valid until the handler is called.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest async_write_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the device's async_write_some_at
function.

handler The handler to be called when the write operation completes. Copies will be made of the handler
as required. The function signature of the handler must be:

void handler(
// Result of operation.
const boost::system::error_code& error,

// Number of bytes written from the buffers. If an error
// occurred, this will be less than the sum of the buffer sizes.
std::size_t bytes_transferred

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will
not be invoked from within this function. Invocation of the handler will be performed in a manner
equivalent to using boost::asio::io_service::post().

Example

To write a single data buffer use the buffer function as follows:

boost::asio::async_write_at(d, 42,
boost::asio::buffer(data, size),
boost::asio::transfer_at_least(32),
handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

async_write_at (3 of 4 overloads)

Start an asynchronous operation to write all of the supplied data at the specified offset.

210

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncRandomAccessWriteDevice,
typename Allocator,
typename WriteHandler>

void-or-deduced async_write_at(
AsyncRandomAccessWriteDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
WriteHandler handler);

This function is used to asynchronously write a certain number of bytes of data to a random access device at a specified offset. The
function call always returns immediately. The asynchronous operation will continue until one of the following conditions is true:

• All of the data in the supplied basic_streambuf has been written.

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's async_write_some_at function, and is known as a composed
operation. The program must ensure that the device performs no overlapping write operations (such as async_write_at, the device's
async_write_some_at function, or any other composed operations that perform writes) until this operation completes. Operations
are overlapping if the regions defined by their offsets, and the numbers of bytes to write, intersect.

Parameters

d The device to which the data is to be written. The type must support the AsyncRandomAccessWriteDevice concept.

offset The offset at which the data will be written.

b A basic_streambuf object from which data will be written. Ownership of the streambuf is retained by the caller,
which must guarantee that it remains valid until the handler is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
// Result of operation.
const boost::system::error_code& error,

// Number of bytes written from the buffers. If an error
// occurred, this will be less than the sum of the buffer sizes.
std::size_t bytes_transferred

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

async_write_at (4 of 4 overloads)

Start an asynchronous operation to write a certain amount of data at the specified offset.

211

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename AsyncRandomAccessWriteDevice,
typename Allocator,
typename CompletionCondition,
typename WriteHandler>

void-or-deduced async_write_at(
AsyncRandomAccessWriteDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition,
WriteHandler handler);

This function is used to asynchronously write a certain number of bytes of data to a random access device at a specified offset. The
function call always returns immediately. The asynchronous operation will continue until one of the following conditions is true:

• All of the data in the supplied basic_streambuf has been written.

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the device's async_write_some_at function, and is known as a composed
operation. The program must ensure that the device performs no overlapping write operations (such as async_write_at, the device's
async_write_some_at function, or any other composed operations that perform writes) until this operation completes. Operations
are overlapping if the regions defined by their offsets, and the numbers of bytes to write, intersect.

Parameters

d The device to which the data is to be written. The type must support the AsyncRandomAccessWrite-
Device concept.

offset The offset at which the data will be written.

b A basic_streambuf object from which data will be written. Ownership of the streambuf is retained
by the caller, which must guarantee that it remains valid until the handler is called.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest async_write_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the device's async_write_some_at
function.

handler The handler to be called when the write operation completes. Copies will be made of the handler
as required. The function signature of the handler must be:

212

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
// Result of operation.
const boost::system::error_code& error,

// Number of bytes written from the buffers. If an error
// occurred, this will be less than the sum of the buffer sizes.
std::size_t bytes_transferred

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will
not be invoked from within this function. Invocation of the handler will be performed in a manner
equivalent to using boost::asio::io_service::post().

basic_datagram_socket
Provides datagram-oriented socket functionality.

template<
typename Protocol,
typename DatagramSocketService = datagram_socket_service<Protocol>>

class basic_datagram_socket :
public basic_socket< Protocol, DatagramSocketService >

213

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

214

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

215

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive on a connected socket.async_receive

Start an asynchronous receive.async_receive_from

Start an asynchronous send on a connected socket.async_send

Start an asynchronous send.async_send_to

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_datagram_socket without opening it.basic_datagram_socket

Construct and open a basic_datagram_socket.

Construct a basic_datagram_socket, opening it and binding it
to the given local endpoint.

Construct a basic_datagram_socket on an existing native socket.

Move-construct a basic_datagram_socket from another.

Move-construct a basic_datagram_socket from a socket of an-
other protocol type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

216

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Gets the non-blocking mode of the native socket implementation.

Sets the non-blocking mode of the native socket implementation.

native_non_blocking

Gets the non-blocking mode of the socket.

Sets the non-blocking mode of the socket.

non_blocking

Open the socket using the specified protocol.open

Move-assign a basic_datagram_socket from another.

Move-assign a basic_datagram_socket from a socket of another
protocol type.

operator=

Receive some data on a connected socket.receive

Receive a datagram with the endpoint of the sender.receive_from

Get the remote endpoint of the socket.remote_endpoint

Send some data on a connected socket.send

Send a datagram to the specified endpoint.send_to

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

217

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_datagram_socket class template provides asynchronous and blocking datagram-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::assign

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_handle_type & native_socket);

» more...

boost::system::error_code assign(
const protocol_type & protocol,
const native_handle_type & native_socket,
boost::system::error_code & ec);

» more...

basic_datagram_socket::assign (1 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_handle_type & native_socket);

basic_datagram_socket::assign (2 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

218

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code assign(
const protocol_type & protocol,
const native_handle_type & native_socket,
boost::system::error_code & ec);

basic_datagram_socket::async_connect

Inherited from basic_socket.

Start an asynchronous connect.

template<
typename ConnectHandler>

void-or-deduced async_connect(
const endpoint_type & peer_endpoint,
ConnectHandler handler);

This function is used to asynchronously connect a socket to the specified remote endpoint. The function call always returns immediately.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected. Copies will be made of the endpoint object as re-
quired.

handler The handler to be called when the connection operation completes. Copies will be made of the handler as re-
quired. The function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

void connect_handler(const boost::system::error_code& error)
{
if (!error)
{
// Connect succeeded.

}
}

...

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.async_connect(endpoint, connect_handler);

basic_datagram_socket::async_receive

Start an asynchronous receive on a connected socket.

219

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
const MutableBufferSequence & buffers,
ReadHandler handler);

» more...

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
ReadHandler handler);

» more...

basic_datagram_socket::async_receive (1 of 2 overloads)

Start an asynchronous receive on a connected socket.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
const MutableBufferSequence & buffers,
ReadHandler handler);

This function is used to asynchronously receive data from the datagram socket. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until
the handler is called.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes received.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The async_receive operation can only be used with a connected socket. Use the async_receive_from function to receive data on an
unconnected datagram socket.

Example

To receive into a single data buffer use the buffer function as follows:

socket.async_receive(boost::asio::buffer(data, size), handler);

220

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays,
boost::array or std::vector.

basic_datagram_socket::async_receive (2 of 2 overloads)

Start an asynchronous receive on a connected socket.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
ReadHandler handler);

This function is used to asynchronously receive data from the datagram socket. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until
the handler is called.

flags Flags specifying how the receive call is to be made.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes received.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The async_receive operation can only be used with a connected socket. Use the async_receive_from function to receive data on an
unconnected datagram socket.

basic_datagram_socket::async_receive_from

Start an asynchronous receive.

221

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
ReadHandler handler);

» more...

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
socket_base::message_flags flags,
ReadHandler handler);

» more...

basic_datagram_socket::async_receive_from (1 of 2 overloads)

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
ReadHandler handler);

This function is used to asynchronously receive a datagram. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as
necessary, ownership of the underlying memory blocks is retained by the caller, which must guarantee that
they remain valid until the handler is called.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the datagram. Ownership of the
sender_endpoint object is retained by the caller, which must guarantee that it is valid until the handler is
called.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required.
The function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes received.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be
invoked from within this function. Invocation of the handler will be performed in a manner equivalent to
using boost::asio::io_service::post().

Example

To receive into a single data buffer use the buffer function as follows:

222

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

socket.async_receive_from(
boost::asio::buffer(data, size), sender_endpoint, handler);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays,
boost::array or std::vector.

basic_datagram_socket::async_receive_from (2 of 2 overloads)

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
socket_base::message_flags flags,
ReadHandler handler);

This function is used to asynchronously receive a datagram. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as
necessary, ownership of the underlying memory blocks is retained by the caller, which must guarantee that
they remain valid until the handler is called.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the datagram. Ownership of the
sender_endpoint object is retained by the caller, which must guarantee that it is valid until the handler is
called.

flags Flags specifying how the receive call is to be made.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required.
The function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes received.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be
invoked from within this function. Invocation of the handler will be performed in a manner equivalent to
using boost::asio::io_service::post().

basic_datagram_socket::async_send

Start an asynchronous send on a connected socket.

223

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
const ConstBufferSequence & buffers,
WriteHandler handler);

» more...

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
WriteHandler handler);

» more...

basic_datagram_socket::async_send (1 of 2 overloads)

Start an asynchronous send on a connected socket.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
const ConstBufferSequence & buffers,
WriteHandler handler);

This function is used to asynchronously send data on the datagram socket. The function call always returns immediately.

Parameters

buffers One or more data buffers to be sent on the socket. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes sent.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The async_send operation can only be used with a connected socket. Use the async_send_to function to send data on an unconnected
datagram socket.

Example

To send a single data buffer use the buffer function as follows:

socket.async_send(boost::asio::buffer(data, size), handler);

224

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_datagram_socket::async_send (2 of 2 overloads)

Start an asynchronous send on a connected socket.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
WriteHandler handler);

This function is used to asynchronously send data on the datagram socket. The function call always returns immediately.

Parameters

buffers One or more data buffers to be sent on the socket. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

flags Flags specifying how the send call is to be made.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes sent.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The async_send operation can only be used with a connected socket. Use the async_send_to function to send data on an unconnected
datagram socket.

basic_datagram_socket::async_send_to

Start an asynchronous send.

225

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,
WriteHandler handler);

» more...

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,
socket_base::message_flags flags,
WriteHandler handler);

» more...

basic_datagram_socket::async_send_to (1 of 2 overloads)

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,
WriteHandler handler);

This function is used to asynchronously send a datagram to the specified remote endpoint. The function call always returns immediately.

Parameters

buffers One or more data buffers to be sent to the remote endpoint. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain
valid until the handler is called.

destination The remote endpoint to which the data will be sent. Copies will be made of the endpoint as required.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes sent.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

To send a single data buffer use the buffer function as follows:

226

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::endpoint destination(
boost::asio::ip::address::from_string("1.2.3.4"), 12345);

socket.async_send_to(
boost::asio::buffer(data, size), destination, handler);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_datagram_socket::async_send_to (2 of 2 overloads)

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,
socket_base::message_flags flags,
WriteHandler handler);

This function is used to asynchronously send a datagram to the specified remote endpoint. The function call always returns immediately.

Parameters

buffers One or more data buffers to be sent to the remote endpoint. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain
valid until the handler is called.

flags Flags specifying how the send call is to be made.

destination The remote endpoint to which the data will be sent. Copies will be made of the endpoint as required.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes sent.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

basic_datagram_socket::at_mark

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;
» more...

bool at_mark(
boost::system::error_code & ec) const;

» more...

227

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_datagram_socket::at_mark (1 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

Exceptions

boost::system::system_error Thrown on failure.

basic_datagram_socket::at_mark (2 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark(
boost::system::error_code & ec) const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

basic_datagram_socket::available

Determine the number of bytes available for reading.

std::size_t available() const;
» more...

std::size_t available(
boost::system::error_code & ec) const;

» more...

basic_datagram_socket::available (1 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

std::size_t available() const;

This function is used to determine the number of bytes that may be read without blocking.

228

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

Exceptions

boost::system::system_error Thrown on failure.

basic_datagram_socket::available (2 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

std::size_t available(
boost::system::error_code & ec) const;

This function is used to determine the number of bytes that may be read without blocking.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

basic_datagram_socket::basic_datagram_socket

Construct a basic_datagram_socket without opening it.

explicit basic_datagram_socket(
boost::asio::io_service & io_service);

» more...

Construct and open a basic_datagram_socket.

basic_datagram_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol);

» more...

Construct a basic_datagram_socket, opening it and binding it to the given local endpoint.

basic_datagram_socket(
boost::asio::io_service & io_service,
const endpoint_type & endpoint);

» more...

Construct a basic_datagram_socket on an existing native socket.

basic_datagram_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol,
const native_handle_type & native_socket);

» more...

229

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Move-construct a basic_datagram_socket from another.

basic_datagram_socket(
basic_datagram_socket && other);

» more...

Move-construct a basic_datagram_socket from a socket of another protocol type.

template<
typename Protocol1,
typename DatagramSocketService1>

basic_datagram_socket(
basic_datagram_socket< Protocol1, DatagramSocketService1 > && other,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

» more...

basic_datagram_socket::basic_datagram_socket (1 of 6 overloads)

Construct a basic_datagram_socket without opening it.

basic_datagram_socket(
boost::asio::io_service & io_service);

This constructor creates a datagram socket without opening it. The open() function must be called before data can be sent or received
on the socket.

Parameters

io_service The io_service object that the datagram socket will use to dispatch handlers for any asynchronous operations
performed on the socket.

basic_datagram_socket::basic_datagram_socket (2 of 6 overloads)

Construct and open a basic_datagram_socket.

basic_datagram_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol);

This constructor creates and opens a datagram socket.

Parameters

io_service The io_service object that the datagram socket will use to dispatch handlers for any asynchronous operations
performed on the socket.

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

basic_datagram_socket::basic_datagram_socket (3 of 6 overloads)

Construct a basic_datagram_socket, opening it and binding it to the given local endpoint.

230

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_datagram_socket(
boost::asio::io_service & io_service,
const endpoint_type & endpoint);

This constructor creates a datagram socket and automatically opens it bound to the specified endpoint on the local machine. The
protocol used is the protocol associated with the given endpoint.

Parameters

io_service The io_service object that the datagram socket will use to dispatch handlers for any asynchronous operations
performed on the socket.

endpoint An endpoint on the local machine to which the datagram socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

basic_datagram_socket::basic_datagram_socket (4 of 6 overloads)

Construct a basic_datagram_socket on an existing native socket.

basic_datagram_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol,
const native_handle_type & native_socket);

This constructor creates a datagram socket object to hold an existing native socket.

Parameters

io_service The io_service object that the datagram socket will use to dispatch handlers for any asynchronous operations
performed on the socket.

protocol An object specifying protocol parameters to be used.

native_socket The new underlying socket implementation.

Exceptions

boost::system::system_error Thrown on failure.

basic_datagram_socket::basic_datagram_socket (5 of 6 overloads)

Move-construct a basic_datagram_socket from another.

basic_datagram_socket(
basic_datagram_socket && other);

This constructor moves a datagram socket from one object to another.

Parameters

other The other basic_datagram_socket object from which the move will occur.

231

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_datagram_socket(io_service&)
constructor.

basic_datagram_socket::basic_datagram_socket (6 of 6 overloads)

Move-construct a basic_datagram_socket from a socket of another protocol type.

template<
typename Protocol1,
typename DatagramSocketService1>

basic_datagram_socket(
basic_datagram_socket< Protocol1, DatagramSocketService1 > && other,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

This constructor moves a datagram socket from one object to another.

Parameters

other The other basic_datagram_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_datagram_socket(io_service&)
constructor.

basic_datagram_socket::bind

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

» more...

boost::system::error_code bind(
const endpoint_type & endpoint,
boost::system::error_code & ec);

» more...

basic_datagram_socket::bind (1 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

232

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
socket.bind(boost::asio::ip::tcp::endpoint(

boost::asio::ip::tcp::v4(), 12345));

basic_datagram_socket::bind (2 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

boost::system::error_code bind(
const endpoint_type & endpoint,
boost::system::error_code & ec);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
boost::system::error_code ec;
socket.bind(boost::asio::ip::tcp::endpoint(

boost::asio::ip::tcp::v4(), 12345), ec);
if (ec)
{
// An error occurred.

}

basic_datagram_socket::broadcast

Inherited from socket_base.

Socket option to permit sending of broadcast messages.

typedef implementation_defined broadcast;

Implements the SOL_SOCKET/SO_BROADCAST socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option(true);
socket.set_option(option);

Getting the current option value:

233

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::bytes_readable

Inherited from socket_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::bytes_readable command(true);
socket.io_control(command);
std::size_t bytes_readable = command.get();

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::cancel

Cancel all asynchronous operations associated with the socket.

void cancel();
» more...

boost::system::error_code cancel(
boost::system::error_code & ec);

» more...

basic_datagram_socket::cancel (1 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

void cancel();

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

234

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP,
Windows Server 2003, and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the
CancelIo function has two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_datagram_socket::cancel (2 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
boost::system::error_code & ec);

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP,
Windows Server 2003, and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the
CancelIo function has two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

235

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_datagram_socket::close

Close the socket.

void close();
» more...

boost::system::error_code close(
boost::system::error_code & ec);

» more...

basic_datagram_socket::close (1 of 2 overloads)

Inherited from basic_socket.

Close the socket.

void close();

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure. Note that, even if the function indicates an error, the underlying descriptor
is closed.

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_datagram_socket::close (2 of 2 overloads)

Inherited from basic_socket.

Close the socket.

boost::system::error_code close(
boost::system::error_code & ec);

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any. Note that, even if the function indicates an error, the underlying descriptor is closed.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.close(ec);
if (ec)
{
// An error occurred.

}

236

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_datagram_socket::connect

Connect the socket to the specified endpoint.

void connect(
const endpoint_type & peer_endpoint);

» more...

boost::system::error_code connect(
const endpoint_type & peer_endpoint,
boost::system::error_code & ec);

» more...

basic_datagram_socket::connect (1 of 2 overloads)

Inherited from basic_socket.

Connect the socket to the specified endpoint.

void connect(
const endpoint_type & peer_endpoint);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.connect(endpoint);

basic_datagram_socket::connect (2 of 2 overloads)

Inherited from basic_socket.

Connect the socket to the specified endpoint.

boost::system::error_code connect(
const endpoint_type & peer_endpoint,
boost::system::error_code & ec);

237

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
boost::system::error_code ec;
socket.connect(endpoint, ec);
if (ec)
{
// An error occurred.

}

basic_datagram_socket::debug

Inherited from socket_base.

Socket option to enable socket-level debugging.

typedef implementation_defined debug;

Implements the SOL_SOCKET/SO_DEBUG socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

238

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_datagram_socket::do_not_route

Inherited from socket_base.

Socket option to prevent routing, use local interfaces only.

typedef implementation_defined do_not_route;

Implements the SOL_SOCKET/SO_DONTROUTE socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::enable_connection_aborted

Inherited from socket_base.

Socket option to report aborted connections on accept.

typedef implementation_defined enable_connection_aborted;

Implements a custom socket option that determines whether or not an accept operation is permitted to fail with
boost::asio::error::connection_aborted. By default the option is false.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option(true);
acceptor.set_option(option);

Getting the current option value:

239

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option;
acceptor.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

basic_datagram_socket::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

basic_datagram_socket::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

basic_datagram_socket::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

240

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_datagram_socket::get_option

Get an option from the socket.

void get_option(
GettableSocketOption & option) const;

» more...

boost::system::error_code get_option(
GettableSocketOption & option,
boost::system::error_code & ec) const;

» more...

basic_datagram_socket::get_option (1 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

template<
typename GettableSocketOption>

void get_option(
GettableSocketOption & option) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

basic_datagram_socket::get_option (2 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

241

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename GettableSocketOption>

boost::system::error_code get_option(
GettableSocketOption & option,
boost::system::error_code & ec) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
boost::system::error_code ec;
socket.get_option(option, ec);
if (ec)
{
// An error occurred.

}
bool is_set = option.value();

basic_datagram_socket::get_service

Get the service associated with the I/O object.

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

basic_datagram_socket::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

service_type & get_service();

basic_datagram_socket::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

242

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_datagram_socket::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

basic_datagram_socket::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::io_control

Perform an IO control command on the socket.

void io_control(
IoControlCommand & command);

» more...

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

» more...

basic_datagram_socket::io_control (1 of 2 overloads)

Inherited from basic_socket.

Perform an IO control command on the socket.

template<
typename IoControlCommand>

void io_control(
IoControlCommand & command);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

Exceptions

boost::system::system_error Thrown on failure.

243

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_datagram_socket::io_control (2 of 2 overloads)

Inherited from basic_socket.

Perform an IO control command on the socket.

template<
typename IoControlCommand>

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
boost::system::error_code ec;
socket.io_control(command, ec);
if (ec)
{
// An error occurred.

}
std::size_t bytes_readable = command.get();

basic_datagram_socket::is_open

Inherited from basic_socket.

Determine whether the socket is open.

bool is_open() const;

basic_datagram_socket::keep_alive

Inherited from socket_base.

Socket option to send keep-alives.

244

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined keep_alive;

Implements the SOL_SOCKET/SO_KEEPALIVE socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::linger

Inherited from socket_base.

Socket option to specify whether the socket lingers on close if unsent data is present.

typedef implementation_defined linger;

Implements the SOL_SOCKET/SO_LINGER socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option(true, 30);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option;
socket.get_option(option);
bool is_set = option.enabled();
unsigned short timeout = option.timeout();

245

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::local_endpoint

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;
» more...

endpoint_type local_endpoint(
boost::system::error_code & ec) const;

» more...

basic_datagram_socket::local_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;

This function is used to obtain the locally bound endpoint of the socket.

Return Value

An object that represents the local endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint();

basic_datagram_socket::local_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint(
boost::system::error_code & ec) const;

This function is used to obtain the locally bound endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

246

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

An object that represents the local endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_datagram_socket::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();
» more...

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;
» more...

basic_datagram_socket::lowest_layer (1 of 2 overloads)

Inherited from basic_socket.

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_datagram_socket::lowest_layer (2 of 2 overloads)

Inherited from basic_socket.

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further
layers, it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

247

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_datagram_socket::lowest_layer_type

Inherited from basic_socket.

A basic_socket is always the lowest layer.

typedef basic_socket< Protocol, DatagramSocketService > lowest_layer_type;

248

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

249

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

250

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_socket without opening it.basic_socket

Construct and open a basic_socket.

Construct a basic_socket, opening it and binding it to the given
local endpoint.

Construct a basic_socket on an existing native socket.

Move-construct a basic_socket from another.

Move-construct a basic_socket from a socket of another protocol
type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

Gets the non-blocking mode of the native socket implementation.native_non_blocking

Sets the non-blocking mode of the native socket implementation.

Gets the non-blocking mode of the socket.non_blocking

Sets the non-blocking mode of the socket.

251

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Open the socket using the specified protocol.open

Move-assign a basic_socket from another.

Move-assign a basic_socket from a socket of another protocol
type.

operator=

Get the remote endpoint of the socket.remote_endpoint

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected destructor to prevent deletion through this type.~basic_socket

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_socket class template provides functionality that is common to both stream-oriented and datagram-oriented sockets.

Thread Safety

Distinct objects: Safe.

252

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Shared objects: Unsafe.

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::max_connections

Inherited from socket_base.

The maximum length of the queue of pending incoming connections.

static const int max_connections = implementation_defined;

basic_datagram_socket::message_do_not_route

Inherited from socket_base.

Specify that the data should not be subject to routing.

static const int message_do_not_route = implementation_defined;

basic_datagram_socket::message_end_of_record

Inherited from socket_base.

Specifies that the data marks the end of a record.

static const int message_end_of_record = implementation_defined;

basic_datagram_socket::message_flags

Inherited from socket_base.

Bitmask type for flags that can be passed to send and receive operations.

typedef int message_flags;

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::message_out_of_band

Inherited from socket_base.

Process out-of-band data.

static const int message_out_of_band = implementation_defined;

253

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_datagram_socket::message_peek

Inherited from socket_base.

Peek at incoming data without removing it from the input queue.

static const int message_peek = implementation_defined;

basic_datagram_socket::native

Inherited from basic_socket.

(Deprecated: Use native_handle().) Get the native socket representation.

native_type native();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_datagram_socket::native_handle

Inherited from basic_socket.

Get the native socket representation.

native_handle_type native_handle();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_datagram_socket::native_handle_type

The native representation of a socket.

typedef DatagramSocketService::native_handle_type native_handle_type;

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::native_non_blocking

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking() const;
» more...

Sets the non-blocking mode of the native socket implementation.

254

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void native_non_blocking(
bool mode);

» more...

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

basic_datagram_socket::native_non_blocking (1 of 3 overloads)

Inherited from basic_socket.

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking() const;

This function is used to retrieve the non-blocking mode of the underlying native socket. This mode has no effect on the behaviour
of the socket object's synchronous operations.

Return Value

true if the underlying socket is in non-blocking mode and direct system calls may fail with boost::asio::error::would_block
(or the equivalent system error).

Remarks

The current non-blocking mode is cached by the socket object. Consequently, the return value may be incorrect if the non-blocking
mode was set directly on the native socket.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

255

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

256

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_datagram_socket::native_non_blocking (2 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the native socket implementation.

void native_non_blocking(
bool mode);

This function is used to modify the non-blocking mode of the underlying native socket. It has no effect on the behaviour of the
socket object's synchronous operations.

Parameters

mode If true, the underlying socket is put into non-blocking mode and direct system calls may fail with boost::asio::er-
ror::would_block (or the equivalent system error).

Exceptions

boost::system::system_error Thrown on failure. If the mode is false, but the current value of non_blocking() is true,
this function fails with boost::asio::error::invalid_argument, as the combination
does not make sense.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

257

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

258

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_datagram_socket::native_non_blocking (3 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the native socket implementation.

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

This function is used to modify the non-blocking mode of the underlying native socket. It has no effect on the behaviour of the
socket object's synchronous operations.

Parameters

mode If true, the underlying socket is put into non-blocking mode and direct system calls may fail with boost::asio::er-
ror::would_block (or the equivalent system error).

ec Set to indicate what error occurred, if any. If the mode is false, but the current value of non_blocking() is true, this
function fails with boost::asio::error::invalid_argument, as the combination does not make sense.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

259

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

260

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_datagram_socket::native_type

(Deprecated: Use native_handle_type.) The native representation of a socket.

typedef DatagramSocketService::native_handle_type native_type;

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::non_blocking

Gets the non-blocking mode of the socket.

bool non_blocking() const;
» more...

Sets the non-blocking mode of the socket.

void non_blocking(
bool mode);

» more...

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

basic_datagram_socket::non_blocking (1 of 3 overloads)

Inherited from basic_socket.

Gets the non-blocking mode of the socket.

bool non_blocking() const;

Return Value

true if the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to perform
the requested operation immediately. If false, synchronous operations will block until complete.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

261

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_datagram_socket::non_blocking (2 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the socket.

void non_blocking(
bool mode);

Parameters

mode If true, the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to
perform the requested operation immediately. If false, synchronous operations will block until complete.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

basic_datagram_socket::non_blocking (3 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the socket.

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

Parameters

mode If true, the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to
perform the requested operation immediately. If false, synchronous operations will block until complete.

ec Set to indicate what error occurred, if any.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

basic_datagram_socket::non_blocking_io

Inherited from socket_base.

(Deprecated: Use non_blocking().) IO control command to set the blocking mode of the socket.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

262

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::non_blocking_io command(true);
socket.io_control(command);

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::open

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

» more...

boost::system::error_code open(
const protocol_type & protocol,
boost::system::error_code & ec);

» more...

basic_datagram_socket::open (1 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());

basic_datagram_socket::open (2 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

263

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code open(
const protocol_type & protocol,
boost::system::error_code & ec);

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying which protocol is to be used.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::system::error_code ec;
socket.open(boost::asio::ip::tcp::v4(), ec);
if (ec)
{
// An error occurred.

}

basic_datagram_socket::operator=

Move-assign a basic_datagram_socket from another.

basic_datagram_socket & operator=(
basic_datagram_socket && other);

» more...

Move-assign a basic_datagram_socket from a socket of another protocol type.

template<
typename Protocol1,
typename DatagramSocketService1>

enable_if< is_convertible< Protocol1, Protocol >::value, basic_datagram_socket >::type & operator=(
basic_datagram_socket< Protocol1, DatagramSocketService1 > && other);

» more...

basic_datagram_socket::operator= (1 of 2 overloads)

Move-assign a basic_datagram_socket from another.

basic_datagram_socket & operator=(
basic_datagram_socket && other);

This assignment operator moves a datagram socket from one object to another.

Parameters

other The other basic_datagram_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_datagram_socket(io_service&)
constructor.

264

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_datagram_socket::operator= (2 of 2 overloads)

Move-assign a basic_datagram_socket from a socket of another protocol type.

template<
typename Protocol1,
typename DatagramSocketService1>

enable_if< is_convertible< Protocol1, Protocol >::value, basic_datagram_socket >::type & operator=(
basic_datagram_socket< Protocol1, DatagramSocketService1 > && other);

This assignment operator moves a datagram socket from one object to another.

Parameters

other The other basic_datagram_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_datagram_socket(io_service&)
constructor.

basic_datagram_socket::protocol_type

The protocol type.

typedef Protocol protocol_type;

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::receive

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers);

» more...

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags);

» more...

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

» more...

265

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_datagram_socket::receive (1 of 3 overloads)

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers);

This function is used to receive data on the datagram socket. The function call will block until data has been received successfully
or an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The receive operation can only be used with a connected socket. Use the receive_from function to receive data on an unconnected
datagram socket.

Example

To receive into a single data buffer use the buffer function as follows:

socket.receive(boost::asio::buffer(data, size));

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays,
boost::array or std::vector.

basic_datagram_socket::receive (2 of 3 overloads)

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags);

This function is used to receive data on the datagram socket. The function call will block until data has been received successfully
or an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

flags Flags specifying how the receive call is to be made.

266

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The receive operation can only be used with a connected socket. Use the receive_from function to receive data on an unconnected
datagram socket.

basic_datagram_socket::receive (3 of 3 overloads)

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

This function is used to receive data on the datagram socket. The function call will block until data has been received successfully
or an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

flags Flags specifying how the receive call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes received.

Remarks

The receive operation can only be used with a connected socket. Use the receive_from function to receive data on an unconnected
datagram socket.

basic_datagram_socket::receive_buffer_size

Inherited from socket_base.

Socket option for the receive buffer size of a socket.

typedef implementation_defined receive_buffer_size;

Implements the SOL_SOCKET/SO_RCVBUF socket option.

Examples

Setting the option:

267

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::receive_from

Receive a datagram with the endpoint of the sender.

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint);

» more...

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
socket_base::message_flags flags);

» more...

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
socket_base::message_flags flags,
boost::system::error_code & ec);

» more...

basic_datagram_socket::receive_from (1 of 3 overloads)

Receive a datagram with the endpoint of the sender.

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint);

This function is used to receive a datagram. The function call will block until data has been received successfully or an error occurs.

268

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

buffers One or more buffers into which the data will be received.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the datagram.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure.

Example

To receive into a single data buffer use the buffer function as follows:

boost::asio::ip::udp::endpoint sender_endpoint;
socket.receive_from(

boost::asio::buffer(data, size), sender_endpoint);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays,
boost::array or std::vector.

basic_datagram_socket::receive_from (2 of 3 overloads)

Receive a datagram with the endpoint of the sender.

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
socket_base::message_flags flags);

This function is used to receive a datagram. The function call will block until data has been received successfully or an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the datagram.

flags Flags specifying how the receive call is to be made.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure.

basic_datagram_socket::receive_from (3 of 3 overloads)

Receive a datagram with the endpoint of the sender.

269

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
socket_base::message_flags flags,
boost::system::error_code & ec);

This function is used to receive a datagram. The function call will block until data has been received successfully or an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the datagram.

flags Flags specifying how the receive call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes received.

basic_datagram_socket::receive_low_watermark

Inherited from socket_base.

Socket option for the receive low watermark.

typedef implementation_defined receive_low_watermark;

Implements the SOL_SOCKET/SO_RCVLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

270

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_datagram_socket::remote_endpoint

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;
» more...

endpoint_type remote_endpoint(
boost::system::error_code & ec) const;

» more...

basic_datagram_socket::remote_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;

This function is used to obtain the remote endpoint of the socket.

Return Value

An object that represents the remote endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint();

basic_datagram_socket::remote_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint(
boost::system::error_code & ec) const;

This function is used to obtain the remote endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the remote endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

271

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_datagram_socket::reuse_address

Inherited from socket_base.

Socket option to allow the socket to be bound to an address that is already in use.

typedef implementation_defined reuse_address;

Implements the SOL_SOCKET/SO_REUSEADDR socket option.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option;
acceptor.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::send

Send some data on a connected socket.

272

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers);

» more...

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags);

» more...

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

» more...

basic_datagram_socket::send (1 of 3 overloads)

Send some data on a connected socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers);

This function is used to send data on the datagram socket. The function call will block until the data has been sent successfully or
an error occurs.

Parameters

buffers One ore more data buffers to be sent on the socket.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The send operation can only be used with a connected socket. Use the send_to function to send data on an unconnected datagram
socket.

Example

To send a single data buffer use the buffer function as follows:

socket.send(boost::asio::buffer(data, size));

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

273

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_datagram_socket::send (2 of 3 overloads)

Send some data on a connected socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags);

This function is used to send data on the datagram socket. The function call will block until the data has been sent successfully or
an error occurs.

Parameters

buffers One ore more data buffers to be sent on the socket.

flags Flags specifying how the send call is to be made.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The send operation can only be used with a connected socket. Use the send_to function to send data on an unconnected datagram
socket.

basic_datagram_socket::send (3 of 3 overloads)

Send some data on a connected socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

This function is used to send data on the datagram socket. The function call will block until the data has been sent successfully or
an error occurs.

Parameters

buffers One or more data buffers to be sent on the socket.

flags Flags specifying how the send call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes sent.

274

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The send operation can only be used with a connected socket. Use the send_to function to send data on an unconnected datagram
socket.

basic_datagram_socket::send_buffer_size

Inherited from socket_base.

Socket option for the send buffer size of a socket.

typedef implementation_defined send_buffer_size;

Implements the SOL_SOCKET/SO_SNDBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::send_low_watermark

Inherited from socket_base.

Socket option for the send low watermark.

typedef implementation_defined send_low_watermark;

Implements the SOL_SOCKET/SO_SNDLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option(1024);
socket.set_option(option);

275

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::send_to

Send a datagram to the specified endpoint.

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination);

» more...

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,
socket_base::message_flags flags);

» more...

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,
socket_base::message_flags flags,
boost::system::error_code & ec);

» more...

basic_datagram_socket::send_to (1 of 3 overloads)

Send a datagram to the specified endpoint.

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination);

This function is used to send a datagram to the specified remote endpoint. The function call will block until the data has been sent
successfully or an error occurs.

Parameters

buffers One or more data buffers to be sent to the remote endpoint.

destination The remote endpoint to which the data will be sent.

276

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

Example

To send a single data buffer use the buffer function as follows:

boost::asio::ip::udp::endpoint destination(
boost::asio::ip::address::from_string("1.2.3.4"), 12345);

socket.send_to(boost::asio::buffer(data, size), destination);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_datagram_socket::send_to (2 of 3 overloads)

Send a datagram to the specified endpoint.

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,
socket_base::message_flags flags);

This function is used to send a datagram to the specified remote endpoint. The function call will block until the data has been sent
successfully or an error occurs.

Parameters

buffers One or more data buffers to be sent to the remote endpoint.

destination The remote endpoint to which the data will be sent.

flags Flags specifying how the send call is to be made.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

basic_datagram_socket::send_to (3 of 3 overloads)

Send a datagram to the specified endpoint.

277

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,
socket_base::message_flags flags,
boost::system::error_code & ec);

This function is used to send a datagram to the specified remote endpoint. The function call will block until the data has been sent
successfully or an error occurs.

Parameters

buffers One or more data buffers to be sent to the remote endpoint.

destination The remote endpoint to which the data will be sent.

flags Flags specifying how the send call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes sent.

basic_datagram_socket::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

Remarks

Available only for services that do not support movability.

basic_datagram_socket::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef DatagramSocketService service_type;

Requirements

Header: boost/asio/basic_datagram_socket.hpp

Convenience header: boost/asio.hpp

basic_datagram_socket::set_option

Set an option on the socket.

278

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void set_option(
const SettableSocketOption & option);

» more...

boost::system::error_code set_option(
const SettableSocketOption & option,
boost::system::error_code & ec);

» more...

basic_datagram_socket::set_option (1 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

template<
typename SettableSocketOption>

void set_option(
const SettableSocketOption & option);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
socket.set_option(option);

basic_datagram_socket::set_option (2 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

template<
typename SettableSocketOption>

boost::system::error_code set_option(
const SettableSocketOption & option,
boost::system::error_code & ec);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

ec Set to indicate what error occurred, if any.

279

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
boost::system::error_code ec;
socket.set_option(option, ec);
if (ec)
{
// An error occurred.

}

basic_datagram_socket::shutdown

Disable sends or receives on the socket.

void shutdown(
shutdown_type what);

» more...

boost::system::error_code shutdown(
shutdown_type what,
boost::system::error_code & ec);

» more...

basic_datagram_socket::shutdown (1 of 2 overloads)

Inherited from basic_socket.

Disable sends or receives on the socket.

void shutdown(
shutdown_type what);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

Exceptions

boost::system::system_error Thrown on failure.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send);

basic_datagram_socket::shutdown (2 of 2 overloads)

Inherited from basic_socket.

280

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Disable sends or receives on the socket.

boost::system::error_code shutdown(
shutdown_type what,
boost::system::error_code & ec);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

ec Set to indicate what error occurred, if any.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send, ec);
if (ec)
{
// An error occurred.

}

basic_datagram_socket::shutdown_type

Inherited from socket_base.

Different ways a socket may be shutdown.

enum shutdown_type

Values

shutdown_receive Shutdown the receive side of the socket.

shutdown_send Shutdown the send side of the socket.

shutdown_both Shutdown both send and receive on the socket.

basic_deadline_timer
Provides waitable timer functionality.

template<
typename Time,
typename TimeTraits = boost::asio::time_traits<Time>,
typename TimerService = deadline_timer_service<Time, TimeTraits>>

class basic_deadline_timer :
public basic_io_object< TimerService >

281

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The duration type.duration_type

The underlying implementation type of I/O object.implementation_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

The time type.time_type

The time traits type.traits_type

Member Functions

DescriptionName

Start an asynchronous wait on the timer.async_wait

Constructor.

Constructor to set a particular expiry time as an absolute time.

Constructor to set a particular expiry time relative to now.

basic_deadline_timer

Cancel any asynchronous operations that are waiting on the
timer.

cancel

Cancels one asynchronous operation that is waiting on the timer.cancel_one

Get the timer's expiry time as an absolute time.

Set the timer's expiry time as an absolute time.

expires_at

Get the timer's expiry time relative to now.

Set the timer's expiry time relative to now.

expires_from_now

Get the io_service associated with the object.get_io_service

Perform a blocking wait on the timer.wait

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

282

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_deadline_timer class template provides the ability to perform a blocking or asynchronous wait for a timer to expire.

A deadline timer is always in one of two states: "expired" or "not expired". If the wait() or async_wait() function is called on
an expired timer, the wait operation will complete immediately.

Most applications will use the deadline_timer typedef.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Examples

Performing a blocking wait:

// Construct a timer without setting an expiry time.
boost::asio::deadline_timer timer(io_service);

// Set an expiry time relative to now.
timer.expires_from_now(boost::posix_time::seconds(5));

// Wait for the timer to expire.
timer.wait();

Performing an asynchronous wait:

void handler(const boost::system::error_code& error)
{
if (!error)
{
// Timer expired.

}
}

...

// Construct a timer with an absolute expiry time.
boost::asio::deadline_timer timer(io_service,

boost::posix_time::time_from_string("2005-12-07 23:59:59.000"));

// Start an asynchronous wait.
timer.async_wait(handler);

Changing an active deadline_timer's expiry time

Changing the expiry time of a timer while there are pending asynchronous waits causes those wait operations to be cancelled. To
ensure that the action associated with the timer is performed only once, use something like this: used:

283

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void on_some_event()
{
if (my_timer.expires_from_now(seconds(5)) > 0)
{
// We managed to cancel the timer. Start new asynchronous wait.
my_timer.async_wait(on_timeout);

}
else
{
// Too late, timer has already expired!

}
}

void on_timeout(const boost::system::error_code& e)
{
if (e != boost::asio::error::operation_aborted)
{
// Timer was not cancelled, take necessary action.

}
}

• The boost::asio::basic_deadline_timer::expires_from_now() function cancels any pending asynchronous waits,
and returns the number of asynchronous waits that were cancelled. If it returns 0 then you were too late and the wait handler has
already been executed, or will soon be executed. If it returns 1 then the wait handler was successfully cancelled.

• If a wait handler is cancelled, the boost::system::error_code passed to it contains the value boost::asio::error::opera-
tion_aborted.

Requirements

Header: boost/asio/basic_deadline_timer.hpp

Convenience header: boost/asio.hpp

basic_deadline_timer::async_wait

Start an asynchronous wait on the timer.

template<
typename WaitHandler>

void-or-deduced async_wait(
WaitHandler handler);

This function may be used to initiate an asynchronous wait against the timer. It always returns immediately.

For each call to async_wait(), the supplied handler will be called exactly once. The handler will be called when:

• The timer has expired.

• The timer was cancelled, in which case the handler is passed the error code boost::asio::error::operation_aborted.

Parameters

handler The handler to be called when the timer expires. Copies will be made of the handler as required. The function signature
of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation.

);

284

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

basic_deadline_timer::basic_deadline_timer

Constructor.

explicit basic_deadline_timer(
boost::asio::io_service & io_service);

» more...

Constructor to set a particular expiry time as an absolute time.

basic_deadline_timer(
boost::asio::io_service & io_service,
const time_type & expiry_time);

» more...

Constructor to set a particular expiry time relative to now.

basic_deadline_timer(
boost::asio::io_service & io_service,
const duration_type & expiry_time);

» more...

basic_deadline_timer::basic_deadline_timer (1 of 3 overloads)

Constructor.

basic_deadline_timer(
boost::asio::io_service & io_service);

This constructor creates a timer without setting an expiry time. The expires_at() or expires_from_now() functions must be
called to set an expiry time before the timer can be waited on.

Parameters

io_service The io_service object that the timer will use to dispatch handlers for any asynchronous operations performed
on the timer.

basic_deadline_timer::basic_deadline_timer (2 of 3 overloads)

Constructor to set a particular expiry time as an absolute time.

basic_deadline_timer(
boost::asio::io_service & io_service,
const time_type & expiry_time);

This constructor creates a timer and sets the expiry time.

Parameters

io_service The io_service object that the timer will use to dispatch handlers for any asynchronous operations performed
on the timer.

expiry_time The expiry time to be used for the timer, expressed as an absolute time.

285

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_deadline_timer::basic_deadline_timer (3 of 3 overloads)

Constructor to set a particular expiry time relative to now.

basic_deadline_timer(
boost::asio::io_service & io_service,
const duration_type & expiry_time);

This constructor creates a timer and sets the expiry time.

Parameters

io_service The io_service object that the timer will use to dispatch handlers for any asynchronous operations performed
on the timer.

expiry_time The expiry time to be used for the timer, relative to now.

basic_deadline_timer::cancel

Cancel any asynchronous operations that are waiting on the timer.

std::size_t cancel();
» more...

std::size_t cancel(
boost::system::error_code & ec);

» more...

basic_deadline_timer::cancel (1 of 2 overloads)

Cancel any asynchronous operations that are waiting on the timer.

std::size_t cancel();

This function forces the completion of any pending asynchronous wait operations against the timer. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Cancelling the timer does not change the expiry time.

Return Value

The number of asynchronous operations that were cancelled.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

If the timer has already expired when cancel() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

286

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_deadline_timer::cancel (2 of 2 overloads)

Cancel any asynchronous operations that are waiting on the timer.

std::size_t cancel(
boost::system::error_code & ec);

This function forces the completion of any pending asynchronous wait operations against the timer. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Cancelling the timer does not change the expiry time.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of asynchronous operations that were cancelled.

Remarks

If the timer has already expired when cancel() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

basic_deadline_timer::cancel_one

Cancels one asynchronous operation that is waiting on the timer.

std::size_t cancel_one();
» more...

std::size_t cancel_one(
boost::system::error_code & ec);

» more...

basic_deadline_timer::cancel_one (1 of 2 overloads)

Cancels one asynchronous operation that is waiting on the timer.

std::size_t cancel_one();

This function forces the completion of one pending asynchronous wait operation against the timer. Handlers are cancelled in FIFO
order. The handler for the cancelled operation will be invoked with the boost::asio::error::operation_aborted error code.

Cancelling the timer does not change the expiry time.

Return Value

The number of asynchronous operations that were cancelled. That is, either 0 or 1.

287

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Remarks

If the timer has already expired when cancel_one() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

basic_deadline_timer::cancel_one (2 of 2 overloads)

Cancels one asynchronous operation that is waiting on the timer.

std::size_t cancel_one(
boost::system::error_code & ec);

This function forces the completion of one pending asynchronous wait operation against the timer. Handlers are cancelled in FIFO
order. The handler for the cancelled operation will be invoked with the boost::asio::error::operation_aborted error code.

Cancelling the timer does not change the expiry time.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of asynchronous operations that were cancelled. That is, either 0 or 1.

Remarks

If the timer has already expired when cancel_one() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

basic_deadline_timer::duration_type

The duration type.

typedef traits_type::duration_type duration_type;

Requirements

Header: boost/asio/basic_deadline_timer.hpp

Convenience header: boost/asio.hpp

288

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_deadline_timer::expires_at

Get the timer's expiry time as an absolute time.

time_type expires_at() const;
» more...

Set the timer's expiry time as an absolute time.

std::size_t expires_at(
const time_type & expiry_time);

» more...

std::size_t expires_at(
const time_type & expiry_time,
boost::system::error_code & ec);

» more...

basic_deadline_timer::expires_at (1 of 3 overloads)

Get the timer's expiry time as an absolute time.

time_type expires_at() const;

This function may be used to obtain the timer's current expiry time. Whether the timer has expired or not does not affect this value.

basic_deadline_timer::expires_at (2 of 3 overloads)

Set the timer's expiry time as an absolute time.

std::size_t expires_at(
const time_type & expiry_time);

This function sets the expiry time. Any pending asynchronous wait operations will be cancelled. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Parameters

expiry_time The expiry time to be used for the timer.

Return Value

The number of asynchronous operations that were cancelled.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

If the timer has already expired when expires_at() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

289

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_deadline_timer::expires_at (3 of 3 overloads)

Set the timer's expiry time as an absolute time.

std::size_t expires_at(
const time_type & expiry_time,
boost::system::error_code & ec);

This function sets the expiry time. Any pending asynchronous wait operations will be cancelled. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Parameters

expiry_time The expiry time to be used for the timer.

ec Set to indicate what error occurred, if any.

Return Value

The number of asynchronous operations that were cancelled.

Remarks

If the timer has already expired when expires_at() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

basic_deadline_timer::expires_from_now

Get the timer's expiry time relative to now.

duration_type expires_from_now() const;
» more...

Set the timer's expiry time relative to now.

std::size_t expires_from_now(
const duration_type & expiry_time);

» more...

std::size_t expires_from_now(
const duration_type & expiry_time,
boost::system::error_code & ec);

» more...

basic_deadline_timer::expires_from_now (1 of 3 overloads)

Get the timer's expiry time relative to now.

duration_type expires_from_now() const;

This function may be used to obtain the timer's current expiry time. Whether the timer has expired or not does not affect this value.

290

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_deadline_timer::expires_from_now (2 of 3 overloads)

Set the timer's expiry time relative to now.

std::size_t expires_from_now(
const duration_type & expiry_time);

This function sets the expiry time. Any pending asynchronous wait operations will be cancelled. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Parameters

expiry_time The expiry time to be used for the timer.

Return Value

The number of asynchronous operations that were cancelled.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

If the timer has already expired when expires_from_now() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

basic_deadline_timer::expires_from_now (3 of 3 overloads)

Set the timer's expiry time relative to now.

std::size_t expires_from_now(
const duration_type & expiry_time,
boost::system::error_code & ec);

This function sets the expiry time. Any pending asynchronous wait operations will be cancelled. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Parameters

expiry_time The expiry time to be used for the timer.

ec Set to indicate what error occurred, if any.

Return Value

The number of asynchronous operations that were cancelled.

Remarks

If the timer has already expired when expires_from_now() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

291

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

basic_deadline_timer::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

basic_deadline_timer::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

basic_deadline_timer::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

basic_deadline_timer::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_deadline_timer::get_service

Get the service associated with the I/O object.

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

292

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_deadline_timer::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

service_type & get_service();

basic_deadline_timer::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

basic_deadline_timer::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

basic_deadline_timer::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/basic_deadline_timer.hpp

Convenience header: boost/asio.hpp

basic_deadline_timer::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

Remarks

Available only for services that do not support movability.

basic_deadline_timer::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

293

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef TimerService service_type;

Requirements

Header: boost/asio/basic_deadline_timer.hpp

Convenience header: boost/asio.hpp

basic_deadline_timer::time_type

The time type.

typedef traits_type::time_type time_type;

Requirements

Header: boost/asio/basic_deadline_timer.hpp

Convenience header: boost/asio.hpp

basic_deadline_timer::traits_type

The time traits type.

typedef TimeTraits traits_type;

Requirements

Header: boost/asio/basic_deadline_timer.hpp

Convenience header: boost/asio.hpp

basic_deadline_timer::wait

Perform a blocking wait on the timer.

void wait();
» more...

void wait(
boost::system::error_code & ec);

» more...

basic_deadline_timer::wait (1 of 2 overloads)

Perform a blocking wait on the timer.

void wait();

This function is used to wait for the timer to expire. This function blocks and does not return until the timer has expired.

Exceptions

boost::system::system_error Thrown on failure.

294

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_deadline_timer::wait (2 of 2 overloads)

Perform a blocking wait on the timer.

void wait(
boost::system::error_code & ec);

This function is used to wait for the timer to expire. This function blocks and does not return until the timer has expired.

Parameters

ec Set to indicate what error occurred, if any.

basic_io_object
Base class for all I/O objects.

template<
typename IoObjectService>

class basic_io_object

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

Member Functions

DescriptionName

Get the io_service associated with the object.get_io_service

Protected Member Functions

DescriptionName

Construct a basic_io_object.

Move-construct a basic_io_object.

basic_io_object

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Move-assign a basic_io_object.operator=

Protected destructor to prevent deletion through this type.~basic_io_object

295

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

Remarks

All I/O objects are non-copyable. However, when using C++0x, certain I/O objects do support move construction and move assignment.

Requirements

Header: boost/asio/basic_io_object.hpp

Convenience header: boost/asio.hpp

basic_io_object::basic_io_object

Construct a basic_io_object.

explicit basic_io_object(
boost::asio::io_service & io_service);

» more...

Move-construct a basic_io_object.

basic_io_object(
basic_io_object && other);

» more...

basic_io_object::basic_io_object (1 of 2 overloads)

Construct a basic_io_object.

basic_io_object(
boost::asio::io_service & io_service);

Performs:

get_service().construct(get_implementation());

basic_io_object::basic_io_object (2 of 2 overloads)

Move-construct a basic_io_object.

basic_io_object(
basic_io_object && other);

Performs:

296

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

get_service().move_construct(
get_implementation(), other.get_implementation());

Remarks

Available only for services that support movability,

basic_io_object::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

basic_io_object::get_implementation (1 of 2 overloads)

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

basic_io_object::get_implementation (2 of 2 overloads)

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

basic_io_object::get_io_service

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_io_object::get_service

Get the service associated with the I/O object.

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

basic_io_object::get_service (1 of 2 overloads)

Get the service associated with the I/O object.

297

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

service_type & get_service();

basic_io_object::get_service (2 of 2 overloads)

Get the service associated with the I/O object.

const service_type & get_service() const;

basic_io_object::implementation

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

basic_io_object::implementation_type

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/basic_io_object.hpp

Convenience header: boost/asio.hpp

basic_io_object::operator=

Move-assign a basic_io_object.

basic_io_object & operator=(
basic_io_object && other);

Performs:

get_service().move_assign(get_implementation(),
other.get_service(), other.get_implementation());

Remarks

Available only for services that support movability,

basic_io_object::service

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

Remarks

Available only for services that do not support movability.

298

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_io_object::service_type

The type of the service that will be used to provide I/O operations.

typedef IoObjectService service_type;

Requirements

Header: boost/asio/basic_io_object.hpp

Convenience header: boost/asio.hpp

basic_io_object::~basic_io_object

Protected destructor to prevent deletion through this type.

~basic_io_object();

Performs:

get_service().destroy(get_implementation());

basic_raw_socket
Provides raw-oriented socket functionality.

template<
typename Protocol,
typename RawSocketService = raw_socket_service<Protocol>>

class basic_raw_socket :
public basic_socket< Protocol, RawSocketService >

299

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

300

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

301

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive on a connected socket.async_receive

Start an asynchronous receive.async_receive_from

Start an asynchronous send on a connected socket.async_send

Start an asynchronous send.async_send_to

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_raw_socket without opening it.basic_raw_socket

Construct and open a basic_raw_socket.

Construct a basic_raw_socket, opening it and binding it to the
given local endpoint.

Construct a basic_raw_socket on an existing native socket.

Move-construct a basic_raw_socket from another.

Move-construct a basic_raw_socket from a socket of another
protocol type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

302

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Gets the non-blocking mode of the native socket implementation.

Sets the non-blocking mode of the native socket implementation.

native_non_blocking

Gets the non-blocking mode of the socket.

Sets the non-blocking mode of the socket.

non_blocking

Open the socket using the specified protocol.open

Move-assign a basic_raw_socket from another.

Move-assign a basic_raw_socket from a socket of another pro-
tocol type.

operator=

Receive some data on a connected socket.receive

Receive raw data with the endpoint of the sender.receive_from

Get the remote endpoint of the socket.remote_endpoint

Send some data on a connected socket.send

Send raw data to the specified endpoint.send_to

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

303

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_raw_socket class template provides asynchronous and blocking raw-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::assign

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_handle_type & native_socket);

» more...

boost::system::error_code assign(
const protocol_type & protocol,
const native_handle_type & native_socket,
boost::system::error_code & ec);

» more...

basic_raw_socket::assign (1 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_handle_type & native_socket);

basic_raw_socket::assign (2 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

304

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code assign(
const protocol_type & protocol,
const native_handle_type & native_socket,
boost::system::error_code & ec);

basic_raw_socket::async_connect

Inherited from basic_socket.

Start an asynchronous connect.

template<
typename ConnectHandler>

void-or-deduced async_connect(
const endpoint_type & peer_endpoint,
ConnectHandler handler);

This function is used to asynchronously connect a socket to the specified remote endpoint. The function call always returns immediately.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected. Copies will be made of the endpoint object as re-
quired.

handler The handler to be called when the connection operation completes. Copies will be made of the handler as re-
quired. The function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

void connect_handler(const boost::system::error_code& error)
{
if (!error)
{
// Connect succeeded.

}
}

...

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.async_connect(endpoint, connect_handler);

basic_raw_socket::async_receive

Start an asynchronous receive on a connected socket.

305

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
const MutableBufferSequence & buffers,
ReadHandler handler);

» more...

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
ReadHandler handler);

» more...

basic_raw_socket::async_receive (1 of 2 overloads)

Start an asynchronous receive on a connected socket.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
const MutableBufferSequence & buffers,
ReadHandler handler);

This function is used to asynchronously receive data from the raw socket. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until
the handler is called.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes received.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The async_receive operation can only be used with a connected socket. Use the async_receive_from function to receive data on an
unconnected raw socket.

Example

To receive into a single data buffer use the buffer function as follows:

socket.async_receive(boost::asio::buffer(data, size), handler);

306

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays,
boost::array or std::vector.

basic_raw_socket::async_receive (2 of 2 overloads)

Start an asynchronous receive on a connected socket.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
ReadHandler handler);

This function is used to asynchronously receive data from the raw socket. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until
the handler is called.

flags Flags specifying how the receive call is to be made.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes received.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The async_receive operation can only be used with a connected socket. Use the async_receive_from function to receive data on an
unconnected raw socket.

basic_raw_socket::async_receive_from

Start an asynchronous receive.

307

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
ReadHandler handler);

» more...

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
socket_base::message_flags flags,
ReadHandler handler);

» more...

basic_raw_socket::async_receive_from (1 of 2 overloads)

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
ReadHandler handler);

This function is used to asynchronously receive raw data. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as
necessary, ownership of the underlying memory blocks is retained by the caller, which must guarantee that
they remain valid until the handler is called.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the data. Ownership of the
sender_endpoint object is retained by the caller, which must guarantee that it is valid until the handler is
called.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required.
The function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes received.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be
invoked from within this function. Invocation of the handler will be performed in a manner equivalent to
using boost::asio::io_service::post().

Example

To receive into a single data buffer use the buffer function as follows:

308

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

socket.async_receive_from(
boost::asio::buffer(data, size), 0, sender_endpoint, handler);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays,
boost::array or std::vector.

basic_raw_socket::async_receive_from (2 of 2 overloads)

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
socket_base::message_flags flags,
ReadHandler handler);

This function is used to asynchronously receive raw data. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as
necessary, ownership of the underlying memory blocks is retained by the caller, which must guarantee that
they remain valid until the handler is called.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the data. Ownership of the
sender_endpoint object is retained by the caller, which must guarantee that it is valid until the handler is
called.

flags Flags specifying how the receive call is to be made.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required.
The function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes received.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be
invoked from within this function. Invocation of the handler will be performed in a manner equivalent to
using boost::asio::io_service::post().

basic_raw_socket::async_send

Start an asynchronous send on a connected socket.

309

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
const ConstBufferSequence & buffers,
WriteHandler handler);

» more...

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
WriteHandler handler);

» more...

basic_raw_socket::async_send (1 of 2 overloads)

Start an asynchronous send on a connected socket.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
const ConstBufferSequence & buffers,
WriteHandler handler);

This function is used to send data on the raw socket. The function call will block until the data has been sent successfully or an error
occurs.

Parameters

buffers One or more data buffers to be sent on the socket. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes sent.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The async_send operation can only be used with a connected socket. Use the async_send_to function to send data on an unconnected
raw socket.

Example

To send a single data buffer use the buffer function as follows:

310

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

socket.async_send(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_raw_socket::async_send (2 of 2 overloads)

Start an asynchronous send on a connected socket.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
WriteHandler handler);

This function is used to send data on the raw socket. The function call will block until the data has been sent successfully or an error
occurs.

Parameters

buffers One or more data buffers to be sent on the socket. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

flags Flags specifying how the send call is to be made.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes sent.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The async_send operation can only be used with a connected socket. Use the async_send_to function to send data on an unconnected
raw socket.

basic_raw_socket::async_send_to

Start an asynchronous send.

311

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,
WriteHandler handler);

» more...

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,
socket_base::message_flags flags,
WriteHandler handler);

» more...

basic_raw_socket::async_send_to (1 of 2 overloads)

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,
WriteHandler handler);

This function is used to asynchronously send raw data to the specified remote endpoint. The function call always returns immediately.

Parameters

buffers One or more data buffers to be sent to the remote endpoint. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain
valid until the handler is called.

destination The remote endpoint to which the data will be sent. Copies will be made of the endpoint as required.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes sent.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

To send a single data buffer use the buffer function as follows:

312

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::endpoint destination(
boost::asio::ip::address::from_string("1.2.3.4"), 12345);

socket.async_send_to(
boost::asio::buffer(data, size), destination, handler);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_raw_socket::async_send_to (2 of 2 overloads)

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,
socket_base::message_flags flags,
WriteHandler handler);

This function is used to asynchronously send raw data to the specified remote endpoint. The function call always returns immediately.

Parameters

buffers One or more data buffers to be sent to the remote endpoint. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain
valid until the handler is called.

flags Flags specifying how the send call is to be made.

destination The remote endpoint to which the data will be sent. Copies will be made of the endpoint as required.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes sent.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

basic_raw_socket::at_mark

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;
» more...

bool at_mark(
boost::system::error_code & ec) const;

» more...

313

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket::at_mark (1 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

Exceptions

boost::system::system_error Thrown on failure.

basic_raw_socket::at_mark (2 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark(
boost::system::error_code & ec) const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

basic_raw_socket::available

Determine the number of bytes available for reading.

std::size_t available() const;
» more...

std::size_t available(
boost::system::error_code & ec) const;

» more...

basic_raw_socket::available (1 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

std::size_t available() const;

This function is used to determine the number of bytes that may be read without blocking.

314

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

Exceptions

boost::system::system_error Thrown on failure.

basic_raw_socket::available (2 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

std::size_t available(
boost::system::error_code & ec) const;

This function is used to determine the number of bytes that may be read without blocking.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

basic_raw_socket::basic_raw_socket

Construct a basic_raw_socket without opening it.

explicit basic_raw_socket(
boost::asio::io_service & io_service);

» more...

Construct and open a basic_raw_socket.

basic_raw_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol);

» more...

Construct a basic_raw_socket, opening it and binding it to the given local endpoint.

basic_raw_socket(
boost::asio::io_service & io_service,
const endpoint_type & endpoint);

» more...

Construct a basic_raw_socket on an existing native socket.

basic_raw_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol,
const native_handle_type & native_socket);

» more...

315

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Move-construct a basic_raw_socket from another.

basic_raw_socket(
basic_raw_socket && other);

» more...

Move-construct a basic_raw_socket from a socket of another protocol type.

template<
typename Protocol1,
typename RawSocketService1>

basic_raw_socket(
basic_raw_socket< Protocol1, RawSocketService1 > && other,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

» more...

basic_raw_socket::basic_raw_socket (1 of 6 overloads)

Construct a basic_raw_socket without opening it.

basic_raw_socket(
boost::asio::io_service & io_service);

This constructor creates a raw socket without opening it. The open() function must be called before data can be sent or received
on the socket.

Parameters

io_service The io_service object that the raw socket will use to dispatch handlers for any asynchronous operations performed
on the socket.

basic_raw_socket::basic_raw_socket (2 of 6 overloads)

Construct and open a basic_raw_socket.

basic_raw_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol);

This constructor creates and opens a raw socket.

Parameters

io_service The io_service object that the raw socket will use to dispatch handlers for any asynchronous operations performed
on the socket.

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

basic_raw_socket::basic_raw_socket (3 of 6 overloads)

Construct a basic_raw_socket, opening it and binding it to the given local endpoint.

316

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket(
boost::asio::io_service & io_service,
const endpoint_type & endpoint);

This constructor creates a raw socket and automatically opens it bound to the specified endpoint on the local machine. The protocol
used is the protocol associated with the given endpoint.

Parameters

io_service The io_service object that the raw socket will use to dispatch handlers for any asynchronous operations performed
on the socket.

endpoint An endpoint on the local machine to which the raw socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

basic_raw_socket::basic_raw_socket (4 of 6 overloads)

Construct a basic_raw_socket on an existing native socket.

basic_raw_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol,
const native_handle_type & native_socket);

This constructor creates a raw socket object to hold an existing native socket.

Parameters

io_service The io_service object that the raw socket will use to dispatch handlers for any asynchronous operations
performed on the socket.

protocol An object specifying protocol parameters to be used.

native_socket The new underlying socket implementation.

Exceptions

boost::system::system_error Thrown on failure.

basic_raw_socket::basic_raw_socket (5 of 6 overloads)

Move-construct a basic_raw_socket from another.

basic_raw_socket(
basic_raw_socket && other);

This constructor moves a raw socket from one object to another.

Parameters

other The other basic_raw_socket object from which the move will occur.

317

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_raw_socket(io_service&)
constructor.

basic_raw_socket::basic_raw_socket (6 of 6 overloads)

Move-construct a basic_raw_socket from a socket of another protocol type.

template<
typename Protocol1,
typename RawSocketService1>

basic_raw_socket(
basic_raw_socket< Protocol1, RawSocketService1 > && other,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

This constructor moves a raw socket from one object to another.

Parameters

other The other basic_raw_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_raw_socket(io_service&)
constructor.

basic_raw_socket::bind

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

» more...

boost::system::error_code bind(
const endpoint_type & endpoint,
boost::system::error_code & ec);

» more...

basic_raw_socket::bind (1 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

318

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
socket.bind(boost::asio::ip::tcp::endpoint(

boost::asio::ip::tcp::v4(), 12345));

basic_raw_socket::bind (2 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

boost::system::error_code bind(
const endpoint_type & endpoint,
boost::system::error_code & ec);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
boost::system::error_code ec;
socket.bind(boost::asio::ip::tcp::endpoint(

boost::asio::ip::tcp::v4(), 12345), ec);
if (ec)
{
// An error occurred.

}

basic_raw_socket::broadcast

Inherited from socket_base.

Socket option to permit sending of broadcast messages.

typedef implementation_defined broadcast;

Implements the SOL_SOCKET/SO_BROADCAST socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option(true);
socket.set_option(option);

Getting the current option value:

319

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::bytes_readable

Inherited from socket_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::bytes_readable command(true);
socket.io_control(command);
std::size_t bytes_readable = command.get();

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::cancel

Cancel all asynchronous operations associated with the socket.

void cancel();
» more...

boost::system::error_code cancel(
boost::system::error_code & ec);

» more...

basic_raw_socket::cancel (1 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

void cancel();

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

320

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP,
Windows Server 2003, and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the
CancelIo function has two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_raw_socket::cancel (2 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
boost::system::error_code & ec);

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP,
Windows Server 2003, and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the
CancelIo function has two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

321

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket::close

Close the socket.

void close();
» more...

boost::system::error_code close(
boost::system::error_code & ec);

» more...

basic_raw_socket::close (1 of 2 overloads)

Inherited from basic_socket.

Close the socket.

void close();

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure. Note that, even if the function indicates an error, the underlying descriptor
is closed.

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_raw_socket::close (2 of 2 overloads)

Inherited from basic_socket.

Close the socket.

boost::system::error_code close(
boost::system::error_code & ec);

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any. Note that, even if the function indicates an error, the underlying descriptor is closed.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.close(ec);
if (ec)
{
// An error occurred.

}

322

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_raw_socket::connect

Connect the socket to the specified endpoint.

void connect(
const endpoint_type & peer_endpoint);

» more...

boost::system::error_code connect(
const endpoint_type & peer_endpoint,
boost::system::error_code & ec);

» more...

basic_raw_socket::connect (1 of 2 overloads)

Inherited from basic_socket.

Connect the socket to the specified endpoint.

void connect(
const endpoint_type & peer_endpoint);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.connect(endpoint);

basic_raw_socket::connect (2 of 2 overloads)

Inherited from basic_socket.

Connect the socket to the specified endpoint.

boost::system::error_code connect(
const endpoint_type & peer_endpoint,
boost::system::error_code & ec);

323

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
boost::system::error_code ec;
socket.connect(endpoint, ec);
if (ec)
{
// An error occurred.

}

basic_raw_socket::debug

Inherited from socket_base.

Socket option to enable socket-level debugging.

typedef implementation_defined debug;

Implements the SOL_SOCKET/SO_DEBUG socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

324

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket::do_not_route

Inherited from socket_base.

Socket option to prevent routing, use local interfaces only.

typedef implementation_defined do_not_route;

Implements the SOL_SOCKET/SO_DONTROUTE socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::enable_connection_aborted

Inherited from socket_base.

Socket option to report aborted connections on accept.

typedef implementation_defined enable_connection_aborted;

Implements a custom socket option that determines whether or not an accept operation is permitted to fail with
boost::asio::error::connection_aborted. By default the option is false.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option(true);
acceptor.set_option(option);

Getting the current option value:

325

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option;
acceptor.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

basic_raw_socket::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

basic_raw_socket::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

basic_raw_socket::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

326

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_raw_socket::get_option

Get an option from the socket.

void get_option(
GettableSocketOption & option) const;

» more...

boost::system::error_code get_option(
GettableSocketOption & option,
boost::system::error_code & ec) const;

» more...

basic_raw_socket::get_option (1 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

template<
typename GettableSocketOption>

void get_option(
GettableSocketOption & option) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

basic_raw_socket::get_option (2 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

327

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename GettableSocketOption>

boost::system::error_code get_option(
GettableSocketOption & option,
boost::system::error_code & ec) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
boost::system::error_code ec;
socket.get_option(option, ec);
if (ec)
{
// An error occurred.

}
bool is_set = option.value();

basic_raw_socket::get_service

Get the service associated with the I/O object.

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

basic_raw_socket::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

service_type & get_service();

basic_raw_socket::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

328

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

basic_raw_socket::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::io_control

Perform an IO control command on the socket.

void io_control(
IoControlCommand & command);

» more...

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

» more...

basic_raw_socket::io_control (1 of 2 overloads)

Inherited from basic_socket.

Perform an IO control command on the socket.

template<
typename IoControlCommand>

void io_control(
IoControlCommand & command);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

Exceptions

boost::system::system_error Thrown on failure.

329

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_raw_socket::io_control (2 of 2 overloads)

Inherited from basic_socket.

Perform an IO control command on the socket.

template<
typename IoControlCommand>

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
boost::system::error_code ec;
socket.io_control(command, ec);
if (ec)
{
// An error occurred.

}
std::size_t bytes_readable = command.get();

basic_raw_socket::is_open

Inherited from basic_socket.

Determine whether the socket is open.

bool is_open() const;

basic_raw_socket::keep_alive

Inherited from socket_base.

Socket option to send keep-alives.

330

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined keep_alive;

Implements the SOL_SOCKET/SO_KEEPALIVE socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::linger

Inherited from socket_base.

Socket option to specify whether the socket lingers on close if unsent data is present.

typedef implementation_defined linger;

Implements the SOL_SOCKET/SO_LINGER socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option(true, 30);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option;
socket.get_option(option);
bool is_set = option.enabled();
unsigned short timeout = option.timeout();

331

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::local_endpoint

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;
» more...

endpoint_type local_endpoint(
boost::system::error_code & ec) const;

» more...

basic_raw_socket::local_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;

This function is used to obtain the locally bound endpoint of the socket.

Return Value

An object that represents the local endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint();

basic_raw_socket::local_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint(
boost::system::error_code & ec) const;

This function is used to obtain the locally bound endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

332

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

An object that represents the local endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_raw_socket::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();
» more...

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;
» more...

basic_raw_socket::lowest_layer (1 of 2 overloads)

Inherited from basic_socket.

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_raw_socket::lowest_layer (2 of 2 overloads)

Inherited from basic_socket.

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further
layers, it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

333

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket::lowest_layer_type

Inherited from basic_socket.

A basic_socket is always the lowest layer.

typedef basic_socket< Protocol, RawSocketService > lowest_layer_type;

334

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

335

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

336

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_socket without opening it.basic_socket

Construct and open a basic_socket.

Construct a basic_socket, opening it and binding it to the given
local endpoint.

Construct a basic_socket on an existing native socket.

Move-construct a basic_socket from another.

Move-construct a basic_socket from a socket of another protocol
type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

Gets the non-blocking mode of the native socket implementation.native_non_blocking

Sets the non-blocking mode of the native socket implementation.

Gets the non-blocking mode of the socket.non_blocking

Sets the non-blocking mode of the socket.

337

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Open the socket using the specified protocol.open

Move-assign a basic_socket from another.

Move-assign a basic_socket from a socket of another protocol
type.

operator=

Get the remote endpoint of the socket.remote_endpoint

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected destructor to prevent deletion through this type.~basic_socket

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_socket class template provides functionality that is common to both stream-oriented and datagram-oriented sockets.

Thread Safety

Distinct objects: Safe.

338

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Shared objects: Unsafe.

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::max_connections

Inherited from socket_base.

The maximum length of the queue of pending incoming connections.

static const int max_connections = implementation_defined;

basic_raw_socket::message_do_not_route

Inherited from socket_base.

Specify that the data should not be subject to routing.

static const int message_do_not_route = implementation_defined;

basic_raw_socket::message_end_of_record

Inherited from socket_base.

Specifies that the data marks the end of a record.

static const int message_end_of_record = implementation_defined;

basic_raw_socket::message_flags

Inherited from socket_base.

Bitmask type for flags that can be passed to send and receive operations.

typedef int message_flags;

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::message_out_of_band

Inherited from socket_base.

Process out-of-band data.

static const int message_out_of_band = implementation_defined;

339

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket::message_peek

Inherited from socket_base.

Peek at incoming data without removing it from the input queue.

static const int message_peek = implementation_defined;

basic_raw_socket::native

Inherited from basic_socket.

(Deprecated: Use native_handle().) Get the native socket representation.

native_type native();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_raw_socket::native_handle

Inherited from basic_socket.

Get the native socket representation.

native_handle_type native_handle();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_raw_socket::native_handle_type

The native representation of a socket.

typedef RawSocketService::native_handle_type native_handle_type;

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::native_non_blocking

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking() const;
» more...

Sets the non-blocking mode of the native socket implementation.

340

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void native_non_blocking(
bool mode);

» more...

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

basic_raw_socket::native_non_blocking (1 of 3 overloads)

Inherited from basic_socket.

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking() const;

This function is used to retrieve the non-blocking mode of the underlying native socket. This mode has no effect on the behaviour
of the socket object's synchronous operations.

Return Value

true if the underlying socket is in non-blocking mode and direct system calls may fail with boost::asio::error::would_block
(or the equivalent system error).

Remarks

The current non-blocking mode is cached by the socket object. Consequently, the return value may be incorrect if the non-blocking
mode was set directly on the native socket.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

341

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

342

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_raw_socket::native_non_blocking (2 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the native socket implementation.

void native_non_blocking(
bool mode);

This function is used to modify the non-blocking mode of the underlying native socket. It has no effect on the behaviour of the
socket object's synchronous operations.

Parameters

mode If true, the underlying socket is put into non-blocking mode and direct system calls may fail with boost::asio::er-
ror::would_block (or the equivalent system error).

Exceptions

boost::system::system_error Thrown on failure. If the mode is false, but the current value of non_blocking() is true,
this function fails with boost::asio::error::invalid_argument, as the combination
does not make sense.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

343

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

344

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_raw_socket::native_non_blocking (3 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the native socket implementation.

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

This function is used to modify the non-blocking mode of the underlying native socket. It has no effect on the behaviour of the
socket object's synchronous operations.

Parameters

mode If true, the underlying socket is put into non-blocking mode and direct system calls may fail with boost::asio::er-
ror::would_block (or the equivalent system error).

ec Set to indicate what error occurred, if any. If the mode is false, but the current value of non_blocking() is true, this
function fails with boost::asio::error::invalid_argument, as the combination does not make sense.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

345

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

346

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_raw_socket::native_type

(Deprecated: Use native_handle_type.) The native representation of a socket.

typedef RawSocketService::native_handle_type native_type;

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::non_blocking

Gets the non-blocking mode of the socket.

bool non_blocking() const;
» more...

Sets the non-blocking mode of the socket.

void non_blocking(
bool mode);

» more...

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

basic_raw_socket::non_blocking (1 of 3 overloads)

Inherited from basic_socket.

Gets the non-blocking mode of the socket.

bool non_blocking() const;

Return Value

true if the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to perform
the requested operation immediately. If false, synchronous operations will block until complete.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

347

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket::non_blocking (2 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the socket.

void non_blocking(
bool mode);

Parameters

mode If true, the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to
perform the requested operation immediately. If false, synchronous operations will block until complete.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

basic_raw_socket::non_blocking (3 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the socket.

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

Parameters

mode If true, the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to
perform the requested operation immediately. If false, synchronous operations will block until complete.

ec Set to indicate what error occurred, if any.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

basic_raw_socket::non_blocking_io

Inherited from socket_base.

(Deprecated: Use non_blocking().) IO control command to set the blocking mode of the socket.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

348

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::non_blocking_io command(true);
socket.io_control(command);

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::open

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

» more...

boost::system::error_code open(
const protocol_type & protocol,
boost::system::error_code & ec);

» more...

basic_raw_socket::open (1 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());

basic_raw_socket::open (2 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

349

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code open(
const protocol_type & protocol,
boost::system::error_code & ec);

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying which protocol is to be used.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::system::error_code ec;
socket.open(boost::asio::ip::tcp::v4(), ec);
if (ec)
{
// An error occurred.

}

basic_raw_socket::operator=

Move-assign a basic_raw_socket from another.

basic_raw_socket & operator=(
basic_raw_socket && other);

» more...

Move-assign a basic_raw_socket from a socket of another protocol type.

template<
typename Protocol1,
typename RawSocketService1>

enable_if< is_convertible< Protocol1, Protocol >::value, basic_raw_socket >::type & operator=(
basic_raw_socket< Protocol1, RawSocketService1 > && other);

» more...

basic_raw_socket::operator= (1 of 2 overloads)

Move-assign a basic_raw_socket from another.

basic_raw_socket & operator=(
basic_raw_socket && other);

This assignment operator moves a raw socket from one object to another.

Parameters

other The other basic_raw_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_raw_socket(io_service&)
constructor.

350

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket::operator= (2 of 2 overloads)

Move-assign a basic_raw_socket from a socket of another protocol type.

template<
typename Protocol1,
typename RawSocketService1>

enable_if< is_convertible< Protocol1, Protocol >::value, basic_raw_socket >::type & operator=(
basic_raw_socket< Protocol1, RawSocketService1 > && other);

This assignment operator moves a raw socket from one object to another.

Parameters

other The other basic_raw_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_raw_socket(io_service&)
constructor.

basic_raw_socket::protocol_type

The protocol type.

typedef Protocol protocol_type;

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::receive

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers);

» more...

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags);

» more...

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

» more...

351

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket::receive (1 of 3 overloads)

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers);

This function is used to receive data on the raw socket. The function call will block until data has been received successfully or an
error occurs.

Parameters

buffers One or more buffers into which the data will be received.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The receive operation can only be used with a connected socket. Use the receive_from function to receive data on an unconnected
raw socket.

Example

To receive into a single data buffer use the buffer function as follows:

socket.receive(boost::asio::buffer(data, size));

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays,
boost::array or std::vector.

basic_raw_socket::receive (2 of 3 overloads)

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags);

This function is used to receive data on the raw socket. The function call will block until data has been received successfully or an
error occurs.

Parameters

buffers One or more buffers into which the data will be received.

flags Flags specifying how the receive call is to be made.

352

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The receive operation can only be used with a connected socket. Use the receive_from function to receive data on an unconnected
raw socket.

basic_raw_socket::receive (3 of 3 overloads)

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

This function is used to receive data on the raw socket. The function call will block until data has been received successfully or an
error occurs.

Parameters

buffers One or more buffers into which the data will be received.

flags Flags specifying how the receive call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes received.

Remarks

The receive operation can only be used with a connected socket. Use the receive_from function to receive data on an unconnected
raw socket.

basic_raw_socket::receive_buffer_size

Inherited from socket_base.

Socket option for the receive buffer size of a socket.

typedef implementation_defined receive_buffer_size;

Implements the SOL_SOCKET/SO_RCVBUF socket option.

Examples

Setting the option:

353

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::receive_from

Receive raw data with the endpoint of the sender.

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint);

» more...

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
socket_base::message_flags flags);

» more...

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
socket_base::message_flags flags,
boost::system::error_code & ec);

» more...

basic_raw_socket::receive_from (1 of 3 overloads)

Receive raw data with the endpoint of the sender.

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint);

This function is used to receive raw data. The function call will block until data has been received successfully or an error occurs.

354

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

buffers One or more buffers into which the data will be received.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the data.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure.

Example

To receive into a single data buffer use the buffer function as follows:

boost::asio::ip::udp::endpoint sender_endpoint;
socket.receive_from(

boost::asio::buffer(data, size), sender_endpoint);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays,
boost::array or std::vector.

basic_raw_socket::receive_from (2 of 3 overloads)

Receive raw data with the endpoint of the sender.

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
socket_base::message_flags flags);

This function is used to receive raw data. The function call will block until data has been received successfully or an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the data.

flags Flags specifying how the receive call is to be made.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure.

basic_raw_socket::receive_from (3 of 3 overloads)

Receive raw data with the endpoint of the sender.

355

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t receive_from(
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
socket_base::message_flags flags,
boost::system::error_code & ec);

This function is used to receive raw data. The function call will block until data has been received successfully or an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

sender_endpoint An endpoint object that receives the endpoint of the remote sender of the data.

flags Flags specifying how the receive call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes received.

basic_raw_socket::receive_low_watermark

Inherited from socket_base.

Socket option for the receive low watermark.

typedef implementation_defined receive_low_watermark;

Implements the SOL_SOCKET/SO_RCVLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

356

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket::remote_endpoint

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;
» more...

endpoint_type remote_endpoint(
boost::system::error_code & ec) const;

» more...

basic_raw_socket::remote_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;

This function is used to obtain the remote endpoint of the socket.

Return Value

An object that represents the remote endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint();

basic_raw_socket::remote_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint(
boost::system::error_code & ec) const;

This function is used to obtain the remote endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the remote endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

357

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_raw_socket::reuse_address

Inherited from socket_base.

Socket option to allow the socket to be bound to an address that is already in use.

typedef implementation_defined reuse_address;

Implements the SOL_SOCKET/SO_REUSEADDR socket option.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option;
acceptor.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::send

Send some data on a connected socket.

358

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers);

» more...

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags);

» more...

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

» more...

basic_raw_socket::send (1 of 3 overloads)

Send some data on a connected socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers);

This function is used to send data on the raw socket. The function call will block until the data has been sent successfully or an error
occurs.

Parameters

buffers One ore more data buffers to be sent on the socket.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The send operation can only be used with a connected socket. Use the send_to function to send data on an unconnected raw socket.

Example

To send a single data buffer use the buffer function as follows:

socket.send(boost::asio::buffer(data, size));

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

359

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket::send (2 of 3 overloads)

Send some data on a connected socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags);

This function is used to send data on the raw socket. The function call will block until the data has been sent successfully or an error
occurs.

Parameters

buffers One ore more data buffers to be sent on the socket.

flags Flags specifying how the send call is to be made.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The send operation can only be used with a connected socket. Use the send_to function to send data on an unconnected raw socket.

basic_raw_socket::send (3 of 3 overloads)

Send some data on a connected socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

This function is used to send data on the raw socket. The function call will block until the data has been sent successfully or an error
occurs.

Parameters

buffers One or more data buffers to be sent on the socket.

flags Flags specifying how the send call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes sent.

Remarks

The send operation can only be used with a connected socket. Use the send_to function to send data on an unconnected raw socket.

360

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket::send_buffer_size

Inherited from socket_base.

Socket option for the send buffer size of a socket.

typedef implementation_defined send_buffer_size;

Implements the SOL_SOCKET/SO_SNDBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::send_low_watermark

Inherited from socket_base.

Socket option for the send low watermark.

typedef implementation_defined send_low_watermark;

Implements the SOL_SOCKET/SO_SNDLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

361

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::send_to

Send raw data to the specified endpoint.

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination);

» more...

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,
socket_base::message_flags flags);

» more...

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,
socket_base::message_flags flags,
boost::system::error_code & ec);

» more...

basic_raw_socket::send_to (1 of 3 overloads)

Send raw data to the specified endpoint.

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination);

This function is used to send raw data to the specified remote endpoint. The function call will block until the data has been sent
successfully or an error occurs.

Parameters

buffers One or more data buffers to be sent to the remote endpoint.

destination The remote endpoint to which the data will be sent.

362

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

Example

To send a single data buffer use the buffer function as follows:

boost::asio::ip::udp::endpoint destination(
boost::asio::ip::address::from_string("1.2.3.4"), 12345);

socket.send_to(boost::asio::buffer(data, size), destination);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_raw_socket::send_to (2 of 3 overloads)

Send raw data to the specified endpoint.

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,
socket_base::message_flags flags);

This function is used to send raw data to the specified remote endpoint. The function call will block until the data has been sent
successfully or an error occurs.

Parameters

buffers One or more data buffers to be sent to the remote endpoint.

destination The remote endpoint to which the data will be sent.

flags Flags specifying how the send call is to be made.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

basic_raw_socket::send_to (3 of 3 overloads)

Send raw data to the specified endpoint.

363

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t send_to(
const ConstBufferSequence & buffers,
const endpoint_type & destination,
socket_base::message_flags flags,
boost::system::error_code & ec);

This function is used to send raw data to the specified remote endpoint. The function call will block until the data has been sent
successfully or an error occurs.

Parameters

buffers One or more data buffers to be sent to the remote endpoint.

destination The remote endpoint to which the data will be sent.

flags Flags specifying how the send call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes sent.

basic_raw_socket::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

Remarks

Available only for services that do not support movability.

basic_raw_socket::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef RawSocketService service_type;

Requirements

Header: boost/asio/basic_raw_socket.hpp

Convenience header: boost/asio.hpp

basic_raw_socket::set_option

Set an option on the socket.

364

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void set_option(
const SettableSocketOption & option);

» more...

boost::system::error_code set_option(
const SettableSocketOption & option,
boost::system::error_code & ec);

» more...

basic_raw_socket::set_option (1 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

template<
typename SettableSocketOption>

void set_option(
const SettableSocketOption & option);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
socket.set_option(option);

basic_raw_socket::set_option (2 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

template<
typename SettableSocketOption>

boost::system::error_code set_option(
const SettableSocketOption & option,
boost::system::error_code & ec);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

ec Set to indicate what error occurred, if any.

365

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
boost::system::error_code ec;
socket.set_option(option, ec);
if (ec)
{
// An error occurred.

}

basic_raw_socket::shutdown

Disable sends or receives on the socket.

void shutdown(
shutdown_type what);

» more...

boost::system::error_code shutdown(
shutdown_type what,
boost::system::error_code & ec);

» more...

basic_raw_socket::shutdown (1 of 2 overloads)

Inherited from basic_socket.

Disable sends or receives on the socket.

void shutdown(
shutdown_type what);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

Exceptions

boost::system::system_error Thrown on failure.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send);

basic_raw_socket::shutdown (2 of 2 overloads)

Inherited from basic_socket.

366

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Disable sends or receives on the socket.

boost::system::error_code shutdown(
shutdown_type what,
boost::system::error_code & ec);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

ec Set to indicate what error occurred, if any.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send, ec);
if (ec)
{
// An error occurred.

}

basic_raw_socket::shutdown_type

Inherited from socket_base.

Different ways a socket may be shutdown.

enum shutdown_type

Values

shutdown_receive Shutdown the receive side of the socket.

shutdown_send Shutdown the send side of the socket.

shutdown_both Shutdown both send and receive on the socket.

basic_seq_packet_socket
Provides sequenced packet socket functionality.

template<
typename Protocol,
typename SeqPacketSocketService = seq_packet_socket_service<Protocol>>

class basic_seq_packet_socket :
public basic_socket< Protocol, SeqPacketSocketService >

367

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

368

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

369

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive.async_receive

Start an asynchronous send.async_send

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_seq_packet_socket without opening it.basic_seq_packet_socket

Construct and open a basic_seq_packet_socket.

Construct a basic_seq_packet_socket, opening it and binding it
to the given local endpoint.

Construct a basic_seq_packet_socket on an existing native
socket.

Move-construct a basic_seq_packet_socket from another.

Move-construct a basic_seq_packet_socket from a socket of
another protocol type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

Gets the non-blocking mode of the native socket implementation.native_non_blocking

Sets the non-blocking mode of the native socket implementation.

370

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Gets the non-blocking mode of the socket.

Sets the non-blocking mode of the socket.

non_blocking

Open the socket using the specified protocol.open

Move-assign a basic_seq_packet_socket from another.

Move-assign a basic_seq_packet_socket from a socket of another
protocol type.

operator=

Receive some data on the socket.

Receive some data on a connected socket.

receive

Get the remote endpoint of the socket.remote_endpoint

Send some data on the socket.send

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

371

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_seq_packet_socket class template provides asynchronous and blocking sequenced packet socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::assign

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_handle_type & native_socket);

» more...

boost::system::error_code assign(
const protocol_type & protocol,
const native_handle_type & native_socket,
boost::system::error_code & ec);

» more...

basic_seq_packet_socket::assign (1 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_handle_type & native_socket);

basic_seq_packet_socket::assign (2 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

372

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code assign(
const protocol_type & protocol,
const native_handle_type & native_socket,
boost::system::error_code & ec);

basic_seq_packet_socket::async_connect

Inherited from basic_socket.

Start an asynchronous connect.

template<
typename ConnectHandler>

void-or-deduced async_connect(
const endpoint_type & peer_endpoint,
ConnectHandler handler);

This function is used to asynchronously connect a socket to the specified remote endpoint. The function call always returns immediately.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected. Copies will be made of the endpoint object as re-
quired.

handler The handler to be called when the connection operation completes. Copies will be made of the handler as re-
quired. The function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

void connect_handler(const boost::system::error_code& error)
{
if (!error)
{
// Connect succeeded.

}
}

...

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.async_connect(endpoint, connect_handler);

basic_seq_packet_socket::async_receive

Start an asynchronous receive.

373

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
const MutableBufferSequence & buffers,
socket_base::message_flags & out_flags,
ReadHandler handler);

» more...

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
const MutableBufferSequence & buffers,
socket_base::message_flags in_flags,
socket_base::message_flags & out_flags,
ReadHandler handler);

» more...

basic_seq_packet_socket::async_receive (1 of 2 overloads)

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
const MutableBufferSequence & buffers,
socket_base::message_flags & out_flags,
ReadHandler handler);

This function is used to asynchronously receive data from the sequenced packet socket. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid
until the handler is called.

out_flags Once the asynchronous operation completes, contains flags associated with the received data. For example, if the
socket_base::message_end_of_record bit is set then the received data marks the end of a record. The caller
must guarantee that the referenced variable remains valid until the handler is called.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes received.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

To receive into a single data buffer use the buffer function as follows:

374

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

socket.async_receive(boost::asio::buffer(data, size), out_flags, handler);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays,
boost::array or std::vector.

basic_seq_packet_socket::async_receive (2 of 2 overloads)

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
const MutableBufferSequence & buffers,
socket_base::message_flags in_flags,
socket_base::message_flags & out_flags,
ReadHandler handler);

This function is used to asynchronously receive data from the sequenced data socket. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid
until the handler is called.

in_flags Flags specifying how the receive call is to be made.

out_flags Once the asynchronous operation completes, contains flags associated with the received data. For example, if the
socket_base::message_end_of_record bit is set then the received data marks the end of a record. The caller
must guarantee that the referenced variable remains valid until the handler is called.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes received.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

To receive into a single data buffer use the buffer function as follows:

socket.async_receive(
boost::asio::buffer(data, size),
0, out_flags, handler);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays,
boost::array or std::vector.

basic_seq_packet_socket::async_send

Start an asynchronous send.

375

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
WriteHandler handler);

This function is used to asynchronously send data on the sequenced packet socket. The function call always returns immediately.

Parameters

buffers One or more data buffers to be sent on the socket. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

flags Flags specifying how the send call is to be made.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes sent.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

To send a single data buffer use the buffer function as follows:

socket.async_send(boost::asio::buffer(data, size), 0, handler);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_seq_packet_socket::at_mark

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;
» more...

bool at_mark(
boost::system::error_code & ec) const;

» more...

basic_seq_packet_socket::at_mark (1 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;

376

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

Exceptions

boost::system::system_error Thrown on failure.

basic_seq_packet_socket::at_mark (2 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark(
boost::system::error_code & ec) const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

basic_seq_packet_socket::available

Determine the number of bytes available for reading.

std::size_t available() const;
» more...

std::size_t available(
boost::system::error_code & ec) const;

» more...

basic_seq_packet_socket::available (1 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

std::size_t available() const;

This function is used to determine the number of bytes that may be read without blocking.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

Exceptions

boost::system::system_error Thrown on failure.

377

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_seq_packet_socket::available (2 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

std::size_t available(
boost::system::error_code & ec) const;

This function is used to determine the number of bytes that may be read without blocking.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

basic_seq_packet_socket::basic_seq_packet_socket

Construct a basic_seq_packet_socket without opening it.

explicit basic_seq_packet_socket(
boost::asio::io_service & io_service);

» more...

Construct and open a basic_seq_packet_socket.

basic_seq_packet_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol);

» more...

Construct a basic_seq_packet_socket, opening it and binding it to the given local endpoint.

basic_seq_packet_socket(
boost::asio::io_service & io_service,
const endpoint_type & endpoint);

» more...

Construct a basic_seq_packet_socket on an existing native socket.

basic_seq_packet_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol,
const native_handle_type & native_socket);

» more...

Move-construct a basic_seq_packet_socket from another.

basic_seq_packet_socket(
basic_seq_packet_socket && other);

» more...

Move-construct a basic_seq_packet_socket from a socket of another protocol type.

378

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol1,
typename SeqPacketSocketService1>

basic_seq_packet_socket(
basic_seq_packet_socket< Protocol1, SeqPacketSocketService1 > && other,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

» more...

basic_seq_packet_socket::basic_seq_packet_socket (1 of 6 overloads)

Construct a basic_seq_packet_socket without opening it.

basic_seq_packet_socket(
boost::asio::io_service & io_service);

This constructor creates a sequenced packet socket without opening it. The socket needs to be opened and then connected or accepted
before data can be sent or received on it.

Parameters

io_service The io_service object that the sequenced packet socket will use to dispatch handlers for any asynchronous op-
erations performed on the socket.

basic_seq_packet_socket::basic_seq_packet_socket (2 of 6 overloads)

Construct and open a basic_seq_packet_socket.

basic_seq_packet_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol);

This constructor creates and opens a sequenced_packet socket. The socket needs to be connected or accepted before data can be sent
or received on it.

Parameters

io_service The io_service object that the sequenced packet socket will use to dispatch handlers for any asynchronous op-
erations performed on the socket.

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

basic_seq_packet_socket::basic_seq_packet_socket (3 of 6 overloads)

Construct a basic_seq_packet_socket, opening it and binding it to the given local endpoint.

basic_seq_packet_socket(
boost::asio::io_service & io_service,
const endpoint_type & endpoint);

This constructor creates a sequenced packet socket and automatically opens it bound to the specified endpoint on the local machine.
The protocol used is the protocol associated with the given endpoint.

379

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

io_service The io_service object that the sequenced packet socket will use to dispatch handlers for any asynchronous op-
erations performed on the socket.

endpoint An endpoint on the local machine to which the sequenced packet socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

basic_seq_packet_socket::basic_seq_packet_socket (4 of 6 overloads)

Construct a basic_seq_packet_socket on an existing native socket.

basic_seq_packet_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol,
const native_handle_type & native_socket);

This constructor creates a sequenced packet socket object to hold an existing native socket.

Parameters

io_service The io_service object that the sequenced packet socket will use to dispatch handlers for any asynchronous
operations performed on the socket.

protocol An object specifying protocol parameters to be used.

native_socket The new underlying socket implementation.

Exceptions

boost::system::system_error Thrown on failure.

basic_seq_packet_socket::basic_seq_packet_socket (5 of 6 overloads)

Move-construct a basic_seq_packet_socket from another.

basic_seq_packet_socket(
basic_seq_packet_socket && other);

This constructor moves a sequenced packet socket from one object to another.

Parameters

other The other basic_seq_packet_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_seq_packet_socket(io_ser-
vice&) constructor.

basic_seq_packet_socket::basic_seq_packet_socket (6 of 6 overloads)

Move-construct a basic_seq_packet_socket from a socket of another protocol type.

380

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol1,
typename SeqPacketSocketService1>

basic_seq_packet_socket(
basic_seq_packet_socket< Protocol1, SeqPacketSocketService1 > && other,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

This constructor moves a sequenced packet socket from one object to another.

Parameters

other The other basic_seq_packet_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_seq_packet_socket(io_ser-
vice&) constructor.

basic_seq_packet_socket::bind

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

» more...

boost::system::error_code bind(
const endpoint_type & endpoint,
boost::system::error_code & ec);

» more...

basic_seq_packet_socket::bind (1 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
socket.bind(boost::asio::ip::tcp::endpoint(

boost::asio::ip::tcp::v4(), 12345));

381

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_seq_packet_socket::bind (2 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

boost::system::error_code bind(
const endpoint_type & endpoint,
boost::system::error_code & ec);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
boost::system::error_code ec;
socket.bind(boost::asio::ip::tcp::endpoint(

boost::asio::ip::tcp::v4(), 12345), ec);
if (ec)
{
// An error occurred.

}

basic_seq_packet_socket::broadcast

Inherited from socket_base.

Socket option to permit sending of broadcast messages.

typedef implementation_defined broadcast;

Implements the SOL_SOCKET/SO_BROADCAST socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option;
socket.get_option(option);
bool is_set = option.value();

382

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::bytes_readable

Inherited from socket_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::bytes_readable command(true);
socket.io_control(command);
std::size_t bytes_readable = command.get();

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::cancel

Cancel all asynchronous operations associated with the socket.

void cancel();
» more...

boost::system::error_code cancel(
boost::system::error_code & ec);

» more...

basic_seq_packet_socket::cancel (1 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

void cancel();

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

383

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP,
Windows Server 2003, and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the
CancelIo function has two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_seq_packet_socket::cancel (2 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
boost::system::error_code & ec);

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP,
Windows Server 2003, and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the
CancelIo function has two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_seq_packet_socket::close

Close the socket.

384

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void close();
» more...

boost::system::error_code close(
boost::system::error_code & ec);

» more...

basic_seq_packet_socket::close (1 of 2 overloads)

Inherited from basic_socket.

Close the socket.

void close();

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure. Note that, even if the function indicates an error, the underlying descriptor
is closed.

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_seq_packet_socket::close (2 of 2 overloads)

Inherited from basic_socket.

Close the socket.

boost::system::error_code close(
boost::system::error_code & ec);

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any. Note that, even if the function indicates an error, the underlying descriptor is closed.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.close(ec);
if (ec)
{
// An error occurred.

}

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

385

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_seq_packet_socket::connect

Connect the socket to the specified endpoint.

void connect(
const endpoint_type & peer_endpoint);

» more...

boost::system::error_code connect(
const endpoint_type & peer_endpoint,
boost::system::error_code & ec);

» more...

basic_seq_packet_socket::connect (1 of 2 overloads)

Inherited from basic_socket.

Connect the socket to the specified endpoint.

void connect(
const endpoint_type & peer_endpoint);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.connect(endpoint);

basic_seq_packet_socket::connect (2 of 2 overloads)

Inherited from basic_socket.

Connect the socket to the specified endpoint.

boost::system::error_code connect(
const endpoint_type & peer_endpoint,
boost::system::error_code & ec);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

386

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
boost::system::error_code ec;
socket.connect(endpoint, ec);
if (ec)
{
// An error occurred.

}

basic_seq_packet_socket::debug

Inherited from socket_base.

Socket option to enable socket-level debugging.

typedef implementation_defined debug;

Implements the SOL_SOCKET/SO_DEBUG socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::do_not_route

Inherited from socket_base.

Socket option to prevent routing, use local interfaces only.

387

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined do_not_route;

Implements the SOL_SOCKET/SO_DONTROUTE socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::enable_connection_aborted

Inherited from socket_base.

Socket option to report aborted connections on accept.

typedef implementation_defined enable_connection_aborted;

Implements a custom socket option that determines whether or not an accept operation is permitted to fail with
boost::asio::error::connection_aborted. By default the option is false.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option;
acceptor.get_option(option);
bool is_set = option.value();

388

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

basic_seq_packet_socket::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

basic_seq_packet_socket::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

basic_seq_packet_socket::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

389

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_seq_packet_socket::get_option

Get an option from the socket.

void get_option(
GettableSocketOption & option) const;

» more...

boost::system::error_code get_option(
GettableSocketOption & option,
boost::system::error_code & ec) const;

» more...

basic_seq_packet_socket::get_option (1 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

template<
typename GettableSocketOption>

void get_option(
GettableSocketOption & option) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

basic_seq_packet_socket::get_option (2 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

390

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename GettableSocketOption>

boost::system::error_code get_option(
GettableSocketOption & option,
boost::system::error_code & ec) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
boost::system::error_code ec;
socket.get_option(option, ec);
if (ec)
{
// An error occurred.

}
bool is_set = option.value();

basic_seq_packet_socket::get_service

Get the service associated with the I/O object.

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

basic_seq_packet_socket::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

service_type & get_service();

basic_seq_packet_socket::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

391

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_seq_packet_socket::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

basic_seq_packet_socket::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::io_control

Perform an IO control command on the socket.

void io_control(
IoControlCommand & command);

» more...

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

» more...

basic_seq_packet_socket::io_control (1 of 2 overloads)

Inherited from basic_socket.

Perform an IO control command on the socket.

template<
typename IoControlCommand>

void io_control(
IoControlCommand & command);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

Exceptions

boost::system::system_error Thrown on failure.

392

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_seq_packet_socket::io_control (2 of 2 overloads)

Inherited from basic_socket.

Perform an IO control command on the socket.

template<
typename IoControlCommand>

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
boost::system::error_code ec;
socket.io_control(command, ec);
if (ec)
{
// An error occurred.

}
std::size_t bytes_readable = command.get();

basic_seq_packet_socket::is_open

Inherited from basic_socket.

Determine whether the socket is open.

bool is_open() const;

basic_seq_packet_socket::keep_alive

Inherited from socket_base.

Socket option to send keep-alives.

393

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined keep_alive;

Implements the SOL_SOCKET/SO_KEEPALIVE socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::linger

Inherited from socket_base.

Socket option to specify whether the socket lingers on close if unsent data is present.

typedef implementation_defined linger;

Implements the SOL_SOCKET/SO_LINGER socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option(true, 30);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option;
socket.get_option(option);
bool is_set = option.enabled();
unsigned short timeout = option.timeout();

394

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::local_endpoint

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;
» more...

endpoint_type local_endpoint(
boost::system::error_code & ec) const;

» more...

basic_seq_packet_socket::local_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;

This function is used to obtain the locally bound endpoint of the socket.

Return Value

An object that represents the local endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint();

basic_seq_packet_socket::local_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint(
boost::system::error_code & ec) const;

This function is used to obtain the locally bound endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

395

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

An object that represents the local endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_seq_packet_socket::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();
» more...

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;
» more...

basic_seq_packet_socket::lowest_layer (1 of 2 overloads)

Inherited from basic_socket.

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_seq_packet_socket::lowest_layer (2 of 2 overloads)

Inherited from basic_socket.

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further
layers, it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

396

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_seq_packet_socket::lowest_layer_type

Inherited from basic_socket.

A basic_socket is always the lowest layer.

typedef basic_socket< Protocol, SeqPacketSocketService > lowest_layer_type;

397

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

398

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

399

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_socket without opening it.basic_socket

Construct and open a basic_socket.

Construct a basic_socket, opening it and binding it to the given
local endpoint.

Construct a basic_socket on an existing native socket.

Move-construct a basic_socket from another.

Move-construct a basic_socket from a socket of another protocol
type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

Gets the non-blocking mode of the native socket implementation.native_non_blocking

Sets the non-blocking mode of the native socket implementation.

Gets the non-blocking mode of the socket.non_blocking

Sets the non-blocking mode of the socket.

400

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Open the socket using the specified protocol.open

Move-assign a basic_socket from another.

Move-assign a basic_socket from a socket of another protocol
type.

operator=

Get the remote endpoint of the socket.remote_endpoint

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected destructor to prevent deletion through this type.~basic_socket

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_socket class template provides functionality that is common to both stream-oriented and datagram-oriented sockets.

Thread Safety

Distinct objects: Safe.

401

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Shared objects: Unsafe.

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::max_connections

Inherited from socket_base.

The maximum length of the queue of pending incoming connections.

static const int max_connections = implementation_defined;

basic_seq_packet_socket::message_do_not_route

Inherited from socket_base.

Specify that the data should not be subject to routing.

static const int message_do_not_route = implementation_defined;

basic_seq_packet_socket::message_end_of_record

Inherited from socket_base.

Specifies that the data marks the end of a record.

static const int message_end_of_record = implementation_defined;

basic_seq_packet_socket::message_flags

Inherited from socket_base.

Bitmask type for flags that can be passed to send and receive operations.

typedef int message_flags;

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::message_out_of_band

Inherited from socket_base.

Process out-of-band data.

static const int message_out_of_band = implementation_defined;

402

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_seq_packet_socket::message_peek

Inherited from socket_base.

Peek at incoming data without removing it from the input queue.

static const int message_peek = implementation_defined;

basic_seq_packet_socket::native

Inherited from basic_socket.

(Deprecated: Use native_handle().) Get the native socket representation.

native_type native();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_seq_packet_socket::native_handle

Inherited from basic_socket.

Get the native socket representation.

native_handle_type native_handle();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_seq_packet_socket::native_handle_type

The native representation of a socket.

typedef SeqPacketSocketService::native_handle_type native_handle_type;

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::native_non_blocking

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking() const;
» more...

Sets the non-blocking mode of the native socket implementation.

403

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void native_non_blocking(
bool mode);

» more...

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

basic_seq_packet_socket::native_non_blocking (1 of 3 overloads)

Inherited from basic_socket.

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking() const;

This function is used to retrieve the non-blocking mode of the underlying native socket. This mode has no effect on the behaviour
of the socket object's synchronous operations.

Return Value

true if the underlying socket is in non-blocking mode and direct system calls may fail with boost::asio::error::would_block
(or the equivalent system error).

Remarks

The current non-blocking mode is cached by the socket object. Consequently, the return value may be incorrect if the non-blocking
mode was set directly on the native socket.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

404

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

405

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_seq_packet_socket::native_non_blocking (2 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the native socket implementation.

void native_non_blocking(
bool mode);

This function is used to modify the non-blocking mode of the underlying native socket. It has no effect on the behaviour of the
socket object's synchronous operations.

Parameters

mode If true, the underlying socket is put into non-blocking mode and direct system calls may fail with boost::asio::er-
ror::would_block (or the equivalent system error).

Exceptions

boost::system::system_error Thrown on failure. If the mode is false, but the current value of non_blocking() is true,
this function fails with boost::asio::error::invalid_argument, as the combination
does not make sense.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

406

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

407

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_seq_packet_socket::native_non_blocking (3 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the native socket implementation.

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

This function is used to modify the non-blocking mode of the underlying native socket. It has no effect on the behaviour of the
socket object's synchronous operations.

Parameters

mode If true, the underlying socket is put into non-blocking mode and direct system calls may fail with boost::asio::er-
ror::would_block (or the equivalent system error).

ec Set to indicate what error occurred, if any. If the mode is false, but the current value of non_blocking() is true, this
function fails with boost::asio::error::invalid_argument, as the combination does not make sense.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

408

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

409

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_seq_packet_socket::native_type

(Deprecated: Use native_handle_type.) The native representation of a socket.

typedef SeqPacketSocketService::native_handle_type native_type;

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::non_blocking

Gets the non-blocking mode of the socket.

bool non_blocking() const;
» more...

Sets the non-blocking mode of the socket.

void non_blocking(
bool mode);

» more...

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

basic_seq_packet_socket::non_blocking (1 of 3 overloads)

Inherited from basic_socket.

Gets the non-blocking mode of the socket.

bool non_blocking() const;

Return Value

true if the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to perform
the requested operation immediately. If false, synchronous operations will block until complete.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

410

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_seq_packet_socket::non_blocking (2 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the socket.

void non_blocking(
bool mode);

Parameters

mode If true, the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to
perform the requested operation immediately. If false, synchronous operations will block until complete.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

basic_seq_packet_socket::non_blocking (3 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the socket.

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

Parameters

mode If true, the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to
perform the requested operation immediately. If false, synchronous operations will block until complete.

ec Set to indicate what error occurred, if any.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

basic_seq_packet_socket::non_blocking_io

Inherited from socket_base.

(Deprecated: Use non_blocking().) IO control command to set the blocking mode of the socket.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

411

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::non_blocking_io command(true);
socket.io_control(command);

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::open

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

» more...

boost::system::error_code open(
const protocol_type & protocol,
boost::system::error_code & ec);

» more...

basic_seq_packet_socket::open (1 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());

basic_seq_packet_socket::open (2 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

412

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code open(
const protocol_type & protocol,
boost::system::error_code & ec);

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying which protocol is to be used.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::system::error_code ec;
socket.open(boost::asio::ip::tcp::v4(), ec);
if (ec)
{
// An error occurred.

}

basic_seq_packet_socket::operator=

Move-assign a basic_seq_packet_socket from another.

basic_seq_packet_socket & operator=(
basic_seq_packet_socket && other);

» more...

Move-assign a basic_seq_packet_socket from a socket of another protocol type.

template<
typename Protocol1,
typename SeqPacketSocketService1>

enable_if< is_convertible< Protocol1, Protocol >::value, basic_seq_packet_socket >::type & oper↵
ator=(

basic_seq_packet_socket< Protocol1, SeqPacketSocketService1 > && other);
» more...

basic_seq_packet_socket::operator= (1 of 2 overloads)

Move-assign a basic_seq_packet_socket from another.

basic_seq_packet_socket & operator=(
basic_seq_packet_socket && other);

This assignment operator moves a sequenced packet socket from one object to another.

Parameters

other The other basic_seq_packet_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_seq_packet_socket(io_ser-
vice&) constructor.

413

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_seq_packet_socket::operator= (2 of 2 overloads)

Move-assign a basic_seq_packet_socket from a socket of another protocol type.

template<
typename Protocol1,
typename SeqPacketSocketService1>

enable_if< is_convertible< Protocol1, Protocol >::value, basic_seq_packet_socket >::type & oper↵
ator=(

basic_seq_packet_socket< Protocol1, SeqPacketSocketService1 > && other);

This assignment operator moves a sequenced packet socket from one object to another.

Parameters

other The other basic_seq_packet_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_seq_packet_socket(io_ser-
vice&) constructor.

basic_seq_packet_socket::protocol_type

The protocol type.

typedef Protocol protocol_type;

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::receive

Receive some data on the socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags & out_flags);

» more...

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags in_flags,
socket_base::message_flags & out_flags);

» more...

Receive some data on a connected socket.

414

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags in_flags,
socket_base::message_flags & out_flags,
boost::system::error_code & ec);

» more...

basic_seq_packet_socket::receive (1 of 3 overloads)

Receive some data on the socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags & out_flags);

This function is used to receive data on the sequenced packet socket. The function call will block until data has been received suc-
cessfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

out_flags After the receive call completes, contains flags associated with the received data. For example, if the sock-
et_base::message_end_of_record bit is set then the received data marks the end of a record.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection
was closed by the peer.

Example

To receive into a single data buffer use the buffer function as follows:

socket.receive(boost::asio::buffer(data, size), out_flags);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays,
boost::array or std::vector.

basic_seq_packet_socket::receive (2 of 3 overloads)

Receive some data on the socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags in_flags,
socket_base::message_flags & out_flags);

415

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This function is used to receive data on the sequenced packet socket. The function call will block until data has been received suc-
cessfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

in_flags Flags specifying how the receive call is to be made.

out_flags After the receive call completes, contains flags associated with the received data. For example, if the sock-
et_base::message_end_of_record bit is set then the received data marks the end of a record.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection
was closed by the peer.

Remarks

The receive operation may not receive all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

Example

To receive into a single data buffer use the buffer function as follows:

socket.receive(boost::asio::buffer(data, size), 0, out_flags);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays,
boost::array or std::vector.

basic_seq_packet_socket::receive (3 of 3 overloads)

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags in_flags,
socket_base::message_flags & out_flags,
boost::system::error_code & ec);

This function is used to receive data on the sequenced packet socket. The function call will block until data has been received suc-
cessfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

in_flags Flags specifying how the receive call is to be made.

out_flags After the receive call completes, contains flags associated with the received data. For example, if the sock-
et_base::message_end_of_record bit is set then the received data marks the end of a record.

ec Set to indicate what error occurred, if any.

416

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes received. Returns 0 if an error occurred.

Remarks

The receive operation may not receive all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

basic_seq_packet_socket::receive_buffer_size

Inherited from socket_base.

Socket option for the receive buffer size of a socket.

typedef implementation_defined receive_buffer_size;

Implements the SOL_SOCKET/SO_RCVBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::receive_low_watermark

Inherited from socket_base.

Socket option for the receive low watermark.

typedef implementation_defined receive_low_watermark;

Implements the SOL_SOCKET/SO_RCVLOWAT socket option.

Examples

Setting the option:

417

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::remote_endpoint

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;
» more...

endpoint_type remote_endpoint(
boost::system::error_code & ec) const;

» more...

basic_seq_packet_socket::remote_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;

This function is used to obtain the remote endpoint of the socket.

Return Value

An object that represents the remote endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint();

basic_seq_packet_socket::remote_endpoint (2 of 2 overloads)

Inherited from basic_socket.

418

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Get the remote endpoint of the socket.

endpoint_type remote_endpoint(
boost::system::error_code & ec) const;

This function is used to obtain the remote endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the remote endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_seq_packet_socket::reuse_address

Inherited from socket_base.

Socket option to allow the socket to be bound to an address that is already in use.

typedef implementation_defined reuse_address;

Implements the SOL_SOCKET/SO_REUSEADDR socket option.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option;
acceptor.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

419

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_seq_packet_socket::send

Send some data on the socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags);

» more...

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

» more...

basic_seq_packet_socket::send (1 of 2 overloads)

Send some data on the socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags);

This function is used to send data on the sequenced packet socket. The function call will block until the data has been sent successfully,
or an until error occurs.

Parameters

buffers One or more data buffers to be sent on the socket.

flags Flags specifying how the send call is to be made.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

Example

To send a single data buffer use the buffer function as follows:

socket.send(boost::asio::buffer(data, size), 0);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_seq_packet_socket::send (2 of 2 overloads)

Send some data on the socket.

420

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

This function is used to send data on the sequenced packet socket. The function call will block the data has been sent successfully,
or an until error occurs.

Parameters

buffers One or more data buffers to be sent on the socket.

flags Flags specifying how the send call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes sent. Returns 0 if an error occurred.

Remarks

The send operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that all data
is written before the blocking operation completes.

basic_seq_packet_socket::send_buffer_size

Inherited from socket_base.

Socket option for the send buffer size of a socket.

typedef implementation_defined send_buffer_size;

Implements the SOL_SOCKET/SO_SNDBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

421

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Convenience header: boost/asio.hpp

basic_seq_packet_socket::send_low_watermark

Inherited from socket_base.

Socket option for the send low watermark.

typedef implementation_defined send_low_watermark;

Implements the SOL_SOCKET/SO_SNDLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

Remarks

Available only for services that do not support movability.

basic_seq_packet_socket::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef SeqPacketSocketService service_type;

422

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/basic_seq_packet_socket.hpp

Convenience header: boost/asio.hpp

basic_seq_packet_socket::set_option

Set an option on the socket.

void set_option(
const SettableSocketOption & option);

» more...

boost::system::error_code set_option(
const SettableSocketOption & option,
boost::system::error_code & ec);

» more...

basic_seq_packet_socket::set_option (1 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

template<
typename SettableSocketOption>

void set_option(
const SettableSocketOption & option);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
socket.set_option(option);

basic_seq_packet_socket::set_option (2 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

423

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SettableSocketOption>

boost::system::error_code set_option(
const SettableSocketOption & option,
boost::system::error_code & ec);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

ec Set to indicate what error occurred, if any.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
boost::system::error_code ec;
socket.set_option(option, ec);
if (ec)
{
// An error occurred.

}

basic_seq_packet_socket::shutdown

Disable sends or receives on the socket.

void shutdown(
shutdown_type what);

» more...

boost::system::error_code shutdown(
shutdown_type what,
boost::system::error_code & ec);

» more...

basic_seq_packet_socket::shutdown (1 of 2 overloads)

Inherited from basic_socket.

Disable sends or receives on the socket.

void shutdown(
shutdown_type what);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

424

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send);

basic_seq_packet_socket::shutdown (2 of 2 overloads)

Inherited from basic_socket.

Disable sends or receives on the socket.

boost::system::error_code shutdown(
shutdown_type what,
boost::system::error_code & ec);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

ec Set to indicate what error occurred, if any.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send, ec);
if (ec)
{
// An error occurred.

}

basic_seq_packet_socket::shutdown_type

Inherited from socket_base.

Different ways a socket may be shutdown.

enum shutdown_type

Values

shutdown_receive Shutdown the receive side of the socket.

shutdown_send Shutdown the send side of the socket.

shutdown_both Shutdown both send and receive on the socket.

425

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_serial_port
Provides serial port functionality.

template<
typename SerialPortService = serial_port_service>

class basic_serial_port :
public basic_io_object< SerialPortService >,
public serial_port_base

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_serial_port is always the lowest layer.lowest_layer_type

The native representation of a serial port.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a serial port.

native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

426

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native serial port to the serial port.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Construct a basic_serial_port without opening it.

Construct and open a basic_serial_port.

Construct a basic_serial_port on an existing native serial port.

Move-construct a basic_serial_port from another.

basic_serial_port

Cancel all asynchronous operations associated with the serial
port.

cancel

Close the serial port.close

Get the io_service associated with the object.get_io_service

Get an option from the serial port.get_option

Determine whether the serial port is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native serial port
representation.

native

Get the native serial port representation.native_handle

Open the serial port using the specified device name.open

Move-assign a basic_serial_port from another.operator=

Read some data from the serial port.read_some

Send a break sequence to the serial port.send_break

Set an option on the serial port.set_option

Write some data to the serial port.write_some

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

427

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_serial_port class template provides functionality that is common to all serial ports.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/basic_serial_port.hpp

Convenience header: boost/asio.hpp

basic_serial_port::assign

Assign an existing native serial port to the serial port.

void assign(
const native_handle_type & native_serial_port);

» more...

boost::system::error_code assign(
const native_handle_type & native_serial_port,
boost::system::error_code & ec);

» more...

basic_serial_port::assign (1 of 2 overloads)

Assign an existing native serial port to the serial port.

void assign(
const native_handle_type & native_serial_port);

basic_serial_port::assign (2 of 2 overloads)

Assign an existing native serial port to the serial port.

boost::system::error_code assign(
const native_handle_type & native_serial_port,
boost::system::error_code & ec);

basic_serial_port::async_read_some

Start an asynchronous read.

428

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read_some(
const MutableBufferSequence & buffers,
ReadHandler handler);

This function is used to asynchronously read data from the serial port. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be read. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes read.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The read operation may not read all of the requested number of bytes. Consider using the async_read function if you need to ensure
that the requested amount of data is read before the asynchronous operation completes.

Example

To read into a single data buffer use the buffer function as follows:

serial_port.async_read_some(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_serial_port::async_write_some

Start an asynchronous write.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write_some(
const ConstBufferSequence & buffers,
WriteHandler handler);

This function is used to asynchronously write data to the serial port. The function call always returns immediately.

429

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

buffers One or more data buffers to be written to the serial port. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until
the handler is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes written.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The write operation may not transmit all of the data to the peer. Consider using the async_write function if you need to ensure
that all data is written before the asynchronous operation completes.

Example

To write a single data buffer use the buffer function as follows:

serial_port.async_write_some(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_serial_port::basic_serial_port

Construct a basic_serial_port without opening it.

explicit basic_serial_port(
boost::asio::io_service & io_service);

» more...

Construct and open a basic_serial_port.

explicit basic_serial_port(
boost::asio::io_service & io_service,
const char * device);

» more...

explicit basic_serial_port(
boost::asio::io_service & io_service,
const std::string & device);

» more...

Construct a basic_serial_port on an existing native serial port.

430

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_serial_port(
boost::asio::io_service & io_service,
const native_handle_type & native_serial_port);

» more...

Move-construct a basic_serial_port from another.

basic_serial_port(
basic_serial_port && other);

» more...

basic_serial_port::basic_serial_port (1 of 5 overloads)

Construct a basic_serial_port without opening it.

basic_serial_port(
boost::asio::io_service & io_service);

This constructor creates a serial port without opening it.

Parameters

io_service The io_service object that the serial port will use to dispatch handlers for any asynchronous operations performed
on the port.

basic_serial_port::basic_serial_port (2 of 5 overloads)

Construct and open a basic_serial_port.

basic_serial_port(
boost::asio::io_service & io_service,
const char * device);

This constructor creates and opens a serial port for the specified device name.

Parameters

io_service The io_service object that the serial port will use to dispatch handlers for any asynchronous operations performed
on the port.

device The platform-specific device name for this serial port.

basic_serial_port::basic_serial_port (3 of 5 overloads)

Construct and open a basic_serial_port.

basic_serial_port(
boost::asio::io_service & io_service,
const std::string & device);

This constructor creates and opens a serial port for the specified device name.

Parameters

io_service The io_service object that the serial port will use to dispatch handlers for any asynchronous operations performed
on the port.

431

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

device The platform-specific device name for this serial port.

basic_serial_port::basic_serial_port (4 of 5 overloads)

Construct a basic_serial_port on an existing native serial port.

basic_serial_port(
boost::asio::io_service & io_service,
const native_handle_type & native_serial_port);

This constructor creates a serial port object to hold an existing native serial port.

Parameters

io_service The io_service object that the serial port will use to dispatch handlers for any asynchronous operations
performed on the port.

native_serial_port A native serial port.

Exceptions

boost::system::system_error Thrown on failure.

basic_serial_port::basic_serial_port (5 of 5 overloads)

Move-construct a basic_serial_port from another.

basic_serial_port(
basic_serial_port && other);

This constructor moves a serial port from one object to another.

Parameters

other The other basic_serial_port object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_serial_port(io_service&)
constructor.

basic_serial_port::cancel

Cancel all asynchronous operations associated with the serial port.

void cancel();
» more...

boost::system::error_code cancel(
boost::system::error_code & ec);

» more...

basic_serial_port::cancel (1 of 2 overloads)

Cancel all asynchronous operations associated with the serial port.

void cancel();

432

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

basic_serial_port::cancel (2 of 2 overloads)

Cancel all asynchronous operations associated with the serial port.

boost::system::error_code cancel(
boost::system::error_code & ec);

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

basic_serial_port::close

Close the serial port.

void close();
» more...

boost::system::error_code close(
boost::system::error_code & ec);

» more...

basic_serial_port::close (1 of 2 overloads)

Close the serial port.

void close();

This function is used to close the serial port. Any asynchronous read or write operations will be cancelled immediately, and will
complete with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

basic_serial_port::close (2 of 2 overloads)

Close the serial port.

boost::system::error_code close(
boost::system::error_code & ec);

This function is used to close the serial port. Any asynchronous read or write operations will be cancelled immediately, and will
complete with the boost::asio::error::operation_aborted error.

433

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

ec Set to indicate what error occurred, if any.

basic_serial_port::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

basic_serial_port::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

basic_serial_port::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

basic_serial_port::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_serial_port::get_option

Get an option from the serial port.

434

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename GettableSerialPortOption>

void get_option(
GettableSerialPortOption & option);

» more...

template<
typename GettableSerialPortOption>

boost::system::error_code get_option(
GettableSerialPortOption & option,
boost::system::error_code & ec);

» more...

basic_serial_port::get_option (1 of 2 overloads)

Get an option from the serial port.

template<
typename GettableSerialPortOption>

void get_option(
GettableSerialPortOption & option);

This function is used to get the current value of an option on the serial port.

Parameters

option The option value to be obtained from the serial port.

Exceptions

boost::system::system_error Thrown on failure.

basic_serial_port::get_option (2 of 2 overloads)

Get an option from the serial port.

template<
typename GettableSerialPortOption>

boost::system::error_code get_option(
GettableSerialPortOption & option,
boost::system::error_code & ec);

This function is used to get the current value of an option on the serial port.

Parameters

option The option value to be obtained from the serial port.

ec Set to indicate what error occured, if any.

basic_serial_port::get_service

Get the service associated with the I/O object.

435

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

basic_serial_port::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

service_type & get_service();

basic_serial_port::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

basic_serial_port::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

basic_serial_port::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/basic_serial_port.hpp

Convenience header: boost/asio.hpp

basic_serial_port::is_open

Determine whether the serial port is open.

bool is_open() const;

basic_serial_port::lowest_layer

Get a reference to the lowest layer.

436

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

lowest_layer_type & lowest_layer();
» more...

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;
» more...

basic_serial_port::lowest_layer (1 of 2 overloads)

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_serial_port cannot contain any further
layers, it simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_serial_port::lowest_layer (2 of 2 overloads)

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_serial_port cannot contain any
further layers, it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_serial_port::lowest_layer_type

A basic_serial_port is always the lowest layer.

typedef basic_serial_port< SerialPortService > lowest_layer_type;

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_serial_port is always the lowest layer.lowest_layer_type

The native representation of a serial port.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a serial port.

native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

437

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native serial port to the serial port.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Construct a basic_serial_port without opening it.

Construct and open a basic_serial_port.

Construct a basic_serial_port on an existing native serial port.

Move-construct a basic_serial_port from another.

basic_serial_port

Cancel all asynchronous operations associated with the serial
port.

cancel

Close the serial port.close

Get the io_service associated with the object.get_io_service

Get an option from the serial port.get_option

Determine whether the serial port is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native serial port
representation.

native

Get the native serial port representation.native_handle

Open the serial port using the specified device name.open

Move-assign a basic_serial_port from another.operator=

Read some data from the serial port.read_some

Send a break sequence to the serial port.send_break

Set an option on the serial port.set_option

Write some data to the serial port.write_some

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

438

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_serial_port class template provides functionality that is common to all serial ports.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/basic_serial_port.hpp

Convenience header: boost/asio.hpp

basic_serial_port::native

(Deprecated: Use native_handle().) Get the native serial port representation.

native_type native();

This function may be used to obtain the underlying representation of the serial port. This is intended to allow access to native serial
port functionality that is not otherwise provided.

basic_serial_port::native_handle

Get the native serial port representation.

native_handle_type native_handle();

This function may be used to obtain the underlying representation of the serial port. This is intended to allow access to native serial
port functionality that is not otherwise provided.

basic_serial_port::native_handle_type

The native representation of a serial port.

typedef SerialPortService::native_handle_type native_handle_type;

Requirements

Header: boost/asio/basic_serial_port.hpp

Convenience header: boost/asio.hpp

439

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_serial_port::native_type

(Deprecated: Use native_handle_type.) The native representation of a serial port.

typedef SerialPortService::native_handle_type native_type;

Requirements

Header: boost/asio/basic_serial_port.hpp

Convenience header: boost/asio.hpp

basic_serial_port::open

Open the serial port using the specified device name.

void open(
const std::string & device);

» more...

boost::system::error_code open(
const std::string & device,
boost::system::error_code & ec);

» more...

basic_serial_port::open (1 of 2 overloads)

Open the serial port using the specified device name.

void open(
const std::string & device);

This function opens the serial port for the specified device name.

Parameters

device The platform-specific device name.

Exceptions

boost::system::system_error Thrown on failure.

basic_serial_port::open (2 of 2 overloads)

Open the serial port using the specified device name.

boost::system::error_code open(
const std::string & device,
boost::system::error_code & ec);

This function opens the serial port using the given platform-specific device name.

Parameters

device The platform-specific device name.

ec Set the indicate what error occurred, if any.

440

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_serial_port::operator=

Move-assign a basic_serial_port from another.

basic_serial_port & operator=(
basic_serial_port && other);

This assignment operator moves a serial port from one object to another.

Parameters

other The other basic_serial_port object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_serial_port(io_service&)
constructor.

basic_serial_port::read_some

Read some data from the serial port.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

» more...

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

» more...

basic_serial_port::read_some (1 of 2 overloads)

Read some data from the serial port.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

This function is used to read data from the serial port. The function call will block until one or more bytes of data has been read
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be read.

Return Value

The number of bytes read.

441

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection
was closed by the peer.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

Example

To read into a single data buffer use the buffer function as follows:

serial_port.read_some(boost::asio::buffer(data, size));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_serial_port::read_some (2 of 2 overloads)

Read some data from the serial port.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to read data from the serial port. The function call will block until one or more bytes of data has been read
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be read.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. Returns 0 if an error occurred.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

basic_serial_port::send_break

Send a break sequence to the serial port.

void send_break();
» more...

boost::system::error_code send_break(
boost::system::error_code & ec);

» more...

442

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_serial_port::send_break (1 of 2 overloads)

Send a break sequence to the serial port.

void send_break();

This function causes a break sequence of platform-specific duration to be sent out the serial port.

Exceptions

boost::system::system_error Thrown on failure.

basic_serial_port::send_break (2 of 2 overloads)

Send a break sequence to the serial port.

boost::system::error_code send_break(
boost::system::error_code & ec);

This function causes a break sequence of platform-specific duration to be sent out the serial port.

Parameters

ec Set to indicate what error occurred, if any.

basic_serial_port::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

Remarks

Available only for services that do not support movability.

basic_serial_port::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef SerialPortService service_type;

Requirements

Header: boost/asio/basic_serial_port.hpp

Convenience header: boost/asio.hpp

basic_serial_port::set_option

Set an option on the serial port.

443

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SettableSerialPortOption>

void set_option(
const SettableSerialPortOption & option);

» more...

template<
typename SettableSerialPortOption>

boost::system::error_code set_option(
const SettableSerialPortOption & option,
boost::system::error_code & ec);

» more...

basic_serial_port::set_option (1 of 2 overloads)

Set an option on the serial port.

template<
typename SettableSerialPortOption>

void set_option(
const SettableSerialPortOption & option);

This function is used to set an option on the serial port.

Parameters

option The option value to be set on the serial port.

Exceptions

boost::system::system_error Thrown on failure.

basic_serial_port::set_option (2 of 2 overloads)

Set an option on the serial port.

template<
typename SettableSerialPortOption>

boost::system::error_code set_option(
const SettableSerialPortOption & option,
boost::system::error_code & ec);

This function is used to set an option on the serial port.

Parameters

option The option value to be set on the serial port.

ec Set to indicate what error occurred, if any.

basic_serial_port::write_some

Write some data to the serial port.

444

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

» more...

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

» more...

basic_serial_port::write_some (1 of 2 overloads)

Write some data to the serial port.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

This function is used to write data to the serial port. The function call will block until one or more bytes of the data has been written
successfully, or until an error occurs.

Parameters

buffers One or more data buffers to be written to the serial port.

Return Value

The number of bytes written.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection
was closed by the peer.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

Example

To write a single data buffer use the buffer function as follows:

serial_port.write_some(boost::asio::buffer(data, size));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_serial_port::write_some (2 of 2 overloads)

Write some data to the serial port.

445

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to write data to the serial port. The function call will block until one or more bytes of the data has been written
successfully, or until an error occurs.

Parameters

buffers One or more data buffers to be written to the serial port.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. Returns 0 if an error occurred.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

basic_signal_set
Provides signal functionality.

template<
typename SignalSetService = signal_set_service>

class basic_signal_set :
public basic_io_object< SignalSetService >

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

446

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Add a signal to a signal_set.add

Start an asynchronous operation to wait for a signal to be de-
livered.

async_wait

Construct a signal set without adding any signals.

Construct a signal set and add one signal.

Construct a signal set and add two signals.

Construct a signal set and add three signals.

basic_signal_set

Cancel all operations associated with the signal set.cancel

Remove all signals from a signal_set.clear

Get the io_service associated with the object.get_io_service

Remove a signal from a signal_set.remove

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_signal_set class template provides the ability to perform an asynchronous wait for one or more signals to occur.

Most applications will use the signal_set typedef.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Example

Performing an asynchronous wait:

447

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error,
int signal_number)

{
if (!error)
{
// A signal occurred.

}
}

...

// Construct a signal set registered for process termination.
boost::asio::signal_set signals(io_service, SIGINT, SIGTERM);

// Start an asynchronous wait for one of the signals to occur.
signals.async_wait(handler);

Queueing of signal notifications

If a signal is registered with a signal_set, and the signal occurs when there are no waiting handlers, then the signal notification is
queued. The next async_wait operation on that signal_set will dequeue the notification. If multiple notifications are queued, subsequent
async_wait operations dequeue them one at a time. Signal notifications are dequeued in order of ascending signal number.

If a signal number is removed from a signal_set (using the remove or erase member functions) then any queued notifications for
that signal are discarded.

Multiple registration of signals

The same signal number may be registered with different signal_set objects. When the signal occurs, one handler is called for each
signal_set object.

Note that multiple registration only works for signals that are registered using Asio. The application must not also register a signal
handler using functions such as signal() or sigaction().

Signal masking on POSIX platforms

POSIX allows signals to be blocked using functions such as sigprocmask() and pthread_sigmask(). For signals to be delivered,
programs must ensure that any signals registered using signal_set objects are unblocked in at least one thread.

Requirements

Header: boost/asio/basic_signal_set.hpp

Convenience header: boost/asio.hpp

basic_signal_set::add

Add a signal to a signal_set.

void add(
int signal_number);

» more...

boost::system::error_code add(
int signal_number,
boost::system::error_code & ec);

» more...

448

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_signal_set::add (1 of 2 overloads)

Add a signal to a signal_set.

void add(
int signal_number);

This function adds the specified signal to the set. It has no effect if the signal is already in the set.

Parameters

signal_number The signal to be added to the set.

Exceptions

boost::system::system_error Thrown on failure.

basic_signal_set::add (2 of 2 overloads)

Add a signal to a signal_set.

boost::system::error_code add(
int signal_number,
boost::system::error_code & ec);

This function adds the specified signal to the set. It has no effect if the signal is already in the set.

Parameters

signal_number The signal to be added to the set.

ec Set to indicate what error occurred, if any.

basic_signal_set::async_wait

Start an asynchronous operation to wait for a signal to be delivered.

template<
typename SignalHandler>

void-or-deduced async_wait(
SignalHandler handler);

This function may be used to initiate an asynchronous wait against the signal set. It always returns immediately.

For each call to async_wait(), the supplied handler will be called exactly once. The handler will be called when:

• One of the registered signals in the signal set occurs; or

• The signal set was cancelled, in which case the handler is passed the error code boost::asio::error::operation_aborted.

Parameters

handler The handler to be called when the signal occurs. Copies will be made of the handler as required. The function signature
of the handler must be:

449

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(
const boost::system::error_code& error, // Result of operation.
int signal_number // Indicates which signal occurred.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

basic_signal_set::basic_signal_set

Construct a signal set without adding any signals.

explicit basic_signal_set(
boost::asio::io_service & io_service);

» more...

Construct a signal set and add one signal.

basic_signal_set(
boost::asio::io_service & io_service,
int signal_number_1);

» more...

Construct a signal set and add two signals.

basic_signal_set(
boost::asio::io_service & io_service,
int signal_number_1,
int signal_number_2);

» more...

Construct a signal set and add three signals.

basic_signal_set(
boost::asio::io_service & io_service,
int signal_number_1,
int signal_number_2,
int signal_number_3);

» more...

basic_signal_set::basic_signal_set (1 of 4 overloads)

Construct a signal set without adding any signals.

basic_signal_set(
boost::asio::io_service & io_service);

This constructor creates a signal set without registering for any signals.

Parameters

io_service The io_service object that the signal set will use to dispatch handlers for any asynchronous operations performed
on the set.

450

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_signal_set::basic_signal_set (2 of 4 overloads)

Construct a signal set and add one signal.

basic_signal_set(
boost::asio::io_service & io_service,
int signal_number_1);

This constructor creates a signal set and registers for one signal.

Parameters

io_service The io_service object that the signal set will use to dispatch handlers for any asynchronous operations
performed on the set.

signal_number_1 The signal number to be added.

Remarks

This constructor is equivalent to performing:

boost::asio::signal_set signals(io_service);
signals.add(signal_number_1);

basic_signal_set::basic_signal_set (3 of 4 overloads)

Construct a signal set and add two signals.

basic_signal_set(
boost::asio::io_service & io_service,
int signal_number_1,
int signal_number_2);

This constructor creates a signal set and registers for two signals.

Parameters

io_service The io_service object that the signal set will use to dispatch handlers for any asynchronous operations
performed on the set.

signal_number_1 The first signal number to be added.

signal_number_2 The second signal number to be added.

Remarks

This constructor is equivalent to performing:

boost::asio::signal_set signals(io_service);
signals.add(signal_number_1);
signals.add(signal_number_2);

basic_signal_set::basic_signal_set (4 of 4 overloads)

Construct a signal set and add three signals.

451

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_signal_set(
boost::asio::io_service & io_service,
int signal_number_1,
int signal_number_2,
int signal_number_3);

This constructor creates a signal set and registers for three signals.

Parameters

io_service The io_service object that the signal set will use to dispatch handlers for any asynchronous operations
performed on the set.

signal_number_1 The first signal number to be added.

signal_number_2 The second signal number to be added.

signal_number_3 The third signal number to be added.

Remarks

This constructor is equivalent to performing:

boost::asio::signal_set signals(io_service);
signals.add(signal_number_1);
signals.add(signal_number_2);
signals.add(signal_number_3);

basic_signal_set::cancel

Cancel all operations associated with the signal set.

void cancel();
» more...

boost::system::error_code cancel(
boost::system::error_code & ec);

» more...

basic_signal_set::cancel (1 of 2 overloads)

Cancel all operations associated with the signal set.

void cancel();

This function forces the completion of any pending asynchronous wait operations against the signal set. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Cancellation does not alter the set of registered signals.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

If a registered signal occurred before cancel() is called, then the handlers for asynchronous wait operations will:

452

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

basic_signal_set::cancel (2 of 2 overloads)

Cancel all operations associated with the signal set.

boost::system::error_code cancel(
boost::system::error_code & ec);

This function forces the completion of any pending asynchronous wait operations against the signal set. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Cancellation does not alter the set of registered signals.

Parameters

ec Set to indicate what error occurred, if any.

Remarks

If a registered signal occurred before cancel() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

basic_signal_set::clear

Remove all signals from a signal_set.

void clear();
» more...

boost::system::error_code clear(
boost::system::error_code & ec);

» more...

basic_signal_set::clear (1 of 2 overloads)

Remove all signals from a signal_set.

void clear();

This function removes all signals from the set. It has no effect if the set is already empty.

Exceptions

boost::system::system_error Thrown on failure.

453

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

Removes all queued notifications.

basic_signal_set::clear (2 of 2 overloads)

Remove all signals from a signal_set.

boost::system::error_code clear(
boost::system::error_code & ec);

This function removes all signals from the set. It has no effect if the set is already empty.

Parameters

ec Set to indicate what error occurred, if any.

Remarks

Removes all queued notifications.

basic_signal_set::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

basic_signal_set::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

basic_signal_set::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

basic_signal_set::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

454

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_signal_set::get_service

Get the service associated with the I/O object.

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

basic_signal_set::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

service_type & get_service();

basic_signal_set::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

basic_signal_set::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

basic_signal_set::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/basic_signal_set.hpp

Convenience header: boost/asio.hpp

basic_signal_set::remove

Remove a signal from a signal_set.

455

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void remove(
int signal_number);

» more...

boost::system::error_code remove(
int signal_number,
boost::system::error_code & ec);

» more...

basic_signal_set::remove (1 of 2 overloads)

Remove a signal from a signal_set.

void remove(
int signal_number);

This function removes the specified signal from the set. It has no effect if the signal is not in the set.

Parameters

signal_number The signal to be removed from the set.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Removes any notifications that have been queued for the specified signal number.

basic_signal_set::remove (2 of 2 overloads)

Remove a signal from a signal_set.

boost::system::error_code remove(
int signal_number,
boost::system::error_code & ec);

This function removes the specified signal from the set. It has no effect if the signal is not in the set.

Parameters

signal_number The signal to be removed from the set.

ec Set to indicate what error occurred, if any.

Remarks

Removes any notifications that have been queued for the specified signal number.

basic_signal_set::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

456

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

Available only for services that do not support movability.

basic_signal_set::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef SignalSetService service_type;

Requirements

Header: boost/asio/basic_signal_set.hpp

Convenience header: boost/asio.hpp

basic_socket
Provides socket functionality.

template<
typename Protocol,
typename SocketService>

class basic_socket :
public basic_io_object< SocketService >,
public socket_base

457

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

458

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

459

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_socket without opening it.basic_socket

Construct and open a basic_socket.

Construct a basic_socket, opening it and binding it to the given
local endpoint.

Construct a basic_socket on an existing native socket.

Move-construct a basic_socket from another.

Move-construct a basic_socket from a socket of another protocol
type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

Gets the non-blocking mode of the native socket implementation.native_non_blocking

Sets the non-blocking mode of the native socket implementation.

Gets the non-blocking mode of the socket.non_blocking

Sets the non-blocking mode of the socket.

460

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Open the socket using the specified protocol.open

Move-assign a basic_socket from another.

Move-assign a basic_socket from a socket of another protocol
type.

operator=

Get the remote endpoint of the socket.remote_endpoint

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected destructor to prevent deletion through this type.~basic_socket

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_socket class template provides functionality that is common to both stream-oriented and datagram-oriented sockets.

Thread Safety

Distinct objects: Safe.

461

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Shared objects: Unsafe.

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::assign

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_handle_type & native_socket);

» more...

boost::system::error_code assign(
const protocol_type & protocol,
const native_handle_type & native_socket,
boost::system::error_code & ec);

» more...

basic_socket::assign (1 of 2 overloads)

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_handle_type & native_socket);

basic_socket::assign (2 of 2 overloads)

Assign an existing native socket to the socket.

boost::system::error_code assign(
const protocol_type & protocol,
const native_handle_type & native_socket,
boost::system::error_code & ec);

basic_socket::async_connect

Start an asynchronous connect.

template<
typename ConnectHandler>

void-or-deduced async_connect(
const endpoint_type & peer_endpoint,
ConnectHandler handler);

This function is used to asynchronously connect a socket to the specified remote endpoint. The function call always returns immediately.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

462

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

peer_endpoint The remote endpoint to which the socket will be connected. Copies will be made of the endpoint object as re-
quired.

handler The handler to be called when the connection operation completes. Copies will be made of the handler as re-
quired. The function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

void connect_handler(const boost::system::error_code& error)
{
if (!error)
{
// Connect succeeded.

}
}

...

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.async_connect(endpoint, connect_handler);

basic_socket::at_mark

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;
» more...

bool at_mark(
boost::system::error_code & ec) const;

» more...

basic_socket::at_mark (1 of 2 overloads)

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

463

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

basic_socket::at_mark (2 of 2 overloads)

Determine whether the socket is at the out-of-band data mark.

bool at_mark(
boost::system::error_code & ec) const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

basic_socket::available

Determine the number of bytes available for reading.

std::size_t available() const;
» more...

std::size_t available(
boost::system::error_code & ec) const;

» more...

basic_socket::available (1 of 2 overloads)

Determine the number of bytes available for reading.

std::size_t available() const;

This function is used to determine the number of bytes that may be read without blocking.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket::available (2 of 2 overloads)

Determine the number of bytes available for reading.

std::size_t available(
boost::system::error_code & ec) const;

This function is used to determine the number of bytes that may be read without blocking.

464

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

basic_socket::basic_socket

Construct a basic_socket without opening it.

explicit basic_socket(
boost::asio::io_service & io_service);

» more...

Construct and open a basic_socket.

basic_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol);

» more...

Construct a basic_socket, opening it and binding it to the given local endpoint.

basic_socket(
boost::asio::io_service & io_service,
const endpoint_type & endpoint);

» more...

Construct a basic_socket on an existing native socket.

basic_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol,
const native_handle_type & native_socket);

» more...

Move-construct a basic_socket from another.

basic_socket(
basic_socket && other);

» more...

Move-construct a basic_socket from a socket of another protocol type.

template<
typename Protocol1,
typename SocketService1>

basic_socket(
basic_socket< Protocol1, SocketService1 > && other,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

» more...

basic_socket::basic_socket (1 of 6 overloads)

Construct a basic_socket without opening it.

465

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket(
boost::asio::io_service & io_service);

This constructor creates a socket without opening it.

Parameters

io_service The io_service object that the socket will use to dispatch handlers for any asynchronous operations performed
on the socket.

basic_socket::basic_socket (2 of 6 overloads)

Construct and open a basic_socket.

basic_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol);

This constructor creates and opens a socket.

Parameters

io_service The io_service object that the socket will use to dispatch handlers for any asynchronous operations performed
on the socket.

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket::basic_socket (3 of 6 overloads)

Construct a basic_socket, opening it and binding it to the given local endpoint.

basic_socket(
boost::asio::io_service & io_service,
const endpoint_type & endpoint);

This constructor creates a socket and automatically opens it bound to the specified endpoint on the local machine. The protocol used
is the protocol associated with the given endpoint.

Parameters

io_service The io_service object that the socket will use to dispatch handlers for any asynchronous operations performed
on the socket.

endpoint An endpoint on the local machine to which the socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket::basic_socket (4 of 6 overloads)

Construct a basic_socket on an existing native socket.

466

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol,
const native_handle_type & native_socket);

This constructor creates a socket object to hold an existing native socket.

Parameters

io_service The io_service object that the socket will use to dispatch handlers for any asynchronous operations performed
on the socket.

protocol An object specifying protocol parameters to be used.

native_socket A native socket.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket::basic_socket (5 of 6 overloads)

Move-construct a basic_socket from another.

basic_socket(
basic_socket && other);

This constructor moves a socket from one object to another.

Parameters

other The other basic_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_socket(io_service&) con-

structor.

basic_socket::basic_socket (6 of 6 overloads)

Move-construct a basic_socket from a socket of another protocol type.

template<
typename Protocol1,
typename SocketService1>

basic_socket(
basic_socket< Protocol1, SocketService1 > && other,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

This constructor moves a socket from one object to another.

Parameters

other The other basic_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_socket(io_service&) con-

structor.

467

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket::bind

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

» more...

boost::system::error_code bind(
const endpoint_type & endpoint,
boost::system::error_code & ec);

» more...

basic_socket::bind (1 of 2 overloads)

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
socket.bind(boost::asio::ip::tcp::endpoint(

boost::asio::ip::tcp::v4(), 12345));

basic_socket::bind (2 of 2 overloads)

Bind the socket to the given local endpoint.

boost::system::error_code bind(
const endpoint_type & endpoint,
boost::system::error_code & ec);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

ec Set to indicate what error occurred, if any.

468

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
boost::system::error_code ec;
socket.bind(boost::asio::ip::tcp::endpoint(

boost::asio::ip::tcp::v4(), 12345), ec);
if (ec)
{
// An error occurred.

}

basic_socket::broadcast

Inherited from socket_base.

Socket option to permit sending of broadcast messages.

typedef implementation_defined broadcast;

Implements the SOL_SOCKET/SO_BROADCAST socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::bytes_readable

Inherited from socket_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

469

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::bytes_readable command(true);
socket.io_control(command);
std::size_t bytes_readable = command.get();

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::cancel

Cancel all asynchronous operations associated with the socket.

void cancel();
» more...

boost::system::error_code cancel(
boost::system::error_code & ec);

» more...

basic_socket::cancel (1 of 2 overloads)

Cancel all asynchronous operations associated with the socket.

void cancel();

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP,
Windows Server 2003, and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the
CancelIo function has two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

470

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket::cancel (2 of 2 overloads)

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
boost::system::error_code & ec);

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP,
Windows Server 2003, and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the
CancelIo function has two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_socket::close

Close the socket.

void close();
» more...

boost::system::error_code close(
boost::system::error_code & ec);

» more...

basic_socket::close (1 of 2 overloads)

Close the socket.

void close();

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure. Note that, even if the function indicates an error, the underlying descriptor
is closed.

471

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_socket::close (2 of 2 overloads)

Close the socket.

boost::system::error_code close(
boost::system::error_code & ec);

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any. Note that, even if the function indicates an error, the underlying descriptor is closed.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.close(ec);
if (ec)
{
// An error occurred.

}

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_socket::connect

Connect the socket to the specified endpoint.

void connect(
const endpoint_type & peer_endpoint);

» more...

boost::system::error_code connect(
const endpoint_type & peer_endpoint,
boost::system::error_code & ec);

» more...

basic_socket::connect (1 of 2 overloads)

Connect the socket to the specified endpoint.

void connect(
const endpoint_type & peer_endpoint);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

472

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.connect(endpoint);

basic_socket::connect (2 of 2 overloads)

Connect the socket to the specified endpoint.

boost::system::error_code connect(
const endpoint_type & peer_endpoint,
boost::system::error_code & ec);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
boost::system::error_code ec;
socket.connect(endpoint, ec);
if (ec)
{
// An error occurred.

}

basic_socket::debug

Inherited from socket_base.

Socket option to enable socket-level debugging.

typedef implementation_defined debug;

Implements the SOL_SOCKET/SO_DEBUG socket option.

473

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::do_not_route

Inherited from socket_base.

Socket option to prevent routing, use local interfaces only.

typedef implementation_defined do_not_route;

Implements the SOL_SOCKET/SO_DONTROUTE socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

474

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket::enable_connection_aborted

Inherited from socket_base.

Socket option to report aborted connections on accept.

typedef implementation_defined enable_connection_aborted;

Implements a custom socket option that determines whether or not an accept operation is permitted to fail with
boost::asio::error::connection_aborted. By default the option is false.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option;
acceptor.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

475

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

basic_socket::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

basic_socket::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_socket::get_option

Get an option from the socket.

template<
typename GettableSocketOption>

void get_option(
GettableSocketOption & option) const;

» more...

template<
typename GettableSocketOption>

boost::system::error_code get_option(
GettableSocketOption & option,
boost::system::error_code & ec) const;

» more...

basic_socket::get_option (1 of 2 overloads)

Get an option from the socket.

template<
typename GettableSocketOption>

void get_option(
GettableSocketOption & option) const;

This function is used to get the current value of an option on the socket.

476

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

option The option value to be obtained from the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

basic_socket::get_option (2 of 2 overloads)

Get an option from the socket.

template<
typename GettableSocketOption>

boost::system::error_code get_option(
GettableSocketOption & option,
boost::system::error_code & ec) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
boost::system::error_code ec;
socket.get_option(option, ec);
if (ec)
{
// An error occurred.

}
bool is_set = option.value();

basic_socket::get_service

Get the service associated with the I/O object.

477

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

basic_socket::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

service_type & get_service();

basic_socket::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

basic_socket::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

basic_socket::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::io_control

Perform an IO control command on the socket.

478

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename IoControlCommand>

void io_control(
IoControlCommand & command);

» more...

template<
typename IoControlCommand>

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

» more...

basic_socket::io_control (1 of 2 overloads)

Perform an IO control command on the socket.

template<
typename IoControlCommand>

void io_control(
IoControlCommand & command);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_socket::io_control (2 of 2 overloads)

Perform an IO control command on the socket.

template<
typename IoControlCommand>

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

479

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ec Set to indicate what error occurred, if any.

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
boost::system::error_code ec;
socket.io_control(command, ec);
if (ec)
{
// An error occurred.

}
std::size_t bytes_readable = command.get();

basic_socket::is_open

Determine whether the socket is open.

bool is_open() const;

basic_socket::keep_alive

Inherited from socket_base.

Socket option to send keep-alives.

typedef implementation_defined keep_alive;

Implements the SOL_SOCKET/SO_KEEPALIVE socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

480

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket::linger

Inherited from socket_base.

Socket option to specify whether the socket lingers on close if unsent data is present.

typedef implementation_defined linger;

Implements the SOL_SOCKET/SO_LINGER socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option(true, 30);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option;
socket.get_option(option);
bool is_set = option.enabled();
unsigned short timeout = option.timeout();

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::local_endpoint

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;
» more...

endpoint_type local_endpoint(
boost::system::error_code & ec) const;

» more...

basic_socket::local_endpoint (1 of 2 overloads)

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;

This function is used to obtain the locally bound endpoint of the socket.

Return Value

An object that represents the local endpoint of the socket.

481

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint();

basic_socket::local_endpoint (2 of 2 overloads)

Get the local endpoint of the socket.

endpoint_type local_endpoint(
boost::system::error_code & ec) const;

This function is used to obtain the locally bound endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the local endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_socket::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();
» more...

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;
» more...

basic_socket::lowest_layer (1 of 2 overloads)

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

482

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This function returns a reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_socket::lowest_layer (2 of 2 overloads)

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further
layers, it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_socket::lowest_layer_type

A basic_socket is always the lowest layer.

typedef basic_socket< Protocol, SocketService > lowest_layer_type;

483

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

484

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

485

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_socket without opening it.basic_socket

Construct and open a basic_socket.

Construct a basic_socket, opening it and binding it to the given
local endpoint.

Construct a basic_socket on an existing native socket.

Move-construct a basic_socket from another.

Move-construct a basic_socket from a socket of another protocol
type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

Gets the non-blocking mode of the native socket implementation.native_non_blocking

Sets the non-blocking mode of the native socket implementation.

Gets the non-blocking mode of the socket.non_blocking

Sets the non-blocking mode of the socket.

486

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Open the socket using the specified protocol.open

Move-assign a basic_socket from another.

Move-assign a basic_socket from a socket of another protocol
type.

operator=

Get the remote endpoint of the socket.remote_endpoint

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected destructor to prevent deletion through this type.~basic_socket

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_socket class template provides functionality that is common to both stream-oriented and datagram-oriented sockets.

Thread Safety

Distinct objects: Safe.

487

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Shared objects: Unsafe.

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::max_connections

Inherited from socket_base.

The maximum length of the queue of pending incoming connections.

static const int max_connections = implementation_defined;

basic_socket::message_do_not_route

Inherited from socket_base.

Specify that the data should not be subject to routing.

static const int message_do_not_route = implementation_defined;

basic_socket::message_end_of_record

Inherited from socket_base.

Specifies that the data marks the end of a record.

static const int message_end_of_record = implementation_defined;

basic_socket::message_flags

Inherited from socket_base.

Bitmask type for flags that can be passed to send and receive operations.

typedef int message_flags;

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::message_out_of_band

Inherited from socket_base.

Process out-of-band data.

static const int message_out_of_band = implementation_defined;

488

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket::message_peek

Inherited from socket_base.

Peek at incoming data without removing it from the input queue.

static const int message_peek = implementation_defined;

basic_socket::native

(Deprecated: Use native_handle().) Get the native socket representation.

native_type native();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_socket::native_handle

Get the native socket representation.

native_handle_type native_handle();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_socket::native_handle_type

The native representation of a socket.

typedef SocketService::native_handle_type native_handle_type;

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::native_non_blocking

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking() const;
» more...

Sets the non-blocking mode of the native socket implementation.

void native_non_blocking(
bool mode);

» more...

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

489

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket::native_non_blocking (1 of 3 overloads)

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking() const;

This function is used to retrieve the non-blocking mode of the underlying native socket. This mode has no effect on the behaviour
of the socket object's synchronous operations.

Return Value

true if the underlying socket is in non-blocking mode and direct system calls may fail with boost::asio::error::would_block
(or the equivalent system error).

Remarks

The current non-blocking mode is cached by the socket object. Consequently, the return value may be incorrect if the non-blocking
mode was set directly on the native socket.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

490

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

491

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_socket::native_non_blocking (2 of 3 overloads)

Sets the non-blocking mode of the native socket implementation.

void native_non_blocking(
bool mode);

This function is used to modify the non-blocking mode of the underlying native socket. It has no effect on the behaviour of the
socket object's synchronous operations.

Parameters

mode If true, the underlying socket is put into non-blocking mode and direct system calls may fail with boost::asio::er-
ror::would_block (or the equivalent system error).

Exceptions

boost::system::system_error Thrown on failure. If the mode is false, but the current value of non_blocking() is true,
this function fails with boost::asio::error::invalid_argument, as the combination
does not make sense.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

492

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

493

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_socket::native_non_blocking (3 of 3 overloads)

Sets the non-blocking mode of the native socket implementation.

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

This function is used to modify the non-blocking mode of the underlying native socket. It has no effect on the behaviour of the
socket object's synchronous operations.

Parameters

mode If true, the underlying socket is put into non-blocking mode and direct system calls may fail with boost::asio::er-
ror::would_block (or the equivalent system error).

ec Set to indicate what error occurred, if any. If the mode is false, but the current value of non_blocking() is true, this
function fails with boost::asio::error::invalid_argument, as the combination does not make sense.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

494

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

495

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_socket::native_type

(Deprecated: Use native_handle_type.) The native representation of a socket.

typedef SocketService::native_handle_type native_type;

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::non_blocking

Gets the non-blocking mode of the socket.

bool non_blocking() const;
» more...

Sets the non-blocking mode of the socket.

void non_blocking(
bool mode);

» more...

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

basic_socket::non_blocking (1 of 3 overloads)

Gets the non-blocking mode of the socket.

bool non_blocking() const;

Return Value

true if the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to perform
the requested operation immediately. If false, synchronous operations will block until complete.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

basic_socket::non_blocking (2 of 3 overloads)

Sets the non-blocking mode of the socket.

496

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void non_blocking(
bool mode);

Parameters

mode If true, the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to
perform the requested operation immediately. If false, synchronous operations will block until complete.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

basic_socket::non_blocking (3 of 3 overloads)

Sets the non-blocking mode of the socket.

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

Parameters

mode If true, the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to
perform the requested operation immediately. If false, synchronous operations will block until complete.

ec Set to indicate what error occurred, if any.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

basic_socket::non_blocking_io

Inherited from socket_base.

(Deprecated: Use non_blocking().) IO control command to set the blocking mode of the socket.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::non_blocking_io command(true);
socket.io_control(command);

Requirements

Header: boost/asio/basic_socket.hpp

497

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Convenience header: boost/asio.hpp

basic_socket::open

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

» more...

boost::system::error_code open(
const protocol_type & protocol,
boost::system::error_code & ec);

» more...

basic_socket::open (1 of 2 overloads)

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());

basic_socket::open (2 of 2 overloads)

Open the socket using the specified protocol.

boost::system::error_code open(
const protocol_type & protocol,
boost::system::error_code & ec);

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying which protocol is to be used.

ec Set to indicate what error occurred, if any.

498

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::system::error_code ec;
socket.open(boost::asio::ip::tcp::v4(), ec);
if (ec)
{
// An error occurred.

}

basic_socket::operator=

Move-assign a basic_socket from another.

basic_socket & operator=(
basic_socket && other);

» more...

Move-assign a basic_socket from a socket of another protocol type.

template<
typename Protocol1,
typename SocketService1>

enable_if< is_convertible< Protocol1, Protocol >::value, basic_socket >::type & operator=(
basic_socket< Protocol1, SocketService1 > && other);

» more...

basic_socket::operator= (1 of 2 overloads)

Move-assign a basic_socket from another.

basic_socket & operator=(
basic_socket && other);

This assignment operator moves a socket from one object to another.

Parameters

other The other basic_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_socket(io_service&) con-

structor.

basic_socket::operator= (2 of 2 overloads)

Move-assign a basic_socket from a socket of another protocol type.

template<
typename Protocol1,
typename SocketService1>

enable_if< is_convertible< Protocol1, Protocol >::value, basic_socket >::type & operator=(
basic_socket< Protocol1, SocketService1 > && other);

This assignment operator moves a socket from one object to another.

499

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

other The other basic_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_socket(io_service&) con-

structor.

basic_socket::protocol_type

The protocol type.

typedef Protocol protocol_type;

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::receive_buffer_size

Inherited from socket_base.

Socket option for the receive buffer size of a socket.

typedef implementation_defined receive_buffer_size;

Implements the SOL_SOCKET/SO_RCVBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::receive_low_watermark

Inherited from socket_base.

500

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Socket option for the receive low watermark.

typedef implementation_defined receive_low_watermark;

Implements the SOL_SOCKET/SO_RCVLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::remote_endpoint

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;
» more...

endpoint_type remote_endpoint(
boost::system::error_code & ec) const;

» more...

basic_socket::remote_endpoint (1 of 2 overloads)

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;

This function is used to obtain the remote endpoint of the socket.

Return Value

An object that represents the remote endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

501

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint();

basic_socket::remote_endpoint (2 of 2 overloads)

Get the remote endpoint of the socket.

endpoint_type remote_endpoint(
boost::system::error_code & ec) const;

This function is used to obtain the remote endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the remote endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_socket::reuse_address

Inherited from socket_base.

Socket option to allow the socket to be bound to an address that is already in use.

typedef implementation_defined reuse_address;

Implements the SOL_SOCKET/SO_REUSEADDR socket option.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option(true);
acceptor.set_option(option);

Getting the current option value:

502

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option;
acceptor.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::send_buffer_size

Inherited from socket_base.

Socket option for the send buffer size of a socket.

typedef implementation_defined send_buffer_size;

Implements the SOL_SOCKET/SO_SNDBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::send_low_watermark

Inherited from socket_base.

Socket option for the send low watermark.

typedef implementation_defined send_low_watermark;

Implements the SOL_SOCKET/SO_SNDLOWAT socket option.

503

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

Remarks

Available only for services that do not support movability.

basic_socket::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef SocketService service_type;

Requirements

Header: boost/asio/basic_socket.hpp

Convenience header: boost/asio.hpp

basic_socket::set_option

Set an option on the socket.

504

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SettableSocketOption>

void set_option(
const SettableSocketOption & option);

» more...

template<
typename SettableSocketOption>

boost::system::error_code set_option(
const SettableSocketOption & option,
boost::system::error_code & ec);

» more...

basic_socket::set_option (1 of 2 overloads)

Set an option on the socket.

template<
typename SettableSocketOption>

void set_option(
const SettableSocketOption & option);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
socket.set_option(option);

basic_socket::set_option (2 of 2 overloads)

Set an option on the socket.

template<
typename SettableSocketOption>

boost::system::error_code set_option(
const SettableSocketOption & option,
boost::system::error_code & ec);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

ec Set to indicate what error occurred, if any.

505

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
boost::system::error_code ec;
socket.set_option(option, ec);
if (ec)
{
// An error occurred.

}

basic_socket::shutdown

Disable sends or receives on the socket.

void shutdown(
shutdown_type what);

» more...

boost::system::error_code shutdown(
shutdown_type what,
boost::system::error_code & ec);

» more...

basic_socket::shutdown (1 of 2 overloads)

Disable sends or receives on the socket.

void shutdown(
shutdown_type what);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

Exceptions

boost::system::system_error Thrown on failure.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send);

basic_socket::shutdown (2 of 2 overloads)

Disable sends or receives on the socket.

506

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code shutdown(
shutdown_type what,
boost::system::error_code & ec);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

ec Set to indicate what error occurred, if any.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send, ec);
if (ec)
{
// An error occurred.

}

basic_socket::shutdown_type

Inherited from socket_base.

Different ways a socket may be shutdown.

enum shutdown_type

Values

shutdown_receive Shutdown the receive side of the socket.

shutdown_send Shutdown the send side of the socket.

shutdown_both Shutdown both send and receive on the socket.

basic_socket::~basic_socket

Protected destructor to prevent deletion through this type.

~basic_socket();

basic_socket_acceptor
Provides the ability to accept new connections.

507

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename SocketAcceptorService = socket_acceptor_service<Protocol>>

class basic_socket_acceptor :
public basic_io_object< SocketAcceptorService >,
public socket_base

508

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of an acceptor.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of an acceptor.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

509

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

510

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Accept a new connection.accept

Accept a new connection and obtain the endpoint of the peer.

Assigns an existing native acceptor to the acceptor.assign

Start an asynchronous accept.async_accept

Construct an acceptor without opening it.basic_socket_acceptor

Construct an open acceptor.

Construct an acceptor opened on the given endpoint.

Construct a basic_socket_acceptor on an existing native acceptor.

Move-construct a basic_socket_acceptor from another.

Move-construct a basic_socket_acceptor from an acceptor of
another protocol type.

Bind the acceptor to the given local endpoint.bind

Cancel all asynchronous operations associated with the acceptor.cancel

Close the acceptor.close

Get the io_service associated with the object.get_io_service

Get an option from the acceptor.get_option

Perform an IO control command on the acceptor.io_control

Determine whether the acceptor is open.is_open

Place the acceptor into the state where it will listen for new
connections.

listen

Get the local endpoint of the acceptor.local_endpoint

(Deprecated: Use native_handle().) Get the native acceptor
representation.

native

Get the native acceptor representation.native_handle

Gets the non-blocking mode of the native acceptor implementa-
tion.

native_non_blocking

Sets the non-blocking mode of the native acceptor implementa-
tion.

Gets the non-blocking mode of the acceptor.non_blocking

Sets the non-blocking mode of the acceptor.

Open the acceptor using the specified protocol.open

511

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Move-assign a basic_socket_acceptor from another.

Move-assign a basic_socket_acceptor from an acceptor of an-
other protocol type.

operator=

Set an option on the acceptor.set_option

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_socket_acceptor class template is used for accepting new socket connections.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Example

Opening a socket acceptor with the SO_REUSEADDR option enabled:

512

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::acceptor acceptor(io_service);
boost::asio::ip::tcp::endpoint endpoint(boost::asio::ip::tcp::v4(), port);
acceptor.open(endpoint.protocol());
acceptor.set_option(boost::asio::ip::tcp::acceptor::reuse_address(true));
acceptor.bind(endpoint);
acceptor.listen();

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::accept

Accept a new connection.

template<
typename Protocol1,
typename SocketService>

void accept(
basic_socket< Protocol1, SocketService > & peer,
typename enable_if< is_convertible< Protocol, Protocol1 >::value >::type * = 0);

» more...

template<
typename Protocol1,
typename SocketService>

boost::system::error_code accept(
basic_socket< Protocol1, SocketService > & peer,
boost::system::error_code & ec,
typename enable_if< is_convertible< Protocol, Protocol1 >::value >::type * = 0);

» more...

Accept a new connection and obtain the endpoint of the peer.

template<
typename SocketService>

void accept(
basic_socket< protocol_type, SocketService > & peer,
endpoint_type & peer_endpoint);

» more...

template<
typename SocketService>

boost::system::error_code accept(
basic_socket< protocol_type, SocketService > & peer,
endpoint_type & peer_endpoint,
boost::system::error_code & ec);

» more...

basic_socket_acceptor::accept (1 of 4 overloads)

Accept a new connection.

513

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol1,
typename SocketService>

void accept(
basic_socket< Protocol1, SocketService > & peer,
typename enable_if< is_convertible< Protocol, Protocol1 >::value >::type * = 0);

This function is used to accept a new connection from a peer into the given socket. The function call will block until a new connection
has been accepted successfully or an error occurs.

Parameters

peer The socket into which the new connection will be accepted.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::socket socket(io_service);
acceptor.accept(socket);

basic_socket_acceptor::accept (2 of 4 overloads)

Accept a new connection.

template<
typename Protocol1,
typename SocketService>

boost::system::error_code accept(
basic_socket< Protocol1, SocketService > & peer,
boost::system::error_code & ec,
typename enable_if< is_convertible< Protocol, Protocol1 >::value >::type * = 0);

This function is used to accept a new connection from a peer into the given socket. The function call will block until a new connection
has been accepted successfully or an error occurs.

Parameters

peer The socket into which the new connection will be accepted.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::soocket socket(io_service);
boost::system::error_code ec;
acceptor.accept(socket, ec);
if (ec)
{
// An error occurred.

}

514

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_acceptor::accept (3 of 4 overloads)

Accept a new connection and obtain the endpoint of the peer.

template<
typename SocketService>

void accept(
basic_socket< protocol_type, SocketService > & peer,
endpoint_type & peer_endpoint);

This function is used to accept a new connection from a peer into the given socket, and additionally provide the endpoint of the remote
peer. The function call will block until a new connection has been accepted successfully or an error occurs.

Parameters

peer The socket into which the new connection will be accepted.

peer_endpoint An endpoint object which will receive the endpoint of the remote peer.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint;
acceptor.accept(socket, endpoint);

basic_socket_acceptor::accept (4 of 4 overloads)

Accept a new connection and obtain the endpoint of the peer.

template<
typename SocketService>

boost::system::error_code accept(
basic_socket< protocol_type, SocketService > & peer,
endpoint_type & peer_endpoint,
boost::system::error_code & ec);

This function is used to accept a new connection from a peer into the given socket, and additionally provide the endpoint of the remote
peer. The function call will block until a new connection has been accepted successfully or an error occurs.

Parameters

peer The socket into which the new connection will be accepted.

peer_endpoint An endpoint object which will receive the endpoint of the remote peer.

ec Set to indicate what error occurred, if any.

515

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint;
boost::system::error_code ec;
acceptor.accept(socket, endpoint, ec);
if (ec)
{
// An error occurred.

}

basic_socket_acceptor::assign

Assigns an existing native acceptor to the acceptor.

void assign(
const protocol_type & protocol,
const native_handle_type & native_acceptor);

» more...

boost::system::error_code assign(
const protocol_type & protocol,
const native_handle_type & native_acceptor,
boost::system::error_code & ec);

» more...

basic_socket_acceptor::assign (1 of 2 overloads)

Assigns an existing native acceptor to the acceptor.

void assign(
const protocol_type & protocol,
const native_handle_type & native_acceptor);

basic_socket_acceptor::assign (2 of 2 overloads)

Assigns an existing native acceptor to the acceptor.

boost::system::error_code assign(
const protocol_type & protocol,
const native_handle_type & native_acceptor,
boost::system::error_code & ec);

basic_socket_acceptor::async_accept

Start an asynchronous accept.

516

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol1,
typename SocketService,
typename AcceptHandler>

void-or-deduced async_accept(
basic_socket< Protocol1, SocketService > & peer,
AcceptHandler handler,
typename enable_if< is_convertible< Protocol, Protocol1 >::value >::type * = 0);

» more...

template<
typename SocketService,
typename AcceptHandler>

void-or-deduced async_accept(
basic_socket< protocol_type, SocketService > & peer,
endpoint_type & peer_endpoint,
AcceptHandler handler);

» more...

basic_socket_acceptor::async_accept (1 of 2 overloads)

Start an asynchronous accept.

template<
typename Protocol1,
typename SocketService,
typename AcceptHandler>

void-or-deduced async_accept(
basic_socket< Protocol1, SocketService > & peer,
AcceptHandler handler,
typename enable_if< is_convertible< Protocol, Protocol1 >::value >::type * = 0);

This function is used to asynchronously accept a new connection into a socket. The function call always returns immediately.

Parameters

peer The socket into which the new connection will be accepted. Ownership of the peer object is retained by the caller, which
must guarantee that it is valid until the handler is called.

handler The handler to be called when the accept operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

517

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

void accept_handler(const boost::system::error_code& error)
{
if (!error)
{
// Accept succeeded.

}
}

...

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::socket socket(io_service);
acceptor.async_accept(socket, accept_handler);

basic_socket_acceptor::async_accept (2 of 2 overloads)

Start an asynchronous accept.

template<
typename SocketService,
typename AcceptHandler>

void-or-deduced async_accept(
basic_socket< protocol_type, SocketService > & peer,
endpoint_type & peer_endpoint,
AcceptHandler handler);

This function is used to asynchronously accept a new connection into a socket, and additionally obtain the endpoint of the remote
peer. The function call always returns immediately.

Parameters

peer The socket into which the new connection will be accepted. Ownership of the peer object is retained by the
caller, which must guarantee that it is valid until the handler is called.

peer_endpoint An endpoint object into which the endpoint of the remote peer will be written. Ownership of the peer_endpoint
object is retained by the caller, which must guarantee that it is valid until the handler is called.

handler The handler to be called when the accept operation completes. Copies will be made of the handler as required.
The function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

basic_socket_acceptor::basic_socket_acceptor

Construct an acceptor without opening it.

explicit basic_socket_acceptor(
boost::asio::io_service & io_service);

» more...

518

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Construct an open acceptor.

basic_socket_acceptor(
boost::asio::io_service & io_service,
const protocol_type & protocol);

» more...

Construct an acceptor opened on the given endpoint.

basic_socket_acceptor(
boost::asio::io_service & io_service,
const endpoint_type & endpoint,
bool reuse_addr = true);

» more...

Construct a basic_socket_acceptor on an existing native acceptor.

basic_socket_acceptor(
boost::asio::io_service & io_service,
const protocol_type & protocol,
const native_handle_type & native_acceptor);

» more...

Move-construct a basic_socket_acceptor from another.

basic_socket_acceptor(
basic_socket_acceptor && other);

» more...

Move-construct a basic_socket_acceptor from an acceptor of another protocol type.

template<
typename Protocol1,
typename SocketAcceptorService1>

basic_socket_acceptor(
basic_socket_acceptor< Protocol1, SocketAcceptorService1 > && other,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

» more...

basic_socket_acceptor::basic_socket_acceptor (1 of 6 overloads)

Construct an acceptor without opening it.

basic_socket_acceptor(
boost::asio::io_service & io_service);

This constructor creates an acceptor without opening it to listen for new connections. The open() function must be called before
the acceptor can accept new socket connections.

Parameters

io_service The io_service object that the acceptor will use to dispatch handlers for any asynchronous operations performed
on the acceptor.

basic_socket_acceptor::basic_socket_acceptor (2 of 6 overloads)

Construct an open acceptor.

519

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_acceptor(
boost::asio::io_service & io_service,
const protocol_type & protocol);

This constructor creates an acceptor and automatically opens it.

Parameters

io_service The io_service object that the acceptor will use to dispatch handlers for any asynchronous operations performed
on the acceptor.

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket_acceptor::basic_socket_acceptor (3 of 6 overloads)

Construct an acceptor opened on the given endpoint.

basic_socket_acceptor(
boost::asio::io_service & io_service,
const endpoint_type & endpoint,
bool reuse_addr = true);

This constructor creates an acceptor and automatically opens it to listen for new connections on the specified endpoint.

Parameters

io_service The io_service object that the acceptor will use to dispatch handlers for any asynchronous operations performed
on the acceptor.

endpoint An endpoint on the local machine on which the acceptor will listen for new connections.

reuse_addr Whether the constructor should set the socket option socket_base::reuse_address.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

This constructor is equivalent to the following code:

basic_socket_acceptor<Protocol> acceptor(io_service);
acceptor.open(endpoint.protocol());
if (reuse_addr)
acceptor.set_option(socket_base::reuse_address(true));

acceptor.bind(endpoint);
acceptor.listen(listen_backlog);

basic_socket_acceptor::basic_socket_acceptor (4 of 6 overloads)

Construct a basic_socket_acceptor on an existing native acceptor.

520

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_acceptor(
boost::asio::io_service & io_service,
const protocol_type & protocol,
const native_handle_type & native_acceptor);

This constructor creates an acceptor object to hold an existing native acceptor.

Parameters

io_service The io_service object that the acceptor will use to dispatch handlers for any asynchronous operations
performed on the acceptor.

protocol An object specifying protocol parameters to be used.

native_acceptor A native acceptor.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket_acceptor::basic_socket_acceptor (5 of 6 overloads)

Move-construct a basic_socket_acceptor from another.

basic_socket_acceptor(
basic_socket_acceptor && other);

This constructor moves an acceptor from one object to another.

Parameters

other The other basic_socket_acceptor object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_socket_acceptor(io_service&)
constructor.

basic_socket_acceptor::basic_socket_acceptor (6 of 6 overloads)

Move-construct a basic_socket_acceptor from an acceptor of another protocol type.

template<
typename Protocol1,
typename SocketAcceptorService1>

basic_socket_acceptor(
basic_socket_acceptor< Protocol1, SocketAcceptorService1 > && other,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

This constructor moves an acceptor from one object to another.

Parameters

other The other basic_socket_acceptor object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_socket(io_service&) con-

structor.

521

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_acceptor::bind

Bind the acceptor to the given local endpoint.

void bind(
const endpoint_type & endpoint);

» more...

boost::system::error_code bind(
const endpoint_type & endpoint,
boost::system::error_code & ec);

» more...

basic_socket_acceptor::bind (1 of 2 overloads)

Bind the acceptor to the given local endpoint.

void bind(
const endpoint_type & endpoint);

This function binds the socket acceptor to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket acceptor will be bound.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
boost::asio::ip::tcp::endpoint endpoint(boost::asio::ip::tcp::v4(), 12345);
acceptor.open(endpoint.protocol());
acceptor.bind(endpoint);

basic_socket_acceptor::bind (2 of 2 overloads)

Bind the acceptor to the given local endpoint.

boost::system::error_code bind(
const endpoint_type & endpoint,
boost::system::error_code & ec);

This function binds the socket acceptor to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket acceptor will be bound.

ec Set to indicate what error occurred, if any.

522

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
boost::asio::ip::tcp::endpoint endpoint(boost::asio::ip::tcp::v4(), 12345);
acceptor.open(endpoint.protocol());
boost::system::error_code ec;
acceptor.bind(endpoint, ec);
if (ec)
{
// An error occurred.

}

basic_socket_acceptor::broadcast

Inherited from socket_base.

Socket option to permit sending of broadcast messages.

typedef implementation_defined broadcast;

Implements the SOL_SOCKET/SO_BROADCAST socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::bytes_readable

Inherited from socket_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

523

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::bytes_readable command(true);
socket.io_control(command);
std::size_t bytes_readable = command.get();

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::cancel

Cancel all asynchronous operations associated with the acceptor.

void cancel();
» more...

boost::system::error_code cancel(
boost::system::error_code & ec);

» more...

basic_socket_acceptor::cancel (1 of 2 overloads)

Cancel all asynchronous operations associated with the acceptor.

void cancel();

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket_acceptor::cancel (2 of 2 overloads)

Cancel all asynchronous operations associated with the acceptor.

boost::system::error_code cancel(
boost::system::error_code & ec);

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

basic_socket_acceptor::close

Close the acceptor.

524

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void close();
» more...

boost::system::error_code close(
boost::system::error_code & ec);

» more...

basic_socket_acceptor::close (1 of 2 overloads)

Close the acceptor.

void close();

This function is used to close the acceptor. Any asynchronous accept operations will be cancelled immediately.

A subsequent call to open() is required before the acceptor can again be used to again perform socket accept operations.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket_acceptor::close (2 of 2 overloads)

Close the acceptor.

boost::system::error_code close(
boost::system::error_code & ec);

This function is used to close the acceptor. Any asynchronous accept operations will be cancelled immediately.

A subsequent call to open() is required before the acceptor can again be used to again perform socket accept operations.

Parameters

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::system::error_code ec;
acceptor.close(ec);
if (ec)
{
// An error occurred.

}

basic_socket_acceptor::debug

Inherited from socket_base.

Socket option to enable socket-level debugging.

typedef implementation_defined debug;

Implements the SOL_SOCKET/SO_DEBUG socket option.

525

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::do_not_route

Inherited from socket_base.

Socket option to prevent routing, use local interfaces only.

typedef implementation_defined do_not_route;

Implements the SOL_SOCKET/SO_DONTROUTE socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

526

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_acceptor::enable_connection_aborted

Inherited from socket_base.

Socket option to report aborted connections on accept.

typedef implementation_defined enable_connection_aborted;

Implements a custom socket option that determines whether or not an accept operation is permitted to fail with
boost::asio::error::connection_aborted. By default the option is false.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option;
acceptor.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

527

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_acceptor::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

basic_socket_acceptor::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

basic_socket_acceptor::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_socket_acceptor::get_option

Get an option from the acceptor.

template<
typename GettableSocketOption>

void get_option(
GettableSocketOption & option);

» more...

template<
typename GettableSocketOption>

boost::system::error_code get_option(
GettableSocketOption & option,
boost::system::error_code & ec);

» more...

basic_socket_acceptor::get_option (1 of 2 overloads)

Get an option from the acceptor.

template<
typename GettableSocketOption>

void get_option(
GettableSocketOption & option);

This function is used to get the current value of an option on the acceptor.

528

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

option The option value to be obtained from the acceptor.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the value of the SOL_SOCKET/SO_REUSEADDR option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::acceptor::reuse_address option;
acceptor.get_option(option);
bool is_set = option.get();

basic_socket_acceptor::get_option (2 of 2 overloads)

Get an option from the acceptor.

template<
typename GettableSocketOption>

boost::system::error_code get_option(
GettableSocketOption & option,
boost::system::error_code & ec);

This function is used to get the current value of an option on the acceptor.

Parameters

option The option value to be obtained from the acceptor.

ec Set to indicate what error occurred, if any.

Example

Getting the value of the SOL_SOCKET/SO_REUSEADDR option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::acceptor::reuse_address option;
boost::system::error_code ec;
acceptor.get_option(option, ec);
if (ec)
{
// An error occurred.

}
bool is_set = option.get();

basic_socket_acceptor::get_service

Get the service associated with the I/O object.

529

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

basic_socket_acceptor::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

service_type & get_service();

basic_socket_acceptor::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

basic_socket_acceptor::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

basic_socket_acceptor::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::io_control

Perform an IO control command on the acceptor.

530

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename IoControlCommand>

void io_control(
IoControlCommand & command);

» more...

template<
typename IoControlCommand>

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

» more...

basic_socket_acceptor::io_control (1 of 2 overloads)

Perform an IO control command on the acceptor.

template<
typename IoControlCommand>

void io_control(
IoControlCommand & command);

This function is used to execute an IO control command on the acceptor.

Parameters

command The IO control command to be performed on the acceptor.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::acceptor::non_blocking_io command(true);
socket.io_control(command);

basic_socket_acceptor::io_control (2 of 2 overloads)

Perform an IO control command on the acceptor.

template<
typename IoControlCommand>

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

This function is used to execute an IO control command on the acceptor.

Parameters

command The IO control command to be performed on the acceptor.

ec Set to indicate what error occurred, if any.

531

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::acceptor::non_blocking_io command(true);
boost::system::error_code ec;
socket.io_control(command, ec);
if (ec)
{
// An error occurred.

}

basic_socket_acceptor::is_open

Determine whether the acceptor is open.

bool is_open() const;

basic_socket_acceptor::keep_alive

Inherited from socket_base.

Socket option to send keep-alives.

typedef implementation_defined keep_alive;

Implements the SOL_SOCKET/SO_KEEPALIVE socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::linger

Inherited from socket_base.

532

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Socket option to specify whether the socket lingers on close if unsent data is present.

typedef implementation_defined linger;

Implements the SOL_SOCKET/SO_LINGER socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option(true, 30);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option;
socket.get_option(option);
bool is_set = option.enabled();
unsigned short timeout = option.timeout();

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::listen

Place the acceptor into the state where it will listen for new connections.

void listen(
int backlog = socket_base::max_connections);

» more...

boost::system::error_code listen(
int backlog,
boost::system::error_code & ec);

» more...

basic_socket_acceptor::listen (1 of 2 overloads)

Place the acceptor into the state where it will listen for new connections.

void listen(
int backlog = socket_base::max_connections);

This function puts the socket acceptor into the state where it may accept new connections.

Parameters

backlog The maximum length of the queue of pending connections.

533

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

basic_socket_acceptor::listen (2 of 2 overloads)

Place the acceptor into the state where it will listen for new connections.

boost::system::error_code listen(
int backlog,
boost::system::error_code & ec);

This function puts the socket acceptor into the state where it may accept new connections.

Parameters

backlog The maximum length of the queue of pending connections.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::system::error_code ec;
acceptor.listen(boost::asio::socket_base::max_connections, ec);
if (ec)
{
// An error occurred.

}

basic_socket_acceptor::local_endpoint

Get the local endpoint of the acceptor.

endpoint_type local_endpoint() const;
» more...

endpoint_type local_endpoint(
boost::system::error_code & ec) const;

» more...

basic_socket_acceptor::local_endpoint (1 of 2 overloads)

Get the local endpoint of the acceptor.

endpoint_type local_endpoint() const;

This function is used to obtain the locally bound endpoint of the acceptor.

Return Value

An object that represents the local endpoint of the acceptor.

Exceptions

boost::system::system_error Thrown on failure.

534

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = acceptor.local_endpoint();

basic_socket_acceptor::local_endpoint (2 of 2 overloads)

Get the local endpoint of the acceptor.

endpoint_type local_endpoint(
boost::system::error_code & ec) const;

This function is used to obtain the locally bound endpoint of the acceptor.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the local endpoint of the acceptor. Returns a default-constructed endpoint object if an error occurred and
the error handler did not throw an exception.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = acceptor.local_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_socket_acceptor::max_connections

Inherited from socket_base.

The maximum length of the queue of pending incoming connections.

static const int max_connections = implementation_defined;

basic_socket_acceptor::message_do_not_route

Inherited from socket_base.

Specify that the data should not be subject to routing.

static const int message_do_not_route = implementation_defined;

basic_socket_acceptor::message_end_of_record

Inherited from socket_base.

Specifies that the data marks the end of a record.

535

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static const int message_end_of_record = implementation_defined;

basic_socket_acceptor::message_flags

Inherited from socket_base.

Bitmask type for flags that can be passed to send and receive operations.

typedef int message_flags;

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::message_out_of_band

Inherited from socket_base.

Process out-of-band data.

static const int message_out_of_band = implementation_defined;

basic_socket_acceptor::message_peek

Inherited from socket_base.

Peek at incoming data without removing it from the input queue.

static const int message_peek = implementation_defined;

basic_socket_acceptor::native

(Deprecated: Use native_handle().) Get the native acceptor representation.

native_type native();

This function may be used to obtain the underlying representation of the acceptor. This is intended to allow access to native acceptor
functionality that is not otherwise provided.

basic_socket_acceptor::native_handle

Get the native acceptor representation.

native_handle_type native_handle();

This function may be used to obtain the underlying representation of the acceptor. This is intended to allow access to native acceptor
functionality that is not otherwise provided.

basic_socket_acceptor::native_handle_type

The native representation of an acceptor.

536

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef SocketAcceptorService::native_handle_type native_handle_type;

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::native_non_blocking

Gets the non-blocking mode of the native acceptor implementation.

bool native_non_blocking() const;
» more...

Sets the non-blocking mode of the native acceptor implementation.

void native_non_blocking(
bool mode);

» more...

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

basic_socket_acceptor::native_non_blocking (1 of 3 overloads)

Gets the non-blocking mode of the native acceptor implementation.

bool native_non_blocking() const;

This function is used to retrieve the non-blocking mode of the underlying native acceptor. This mode has no effect on the behaviour
of the acceptor object's synchronous operations.

Return Value

true if the underlying acceptor is in non-blocking mode and direct system calls may fail with boost::asio::error::would_block
(or the equivalent system error).

Remarks

The current non-blocking mode is cached by the acceptor object. Consequently, the return value may be incorrect if the non-blocking
mode was set directly on the native acceptor.

basic_socket_acceptor::native_non_blocking (2 of 3 overloads)

Sets the non-blocking mode of the native acceptor implementation.

void native_non_blocking(
bool mode);

This function is used to modify the non-blocking mode of the underlying native acceptor. It has no effect on the behaviour of the
acceptor object's synchronous operations.

537

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

mode If true, the underlying acceptor is put into non-blocking mode and direct system calls may fail with boost::asio::er-
ror::would_block (or the equivalent system error).

Exceptions

boost::system::system_error Thrown on failure. If the mode is false, but the current value of non_blocking() is true,
this function fails with boost::asio::error::invalid_argument, as the combination
does not make sense.

basic_socket_acceptor::native_non_blocking (3 of 3 overloads)

Sets the non-blocking mode of the native acceptor implementation.

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

This function is used to modify the non-blocking mode of the underlying native acceptor. It has no effect on the behaviour of the
acceptor object's synchronous operations.

Parameters

mode If true, the underlying acceptor is put into non-blocking mode and direct system calls may fail with boost::asio::er-
ror::would_block (or the equivalent system error).

ec Set to indicate what error occurred, if any. If the mode is false, but the current value of non_blocking() is true, this
function fails with boost::asio::error::invalid_argument, as the combination does not make sense.

basic_socket_acceptor::native_type

(Deprecated: Use native_handle_type.) The native representation of an acceptor.

typedef SocketAcceptorService::native_handle_type native_type;

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::non_blocking

Gets the non-blocking mode of the acceptor.

bool non_blocking() const;
» more...

Sets the non-blocking mode of the acceptor.

538

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void non_blocking(
bool mode);

» more...

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

basic_socket_acceptor::non_blocking (1 of 3 overloads)

Gets the non-blocking mode of the acceptor.

bool non_blocking() const;

Return Value

true if the acceptor's synchronous operations will fail with boost::asio::error::would_block if they are unable to perform
the requested operation immediately. If false, synchronous operations will block until complete.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

basic_socket_acceptor::non_blocking (2 of 3 overloads)

Sets the non-blocking mode of the acceptor.

void non_blocking(
bool mode);

Parameters

mode If true, the acceptor's synchronous operations will fail with boost::asio::error::would_block if they are unable
to perform the requested operation immediately. If false, synchronous operations will block until complete.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

basic_socket_acceptor::non_blocking (3 of 3 overloads)

Sets the non-blocking mode of the acceptor.

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

Parameters

mode If true, the acceptor's synchronous operations will fail with boost::asio::error::would_block if they are unable
to perform the requested operation immediately. If false, synchronous operations will block until complete.

539

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ec Set to indicate what error occurred, if any.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

basic_socket_acceptor::non_blocking_io

Inherited from socket_base.

(Deprecated: Use non_blocking().) IO control command to set the blocking mode of the socket.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::non_blocking_io command(true);
socket.io_control(command);

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::open

Open the acceptor using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

» more...

boost::system::error_code open(
const protocol_type & protocol,
boost::system::error_code & ec);

» more...

basic_socket_acceptor::open (1 of 2 overloads)

Open the acceptor using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

This function opens the socket acceptor so that it will use the specified protocol.

Parameters

protocol An object specifying which protocol is to be used.

540

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
acceptor.open(boost::asio::ip::tcp::v4());

basic_socket_acceptor::open (2 of 2 overloads)

Open the acceptor using the specified protocol.

boost::system::error_code open(
const protocol_type & protocol,
boost::system::error_code & ec);

This function opens the socket acceptor so that it will use the specified protocol.

Parameters

protocol An object specifying which protocol is to be used.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::acceptor acceptor(io_service);
boost::system::error_code ec;
acceptor.open(boost::asio::ip::tcp::v4(), ec);
if (ec)
{
// An error occurred.

}

basic_socket_acceptor::operator=

Move-assign a basic_socket_acceptor from another.

basic_socket_acceptor & operator=(
basic_socket_acceptor && other);

» more...

Move-assign a basic_socket_acceptor from an acceptor of another protocol type.

template<
typename Protocol1,
typename SocketAcceptorService1>

enable_if< is_convertible< Protocol1, Protocol >::value, basic_socket_acceptor >::type & operator=(
basic_socket_acceptor< Protocol1, SocketAcceptorService1 > && other);

» more...

basic_socket_acceptor::operator= (1 of 2 overloads)

Move-assign a basic_socket_acceptor from another.

541

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_acceptor & operator=(
basic_socket_acceptor && other);

This assignment operator moves an acceptor from one object to another.

Parameters

other The other basic_socket_acceptor object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_socket_acceptor(io_service&)
constructor.

basic_socket_acceptor::operator= (2 of 2 overloads)

Move-assign a basic_socket_acceptor from an acceptor of another protocol type.

template<
typename Protocol1,
typename SocketAcceptorService1>

enable_if< is_convertible< Protocol1, Protocol >::value, basic_socket_acceptor >::type & operator=(
basic_socket_acceptor< Protocol1, SocketAcceptorService1 > && other);

This assignment operator moves an acceptor from one object to another.

Parameters

other The other basic_socket_acceptor object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_socket(io_service&) con-

structor.

basic_socket_acceptor::protocol_type

The protocol type.

typedef Protocol protocol_type;

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::receive_buffer_size

Inherited from socket_base.

Socket option for the receive buffer size of a socket.

typedef implementation_defined receive_buffer_size;

Implements the SOL_SOCKET/SO_RCVBUF socket option.

542

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::receive_low_watermark

Inherited from socket_base.

Socket option for the receive low watermark.

typedef implementation_defined receive_low_watermark;

Implements the SOL_SOCKET/SO_RCVLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

543

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_acceptor::reuse_address

Inherited from socket_base.

Socket option to allow the socket to be bound to an address that is already in use.

typedef implementation_defined reuse_address;

Implements the SOL_SOCKET/SO_REUSEADDR socket option.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option;
acceptor.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::send_buffer_size

Inherited from socket_base.

Socket option for the send buffer size of a socket.

typedef implementation_defined send_buffer_size;

Implements the SOL_SOCKET/SO_SNDBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

544

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::send_low_watermark

Inherited from socket_base.

Socket option for the send low watermark.

typedef implementation_defined send_low_watermark;

Implements the SOL_SOCKET/SO_SNDLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

Remarks

Available only for services that do not support movability.

545

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_acceptor::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef SocketAcceptorService service_type;

Requirements

Header: boost/asio/basic_socket_acceptor.hpp

Convenience header: boost/asio.hpp

basic_socket_acceptor::set_option

Set an option on the acceptor.

template<
typename SettableSocketOption>

void set_option(
const SettableSocketOption & option);

» more...

template<
typename SettableSocketOption>

boost::system::error_code set_option(
const SettableSocketOption & option,
boost::system::error_code & ec);

» more...

basic_socket_acceptor::set_option (1 of 2 overloads)

Set an option on the acceptor.

template<
typename SettableSocketOption>

void set_option(
const SettableSocketOption & option);

This function is used to set an option on the acceptor.

Parameters

option The new option value to be set on the acceptor.

Exceptions

boost::system::system_error Thrown on failure.

Example

Setting the SOL_SOCKET/SO_REUSEADDR option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::acceptor::reuse_address option(true);
acceptor.set_option(option);

546

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_acceptor::set_option (2 of 2 overloads)

Set an option on the acceptor.

template<
typename SettableSocketOption>

boost::system::error_code set_option(
const SettableSocketOption & option,
boost::system::error_code & ec);

This function is used to set an option on the acceptor.

Parameters

option The new option value to be set on the acceptor.

ec Set to indicate what error occurred, if any.

Example

Setting the SOL_SOCKET/SO_REUSEADDR option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::ip::tcp::acceptor::reuse_address option(true);
boost::system::error_code ec;
acceptor.set_option(option, ec);
if (ec)
{
// An error occurred.

}

basic_socket_acceptor::shutdown_type

Inherited from socket_base.

Different ways a socket may be shutdown.

enum shutdown_type

Values

shutdown_receive Shutdown the receive side of the socket.

shutdown_send Shutdown the send side of the socket.

shutdown_both Shutdown both send and receive on the socket.

basic_socket_iostream
Iostream interface for a socket.

547

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename StreamSocketService = stream_socket_service<Protocol>,
typename Time = boost::posix_time::ptime,
typename TimeTraits = boost::asio::time_traits<Time>,
typename TimerService = deadline_timer_service<Time, TimeTraits>>

class basic_socket_iostream

Types

DescriptionName

The duration type.duration_type

The endpoint type.endpoint_type

The time type.time_type

Member Functions

DescriptionName

Construct a basic_socket_iostream without establishing a con-
nection.

Establish a connection to an endpoint corresponding to a resolver
query.

basic_socket_iostream

Close the connection.close

Establish a connection to an endpoint corresponding to a resolver
query.

connect

Get the last error associated with the stream.error

Get the stream's expiry time as an absolute time.

Set the stream's expiry time as an absolute time.

expires_at

Get the timer's expiry time relative to now.

Set the stream's expiry time relative to now.

expires_from_now

Return a pointer to the underlying streambuf.rdbuf

Requirements

Header: boost/asio/basic_socket_iostream.hpp

Convenience header: boost/asio.hpp

basic_socket_iostream::basic_socket_iostream

Construct a basic_socket_iostream without establishing a connection.

548

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_iostream();
» more...

Establish a connection to an endpoint corresponding to a resolver query.

template<
typename T1,
... ,
typename TN>

explicit basic_socket_iostream(
T1 t1,
... ,
TN tn);

» more...

basic_socket_iostream::basic_socket_iostream (1 of 2 overloads)

Construct a basic_socket_iostream without establishing a connection.

basic_socket_iostream();

basic_socket_iostream::basic_socket_iostream (2 of 2 overloads)

Establish a connection to an endpoint corresponding to a resolver query.

template<
typename T1,
... ,
typename TN>

basic_socket_iostream(
T1 t1,
... ,
TN tn);

This constructor automatically establishes a connection based on the supplied resolver query parameters. The arguments are used to
construct a resolver query object.

basic_socket_iostream::close

Close the connection.

void close();

basic_socket_iostream::connect

Establish a connection to an endpoint corresponding to a resolver query.

template<
typename T1,
... ,
typename TN>

void connect(
T1 t1,
... ,
TN tn);

549

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This function automatically establishes a connection based on the supplied resolver query parameters. The arguments are used to
construct a resolver query object.

basic_socket_iostream::duration_type

The duration type.

typedef TimeTraits::duration_type duration_type;

Requirements

Header: boost/asio/basic_socket_iostream.hpp

Convenience header: boost/asio.hpp

basic_socket_iostream::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

Requirements

Header: boost/asio/basic_socket_iostream.hpp

Convenience header: boost/asio.hpp

basic_socket_iostream::error

Get the last error associated with the stream.

const boost::system::error_code & error() const;

Return Value

An error_code corresponding to the last error from the stream.

Example

To print the error associated with a failure to establish a connection:

tcp::iostream s("www.boost.org", "http");
if (!s)
{
std::cout << "Error: " << s.error().message() << std::endl;

}

basic_socket_iostream::expires_at

Get the stream's expiry time as an absolute time.

time_type expires_at() const;
» more...

Set the stream's expiry time as an absolute time.

550

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void expires_at(
const time_type & expiry_time);

» more...

basic_socket_iostream::expires_at (1 of 2 overloads)

Get the stream's expiry time as an absolute time.

time_type expires_at() const;

Return Value

An absolute time value representing the stream's expiry time.

basic_socket_iostream::expires_at (2 of 2 overloads)

Set the stream's expiry time as an absolute time.

void expires_at(
const time_type & expiry_time);

This function sets the expiry time associated with the stream. Stream operations performed after this time (where the operations
cannot be completed using the internal buffers) will fail with the error boost::asio::error::operation_aborted.

Parameters

expiry_time The expiry time to be used for the stream.

basic_socket_iostream::expires_from_now

Get the timer's expiry time relative to now.

duration_type expires_from_now() const;
» more...

Set the stream's expiry time relative to now.

void expires_from_now(
const duration_type & expiry_time);

» more...

basic_socket_iostream::expires_from_now (1 of 2 overloads)

Get the timer's expiry time relative to now.

duration_type expires_from_now() const;

Return Value

A relative time value representing the stream's expiry time.

basic_socket_iostream::expires_from_now (2 of 2 overloads)

Set the stream's expiry time relative to now.

551

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void expires_from_now(
const duration_type & expiry_time);

This function sets the expiry time associated with the stream. Stream operations performed after this time (where the operations
cannot be completed using the internal buffers) will fail with the error boost::asio::error::operation_aborted.

Parameters

expiry_time The expiry time to be used for the timer.

basic_socket_iostream::rdbuf

Return a pointer to the underlying streambuf.

basic_socket_streambuf< Protocol, StreamSocketService, Time, TimeTraits, TimerService > * rd↵
buf() const;

basic_socket_iostream::time_type

The time type.

typedef TimeTraits::time_type time_type;

Requirements

Header: boost/asio/basic_socket_iostream.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf
Iostream streambuf for a socket.

template<
typename Protocol,
typename StreamSocketService = stream_socket_service<Protocol>,
typename Time = boost::posix_time::ptime,
typename TimeTraits = boost::asio::time_traits<Time>,
typename TimerService = deadline_timer_service<Time, TimeTraits>>

class basic_socket_streambuf :
public basic_socket< Protocol, StreamSocketService >

552

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

553

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

The duration type.duration_type

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

The time type.time_type

554

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

555

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_socket_streambuf without establishing a
connection.

basic_socket_streambuf

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the connection.close

Close the socket.

Establish a connection.connect

Connect the socket to the specified endpoint.

Get the stream buffer's expiry time as an absolute time.expires_at

Set the stream buffer's expiry time as an absolute time.

Get the stream buffer's expiry time relative to now.expires_from_now

Set the stream buffer's expiry time relative to now.

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

Gets the non-blocking mode of the native socket implementation.native_non_blocking

Sets the non-blocking mode of the native socket implementation.

Gets the non-blocking mode of the socket.non_blocking

Sets the non-blocking mode of the socket.

556

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Open the socket using the specified protocol.open

Get the last error associated with the stream buffer.puberror

Get the remote endpoint of the socket.remote_endpoint

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Destructor flushes buffered data.~basic_socket_streambuf

Protected Member Functions

DescriptionName

Get the last error associated with the stream buffer.error

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

overflow

setbuf

sync

underflow

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

557

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

Friends

DescriptionName

io_handler

timer_handler

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::assign

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_handle_type & native_socket);

» more...

boost::system::error_code assign(
const protocol_type & protocol,
const native_handle_type & native_socket,
boost::system::error_code & ec);

» more...

basic_socket_streambuf::assign (1 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_handle_type & native_socket);

basic_socket_streambuf::assign (2 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

558

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code assign(
const protocol_type & protocol,
const native_handle_type & native_socket,
boost::system::error_code & ec);

basic_socket_streambuf::async_connect

Inherited from basic_socket.

Start an asynchronous connect.

template<
typename ConnectHandler>

void-or-deduced async_connect(
const endpoint_type & peer_endpoint,
ConnectHandler handler);

This function is used to asynchronously connect a socket to the specified remote endpoint. The function call always returns immediately.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected. Copies will be made of the endpoint object as re-
quired.

handler The handler to be called when the connection operation completes. Copies will be made of the handler as re-
quired. The function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

void connect_handler(const boost::system::error_code& error)
{
if (!error)
{
// Connect succeeded.

}
}

...

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.async_connect(endpoint, connect_handler);

basic_socket_streambuf::at_mark

Determine whether the socket is at the out-of-band data mark.

559

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool at_mark() const;
» more...

bool at_mark(
boost::system::error_code & ec) const;

» more...

basic_socket_streambuf::at_mark (1 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket_streambuf::at_mark (2 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark(
boost::system::error_code & ec) const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

basic_socket_streambuf::available

Determine the number of bytes available for reading.

std::size_t available() const;
» more...

std::size_t available(
boost::system::error_code & ec) const;

» more...

basic_socket_streambuf::available (1 of 2 overloads)

Inherited from basic_socket.

560

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Determine the number of bytes available for reading.

std::size_t available() const;

This function is used to determine the number of bytes that may be read without blocking.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

Exceptions

boost::system::system_error Thrown on failure.

basic_socket_streambuf::available (2 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

std::size_t available(
boost::system::error_code & ec) const;

This function is used to determine the number of bytes that may be read without blocking.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

basic_socket_streambuf::basic_socket_streambuf

Construct a basic_socket_streambuf without establishing a connection.

basic_socket_streambuf();

basic_socket_streambuf::bind

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

» more...

boost::system::error_code bind(
const endpoint_type & endpoint,
boost::system::error_code & ec);

» more...

basic_socket_streambuf::bind (1 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

561

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void bind(
const endpoint_type & endpoint);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
socket.bind(boost::asio::ip::tcp::endpoint(

boost::asio::ip::tcp::v4(), 12345));

basic_socket_streambuf::bind (2 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

boost::system::error_code bind(
const endpoint_type & endpoint,
boost::system::error_code & ec);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
boost::system::error_code ec;
socket.bind(boost::asio::ip::tcp::endpoint(

boost::asio::ip::tcp::v4(), 12345), ec);
if (ec)
{
// An error occurred.

}

basic_socket_streambuf::broadcast

Inherited from socket_base.

Socket option to permit sending of broadcast messages.

typedef implementation_defined broadcast;

562

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Implements the SOL_SOCKET/SO_BROADCAST socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::bytes_readable

Inherited from socket_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::bytes_readable command(true);
socket.io_control(command);
std::size_t bytes_readable = command.get();

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::cancel

Cancel all asynchronous operations associated with the socket.

563

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void cancel();
» more...

boost::system::error_code cancel(
boost::system::error_code & ec);

» more...

basic_socket_streambuf::cancel (1 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

void cancel();

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP,
Windows Server 2003, and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the
CancelIo function has two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_socket_streambuf::cancel (2 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
boost::system::error_code & ec);

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

564

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP,
Windows Server 2003, and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the
CancelIo function has two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_socket_streambuf::close

Close the connection.

basic_socket_streambuf< Protocol, StreamSocketService, Time, TimeTraits, TimerService > * close();
» more...

Close the socket.

boost::system::error_code close(
boost::system::error_code & ec);

» more...

basic_socket_streambuf::close (1 of 2 overloads)

Close the connection.

basic_socket_streambuf< Protocol, StreamSocketService, Time, TimeTraits, TimerService > * close();

Return Value

this if a connection was successfully established, a null pointer otherwise.

basic_socket_streambuf::close (2 of 2 overloads)

Inherited from basic_socket.

Close the socket.

boost::system::error_code close(
boost::system::error_code & ec);

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

565

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

ec Set to indicate what error occurred, if any. Note that, even if the function indicates an error, the underlying descriptor is closed.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.close(ec);
if (ec)
{
// An error occurred.

}

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_socket_streambuf::connect

Establish a connection.

basic_socket_streambuf< Protocol, StreamSocketService, Time, TimeTraits, TimerService > * connect(
const endpoint_type & endpoint);

» more...

template<
typename T1,
... ,
typename TN>

basic_socket_streambuf< Protocol, StreamSocketService > * connect(
T1 t1,
... ,
TN tn);

» more...

Connect the socket to the specified endpoint.

boost::system::error_code connect(
const endpoint_type & peer_endpoint,
boost::system::error_code & ec);

» more...

basic_socket_streambuf::connect (1 of 3 overloads)

Establish a connection.

basic_socket_streambuf< Protocol, StreamSocketService, Time, TimeTraits, TimerService > * connect(
const endpoint_type & endpoint);

This function establishes a connection to the specified endpoint.

Return Value

this if a connection was successfully established, a null pointer otherwise.

566

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_streambuf::connect (2 of 3 overloads)

Establish a connection.

template<
typename T1,
... ,
typename TN>

basic_socket_streambuf< Protocol, StreamSocketService > * connect(
T1 t1,
... ,
TN tn);

This function automatically establishes a connection based on the supplied resolver query parameters. The arguments are used to
construct a resolver query object.

Return Value

this if a connection was successfully established, a null pointer otherwise.

basic_socket_streambuf::connect (3 of 3 overloads)

Inherited from basic_socket.

Connect the socket to the specified endpoint.

boost::system::error_code connect(
const endpoint_type & peer_endpoint,
boost::system::error_code & ec);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
boost::system::error_code ec;
socket.connect(endpoint, ec);
if (ec)
{
// An error occurred.

}

basic_socket_streambuf::debug

Inherited from socket_base.

Socket option to enable socket-level debugging.

567

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined debug;

Implements the SOL_SOCKET/SO_DEBUG socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::do_not_route

Inherited from socket_base.

Socket option to prevent routing, use local interfaces only.

typedef implementation_defined do_not_route;

Implements the SOL_SOCKET/SO_DONTROUTE socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

568

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Convenience header: boost/asio.hpp

basic_socket_streambuf::duration_type

The duration type.

typedef TimeTraits::duration_type duration_type;

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::enable_connection_aborted

Inherited from socket_base.

Socket option to report aborted connections on accept.

typedef implementation_defined enable_connection_aborted;

Implements a custom socket option that determines whether or not an accept operation is permitted to fail with
boost::asio::error::connection_aborted. By default the option is false.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option;
acceptor.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

569

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Convenience header: boost/asio.hpp

basic_socket_streambuf::error

Get the last error associated with the stream buffer.

virtual const boost::system::error_code & error() const;

Return Value

An error_code corresponding to the last error from the stream buffer.

basic_socket_streambuf::expires_at

Get the stream buffer's expiry time as an absolute time.

time_type expires_at() const;
» more...

Set the stream buffer's expiry time as an absolute time.

void expires_at(
const time_type & expiry_time);

» more...

basic_socket_streambuf::expires_at (1 of 2 overloads)

Get the stream buffer's expiry time as an absolute time.

time_type expires_at() const;

Return Value

An absolute time value representing the stream buffer's expiry time.

basic_socket_streambuf::expires_at (2 of 2 overloads)

Set the stream buffer's expiry time as an absolute time.

void expires_at(
const time_type & expiry_time);

This function sets the expiry time associated with the stream. Stream operations performed after this time (where the operations
cannot be completed using the internal buffers) will fail with the error boost::asio::error::operation_aborted.

Parameters

expiry_time The expiry time to be used for the stream.

basic_socket_streambuf::expires_from_now

Get the stream buffer's expiry time relative to now.

duration_type expires_from_now() const;
» more...

570

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Set the stream buffer's expiry time relative to now.

void expires_from_now(
const duration_type & expiry_time);

» more...

basic_socket_streambuf::expires_from_now (1 of 2 overloads)

Get the stream buffer's expiry time relative to now.

duration_type expires_from_now() const;

Return Value

A relative time value representing the stream buffer's expiry time.

basic_socket_streambuf::expires_from_now (2 of 2 overloads)

Set the stream buffer's expiry time relative to now.

void expires_from_now(
const duration_type & expiry_time);

This function sets the expiry time associated with the stream. Stream operations performed after this time (where the operations
cannot be completed using the internal buffers) will fail with the error boost::asio::error::operation_aborted.

Parameters

expiry_time The expiry time to be used for the timer.

basic_socket_streambuf::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

basic_socket_streambuf::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

basic_socket_streambuf::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

571

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_streambuf::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_socket_streambuf::get_option

Get an option from the socket.

void get_option(
GettableSocketOption & option) const;

» more...

boost::system::error_code get_option(
GettableSocketOption & option,
boost::system::error_code & ec) const;

» more...

basic_socket_streambuf::get_option (1 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

template<
typename GettableSocketOption>

void get_option(
GettableSocketOption & option) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

572

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_streambuf::get_option (2 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

template<
typename GettableSocketOption>

boost::system::error_code get_option(
GettableSocketOption & option,
boost::system::error_code & ec) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
boost::system::error_code ec;
socket.get_option(option, ec);
if (ec)
{
// An error occurred.

}
bool is_set = option.value();

basic_socket_streambuf::get_service

Get the service associated with the I/O object.

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

basic_socket_streambuf::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

service_type & get_service();

basic_socket_streambuf::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

573

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

const service_type & get_service() const;

basic_socket_streambuf::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

basic_socket_streambuf::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::io_control

Perform an IO control command on the socket.

void io_control(
IoControlCommand & command);

» more...

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

» more...

basic_socket_streambuf::io_control (1 of 2 overloads)

Inherited from basic_socket.

Perform an IO control command on the socket.

template<
typename IoControlCommand>

void io_control(
IoControlCommand & command);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

574

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_socket_streambuf::io_control (2 of 2 overloads)

Inherited from basic_socket.

Perform an IO control command on the socket.

template<
typename IoControlCommand>

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
boost::system::error_code ec;
socket.io_control(command, ec);
if (ec)
{
// An error occurred.

}
std::size_t bytes_readable = command.get();

basic_socket_streambuf::io_handler

friend struct io_handler();

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

575

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_streambuf::is_open

Inherited from basic_socket.

Determine whether the socket is open.

bool is_open() const;

basic_socket_streambuf::keep_alive

Inherited from socket_base.

Socket option to send keep-alives.

typedef implementation_defined keep_alive;

Implements the SOL_SOCKET/SO_KEEPALIVE socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::linger

Inherited from socket_base.

Socket option to specify whether the socket lingers on close if unsent data is present.

typedef implementation_defined linger;

Implements the SOL_SOCKET/SO_LINGER socket option.

Examples

Setting the option:

576

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option(true, 30);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option;
socket.get_option(option);
bool is_set = option.enabled();
unsigned short timeout = option.timeout();

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::local_endpoint

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;
» more...

endpoint_type local_endpoint(
boost::system::error_code & ec) const;

» more...

basic_socket_streambuf::local_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;

This function is used to obtain the locally bound endpoint of the socket.

Return Value

An object that represents the local endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint();

577

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_streambuf::local_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint(
boost::system::error_code & ec) const;

This function is used to obtain the locally bound endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the local endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_socket_streambuf::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();
» more...

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;
» more...

basic_socket_streambuf::lowest_layer (1 of 2 overloads)

Inherited from basic_socket.

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

578

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_streambuf::lowest_layer (2 of 2 overloads)

Inherited from basic_socket.

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further
layers, it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_socket_streambuf::lowest_layer_type

Inherited from basic_socket.

A basic_socket is always the lowest layer.

typedef basic_socket< Protocol, StreamSocketService > lowest_layer_type;

579

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

580

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

581

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_socket without opening it.basic_socket

Construct and open a basic_socket.

Construct a basic_socket, opening it and binding it to the given
local endpoint.

Construct a basic_socket on an existing native socket.

Move-construct a basic_socket from another.

Move-construct a basic_socket from a socket of another protocol
type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

Gets the non-blocking mode of the native socket implementation.native_non_blocking

Sets the non-blocking mode of the native socket implementation.

Gets the non-blocking mode of the socket.non_blocking

Sets the non-blocking mode of the socket.

582

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Open the socket using the specified protocol.open

Move-assign a basic_socket from another.

Move-assign a basic_socket from a socket of another protocol
type.

operator=

Get the remote endpoint of the socket.remote_endpoint

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected destructor to prevent deletion through this type.~basic_socket

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_socket class template provides functionality that is common to both stream-oriented and datagram-oriented sockets.

Thread Safety

Distinct objects: Safe.

583

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Shared objects: Unsafe.

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::max_connections

Inherited from socket_base.

The maximum length of the queue of pending incoming connections.

static const int max_connections = implementation_defined;

basic_socket_streambuf::message_do_not_route

Inherited from socket_base.

Specify that the data should not be subject to routing.

static const int message_do_not_route = implementation_defined;

basic_socket_streambuf::message_end_of_record

Inherited from socket_base.

Specifies that the data marks the end of a record.

static const int message_end_of_record = implementation_defined;

basic_socket_streambuf::message_flags

Inherited from socket_base.

Bitmask type for flags that can be passed to send and receive operations.

typedef int message_flags;

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::message_out_of_band

Inherited from socket_base.

Process out-of-band data.

static const int message_out_of_band = implementation_defined;

584

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_streambuf::message_peek

Inherited from socket_base.

Peek at incoming data without removing it from the input queue.

static const int message_peek = implementation_defined;

basic_socket_streambuf::native

Inherited from basic_socket.

(Deprecated: Use native_handle().) Get the native socket representation.

native_type native();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_socket_streambuf::native_handle

Inherited from basic_socket.

Get the native socket representation.

native_handle_type native_handle();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_socket_streambuf::native_handle_type

Inherited from basic_socket.

The native representation of a socket.

typedef StreamSocketService::native_handle_type native_handle_type;

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::native_non_blocking

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking() const;
» more...

Sets the non-blocking mode of the native socket implementation.

585

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void native_non_blocking(
bool mode);

» more...

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

basic_socket_streambuf::native_non_blocking (1 of 3 overloads)

Inherited from basic_socket.

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking() const;

This function is used to retrieve the non-blocking mode of the underlying native socket. This mode has no effect on the behaviour
of the socket object's synchronous operations.

Return Value

true if the underlying socket is in non-blocking mode and direct system calls may fail with boost::asio::error::would_block
(or the equivalent system error).

Remarks

The current non-blocking mode is cached by the socket object. Consequently, the return value may be incorrect if the non-blocking
mode was set directly on the native socket.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

586

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

587

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_socket_streambuf::native_non_blocking (2 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the native socket implementation.

void native_non_blocking(
bool mode);

This function is used to modify the non-blocking mode of the underlying native socket. It has no effect on the behaviour of the
socket object's synchronous operations.

Parameters

mode If true, the underlying socket is put into non-blocking mode and direct system calls may fail with boost::asio::er-
ror::would_block (or the equivalent system error).

Exceptions

boost::system::system_error Thrown on failure. If the mode is false, but the current value of non_blocking() is true,
this function fails with boost::asio::error::invalid_argument, as the combination
does not make sense.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

588

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

589

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_socket_streambuf::native_non_blocking (3 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the native socket implementation.

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

This function is used to modify the non-blocking mode of the underlying native socket. It has no effect on the behaviour of the
socket object's synchronous operations.

Parameters

mode If true, the underlying socket is put into non-blocking mode and direct system calls may fail with boost::asio::er-
ror::would_block (or the equivalent system error).

ec Set to indicate what error occurred, if any. If the mode is false, but the current value of non_blocking() is true, this
function fails with boost::asio::error::invalid_argument, as the combination does not make sense.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

590

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

591

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_socket_streambuf::native_type

Inherited from basic_socket.

(Deprecated: Use native_handle_type.) The native representation of a socket.

typedef StreamSocketService::native_handle_type native_type;

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::non_blocking

Gets the non-blocking mode of the socket.

bool non_blocking() const;
» more...

Sets the non-blocking mode of the socket.

void non_blocking(
bool mode);

» more...

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

basic_socket_streambuf::non_blocking (1 of 3 overloads)

Inherited from basic_socket.

Gets the non-blocking mode of the socket.

bool non_blocking() const;

Return Value

true if the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to perform
the requested operation immediately. If false, synchronous operations will block until complete.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

592

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_streambuf::non_blocking (2 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the socket.

void non_blocking(
bool mode);

Parameters

mode If true, the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to
perform the requested operation immediately. If false, synchronous operations will block until complete.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

basic_socket_streambuf::non_blocking (3 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the socket.

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

Parameters

mode If true, the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to
perform the requested operation immediately. If false, synchronous operations will block until complete.

ec Set to indicate what error occurred, if any.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

basic_socket_streambuf::non_blocking_io

Inherited from socket_base.

(Deprecated: Use non_blocking().) IO control command to set the blocking mode of the socket.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

593

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::non_blocking_io command(true);
socket.io_control(command);

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::open

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

» more...

boost::system::error_code open(
const protocol_type & protocol,
boost::system::error_code & ec);

» more...

basic_socket_streambuf::open (1 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());

basic_socket_streambuf::open (2 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

594

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code open(
const protocol_type & protocol,
boost::system::error_code & ec);

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying which protocol is to be used.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::system::error_code ec;
socket.open(boost::asio::ip::tcp::v4(), ec);
if (ec)
{
// An error occurred.

}

basic_socket_streambuf::overflow

int_type overflow(
int_type c);

basic_socket_streambuf::protocol_type

Inherited from basic_socket.

The protocol type.

typedef Protocol protocol_type;

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::puberror

Get the last error associated with the stream buffer.

const boost::system::error_code & puberror() const;

Return Value

An error_code corresponding to the last error from the stream buffer.

basic_socket_streambuf::receive_buffer_size

Inherited from socket_base.

Socket option for the receive buffer size of a socket.

595

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined receive_buffer_size;

Implements the SOL_SOCKET/SO_RCVBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::receive_low_watermark

Inherited from socket_base.

Socket option for the receive low watermark.

typedef implementation_defined receive_low_watermark;

Implements the SOL_SOCKET/SO_RCVLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

596

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Convenience header: boost/asio.hpp

basic_socket_streambuf::remote_endpoint

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;
» more...

endpoint_type remote_endpoint(
boost::system::error_code & ec) const;

» more...

basic_socket_streambuf::remote_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;

This function is used to obtain the remote endpoint of the socket.

Return Value

An object that represents the remote endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint();

basic_socket_streambuf::remote_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint(
boost::system::error_code & ec) const;

This function is used to obtain the remote endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the remote endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

597

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_socket_streambuf::reuse_address

Inherited from socket_base.

Socket option to allow the socket to be bound to an address that is already in use.

typedef implementation_defined reuse_address;

Implements the SOL_SOCKET/SO_REUSEADDR socket option.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option;
acceptor.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::send_buffer_size

Inherited from socket_base.

Socket option for the send buffer size of a socket.

typedef implementation_defined send_buffer_size;

Implements the SOL_SOCKET/SO_SNDBUF socket option.

Examples

Setting the option:

598

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::send_low_watermark

Inherited from socket_base.

Socket option for the send low watermark.

typedef implementation_defined send_low_watermark;

Implements the SOL_SOCKET/SO_SNDLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

599

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

service_type & service;

Remarks

Available only for services that do not support movability.

basic_socket_streambuf::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef StreamSocketService service_type;

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::set_option

Set an option on the socket.

void set_option(
const SettableSocketOption & option);

» more...

boost::system::error_code set_option(
const SettableSocketOption & option,
boost::system::error_code & ec);

» more...

basic_socket_streambuf::set_option (1 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

template<
typename SettableSocketOption>

void set_option(
const SettableSocketOption & option);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

600

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
socket.set_option(option);

basic_socket_streambuf::set_option (2 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

template<
typename SettableSocketOption>

boost::system::error_code set_option(
const SettableSocketOption & option,
boost::system::error_code & ec);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

ec Set to indicate what error occurred, if any.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
boost::system::error_code ec;
socket.set_option(option, ec);
if (ec)
{
// An error occurred.

}

basic_socket_streambuf::setbuf

std::streambuf * setbuf(
char_type * s,
std::streamsize n);

basic_socket_streambuf::shutdown

Disable sends or receives on the socket.

void shutdown(
shutdown_type what);

» more...

boost::system::error_code shutdown(
shutdown_type what,
boost::system::error_code & ec);

» more...

601

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_streambuf::shutdown (1 of 2 overloads)

Inherited from basic_socket.

Disable sends or receives on the socket.

void shutdown(
shutdown_type what);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

Exceptions

boost::system::system_error Thrown on failure.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send);

basic_socket_streambuf::shutdown (2 of 2 overloads)

Inherited from basic_socket.

Disable sends or receives on the socket.

boost::system::error_code shutdown(
shutdown_type what,
boost::system::error_code & ec);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

ec Set to indicate what error occurred, if any.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send, ec);
if (ec)
{
// An error occurred.

}

602

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_streambuf::shutdown_type

Inherited from socket_base.

Different ways a socket may be shutdown.

enum shutdown_type

Values

shutdown_receive Shutdown the receive side of the socket.

shutdown_send Shutdown the send side of the socket.

shutdown_both Shutdown both send and receive on the socket.

basic_socket_streambuf::sync

int sync();

basic_socket_streambuf::time_type

The time type.

typedef TimeTraits::time_type time_type;

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::timer_handler

friend struct timer_handler();

Requirements

Header: boost/asio/basic_socket_streambuf.hpp

Convenience header: boost/asio.hpp

basic_socket_streambuf::underflow

int_type underflow();

basic_socket_streambuf::~basic_socket_streambuf

Destructor flushes buffered data.

virtual ~basic_socket_streambuf();

603

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket
Provides stream-oriented socket functionality.

template<
typename Protocol,
typename StreamSocketService = stream_socket_service<Protocol>>

class basic_stream_socket :
public basic_socket< Protocol, StreamSocketService >

604

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

605

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

606

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous read.async_read_some

Start an asynchronous receive.async_receive

Start an asynchronous send.async_send

Start an asynchronous write.async_write_some

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_stream_socket without opening it.basic_stream_socket

Construct and open a basic_stream_socket.

Construct a basic_stream_socket, opening it and binding it to
the given local endpoint.

Construct a basic_stream_socket on an existing native socket.

Move-construct a basic_stream_socket from another.

Move-construct a basic_stream_socket from a socket of another
protocol type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

607

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Gets the non-blocking mode of the native socket implementation.

Sets the non-blocking mode of the native socket implementation.

native_non_blocking

Gets the non-blocking mode of the socket.

Sets the non-blocking mode of the socket.

non_blocking

Open the socket using the specified protocol.open

Move-assign a basic_stream_socket from another.

Move-assign a basic_stream_socket from a socket of another
protocol type.

operator=

Read some data from the socket.read_some

Receive some data on the socket.

Receive some data on a connected socket.

receive

Get the remote endpoint of the socket.remote_endpoint

Send some data on the socket.send

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Write some data to the socket.write_some

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

608

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_stream_socket class template provides asynchronous and blocking stream-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::assign

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_handle_type & native_socket);

» more...

boost::system::error_code assign(
const protocol_type & protocol,
const native_handle_type & native_socket,
boost::system::error_code & ec);

» more...

basic_stream_socket::assign (1 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

void assign(
const protocol_type & protocol,
const native_handle_type & native_socket);

basic_stream_socket::assign (2 of 2 overloads)

Inherited from basic_socket.

Assign an existing native socket to the socket.

609

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code assign(
const protocol_type & protocol,
const native_handle_type & native_socket,
boost::system::error_code & ec);

basic_stream_socket::async_connect

Inherited from basic_socket.

Start an asynchronous connect.

template<
typename ConnectHandler>

void-or-deduced async_connect(
const endpoint_type & peer_endpoint,
ConnectHandler handler);

This function is used to asynchronously connect a socket to the specified remote endpoint. The function call always returns immediately.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected. Copies will be made of the endpoint object as re-
quired.

handler The handler to be called when the connection operation completes. Copies will be made of the handler as re-
quired. The function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked
from within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Example

void connect_handler(const boost::system::error_code& error)
{
if (!error)
{
// Connect succeeded.

}
}

...

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.async_connect(endpoint, connect_handler);

basic_stream_socket::async_read_some

Start an asynchronous read.

610

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read_some(
const MutableBufferSequence & buffers,
ReadHandler handler);

This function is used to asynchronously read data from the stream socket. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be read. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes read.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The read operation may not read all of the requested number of bytes. Consider using the async_read function if you need to ensure
that the requested amount of data is read before the asynchronous operation completes.

Example

To read into a single data buffer use the buffer function as follows:

socket.async_read_some(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_stream_socket::async_receive

Start an asynchronous receive.

611

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
const MutableBufferSequence & buffers,
ReadHandler handler);

» more...

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
ReadHandler handler);

» more...

basic_stream_socket::async_receive (1 of 2 overloads)

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
const MutableBufferSequence & buffers,
ReadHandler handler);

This function is used to asynchronously receive data from the stream socket. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until
the handler is called.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes received.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The receive operation may not receive all of the requested number of bytes. Consider using the async_read function if you need
to ensure that the requested amount of data is received before the asynchronous operation completes.

Example

To receive into a single data buffer use the buffer function as follows:

socket.async_receive(boost::asio::buffer(data, size), handler);

612

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays,
boost::array or std::vector.

basic_stream_socket::async_receive (2 of 2 overloads)

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
ReadHandler handler);

This function is used to asynchronously receive data from the stream socket. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be received. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until
the handler is called.

flags Flags specifying how the receive call is to be made.

handler The handler to be called when the receive operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes received.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The receive operation may not receive all of the requested number of bytes. Consider using the async_read function if you need
to ensure that the requested amount of data is received before the asynchronous operation completes.

Example

To receive into a single data buffer use the buffer function as follows:

socket.async_receive(boost::asio::buffer(data, size), 0, handler);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays,
boost::array or std::vector.

basic_stream_socket::async_send

Start an asynchronous send.

613

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
const ConstBufferSequence & buffers,
WriteHandler handler);

» more...

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
WriteHandler handler);

» more...

basic_stream_socket::async_send (1 of 2 overloads)

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
const ConstBufferSequence & buffers,
WriteHandler handler);

This function is used to asynchronously send data on the stream socket. The function call always returns immediately.

Parameters

buffers One or more data buffers to be sent on the socket. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes sent.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The send operation may not transmit all of the data to the peer. Consider using the async_write function if you need to ensure that
all data is written before the asynchronous operation completes.

Example

To send a single data buffer use the buffer function as follows:

socket.async_send(boost::asio::buffer(data, size), handler);

614

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_stream_socket::async_send (2 of 2 overloads)

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
WriteHandler handler);

This function is used to asynchronously send data on the stream socket. The function call always returns immediately.

Parameters

buffers One or more data buffers to be sent on the socket. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

flags Flags specifying how the send call is to be made.

handler The handler to be called when the send operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes sent.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The send operation may not transmit all of the data to the peer. Consider using the async_write function if you need to ensure that
all data is written before the asynchronous operation completes.

Example

To send a single data buffer use the buffer function as follows:

socket.async_send(boost::asio::buffer(data, size), 0, handler);

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_stream_socket::async_write_some

Start an asynchronous write.

615

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write_some(
const ConstBufferSequence & buffers,
WriteHandler handler);

This function is used to asynchronously write data to the stream socket. The function call always returns immediately.

Parameters

buffers One or more data buffers to be written to the socket. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes written.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The write operation may not transmit all of the data to the peer. Consider using the async_write function if you need to ensure
that all data is written before the asynchronous operation completes.

Example

To write a single data buffer use the buffer function as follows:

socket.async_write_some(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_stream_socket::at_mark

Determine whether the socket is at the out-of-band data mark.

bool at_mark() const;
» more...

bool at_mark(
boost::system::error_code & ec) const;

» more...

basic_stream_socket::at_mark (1 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

616

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool at_mark() const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

Exceptions

boost::system::system_error Thrown on failure.

basic_stream_socket::at_mark (2 of 2 overloads)

Inherited from basic_socket.

Determine whether the socket is at the out-of-band data mark.

bool at_mark(
boost::system::error_code & ec) const;

This function is used to check whether the socket input is currently positioned at the out-of-band data mark.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

A bool indicating whether the socket is at the out-of-band data mark.

basic_stream_socket::available

Determine the number of bytes available for reading.

std::size_t available() const;
» more...

std::size_t available(
boost::system::error_code & ec) const;

» more...

basic_stream_socket::available (1 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

std::size_t available() const;

This function is used to determine the number of bytes that may be read without blocking.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

617

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

basic_stream_socket::available (2 of 2 overloads)

Inherited from basic_socket.

Determine the number of bytes available for reading.

std::size_t available(
boost::system::error_code & ec) const;

This function is used to determine the number of bytes that may be read without blocking.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes that may be read without blocking, or 0 if an error occurs.

basic_stream_socket::basic_stream_socket

Construct a basic_stream_socket without opening it.

explicit basic_stream_socket(
boost::asio::io_service & io_service);

» more...

Construct and open a basic_stream_socket.

basic_stream_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol);

» more...

Construct a basic_stream_socket, opening it and binding it to the given local endpoint.

basic_stream_socket(
boost::asio::io_service & io_service,
const endpoint_type & endpoint);

» more...

Construct a basic_stream_socket on an existing native socket.

basic_stream_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol,
const native_handle_type & native_socket);

» more...

Move-construct a basic_stream_socket from another.

618

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket(
basic_stream_socket && other);

» more...

Move-construct a basic_stream_socket from a socket of another protocol type.

template<
typename Protocol1,
typename StreamSocketService1>

basic_stream_socket(
basic_stream_socket< Protocol1, StreamSocketService1 > && other,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

» more...

basic_stream_socket::basic_stream_socket (1 of 6 overloads)

Construct a basic_stream_socket without opening it.

basic_stream_socket(
boost::asio::io_service & io_service);

This constructor creates a stream socket without opening it. The socket needs to be opened and then connected or accepted before
data can be sent or received on it.

Parameters

io_service The io_service object that the stream socket will use to dispatch handlers for any asynchronous operations per-
formed on the socket.

basic_stream_socket::basic_stream_socket (2 of 6 overloads)

Construct and open a basic_stream_socket.

basic_stream_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol);

This constructor creates and opens a stream socket. The socket needs to be connected or accepted before data can be sent or received
on it.

Parameters

io_service The io_service object that the stream socket will use to dispatch handlers for any asynchronous operations per-
formed on the socket.

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

basic_stream_socket::basic_stream_socket (3 of 6 overloads)

Construct a basic_stream_socket, opening it and binding it to the given local endpoint.

619

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket(
boost::asio::io_service & io_service,
const endpoint_type & endpoint);

This constructor creates a stream socket and automatically opens it bound to the specified endpoint on the local machine. The protocol
used is the protocol associated with the given endpoint.

Parameters

io_service The io_service object that the stream socket will use to dispatch handlers for any asynchronous operations per-
formed on the socket.

endpoint An endpoint on the local machine to which the stream socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

basic_stream_socket::basic_stream_socket (4 of 6 overloads)

Construct a basic_stream_socket on an existing native socket.

basic_stream_socket(
boost::asio::io_service & io_service,
const protocol_type & protocol,
const native_handle_type & native_socket);

This constructor creates a stream socket object to hold an existing native socket.

Parameters

io_service The io_service object that the stream socket will use to dispatch handlers for any asynchronous operations
performed on the socket.

protocol An object specifying protocol parameters to be used.

native_socket The new underlying socket implementation.

Exceptions

boost::system::system_error Thrown on failure.

basic_stream_socket::basic_stream_socket (5 of 6 overloads)

Move-construct a basic_stream_socket from another.

basic_stream_socket(
basic_stream_socket && other);

This constructor moves a stream socket from one object to another.

Parameters

other The other basic_stream_socket object from which the move will occur.

620

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_stream_socket(io_service&)
constructor.

basic_stream_socket::basic_stream_socket (6 of 6 overloads)

Move-construct a basic_stream_socket from a socket of another protocol type.

template<
typename Protocol1,
typename StreamSocketService1>

basic_stream_socket(
basic_stream_socket< Protocol1, StreamSocketService1 > && other,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

This constructor moves a stream socket from one object to another.

Parameters

other The other basic_stream_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_stream_socket(io_service&)
constructor.

basic_stream_socket::bind

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

» more...

boost::system::error_code bind(
const endpoint_type & endpoint,
boost::system::error_code & ec);

» more...

basic_stream_socket::bind (1 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

void bind(
const endpoint_type & endpoint);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

Exceptions

boost::system::system_error Thrown on failure.

621

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
socket.bind(boost::asio::ip::tcp::endpoint(

boost::asio::ip::tcp::v4(), 12345));

basic_stream_socket::bind (2 of 2 overloads)

Inherited from basic_socket.

Bind the socket to the given local endpoint.

boost::system::error_code bind(
const endpoint_type & endpoint,
boost::system::error_code & ec);

This function binds the socket to the specified endpoint on the local machine.

Parameters

endpoint An endpoint on the local machine to which the socket will be bound.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());
boost::system::error_code ec;
socket.bind(boost::asio::ip::tcp::endpoint(

boost::asio::ip::tcp::v4(), 12345), ec);
if (ec)
{
// An error occurred.

}

basic_stream_socket::broadcast

Inherited from socket_base.

Socket option to permit sending of broadcast messages.

typedef implementation_defined broadcast;

Implements the SOL_SOCKET/SO_BROADCAST socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option(true);
socket.set_option(option);

Getting the current option value:

622

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::bytes_readable

Inherited from socket_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::bytes_readable command(true);
socket.io_control(command);
std::size_t bytes_readable = command.get();

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::cancel

Cancel all asynchronous operations associated with the socket.

void cancel();
» more...

boost::system::error_code cancel(
boost::system::error_code & ec);

» more...

basic_stream_socket::cancel (1 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

void cancel();

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

623

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP,
Windows Server 2003, and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the
CancelIo function has two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

basic_stream_socket::cancel (2 of 2 overloads)

Inherited from basic_socket.

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
boost::system::error_code & ec);

This function causes all outstanding asynchronous connect, send and receive operations to finish immediately, and the handlers for
cancelled operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

Remarks

Calls to cancel() will always fail with boost::asio::error::operation_not_supported when run on Windows XP,
Windows Server 2003, and earlier versions of Windows, unless BOOST_ASIO_ENABLE_CANCELIO is defined. However, the
CancelIo function has two issues that should be considered before enabling its use:

• It will only cancel asynchronous operations that were initiated in the current thread.

• It can appear to complete without error, but the request to cancel the unfinished operations may be silently ignored by the operating
system. Whether it works or not seems to depend on the drivers that are installed.

For portable cancellation, consider using one of the following alternatives:

• Disable asio's I/O completion port backend by defining BOOST_ASIO_DISABLE_IOCP.

• Use the close() function to simultaneously cancel the outstanding operations and close the socket.

When running on Windows Vista, Windows Server 2008, and later, the CancelIoEx function is always used. This function does not
have the problems described above.

624

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket::close

Close the socket.

void close();
» more...

boost::system::error_code close(
boost::system::error_code & ec);

» more...

basic_stream_socket::close (1 of 2 overloads)

Inherited from basic_socket.

Close the socket.

void close();

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure. Note that, even if the function indicates an error, the underlying descriptor
is closed.

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_stream_socket::close (2 of 2 overloads)

Inherited from basic_socket.

Close the socket.

boost::system::error_code close(
boost::system::error_code & ec);

This function is used to close the socket. Any asynchronous send, receive or connect operations will be cancelled immediately, and
will complete with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any. Note that, even if the function indicates an error, the underlying descriptor is closed.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.close(ec);
if (ec)
{
// An error occurred.

}

625

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

For portable behaviour with respect to graceful closure of a connected socket, call shutdown() before closing the socket.

basic_stream_socket::connect

Connect the socket to the specified endpoint.

void connect(
const endpoint_type & peer_endpoint);

» more...

boost::system::error_code connect(
const endpoint_type & peer_endpoint,
boost::system::error_code & ec);

» more...

basic_stream_socket::connect (1 of 2 overloads)

Inherited from basic_socket.

Connect the socket to the specified endpoint.

void connect(
const endpoint_type & peer_endpoint);

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
socket.connect(endpoint);

basic_stream_socket::connect (2 of 2 overloads)

Inherited from basic_socket.

Connect the socket to the specified endpoint.

boost::system::error_code connect(
const endpoint_type & peer_endpoint,
boost::system::error_code & ec);

626

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This function is used to connect a socket to the specified remote endpoint. The function call will block until the connection is suc-
cessfully made or an error occurs.

The socket is automatically opened if it is not already open. If the connect fails, and the socket was automatically opened, the socket
is not returned to the closed state.

Parameters

peer_endpoint The remote endpoint to which the socket will be connected.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::asio::ip::tcp::endpoint endpoint(

boost::asio::ip::address::from_string("1.2.3.4"), 12345);
boost::system::error_code ec;
socket.connect(endpoint, ec);
if (ec)
{
// An error occurred.

}

basic_stream_socket::debug

Inherited from socket_base.

Socket option to enable socket-level debugging.

typedef implementation_defined debug;

Implements the SOL_SOCKET/SO_DEBUG socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

627

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket::do_not_route

Inherited from socket_base.

Socket option to prevent routing, use local interfaces only.

typedef implementation_defined do_not_route;

Implements the SOL_SOCKET/SO_DONTROUTE socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::enable_connection_aborted

Inherited from socket_base.

Socket option to report aborted connections on accept.

typedef implementation_defined enable_connection_aborted;

Implements a custom socket option that determines whether or not an accept operation is permitted to fail with
boost::asio::error::connection_aborted. By default the option is false.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option(true);
acceptor.set_option(option);

Getting the current option value:

628

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option;
acceptor.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

basic_stream_socket::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

basic_stream_socket::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

basic_stream_socket::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

629

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_stream_socket::get_option

Get an option from the socket.

void get_option(
GettableSocketOption & option) const;

» more...

boost::system::error_code get_option(
GettableSocketOption & option,
boost::system::error_code & ec) const;

» more...

basic_stream_socket::get_option (1 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

template<
typename GettableSocketOption>

void get_option(
GettableSocketOption & option) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

basic_stream_socket::get_option (2 of 2 overloads)

Inherited from basic_socket.

Get an option from the socket.

630

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename GettableSocketOption>

boost::system::error_code get_option(
GettableSocketOption & option,
boost::system::error_code & ec) const;

This function is used to get the current value of an option on the socket.

Parameters

option The option value to be obtained from the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the value of the SOL_SOCKET/SO_KEEPALIVE option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::keep_alive option;
boost::system::error_code ec;
socket.get_option(option, ec);
if (ec)
{
// An error occurred.

}
bool is_set = option.value();

basic_stream_socket::get_service

Get the service associated with the I/O object.

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

basic_stream_socket::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

service_type & get_service();

basic_stream_socket::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

631

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

basic_stream_socket::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::io_control

Perform an IO control command on the socket.

void io_control(
IoControlCommand & command);

» more...

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

» more...

basic_stream_socket::io_control (1 of 2 overloads)

Inherited from basic_socket.

Perform an IO control command on the socket.

template<
typename IoControlCommand>

void io_control(
IoControlCommand & command);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

Exceptions

boost::system::system_error Thrown on failure.

632

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
socket.io_control(command);
std::size_t bytes_readable = command.get();

basic_stream_socket::io_control (2 of 2 overloads)

Inherited from basic_socket.

Perform an IO control command on the socket.

template<
typename IoControlCommand>

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

This function is used to execute an IO control command on the socket.

Parameters

command The IO control command to be performed on the socket.

ec Set to indicate what error occurred, if any.

Example

Getting the number of bytes ready to read:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::socket::bytes_readable command;
boost::system::error_code ec;
socket.io_control(command, ec);
if (ec)
{
// An error occurred.

}
std::size_t bytes_readable = command.get();

basic_stream_socket::is_open

Inherited from basic_socket.

Determine whether the socket is open.

bool is_open() const;

basic_stream_socket::keep_alive

Inherited from socket_base.

Socket option to send keep-alives.

633

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined keep_alive;

Implements the SOL_SOCKET/SO_KEEPALIVE socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::linger

Inherited from socket_base.

Socket option to specify whether the socket lingers on close if unsent data is present.

typedef implementation_defined linger;

Implements the SOL_SOCKET/SO_LINGER socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option(true, 30);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option;
socket.get_option(option);
bool is_set = option.enabled();
unsigned short timeout = option.timeout();

634

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::local_endpoint

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;
» more...

endpoint_type local_endpoint(
boost::system::error_code & ec) const;

» more...

basic_stream_socket::local_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint() const;

This function is used to obtain the locally bound endpoint of the socket.

Return Value

An object that represents the local endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint();

basic_stream_socket::local_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the local endpoint of the socket.

endpoint_type local_endpoint(
boost::system::error_code & ec) const;

This function is used to obtain the locally bound endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

635

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

An object that represents the local endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.local_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_stream_socket::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();
» more...

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;
» more...

basic_stream_socket::lowest_layer (1 of 2 overloads)

Inherited from basic_socket.

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further layers,
it simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

basic_stream_socket::lowest_layer (2 of 2 overloads)

Inherited from basic_socket.

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a basic_socket cannot contain any further
layers, it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

636

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket::lowest_layer_type

Inherited from basic_socket.

A basic_socket is always the lowest layer.

typedef basic_socket< Protocol, StreamSocketService > lowest_layer_type;

637

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

638

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

639

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_socket without opening it.basic_socket

Construct and open a basic_socket.

Construct a basic_socket, opening it and binding it to the given
local endpoint.

Construct a basic_socket on an existing native socket.

Move-construct a basic_socket from another.

Move-construct a basic_socket from a socket of another protocol
type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

Gets the non-blocking mode of the native socket implementation.native_non_blocking

Sets the non-blocking mode of the native socket implementation.

Gets the non-blocking mode of the socket.non_blocking

Sets the non-blocking mode of the socket.

640

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Open the socket using the specified protocol.open

Move-assign a basic_socket from another.

Move-assign a basic_socket from a socket of another protocol
type.

operator=

Get the remote endpoint of the socket.remote_endpoint

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected destructor to prevent deletion through this type.~basic_socket

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_socket class template provides functionality that is common to both stream-oriented and datagram-oriented sockets.

Thread Safety

Distinct objects: Safe.

641

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Shared objects: Unsafe.

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::max_connections

Inherited from socket_base.

The maximum length of the queue of pending incoming connections.

static const int max_connections = implementation_defined;

basic_stream_socket::message_do_not_route

Inherited from socket_base.

Specify that the data should not be subject to routing.

static const int message_do_not_route = implementation_defined;

basic_stream_socket::message_end_of_record

Inherited from socket_base.

Specifies that the data marks the end of a record.

static const int message_end_of_record = implementation_defined;

basic_stream_socket::message_flags

Inherited from socket_base.

Bitmask type for flags that can be passed to send and receive operations.

typedef int message_flags;

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::message_out_of_band

Inherited from socket_base.

Process out-of-band data.

static const int message_out_of_band = implementation_defined;

642

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket::message_peek

Inherited from socket_base.

Peek at incoming data without removing it from the input queue.

static const int message_peek = implementation_defined;

basic_stream_socket::native

Inherited from basic_socket.

(Deprecated: Use native_handle().) Get the native socket representation.

native_type native();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_stream_socket::native_handle

Inherited from basic_socket.

Get the native socket representation.

native_handle_type native_handle();

This function may be used to obtain the underlying representation of the socket. This is intended to allow access to native socket
functionality that is not otherwise provided.

basic_stream_socket::native_handle_type

The native representation of a socket.

typedef StreamSocketService::native_handle_type native_handle_type;

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::native_non_blocking

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking() const;
» more...

Sets the non-blocking mode of the native socket implementation.

643

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void native_non_blocking(
bool mode);

» more...

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

basic_stream_socket::native_non_blocking (1 of 3 overloads)

Inherited from basic_socket.

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking() const;

This function is used to retrieve the non-blocking mode of the underlying native socket. This mode has no effect on the behaviour
of the socket object's synchronous operations.

Return Value

true if the underlying socket is in non-blocking mode and direct system calls may fail with boost::asio::error::would_block
(or the equivalent system error).

Remarks

The current non-blocking mode is cached by the socket object. Consequently, the return value may be incorrect if the non-blocking
mode was set directly on the native socket.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

644

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

645

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_stream_socket::native_non_blocking (2 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the native socket implementation.

void native_non_blocking(
bool mode);

This function is used to modify the non-blocking mode of the underlying native socket. It has no effect on the behaviour of the
socket object's synchronous operations.

Parameters

mode If true, the underlying socket is put into non-blocking mode and direct system calls may fail with boost::asio::er-
ror::would_block (or the equivalent system error).

Exceptions

boost::system::system_error Thrown on failure. If the mode is false, but the current value of non_blocking() is true,
this function fails with boost::asio::error::invalid_argument, as the combination
does not make sense.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

646

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

647

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_stream_socket::native_non_blocking (3 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the native socket implementation.

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

This function is used to modify the non-blocking mode of the underlying native socket. It has no effect on the behaviour of the
socket object's synchronous operations.

Parameters

mode If true, the underlying socket is put into non-blocking mode and direct system calls may fail with boost::asio::er-
ror::would_block (or the equivalent system error).

ec Set to indicate what error occurred, if any. If the mode is false, but the current value of non_blocking() is true, this
function fails with boost::asio::error::invalid_argument, as the combination does not make sense.

Example

This function is intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a way that
is transparent to the user of the socket object. The following example illustrates how Linux's sendfile system call might be encap-
sulated:

648

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
struct sendfile_op
{
tcp::socket& sock_;
int fd_;
Handler handler_;
off_t offset_;
std::size_t total_bytes_transferred_;

// Function call operator meeting WriteHandler requirements.
// Used as the handler for the async_write_some operation.
void operator()(boost::system::error_code ec, std::size_t)
{
// Put the underlying socket into non-blocking mode.
if (!ec)
if (!sock_.native_non_blocking())

sock_.native_non_blocking(true, ec);

if (!ec)
{
for (;;)
{

// Try the system call.
errno = 0;
int n = ::sendfile(sock_.native_handle(), fd_, &offset_, 65536);
ec = boost::system::error_code(n < 0 ? errno : 0,

boost::asio::error::get_system_category());
total_bytes_transferred_ += ec ? 0 : n;

// Retry operation immediately if interrupted by signal.
if (ec == boost::asio::error::interrupted)
continue;

// Check if we need to run the operation again.
if (ec == boost::asio::error::would_block

|| ec == boost::asio::error::try_again)
{
// We have to wait for the socket to become ready again.
sock_.async_write_some(boost::asio::null_buffers(), *this);
return;

}

if (ec || n == 0)
{
// An error occurred, or we have reached the end of the file.
// Either way we must exit the loop so we can call the handler.
break;

}

// Loop around to try calling sendfile again.
}

}

// Pass result back to user's handler.
handler_(ec, total_bytes_transferred_);

}
};

649

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Handler>
void async_sendfile(tcp::socket& sock, int fd, Handler h)
{
sendfile_op<Handler> op = { sock, fd, h, 0, 0 };
sock.async_write_some(boost::asio::null_buffers(), op);

}

basic_stream_socket::native_type

(Deprecated: Use native_handle_type.) The native representation of a socket.

typedef StreamSocketService::native_handle_type native_type;

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::non_blocking

Gets the non-blocking mode of the socket.

bool non_blocking() const;
» more...

Sets the non-blocking mode of the socket.

void non_blocking(
bool mode);

» more...

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

basic_stream_socket::non_blocking (1 of 3 overloads)

Inherited from basic_socket.

Gets the non-blocking mode of the socket.

bool non_blocking() const;

Return Value

true if the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to perform
the requested operation immediately. If false, synchronous operations will block until complete.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

650

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket::non_blocking (2 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the socket.

void non_blocking(
bool mode);

Parameters

mode If true, the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to
perform the requested operation immediately. If false, synchronous operations will block until complete.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

basic_stream_socket::non_blocking (3 of 3 overloads)

Inherited from basic_socket.

Sets the non-blocking mode of the socket.

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

Parameters

mode If true, the socket's synchronous operations will fail with boost::asio::error::would_block if they are unable to
perform the requested operation immediately. If false, synchronous operations will block until complete.

ec Set to indicate what error occurred, if any.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

basic_stream_socket::non_blocking_io

Inherited from socket_base.

(Deprecated: Use non_blocking().) IO control command to set the blocking mode of the socket.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

651

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::non_blocking_io command(true);
socket.io_control(command);

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::open

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

» more...

boost::system::error_code open(
const protocol_type & protocol,
boost::system::error_code & ec);

» more...

basic_stream_socket::open (1 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

void open(
const protocol_type & protocol = protocol_type());

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying protocol parameters to be used.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
socket.open(boost::asio::ip::tcp::v4());

basic_stream_socket::open (2 of 2 overloads)

Inherited from basic_socket.

Open the socket using the specified protocol.

652

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code open(
const protocol_type & protocol,
boost::system::error_code & ec);

This function opens the socket so that it will use the specified protocol.

Parameters

protocol An object specifying which protocol is to be used.

ec Set to indicate what error occurred, if any.

Example

boost::asio::ip::tcp::socket socket(io_service);
boost::system::error_code ec;
socket.open(boost::asio::ip::tcp::v4(), ec);
if (ec)
{
// An error occurred.

}

basic_stream_socket::operator=

Move-assign a basic_stream_socket from another.

basic_stream_socket & operator=(
basic_stream_socket && other);

» more...

Move-assign a basic_stream_socket from a socket of another protocol type.

template<
typename Protocol1,
typename StreamSocketService1>

enable_if< is_convertible< Protocol1, Protocol >::value, basic_stream_socket >::type & operator=(
basic_stream_socket< Protocol1, StreamSocketService1 > && other);

» more...

basic_stream_socket::operator= (1 of 2 overloads)

Move-assign a basic_stream_socket from another.

basic_stream_socket & operator=(
basic_stream_socket && other);

This assignment operator moves a stream socket from one object to another.

Parameters

other The other basic_stream_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_stream_socket(io_service&)
constructor.

653

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket::operator= (2 of 2 overloads)

Move-assign a basic_stream_socket from a socket of another protocol type.

template<
typename Protocol1,
typename StreamSocketService1>

enable_if< is_convertible< Protocol1, Protocol >::value, basic_stream_socket >::type & operator=(
basic_stream_socket< Protocol1, StreamSocketService1 > && other);

This assignment operator moves a stream socket from one object to another.

Parameters

other The other basic_stream_socket object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_stream_socket(io_service&)
constructor.

basic_stream_socket::protocol_type

The protocol type.

typedef Protocol protocol_type;

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::read_some

Read some data from the socket.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

» more...

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

» more...

basic_stream_socket::read_some (1 of 2 overloads)

Read some data from the socket.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

654

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This function is used to read data from the stream socket. The function call will block until one or more bytes of data has been read
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be read.

Return Value

The number of bytes read.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection
was closed by the peer.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

Example

To read into a single data buffer use the buffer function as follows:

socket.read_some(boost::asio::buffer(data, size));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

basic_stream_socket::read_some (2 of 2 overloads)

Read some data from the socket.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to read data from the stream socket. The function call will block until one or more bytes of data has been read
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be read.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. Returns 0 if an error occurred.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

655

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket::receive

Receive some data on the socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers);

» more...

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags);

» more...

Receive some data on a connected socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

» more...

basic_stream_socket::receive (1 of 3 overloads)

Receive some data on the socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers);

This function is used to receive data on the stream socket. The function call will block until one or more bytes of data has been received
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection
was closed by the peer.

Remarks

The receive operation may not receive all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

656

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

To receive into a single data buffer use the buffer function as follows:

socket.receive(boost::asio::buffer(data, size));

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays,
boost::array or std::vector.

basic_stream_socket::receive (2 of 3 overloads)

Receive some data on the socket.

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags);

This function is used to receive data on the stream socket. The function call will block until one or more bytes of data has been received
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

flags Flags specifying how the receive call is to be made.

Return Value

The number of bytes received.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection
was closed by the peer.

Remarks

The receive operation may not receive all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

Example

To receive into a single data buffer use the buffer function as follows:

socket.receive(boost::asio::buffer(data, size), 0);

See the buffer documentation for information on receiving into multiple buffers in one go, and how to use it with arrays,
boost::array or std::vector.

basic_stream_socket::receive (3 of 3 overloads)

Receive some data on a connected socket.

657

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t receive(
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

This function is used to receive data on the stream socket. The function call will block until one or more bytes of data has been received
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be received.

flags Flags specifying how the receive call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes received. Returns 0 if an error occurred.

Remarks

The receive operation may not receive all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

basic_stream_socket::receive_buffer_size

Inherited from socket_base.

Socket option for the receive buffer size of a socket.

typedef implementation_defined receive_buffer_size;

Implements the SOL_SOCKET/SO_RCVBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_stream_socket.hpp

658

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Convenience header: boost/asio.hpp

basic_stream_socket::receive_low_watermark

Inherited from socket_base.

Socket option for the receive low watermark.

typedef implementation_defined receive_low_watermark;

Implements the SOL_SOCKET/SO_RCVLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::remote_endpoint

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;
» more...

endpoint_type remote_endpoint(
boost::system::error_code & ec) const;

» more...

basic_stream_socket::remote_endpoint (1 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint() const;

This function is used to obtain the remote endpoint of the socket.

659

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

An object that represents the remote endpoint of the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint();

basic_stream_socket::remote_endpoint (2 of 2 overloads)

Inherited from basic_socket.

Get the remote endpoint of the socket.

endpoint_type remote_endpoint(
boost::system::error_code & ec) const;

This function is used to obtain the remote endpoint of the socket.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

An object that represents the remote endpoint of the socket. Returns a default-constructed endpoint object if an error occurred.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
boost::asio::ip::tcp::endpoint endpoint = socket.remote_endpoint(ec);
if (ec)
{
// An error occurred.

}

basic_stream_socket::reuse_address

Inherited from socket_base.

Socket option to allow the socket to be bound to an address that is already in use.

typedef implementation_defined reuse_address;

Implements the SOL_SOCKET/SO_REUSEADDR socket option.

Examples

Setting the option:

660

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option;
acceptor.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::send

Send some data on the socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers);

» more...

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags);

» more...

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

» more...

basic_stream_socket::send (1 of 3 overloads)

Send some data on the socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers);

This function is used to send data on the stream socket. The function call will block until one or more bytes of the data has been sent
successfully, or an until error occurs.

Parameters

buffers One or more data buffers to be sent on the socket.

661

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The send operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that all data
is written before the blocking operation completes.

Example

To send a single data buffer use the buffer function as follows:

socket.send(boost::asio::buffer(data, size));

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_stream_socket::send (2 of 3 overloads)

Send some data on the socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags);

This function is used to send data on the stream socket. The function call will block until one or more bytes of the data has been sent
successfully, or an until error occurs.

Parameters

buffers One or more data buffers to be sent on the socket.

flags Flags specifying how the send call is to be made.

Return Value

The number of bytes sent.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The send operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that all data
is written before the blocking operation completes.

Example

To send a single data buffer use the buffer function as follows:

socket.send(boost::asio::buffer(data, size), 0);

662

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

See the buffer documentation for information on sending multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

basic_stream_socket::send (3 of 3 overloads)

Send some data on the socket.

template<
typename ConstBufferSequence>

std::size_t send(
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

This function is used to send data on the stream socket. The function call will block until one or more bytes of the data has been sent
successfully, or an until error occurs.

Parameters

buffers One or more data buffers to be sent on the socket.

flags Flags specifying how the send call is to be made.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes sent. Returns 0 if an error occurred.

Remarks

The send operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that all data
is written before the blocking operation completes.

basic_stream_socket::send_buffer_size

Inherited from socket_base.

Socket option for the send buffer size of a socket.

typedef implementation_defined send_buffer_size;

Implements the SOL_SOCKET/SO_SNDBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

663

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::send_low_watermark

Inherited from socket_base.

Socket option for the send low watermark.

typedef implementation_defined send_low_watermark;

Implements the SOL_SOCKET/SO_SNDLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

Remarks

Available only for services that do not support movability.

664

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef StreamSocketService service_type;

Requirements

Header: boost/asio/basic_stream_socket.hpp

Convenience header: boost/asio.hpp

basic_stream_socket::set_option

Set an option on the socket.

void set_option(
const SettableSocketOption & option);

» more...

boost::system::error_code set_option(
const SettableSocketOption & option,
boost::system::error_code & ec);

» more...

basic_stream_socket::set_option (1 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

template<
typename SettableSocketOption>

void set_option(
const SettableSocketOption & option);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

Exceptions

boost::system::system_error Thrown on failure.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
socket.set_option(option);

665

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket::set_option (2 of 2 overloads)

Inherited from basic_socket.

Set an option on the socket.

template<
typename SettableSocketOption>

boost::system::error_code set_option(
const SettableSocketOption & option,
boost::system::error_code & ec);

This function is used to set an option on the socket.

Parameters

option The new option value to be set on the socket.

ec Set to indicate what error occurred, if any.

Example

Setting the IPPROTO_TCP/TCP_NODELAY option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
boost::system::error_code ec;
socket.set_option(option, ec);
if (ec)
{
// An error occurred.

}

basic_stream_socket::shutdown

Disable sends or receives on the socket.

void shutdown(
shutdown_type what);

» more...

boost::system::error_code shutdown(
shutdown_type what,
boost::system::error_code & ec);

» more...

basic_stream_socket::shutdown (1 of 2 overloads)

Inherited from basic_socket.

Disable sends or receives on the socket.

void shutdown(
shutdown_type what);

This function is used to disable send operations, receive operations, or both.

666

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

what Determines what types of operation will no longer be allowed.

Exceptions

boost::system::system_error Thrown on failure.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send);

basic_stream_socket::shutdown (2 of 2 overloads)

Inherited from basic_socket.

Disable sends or receives on the socket.

boost::system::error_code shutdown(
shutdown_type what,
boost::system::error_code & ec);

This function is used to disable send operations, receive operations, or both.

Parameters

what Determines what types of operation will no longer be allowed.

ec Set to indicate what error occurred, if any.

Example

Shutting down the send side of the socket:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::system::error_code ec;
socket.shutdown(boost::asio::ip::tcp::socket::shutdown_send, ec);
if (ec)
{
// An error occurred.

}

basic_stream_socket::shutdown_type

Inherited from socket_base.

Different ways a socket may be shutdown.

enum shutdown_type

Values

shutdown_receive Shutdown the receive side of the socket.

667

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

shutdown_send Shutdown the send side of the socket.

shutdown_both Shutdown both send and receive on the socket.

basic_stream_socket::write_some

Write some data to the socket.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

» more...

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

» more...

basic_stream_socket::write_some (1 of 2 overloads)

Write some data to the socket.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

This function is used to write data to the stream socket. The function call will block until one or more bytes of the data has been
written successfully, or until an error occurs.

Parameters

buffers One or more data buffers to be written to the socket.

Return Value

The number of bytes written.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection
was closed by the peer.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

Example

To write a single data buffer use the buffer function as follows:

socket.write_some(boost::asio::buffer(data, size));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

668

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket::write_some (2 of 2 overloads)

Write some data to the socket.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to write data to the stream socket. The function call will block until one or more bytes of the data has been
written successfully, or until an error occurs.

Parameters

buffers One or more data buffers to be written to the socket.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. Returns 0 if an error occurred.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

basic_streambuf
Automatically resizable buffer class based on std::streambuf.

template<
typename Allocator = std::allocator<char>>

class basic_streambuf :
noncopyable

Types

DescriptionName

The type used to represent the input sequence as a list of buffers.const_buffers_type

The type used to represent the output sequence as a list of buf-
fers.

mutable_buffers_type

669

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Construct a basic_streambuf object.basic_streambuf

Move characters from the output sequence to the input sequence.commit

Remove characters from the input sequence.consume

Get a list of buffers that represents the input sequence.data

Get the maximum size of the basic_streambuf.max_size

Get a list of buffers that represents the output sequence, with
the given size.

prepare

Get the size of the input sequence.size

Protected Member Functions

DescriptionName

Override std::streambuf behaviour.overflow

reserve

Override std::streambuf behaviour.underflow

The basic_streambuf class is derived from std::streambuf to associate the streambuf's input and output sequences with one
or more character arrays. These character arrays are internal to the basic_streambuf object, but direct access to the array elements
is provided to permit them to be used efficiently with I/O operations. Characters written to the output sequence of a basic_stre-
ambuf object are appended to the input sequence of the same object.

The basic_streambuf class's public interface is intended to permit the following implementation strategies:

• A single contiguous character array, which is reallocated as necessary to accommodate changes in the size of the character sequence.
This is the implementation approach currently used in Asio.

• A sequence of one or more character arrays, where each array is of the same size. Additional character array objects are appended
to the sequence to accommodate changes in the size of the character sequence.

• A sequence of one or more character arrays of varying sizes. Additional character array objects are appended to the sequence to
accommodate changes in the size of the character sequence.

The constructor for basic_streambuf accepts a size_t argument specifying the maximum of the sum of the sizes of the input
sequence and output sequence. During the lifetime of the basic_streambuf object, the following invariant holds:

size() <= max_size()

Any member function that would, if successful, cause the invariant to be violated shall throw an exception of class
std::length_error.

The constructor for basic_streambuf takes an Allocator argument. A copy of this argument is used for any memory allocation
performed, by the constructor and by all member functions, during the lifetime of each basic_streambuf object.

670

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples

Writing directly from an streambuf to a socket:

boost::asio::streambuf b;
std::ostream os(&b);
os << "Hello, World!\n";

// try sending some data in input sequence
size_t n = sock.send(b.data());

b.consume(n); // sent data is removed from input sequence

Reading from a socket directly into a streambuf:

boost::asio::streambuf b;

// reserve 512 bytes in output sequence
boost::asio::streambuf::mutable_buffers_type bufs = b.prepare(512);

size_t n = sock.receive(bufs);

// received data is "committed" from output sequence to input sequence
b.commit(n);

std::istream is(&b);
std::string s;
is >> s;

Requirements

Header: boost/asio/basic_streambuf.hpp

Convenience header: boost/asio.hpp

basic_streambuf::basic_streambuf

Construct a basic_streambuf object.

basic_streambuf(
std::size_t maximum_size = (std::numeric_limits< std::size_t >::max)(),
const Allocator & allocator = Allocator());

Constructs a streambuf with the specified maximum size. The initial size of the streambuf's input sequence is 0.

basic_streambuf::commit

Move characters from the output sequence to the input sequence.

void commit(
std::size_t n);

Appends n characters from the start of the output sequence to the input sequence. The beginning of the output sequence is advanced
by n characters.

Requires a preceding call prepare(x) where x >= n, and no intervening operations that modify the input or output sequence.

671

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

If n is greater than the size of the output sequence, the entire output sequence is moved to the input sequence and no error is issued.

basic_streambuf::const_buffers_type

The type used to represent the input sequence as a list of buffers.

typedef implementation_defined const_buffers_type;

Requirements

Header: boost/asio/basic_streambuf.hpp

Convenience header: boost/asio.hpp

basic_streambuf::consume

Remove characters from the input sequence.

void consume(
std::size_t n);

Removes n characters from the beginning of the input sequence.

Remarks

If n is greater than the size of the input sequence, the entire input sequence is consumed and no error is issued.

basic_streambuf::data

Get a list of buffers that represents the input sequence.

const_buffers_type data() const;

Return Value

An object of type const_buffers_type that satisfies ConstBufferSequence requirements, representing all character arrays in the
input sequence.

Remarks

The returned object is invalidated by any basic_streambuf member function that modifies the input sequence or output sequence.

basic_streambuf::max_size

Get the maximum size of the basic_streambuf.

std::size_t max_size() const;

Return Value

The allowed maximum of the sum of the sizes of the input sequence and output sequence.

basic_streambuf::mutable_buffers_type

The type used to represent the output sequence as a list of buffers.

672

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined mutable_buffers_type;

Requirements

Header: boost/asio/basic_streambuf.hpp

Convenience header: boost/asio.hpp

basic_streambuf::overflow

Override std::streambuf behaviour.

int_type overflow(
int_type c);

Behaves according to the specification of std::streambuf::overflow(), with the specialisation that std::length_error is
thrown if appending the character to the input sequence would require the condition size() > max_size() to be true.

basic_streambuf::prepare

Get a list of buffers that represents the output sequence, with the given size.

mutable_buffers_type prepare(
std::size_t n);

Ensures that the output sequence can accommodate n characters, reallocating character array objects as necessary.

Return Value

An object of type mutable_buffers_type that satisfies MutableBufferSequence requirements, representing character array objects
at the start of the output sequence such that the sum of the buffer sizes is n.

Exceptions

std::length_error If size() + n > max_size().

Remarks

The returned object is invalidated by any basic_streambuf member function that modifies the input sequence or output sequence.

basic_streambuf::reserve

void reserve(
std::size_t n);

basic_streambuf::size

Get the size of the input sequence.

std::size_t size() const;

Return Value

The size of the input sequence. The value is equal to that calculated for s in the following code:

673

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

size_t s = 0;
const_buffers_type bufs = data();
const_buffers_type::const_iterator i = bufs.begin();
while (i != bufs.end())
{
const_buffer buf(*i++);
s += buffer_size(buf);

}

basic_streambuf::underflow

Override std::streambuf behaviour.

int_type underflow();

Behaves according to the specification of std::streambuf::underflow().

basic_waitable_timer
Provides waitable timer functionality.

template<
typename Clock,
typename WaitTraits = boost::asio::wait_traits<Clock>,
typename WaitableTimerService = waitable_timer_service<Clock, WaitTraits>>

class basic_waitable_timer :
public basic_io_object< WaitableTimerService >

Types

DescriptionName

The clock type.clock_type

The duration type of the clock.duration

The underlying implementation type of I/O object.implementation_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

The time point type of the clock.time_point

The wait traits type.traits_type

674

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Start an asynchronous wait on the timer.async_wait

Constructor.

Constructor to set a particular expiry time as an absolute time.

Constructor to set a particular expiry time relative to now.

basic_waitable_timer

Cancel any asynchronous operations that are waiting on the
timer.

cancel

Cancels one asynchronous operation that is waiting on the timer.cancel_one

Get the timer's expiry time as an absolute time.

Set the timer's expiry time as an absolute time.

expires_at

Get the timer's expiry time relative to now.

Set the timer's expiry time relative to now.

expires_from_now

Get the io_service associated with the object.get_io_service

Perform a blocking wait on the timer.wait

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_waitable_timer class template provides the ability to perform a blocking or asynchronous wait for a timer to expire.

A waitable timer is always in one of two states: "expired" or "not expired". If the wait() or async_wait() function is called on
an expired timer, the wait operation will complete immediately.

Most applications will use one of the steady_timer, system_timer or high_resolution_timer typedefs.

Remarks

This waitable timer functionality is for use with the C++11 standard library's <chrono> facility, or with the Boost.Chrono library.

675

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Examples

Performing a blocking wait (C++11):

// Construct a timer without setting an expiry time.
boost::asio::steady_timer timer(io_service);

// Set an expiry time relative to now.
timer.expires_from_now(std::chrono::seconds(5));

// Wait for the timer to expire.
timer.wait();

Performing an asynchronous wait (C++11):

void handler(const boost::system::error_code& error)
{
if (!error)
{
// Timer expired.

}
}

...

// Construct a timer with an absolute expiry time.
boost::asio::steady_timer timer(io_service,

std::chrono::steady_clock::now() + std::chrono::seconds(60));

// Start an asynchronous wait.
timer.async_wait(handler);

Changing an active waitable timer's expiry time

Changing the expiry time of a timer while there are pending asynchronous waits causes those wait operations to be cancelled. To
ensure that the action associated with the timer is performed only once, use something like this: used:

676

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void on_some_event()
{
if (my_timer.expires_from_now(seconds(5)) > 0)
{
// We managed to cancel the timer. Start new asynchronous wait.
my_timer.async_wait(on_timeout);

}
else
{
// Too late, timer has already expired!

}
}

void on_timeout(const boost::system::error_code& e)
{
if (e != boost::asio::error::operation_aborted)
{
// Timer was not cancelled, take necessary action.

}
}

• The boost::asio::basic_waitable_timer::expires_from_now() function cancels any pending asynchronous waits,
and returns the number of asynchronous waits that were cancelled. If it returns 0 then you were too late and the wait handler has
already been executed, or will soon be executed. If it returns 1 then the wait handler was successfully cancelled.

• If a wait handler is cancelled, the boost::system::error_code passed to it contains the value boost::asio::error::opera-
tion_aborted.

Requirements

Header: boost/asio/basic_waitable_timer.hpp

Convenience header: boost/asio.hpp

basic_waitable_timer::async_wait

Start an asynchronous wait on the timer.

template<
typename WaitHandler>

void-or-deduced async_wait(
WaitHandler handler);

This function may be used to initiate an asynchronous wait against the timer. It always returns immediately.

For each call to async_wait(), the supplied handler will be called exactly once. The handler will be called when:

• The timer has expired.

• The timer was cancelled, in which case the handler is passed the error code boost::asio::error::operation_aborted.

Parameters

handler The handler to be called when the timer expires. Copies will be made of the handler as required. The function signature
of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation.

);

677

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

basic_waitable_timer::basic_waitable_timer

Constructor.

explicit basic_waitable_timer(
boost::asio::io_service & io_service);

» more...

Constructor to set a particular expiry time as an absolute time.

basic_waitable_timer(
boost::asio::io_service & io_service,
const time_point & expiry_time);

» more...

Constructor to set a particular expiry time relative to now.

basic_waitable_timer(
boost::asio::io_service & io_service,
const duration & expiry_time);

» more...

basic_waitable_timer::basic_waitable_timer (1 of 3 overloads)

Constructor.

basic_waitable_timer(
boost::asio::io_service & io_service);

This constructor creates a timer without setting an expiry time. The expires_at() or expires_from_now() functions must be
called to set an expiry time before the timer can be waited on.

Parameters

io_service The io_service object that the timer will use to dispatch handlers for any asynchronous operations performed
on the timer.

basic_waitable_timer::basic_waitable_timer (2 of 3 overloads)

Constructor to set a particular expiry time as an absolute time.

basic_waitable_timer(
boost::asio::io_service & io_service,
const time_point & expiry_time);

This constructor creates a timer and sets the expiry time.

Parameters

io_service The io_service object that the timer will use to dispatch handlers for any asynchronous operations performed
on the timer.

expiry_time The expiry time to be used for the timer, expressed as an absolute time.

678

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_waitable_timer::basic_waitable_timer (3 of 3 overloads)

Constructor to set a particular expiry time relative to now.

basic_waitable_timer(
boost::asio::io_service & io_service,
const duration & expiry_time);

This constructor creates a timer and sets the expiry time.

Parameters

io_service The io_service object that the timer will use to dispatch handlers for any asynchronous operations performed
on the timer.

expiry_time The expiry time to be used for the timer, relative to now.

basic_waitable_timer::cancel

Cancel any asynchronous operations that are waiting on the timer.

std::size_t cancel();
» more...

std::size_t cancel(
boost::system::error_code & ec);

» more...

basic_waitable_timer::cancel (1 of 2 overloads)

Cancel any asynchronous operations that are waiting on the timer.

std::size_t cancel();

This function forces the completion of any pending asynchronous wait operations against the timer. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Cancelling the timer does not change the expiry time.

Return Value

The number of asynchronous operations that were cancelled.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

If the timer has already expired when cancel() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

679

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_waitable_timer::cancel (2 of 2 overloads)

Cancel any asynchronous operations that are waiting on the timer.

std::size_t cancel(
boost::system::error_code & ec);

This function forces the completion of any pending asynchronous wait operations against the timer. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Cancelling the timer does not change the expiry time.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of asynchronous operations that were cancelled.

Remarks

If the timer has already expired when cancel() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

basic_waitable_timer::cancel_one

Cancels one asynchronous operation that is waiting on the timer.

std::size_t cancel_one();
» more...

std::size_t cancel_one(
boost::system::error_code & ec);

» more...

basic_waitable_timer::cancel_one (1 of 2 overloads)

Cancels one asynchronous operation that is waiting on the timer.

std::size_t cancel_one();

This function forces the completion of one pending asynchronous wait operation against the timer. Handlers are cancelled in FIFO
order. The handler for the cancelled operation will be invoked with the boost::asio::error::operation_aborted error code.

Cancelling the timer does not change the expiry time.

Return Value

The number of asynchronous operations that were cancelled. That is, either 0 or 1.

680

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Remarks

If the timer has already expired when cancel_one() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

basic_waitable_timer::cancel_one (2 of 2 overloads)

Cancels one asynchronous operation that is waiting on the timer.

std::size_t cancel_one(
boost::system::error_code & ec);

This function forces the completion of one pending asynchronous wait operation against the timer. Handlers are cancelled in FIFO
order. The handler for the cancelled operation will be invoked with the boost::asio::error::operation_aborted error code.

Cancelling the timer does not change the expiry time.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of asynchronous operations that were cancelled. That is, either 0 or 1.

Remarks

If the timer has already expired when cancel_one() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

basic_waitable_timer::clock_type

The clock type.

typedef Clock clock_type;

Requirements

Header: boost/asio/basic_waitable_timer.hpp

Convenience header: boost/asio.hpp

681

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_waitable_timer::duration

The duration type of the clock.

typedef clock_type::duration duration;

Requirements

Header: boost/asio/basic_waitable_timer.hpp

Convenience header: boost/asio.hpp

basic_waitable_timer::expires_at

Get the timer's expiry time as an absolute time.

time_point expires_at() const;
» more...

Set the timer's expiry time as an absolute time.

std::size_t expires_at(
const time_point & expiry_time);

» more...

std::size_t expires_at(
const time_point & expiry_time,
boost::system::error_code & ec);

» more...

basic_waitable_timer::expires_at (1 of 3 overloads)

Get the timer's expiry time as an absolute time.

time_point expires_at() const;

This function may be used to obtain the timer's current expiry time. Whether the timer has expired or not does not affect this value.

basic_waitable_timer::expires_at (2 of 3 overloads)

Set the timer's expiry time as an absolute time.

std::size_t expires_at(
const time_point & expiry_time);

This function sets the expiry time. Any pending asynchronous wait operations will be cancelled. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Parameters

expiry_time The expiry time to be used for the timer.

Return Value

The number of asynchronous operations that were cancelled.

682

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Remarks

If the timer has already expired when expires_at() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

basic_waitable_timer::expires_at (3 of 3 overloads)

Set the timer's expiry time as an absolute time.

std::size_t expires_at(
const time_point & expiry_time,
boost::system::error_code & ec);

This function sets the expiry time. Any pending asynchronous wait operations will be cancelled. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Parameters

expiry_time The expiry time to be used for the timer.

ec Set to indicate what error occurred, if any.

Return Value

The number of asynchronous operations that were cancelled.

Remarks

If the timer has already expired when expires_at() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

basic_waitable_timer::expires_from_now

Get the timer's expiry time relative to now.

duration expires_from_now() const;
» more...

Set the timer's expiry time relative to now.

683

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t expires_from_now(
const duration & expiry_time);

» more...

std::size_t expires_from_now(
const duration & expiry_time,
boost::system::error_code & ec);

» more...

basic_waitable_timer::expires_from_now (1 of 3 overloads)

Get the timer's expiry time relative to now.

duration expires_from_now() const;

This function may be used to obtain the timer's current expiry time. Whether the timer has expired or not does not affect this value.

basic_waitable_timer::expires_from_now (2 of 3 overloads)

Set the timer's expiry time relative to now.

std::size_t expires_from_now(
const duration & expiry_time);

This function sets the expiry time. Any pending asynchronous wait operations will be cancelled. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Parameters

expiry_time The expiry time to be used for the timer.

Return Value

The number of asynchronous operations that were cancelled.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

If the timer has already expired when expires_from_now() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

basic_waitable_timer::expires_from_now (3 of 3 overloads)

Set the timer's expiry time relative to now.

std::size_t expires_from_now(
const duration & expiry_time,
boost::system::error_code & ec);

684

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This function sets the expiry time. Any pending asynchronous wait operations will be cancelled. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

Parameters

expiry_time The expiry time to be used for the timer.

ec Set to indicate what error occurred, if any.

Return Value

The number of asynchronous operations that were cancelled.

Remarks

If the timer has already expired when expires_from_now() is called, then the handlers for asynchronous wait operations will:

• have already been invoked; or

• have been queued for invocation in the near future.

These handlers can no longer be cancelled, and therefore are passed an error code that indicates the successful completion of the
wait operation.

basic_waitable_timer::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

basic_waitable_timer::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

basic_waitable_timer::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

basic_waitable_timer::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

685

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

basic_waitable_timer::get_service

Get the service associated with the I/O object.

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

basic_waitable_timer::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

service_type & get_service();

basic_waitable_timer::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

basic_waitable_timer::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

basic_waitable_timer::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/basic_waitable_timer.hpp

Convenience header: boost/asio.hpp

686

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_waitable_timer::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

Remarks

Available only for services that do not support movability.

basic_waitable_timer::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef WaitableTimerService service_type;

Requirements

Header: boost/asio/basic_waitable_timer.hpp

Convenience header: boost/asio.hpp

basic_waitable_timer::time_point

The time point type of the clock.

typedef clock_type::time_point time_point;

Requirements

Header: boost/asio/basic_waitable_timer.hpp

Convenience header: boost/asio.hpp

basic_waitable_timer::traits_type

The wait traits type.

typedef WaitTraits traits_type;

Requirements

Header: boost/asio/basic_waitable_timer.hpp

Convenience header: boost/asio.hpp

basic_waitable_timer::wait

Perform a blocking wait on the timer.

687

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void wait();
» more...

void wait(
boost::system::error_code & ec);

» more...

basic_waitable_timer::wait (1 of 2 overloads)

Perform a blocking wait on the timer.

void wait();

This function is used to wait for the timer to expire. This function blocks and does not return until the timer has expired.

Exceptions

boost::system::system_error Thrown on failure.

basic_waitable_timer::wait (2 of 2 overloads)

Perform a blocking wait on the timer.

void wait(
boost::system::error_code & ec);

This function is used to wait for the timer to expire. This function blocks and does not return until the timer has expired.

Parameters

ec Set to indicate what error occurred, if any.

basic_yield_context
Context object the represents the currently executing coroutine.

template<
typename Handler>

class basic_yield_context

Types

DescriptionName

The coroutine callee type, used by the implementation.callee_type

The coroutine caller type, used by the implementation.caller_type

688

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Construct a yield context to represent the specified coroutine.basic_yield_context

Return a yield context that sets the specified error_code.operator[]

The basic_yield_context class is used to represent the currently executing stackful coroutine. A basic_yield_context may
be passed as a handler to an asynchronous operation. For example:

template <typename Handler>
void my_coroutine(basic_yield_context<Handler> yield)
{
...
std::size_t n = my_socket.async_read_some(buffer, yield);
...

}

The initiating function (async_read_some in the above example) suspends the current coroutine. The coroutine is resumed when the
asynchronous operation completes, and the result of the operation is returned.

Requirements

Header: boost/asio/spawn.hpp

Convenience header: boost/asio.hpp

basic_yield_context::basic_yield_context

Construct a yield context to represent the specified coroutine.

basic_yield_context(
const detail::weak_ptr< callee_type > & coro,
caller_type & ca,
Handler & handler);

Most applications do not need to use this constructor. Instead, the spawn() function passes a yield context as an argument to the
coroutine function.

basic_yield_context::callee_type

The coroutine callee type, used by the implementation.

typedef implementation_defined callee_type;

When using Boost.Coroutine v1, this type is:

typename coroutine<void()>

When using Boost.Coroutine v2 (unidirectional coroutines), this type is:

push_coroutine<void>

689

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/spawn.hpp

Convenience header: boost/asio.hpp

basic_yield_context::caller_type

The coroutine caller type, used by the implementation.

typedef implementation_defined caller_type;

When using Boost.Coroutine v1, this type is:

typename coroutine<void()>::caller_type

When using Boost.Coroutine v2 (unidirectional coroutines), this type is:

pull_coroutine<void>

Requirements

Header: boost/asio/spawn.hpp

Convenience header: boost/asio.hpp

basic_yield_context::operator[]

Return a yield context that sets the specified error_code.

basic_yield_context operator[](
boost::system::error_code & ec) const;

By default, when a yield context is used with an asynchronous operation, a non-success error_code is converted to system_error and
thrown. This operator may be used to specify an error_code object that should instead be set with the asynchronous operation's result.
For example:

template <typename Handler>
void my_coroutine(basic_yield_context<Handler> yield)
{
...
std::size_t n = my_socket.async_read_some(buffer, yield[ec]);
if (ec)
{
// An error occurred.

}
...

}

buffer
The boost::asio::buffer function is used to create a buffer object to represent raw memory, an array of POD elements, a vector
of POD elements, or a std::string.

690

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

mutable_buffers_1 buffer(
const mutable_buffer & b);

» more...

mutable_buffers_1 buffer(
const mutable_buffer & b,
std::size_t max_size_in_bytes);

» more...

const_buffers_1 buffer(
const const_buffer & b);

» more...

const_buffers_1 buffer(
const const_buffer & b,
std::size_t max_size_in_bytes);

» more...

mutable_buffers_1 buffer(
void * data,
std::size_t size_in_bytes);

» more...

const_buffers_1 buffer(
const void * data,
std::size_t size_in_bytes);

» more...

template<
typename PodType,
std::size_t N>

mutable_buffers_1 buffer(
PodType (&data)[N]);

» more...

template<
typename PodType,
std::size_t N>

mutable_buffers_1 buffer(
PodType (&data)[N],
std::size_t max_size_in_bytes);

» more...

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
const PodType (&data)[N]);

» more...

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
const PodType (&data)[N],
std::size_t max_size_in_bytes);

» more...

template<
typename PodType,
std::size_t N>

mutable_buffers_1 buffer(
boost::array< PodType, N > & data);

691

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

» more...

template<
typename PodType,
std::size_t N>

mutable_buffers_1 buffer(
boost::array< PodType, N > & data,
std::size_t max_size_in_bytes);

» more...

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
boost::array< const PodType, N > & data);

» more...

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
boost::array< const PodType, N > & data,
std::size_t max_size_in_bytes);

» more...

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
const boost::array< PodType, N > & data);

» more...

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
const boost::array< PodType, N > & data,
std::size_t max_size_in_bytes);

» more...

template<
typename PodType,
std::size_t N>

mutable_buffers_1 buffer(
std::array< PodType, N > & data);

» more...

template<
typename PodType,
std::size_t N>

mutable_buffers_1 buffer(
std::array< PodType, N > & data,
std::size_t max_size_in_bytes);

» more...

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
std::array< const PodType, N > & data);

» more...

template<

692

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typename PodType,
std::size_t N>

const_buffers_1 buffer(
std::array< const PodType, N > & data,
std::size_t max_size_in_bytes);

» more...

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
const std::array< PodType, N > & data);

» more...

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
const std::array< PodType, N > & data,
std::size_t max_size_in_bytes);

» more...

template<
typename PodType,
typename Allocator>

mutable_buffers_1 buffer(
std::vector< PodType, Allocator > & data);

» more...

template<
typename PodType,
typename Allocator>

mutable_buffers_1 buffer(
std::vector< PodType, Allocator > & data,
std::size_t max_size_in_bytes);

» more...

template<
typename PodType,
typename Allocator>

const_buffers_1 buffer(
const std::vector< PodType, Allocator > & data);

» more...

template<
typename PodType,
typename Allocator>

const_buffers_1 buffer(
const std::vector< PodType, Allocator > & data,
std::size_t max_size_in_bytes);

» more...

template<
typename Elem,
typename Traits,
typename Allocator>

const_buffers_1 buffer(
const std::basic_string< Elem, Traits, Allocator > & data);

» more...

template<
typename Elem,

693

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typename Traits,
typename Allocator>

const_buffers_1 buffer(
const std::basic_string< Elem, Traits, Allocator > & data,
std::size_t max_size_in_bytes);

» more...

A buffer object represents a contiguous region of memory as a 2-tuple consisting of a pointer and size in bytes. A tuple of the form
{void*, size_t} specifies a mutable (modifiable) region of memory. Similarly, a tuple of the form {const void*, size_t}

specifies a const (non-modifiable) region of memory. These two forms correspond to the classes mutable_buffer and
const_buffer, respectively. To mirror C++'s conversion rules, a mutable_buffer is implicitly convertible to a const_buffer,
and the opposite conversion is not permitted.

The simplest use case involves reading or writing a single buffer of a specified size:

sock.send(boost::asio::buffer(data, size));

In the above example, the return value of boost::asio::buffer meets the requirements of the ConstBufferSequence concept so
that it may be directly passed to the socket's write function. A buffer created for modifiable memory also meets the requirements of
the MutableBufferSequence concept.

An individual buffer may be created from a builtin array, std::vector, std::array or boost::array of POD elements. This helps prevent
buffer overruns by automatically determining the size of the buffer:

char d1[128];
size_t bytes_transferred = sock.receive(boost::asio::buffer(d1));

std::vector<char> d2(128);
bytes_transferred = sock.receive(boost::asio::buffer(d2));

std::array<char, 128> d3;
bytes_transferred = sock.receive(boost::asio::buffer(d3));

boost::array<char, 128> d4;
bytes_transferred = sock.receive(boost::asio::buffer(d4));

In all three cases above, the buffers created are exactly 128 bytes long. Note that a vector is never automatically resized when creating
or using a buffer. The buffer size is determined using the vector's size() member function, and not its capacity.

Accessing Buffer Contents

The contents of a buffer may be accessed using the buffer_size and buffer_cast functions:

boost::asio::mutable_buffer b1 = ...;
std::size_t s1 = boost::asio::buffer_size(b1);
unsigned char* p1 = boost::asio::buffer_cast<unsigned char*>(b1);

boost::asio::const_buffer b2 = ...;
std::size_t s2 = boost::asio::buffer_size(b2);
const void* p2 = boost::asio::buffer_cast<const void*>(b2);

The boost::asio::buffer_cast function permits violations of type safety, so uses of it in application code should be carefully
considered.

For convenience, the buffer_size function also works on buffer sequences (that is, types meeting the ConstBufferSequence or
MutableBufferSequence type requirements). In this case, the function returns the total size of all buffers in the sequence.

694

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Buffer Copying

The buffer_copy function may be used to copy raw bytes between individual buffers and buffer sequences.

In particular, when used with the buffer_size , the buffer_copy function can be used to linearise a sequence of buffers. For
example:

vector<const_buffer> buffers = ...;

vector<unsigned char> data(boost::asio::buffer_size(buffers));
boost::asio::buffer_copy(boost::asio::buffer(data), buffers);

Note that buffer_copy is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping
memory regions.

Buffer Invalidation

A buffer object does not have any ownership of the memory it refers to. It is the responsibility of the application to ensure the memory
region remains valid until it is no longer required for an I/O operation. When the memory is no longer available, the buffer is said
to have been invalidated.

For the boost::asio::buffer overloads that accept an argument of type std::vector, the buffer objects returned are invalidated
by any vector operation that also invalidates all references, pointers and iterators referring to the elements in the sequence (C++ Std,
23.2.4)

For the boost::asio::buffer overloads that accept an argument of type std::basic_string, the buffer objects returned are inval-
idated according to the rules defined for invalidation of references, pointers and iterators referring to elements of the sequence (C++
Std, 21.3).

Buffer Arithmetic

Buffer objects may be manipulated using simple arithmetic in a safe way which helps prevent buffer overruns. Consider an array
initialised as follows:

boost::array<char, 6> a = { 'a', 'b', 'c', 'd', 'e' };

A buffer object b1 created using:

b1 = boost::asio::buffer(a);

represents the entire array, { 'a', 'b', 'c', 'd', 'e' }. An optional second argument to the boost::asio::buffer
function may be used to limit the size, in bytes, of the buffer:

b2 = boost::asio::buffer(a, 3);

such that b2 represents the data { 'a', 'b', 'c' }. Even if the size argument exceeds the actual size of the array, the size of
the buffer object created will be limited to the array size.

An offset may be applied to an existing buffer to create a new one:

b3 = b1 + 2;

where b3 will set to represent { 'c', 'd', 'e' }. If the offset exceeds the size of the existing buffer, the newly created buffer
will be empty.

Both an offset and size may be specified to create a buffer that corresponds to a specific range of bytes within an existing buffer:

695

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

b4 = boost::asio::buffer(b1 + 1, 3);

so that b4 will refer to the bytes { 'b', 'c', 'd' }.

Buffers and Scatter-Gather I/O

To read or write using multiple buffers (i.e. scatter-gather I/O), multiple buffer objects may be assigned into a container that supports
the MutableBufferSequence (for read) or ConstBufferSequence (for write) concepts:

char d1[128];
std::vector<char> d2(128);
boost::array<char, 128> d3;

boost::array<mutable_buffer, 3> bufs1 = {
boost::asio::buffer(d1),
boost::asio::buffer(d2),
boost::asio::buffer(d3) };

bytes_transferred = sock.receive(bufs1);

std::vector<const_buffer> bufs2;
bufs2.push_back(boost::asio::buffer(d1));
bufs2.push_back(boost::asio::buffer(d2));
bufs2.push_back(boost::asio::buffer(d3));
bytes_transferred = sock.send(bufs2);

Requirements

Header: boost/asio/buffer.hpp

Convenience header: boost/asio.hpp

buffer (1 of 28 overloads)

Create a new modifiable buffer from an existing buffer.

mutable_buffers_1 buffer(
const mutable_buffer & b);

Return Value

mutable_buffers_1(b).

buffer (2 of 28 overloads)

Create a new modifiable buffer from an existing buffer.

mutable_buffers_1 buffer(
const mutable_buffer & b,
std::size_t max_size_in_bytes);

Return Value

A mutable_buffers_1 value equivalent to:

mutable_buffers_1(
buffer_cast<void*>(b),
min(buffer_size(b), max_size_in_bytes));

696

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffer (3 of 28 overloads)

Create a new non-modifiable buffer from an existing buffer.

const_buffers_1 buffer(
const const_buffer & b);

Return Value

const_buffers_1(b).

buffer (4 of 28 overloads)

Create a new non-modifiable buffer from an existing buffer.

const_buffers_1 buffer(
const const_buffer & b,
std::size_t max_size_in_bytes);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
buffer_cast<const void*>(b),
min(buffer_size(b), max_size_in_bytes));

buffer (5 of 28 overloads)

Create a new modifiable buffer that represents the given memory range.

mutable_buffers_1 buffer(
void * data,
std::size_t size_in_bytes);

Return Value

mutable_buffers_1(data, size_in_bytes).

buffer (6 of 28 overloads)

Create a new non-modifiable buffer that represents the given memory range.

const_buffers_1 buffer(
const void * data,
std::size_t size_in_bytes);

Return Value

const_buffers_1(data, size_in_bytes).

buffer (7 of 28 overloads)

Create a new modifiable buffer that represents the given POD array.

697

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename PodType,
std::size_t N>

mutable_buffers_1 buffer(
PodType (&data)[N]);

Return Value

A mutable_buffers_1 value equivalent to:

mutable_buffers_1(
static_cast<void*>(data),
N * sizeof(PodType));

buffer (8 of 28 overloads)

Create a new modifiable buffer that represents the given POD array.

template<
typename PodType,
std::size_t N>

mutable_buffers_1 buffer(
PodType (&data)[N],
std::size_t max_size_in_bytes);

Return Value

A mutable_buffers_1 value equivalent to:

mutable_buffers_1(
static_cast<void*>(data),
min(N * sizeof(PodType), max_size_in_bytes));

buffer (9 of 28 overloads)

Create a new non-modifiable buffer that represents the given POD array.

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
const PodType (&data)[N]);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
static_cast<const void*>(data),
N * sizeof(PodType));

buffer (10 of 28 overloads)

Create a new non-modifiable buffer that represents the given POD array.

698

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
const PodType (&data)[N],
std::size_t max_size_in_bytes);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
static_cast<const void*>(data),
min(N * sizeof(PodType), max_size_in_bytes));

buffer (11 of 28 overloads)

Create a new modifiable buffer that represents the given POD array.

template<
typename PodType,
std::size_t N>

mutable_buffers_1 buffer(
boost::array< PodType, N > & data);

Return Value

A mutable_buffers_1 value equivalent to:

mutable_buffers_1(
data.data(),
data.size() * sizeof(PodType));

buffer (12 of 28 overloads)

Create a new modifiable buffer that represents the given POD array.

template<
typename PodType,
std::size_t N>

mutable_buffers_1 buffer(
boost::array< PodType, N > & data,
std::size_t max_size_in_bytes);

Return Value

A mutable_buffers_1 value equivalent to:

mutable_buffers_1(
data.data(),
min(data.size() * sizeof(PodType), max_size_in_bytes));

buffer (13 of 28 overloads)

Create a new non-modifiable buffer that represents the given POD array.

699

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
boost::array< const PodType, N > & data);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
data.data(),
data.size() * sizeof(PodType));

buffer (14 of 28 overloads)

Create a new non-modifiable buffer that represents the given POD array.

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
boost::array< const PodType, N > & data,
std::size_t max_size_in_bytes);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
data.data(),
min(data.size() * sizeof(PodType), max_size_in_bytes));

buffer (15 of 28 overloads)

Create a new non-modifiable buffer that represents the given POD array.

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
const boost::array< PodType, N > & data);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
data.data(),
data.size() * sizeof(PodType));

buffer (16 of 28 overloads)

Create a new non-modifiable buffer that represents the given POD array.

700

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
const boost::array< PodType, N > & data,
std::size_t max_size_in_bytes);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
data.data(),
min(data.size() * sizeof(PodType), max_size_in_bytes));

buffer (17 of 28 overloads)

Create a new modifiable buffer that represents the given POD array.

template<
typename PodType,
std::size_t N>

mutable_buffers_1 buffer(
std::array< PodType, N > & data);

Return Value

A mutable_buffers_1 value equivalent to:

mutable_buffers_1(
data.data(),
data.size() * sizeof(PodType));

buffer (18 of 28 overloads)

Create a new modifiable buffer that represents the given POD array.

template<
typename PodType,
std::size_t N>

mutable_buffers_1 buffer(
std::array< PodType, N > & data,
std::size_t max_size_in_bytes);

Return Value

A mutable_buffers_1 value equivalent to:

mutable_buffers_1(
data.data(),
min(data.size() * sizeof(PodType), max_size_in_bytes));

buffer (19 of 28 overloads)

Create a new non-modifiable buffer that represents the given POD array.

701

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
std::array< const PodType, N > & data);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
data.data(),
data.size() * sizeof(PodType));

buffer (20 of 28 overloads)

Create a new non-modifiable buffer that represents the given POD array.

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
std::array< const PodType, N > & data,
std::size_t max_size_in_bytes);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
data.data(),
min(data.size() * sizeof(PodType), max_size_in_bytes));

buffer (21 of 28 overloads)

Create a new non-modifiable buffer that represents the given POD array.

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
const std::array< PodType, N > & data);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
data.data(),
data.size() * sizeof(PodType));

buffer (22 of 28 overloads)

Create a new non-modifiable buffer that represents the given POD array.

702

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename PodType,
std::size_t N>

const_buffers_1 buffer(
const std::array< PodType, N > & data,
std::size_t max_size_in_bytes);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
data.data(),
min(data.size() * sizeof(PodType), max_size_in_bytes));

buffer (23 of 28 overloads)

Create a new modifiable buffer that represents the given POD vector.

template<
typename PodType,
typename Allocator>

mutable_buffers_1 buffer(
std::vector< PodType, Allocator > & data);

Return Value

A mutable_buffers_1 value equivalent to:

mutable_buffers_1(
data.size() ? &data[0] : 0,
data.size() * sizeof(PodType));

Remarks

The buffer is invalidated by any vector operation that would also invalidate iterators.

buffer (24 of 28 overloads)

Create a new modifiable buffer that represents the given POD vector.

template<
typename PodType,
typename Allocator>

mutable_buffers_1 buffer(
std::vector< PodType, Allocator > & data,
std::size_t max_size_in_bytes);

Return Value

A mutable_buffers_1 value equivalent to:

mutable_buffers_1(
data.size() ? &data[0] : 0,
min(data.size() * sizeof(PodType), max_size_in_bytes));

703

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The buffer is invalidated by any vector operation that would also invalidate iterators.

buffer (25 of 28 overloads)

Create a new non-modifiable buffer that represents the given POD vector.

template<
typename PodType,
typename Allocator>

const_buffers_1 buffer(
const std::vector< PodType, Allocator > & data);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
data.size() ? &data[0] : 0,
data.size() * sizeof(PodType));

Remarks

The buffer is invalidated by any vector operation that would also invalidate iterators.

buffer (26 of 28 overloads)

Create a new non-modifiable buffer that represents the given POD vector.

template<
typename PodType,
typename Allocator>

const_buffers_1 buffer(
const std::vector< PodType, Allocator > & data,
std::size_t max_size_in_bytes);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
data.size() ? &data[0] : 0,
min(data.size() * sizeof(PodType), max_size_in_bytes));

Remarks

The buffer is invalidated by any vector operation that would also invalidate iterators.

buffer (27 of 28 overloads)

Create a new non-modifiable buffer that represents the given string.

704

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Elem,
typename Traits,
typename Allocator>

const_buffers_1 buffer(
const std::basic_string< Elem, Traits, Allocator > & data);

Return Value

const_buffers_1(data.data(), data.size() * sizeof(Elem)).

Remarks

The buffer is invalidated by any non-const operation called on the given string object.

buffer (28 of 28 overloads)

Create a new non-modifiable buffer that represents the given string.

template<
typename Elem,
typename Traits,
typename Allocator>

const_buffers_1 buffer(
const std::basic_string< Elem, Traits, Allocator > & data,
std::size_t max_size_in_bytes);

Return Value

A const_buffers_1 value equivalent to:

const_buffers_1(
data.data(),
min(data.size() * sizeof(Elem), max_size_in_bytes));

Remarks

The buffer is invalidated by any non-const operation called on the given string object.

buffer_cast
The boost::asio::buffer_cast function is used to obtain a pointer to the underlying memory region associated with a buffer.

template<
typename PointerToPodType>

PointerToPodType buffer_cast(
const mutable_buffer & b);

» more...

template<
typename PointerToPodType>

PointerToPodType buffer_cast(
const const_buffer & b);

» more...

Examples:

To access the memory of a non-modifiable buffer, use:

705

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::const_buffer b1 = ...;
const unsigned char* p1 = boost::asio::buffer_cast<const unsigned char*>(b1);

To access the memory of a modifiable buffer, use:

boost::asio::mutable_buffer b2 = ...;
unsigned char* p2 = boost::asio::buffer_cast<unsigned char*>(b2);

The boost::asio::buffer_cast function permits violations of type safety, so uses of it in application code should be carefully
considered.

Requirements

Header: boost/asio/buffer.hpp

Convenience header: boost/asio.hpp

buffer_cast (1 of 2 overloads)

Cast a non-modifiable buffer to a specified pointer to POD type.

template<
typename PointerToPodType>

PointerToPodType buffer_cast(
const mutable_buffer & b);

buffer_cast (2 of 2 overloads)

Cast a non-modifiable buffer to a specified pointer to POD type.

template<
typename PointerToPodType>

PointerToPodType buffer_cast(
const const_buffer & b);

buffer_copy
The boost::asio::buffer_copy function is used to copy bytes from a source buffer (or buffer sequence) to a target buffer (or
buffer sequence).

706

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t buffer_copy(
const mutable_buffer & target,
const const_buffer & source);

» more...

std::size_t buffer_copy(
const mutable_buffer & target,
const const_buffers_1 & source);

» more...

std::size_t buffer_copy(
const mutable_buffer & target,
const mutable_buffer & source);

» more...

std::size_t buffer_copy(
const mutable_buffer & target,
const mutable_buffers_1 & source);

» more...

template<
typename ConstBufferSequence>

std::size_t buffer_copy(
const mutable_buffer & target,
const ConstBufferSequence & source);

» more...

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const const_buffer & source);

» more...

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const const_buffers_1 & source);

» more...

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const mutable_buffer & source);

» more...

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const mutable_buffers_1 & source);

» more...

template<
typename ConstBufferSequence>

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const ConstBufferSequence & source);

» more...

template<
typename MutableBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const const_buffer & source);

» more...

template<
typename MutableBufferSequence>

707

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t buffer_copy(
const MutableBufferSequence & target,
const const_buffers_1 & source);

» more...

template<
typename MutableBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const mutable_buffer & source);

» more...

template<
typename MutableBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const mutable_buffers_1 & source);

» more...

template<
typename MutableBufferSequence,
typename ConstBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const ConstBufferSequence & source);

» more...

std::size_t buffer_copy(
const mutable_buffer & target,
const const_buffer & source,
std::size_t max_bytes_to_copy);

» more...

std::size_t buffer_copy(
const mutable_buffer & target,
const const_buffers_1 & source,
std::size_t max_bytes_to_copy);

» more...

std::size_t buffer_copy(
const mutable_buffer & target,
const mutable_buffer & source,
std::size_t max_bytes_to_copy);

» more...

std::size_t buffer_copy(
const mutable_buffer & target,
const mutable_buffers_1 & source,
std::size_t max_bytes_to_copy);

» more...

template<
typename ConstBufferSequence>

std::size_t buffer_copy(
const mutable_buffer & target,
const ConstBufferSequence & source,
std::size_t max_bytes_to_copy);

» more...

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const const_buffer & source,
std::size_t max_bytes_to_copy);

708

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

» more...

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const const_buffers_1 & source,
std::size_t max_bytes_to_copy);

» more...

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const mutable_buffer & source,
std::size_t max_bytes_to_copy);

» more...

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const mutable_buffers_1 & source,
std::size_t max_bytes_to_copy);

» more...

template<
typename ConstBufferSequence>

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const ConstBufferSequence & source,
std::size_t max_bytes_to_copy);

» more...

template<
typename MutableBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const const_buffer & source,
std::size_t max_bytes_to_copy);

» more...

template<
typename MutableBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const const_buffers_1 & source,
std::size_t max_bytes_to_copy);

» more...

template<
typename MutableBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const mutable_buffer & source,
std::size_t max_bytes_to_copy);

» more...

template<
typename MutableBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const mutable_buffers_1 & source,
std::size_t max_bytes_to_copy);

» more...

template<
typename MutableBufferSequence,

709

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typename ConstBufferSequence>
std::size_t buffer_copy(

const MutableBufferSequence & target,
const ConstBufferSequence & source,
std::size_t max_bytes_to_copy);

» more...

The buffer_copy function is available in two forms:

• A 2-argument form: buffer_copy(target, source)

• A 3-argument form: buffer_copy(target, source, max_bytes_to_copy)

Both forms return the number of bytes actually copied. The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

• If specified, max_bytes_to_copy.

This prevents buffer overflow, regardless of the buffer sizes used in the copy operation.

Note that buffer_copy is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping
memory regions.

Requirements

Header: boost/asio/buffer.hpp

Convenience header: boost/asio.hpp

buffer_copy (1 of 30 overloads)

Copies bytes from a source buffer to a target buffer.

std::size_t buffer_copy(
const mutable_buffer & target,
const const_buffer & source);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A non-modifiable buffer representing the memory region from which the bytes will be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

710

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffer_copy (2 of 30 overloads)

Copies bytes from a source buffer to a target buffer.

std::size_t buffer_copy(
const mutable_buffer & target,
const const_buffers_1 & source);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A non-modifiable buffer representing the memory region from which the bytes will be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (3 of 30 overloads)

Copies bytes from a source buffer to a target buffer.

std::size_t buffer_copy(
const mutable_buffer & target,
const mutable_buffer & source);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A modifiable buffer representing the memory region from which the bytes will be copied. The contents of the source
buffer will not be modified.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

711

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffer_copy (4 of 30 overloads)

Copies bytes from a source buffer to a target buffer.

std::size_t buffer_copy(
const mutable_buffer & target,
const mutable_buffers_1 & source);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A modifiable buffer representing the memory region from which the bytes will be copied. The contents of the source
buffer will not be modified.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (5 of 30 overloads)

Copies bytes from a source buffer sequence to a target buffer.

template<
typename ConstBufferSequence>

std::size_t buffer_copy(
const mutable_buffer & target,
const ConstBufferSequence & source);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A non-modifiable buffer sequence representing the memory regions from which the bytes will be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

712

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffer_copy (6 of 30 overloads)

Copies bytes from a source buffer to a target buffer.

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const const_buffer & source);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A non-modifiable buffer representing the memory region from which the bytes will be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (7 of 30 overloads)

Copies bytes from a source buffer to a target buffer.

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const const_buffers_1 & source);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A non-modifiable buffer representing the memory region from which the bytes will be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (8 of 30 overloads)

Copies bytes from a source buffer to a target buffer.

713

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const mutable_buffer & source);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A modifiable buffer representing the memory region from which the bytes will be copied. The contents of the source
buffer will not be modified.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (9 of 30 overloads)

Copies bytes from a source buffer to a target buffer.

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const mutable_buffers_1 & source);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A modifiable buffer representing the memory region from which the bytes will be copied. The contents of the source
buffer will not be modified.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (10 of 30 overloads)

Copies bytes from a source buffer sequence to a target buffer.

714

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const ConstBufferSequence & source);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A non-modifiable buffer sequence representing the memory regions from which the bytes will be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (11 of 30 overloads)

Copies bytes from a source buffer to a target buffer sequence.

template<
typename MutableBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const const_buffer & source);

Parameters

target A modifiable buffer sequence representing the memory regions to which the bytes will be copied.

source A non-modifiable buffer representing the memory region from which the bytes will be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (12 of 30 overloads)

Copies bytes from a source buffer to a target buffer sequence.

715

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const const_buffers_1 & source);

Parameters

target A modifiable buffer sequence representing the memory regions to which the bytes will be copied.

source A non-modifiable buffer representing the memory region from which the bytes will be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (13 of 30 overloads)

Copies bytes from a source buffer to a target buffer sequence.

template<
typename MutableBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const mutable_buffer & source);

Parameters

target A modifiable buffer sequence representing the memory regions to which the bytes will be copied.

source A modifiable buffer representing the memory region from which the bytes will be copied. The contents of the source
buffer will not be modified.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (14 of 30 overloads)

Copies bytes from a source buffer to a target buffer sequence.

716

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const mutable_buffers_1 & source);

Parameters

target A modifiable buffer sequence representing the memory regions to which the bytes will be copied.

source A modifiable buffer representing the memory region from which the bytes will be copied. The contents of the source
buffer will not be modified.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (15 of 30 overloads)

Copies bytes from a source buffer sequence to a target buffer sequence.

template<
typename MutableBufferSequence,
typename ConstBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const ConstBufferSequence & source);

Parameters

target A modifiable buffer sequence representing the memory regions to which the bytes will be copied.

source A non-modifiable buffer sequence representing the memory regions from which the bytes will be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

717

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffer_copy (16 of 30 overloads)

Copies a limited number of bytes from a source buffer to a target buffer.

std::size_t buffer_copy(
const mutable_buffer & target,
const const_buffer & source,
std::size_t max_bytes_to_copy);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A non-modifiable buffer representing the memory region from which the bytes will be copied.

max_bytes_to_copy The maximum number of bytes to be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

• max_bytes_to_copy

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (17 of 30 overloads)

Copies a limited number of bytes from a source buffer to a target buffer.

std::size_t buffer_copy(
const mutable_buffer & target,
const const_buffers_1 & source,
std::size_t max_bytes_to_copy);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A non-modifiable buffer representing the memory region from which the bytes will be copied.

max_bytes_to_copy The maximum number of bytes to be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

718

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• buffer_size(source)

• max_bytes_to_copy

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (18 of 30 overloads)

Copies a limited number of bytes from a source buffer to a target buffer.

std::size_t buffer_copy(
const mutable_buffer & target,
const mutable_buffer & source,
std::size_t max_bytes_to_copy);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A modifiable buffer representing the memory region from which the bytes will be copied. The contents
of the source buffer will not be modified.

max_bytes_to_copy The maximum number of bytes to be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

• max_bytes_to_copy

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (19 of 30 overloads)

Copies a limited number of bytes from a source buffer to a target buffer.

std::size_t buffer_copy(
const mutable_buffer & target,
const mutable_buffers_1 & source,
std::size_t max_bytes_to_copy);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A modifiable buffer representing the memory region from which the bytes will be copied. The contents
of the source buffer will not be modified.

max_bytes_to_copy The maximum number of bytes to be copied.

719

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

• max_bytes_to_copy

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (20 of 30 overloads)

Copies a limited number of bytes from a source buffer sequence to a target buffer.

template<
typename ConstBufferSequence>

std::size_t buffer_copy(
const mutable_buffer & target,
const ConstBufferSequence & source,
std::size_t max_bytes_to_copy);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A non-modifiable buffer sequence representing the memory regions from which the bytes will be copied.

max_bytes_to_copy The maximum number of bytes to be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

• max_bytes_to_copy

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (21 of 30 overloads)

Copies a limited number of bytes from a source buffer to a target buffer.

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const const_buffer & source,
std::size_t max_bytes_to_copy);

720

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A non-modifiable buffer representing the memory region from which the bytes will be copied.

max_bytes_to_copy The maximum number of bytes to be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

• max_bytes_to_copy

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (22 of 30 overloads)

Copies a limited number of bytes from a source buffer to a target buffer.

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const const_buffers_1 & source,
std::size_t max_bytes_to_copy);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A non-modifiable buffer representing the memory region from which the bytes will be copied.

max_bytes_to_copy The maximum number of bytes to be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

• max_bytes_to_copy

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (23 of 30 overloads)

Copies a limited number of bytes from a source buffer to a target buffer.

721

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const mutable_buffer & source,
std::size_t max_bytes_to_copy);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A modifiable buffer representing the memory region from which the bytes will be copied. The contents
of the source buffer will not be modified.

max_bytes_to_copy The maximum number of bytes to be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

• max_bytes_to_copy

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (24 of 30 overloads)

Copies a limited number of bytes from a source buffer to a target buffer.

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const mutable_buffers_1 & source,
std::size_t max_bytes_to_copy);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A modifiable buffer representing the memory region from which the bytes will be copied. The contents
of the source buffer will not be modified.

max_bytes_to_copy The maximum number of bytes to be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

722

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• max_bytes_to_copy

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (25 of 30 overloads)

Copies a limited number of bytes from a source buffer sequence to a target buffer.

template<
typename ConstBufferSequence>

std::size_t buffer_copy(
const mutable_buffers_1 & target,
const ConstBufferSequence & source,
std::size_t max_bytes_to_copy);

Parameters

target A modifiable buffer representing the memory region to which the bytes will be copied.

source A non-modifiable buffer sequence representing the memory regions from which the bytes will be copied.

max_bytes_to_copy The maximum number of bytes to be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

• max_bytes_to_copy

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (26 of 30 overloads)

Copies a limited number of bytes from a source buffer to a target buffer sequence.

template<
typename MutableBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const const_buffer & source,
std::size_t max_bytes_to_copy);

Parameters

target A modifiable buffer sequence representing the memory regions to which the bytes will be copied.

source A non-modifiable buffer representing the memory region from which the bytes will be copied.

max_bytes_to_copy The maximum number of bytes to be copied.

723

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

• max_bytes_to_copy

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (27 of 30 overloads)

Copies a limited number of bytes from a source buffer to a target buffer sequence.

template<
typename MutableBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const const_buffers_1 & source,
std::size_t max_bytes_to_copy);

Parameters

target A modifiable buffer sequence representing the memory regions to which the bytes will be copied.

source A non-modifiable buffer representing the memory region from which the bytes will be copied.

max_bytes_to_copy The maximum number of bytes to be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

• max_bytes_to_copy

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (28 of 30 overloads)

Copies a limited number of bytes from a source buffer to a target buffer sequence.

724

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const mutable_buffer & source,
std::size_t max_bytes_to_copy);

Parameters

target A modifiable buffer sequence representing the memory regions to which the bytes will be copied.

source A modifiable buffer representing the memory region from which the bytes will be copied. The contents
of the source buffer will not be modified.

max_bytes_to_copy The maximum number of bytes to be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

• max_bytes_to_copy

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (29 of 30 overloads)

Copies a limited number of bytes from a source buffer to a target buffer sequence.

template<
typename MutableBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const mutable_buffers_1 & source,
std::size_t max_bytes_to_copy);

Parameters

target A modifiable buffer sequence representing the memory regions to which the bytes will be copied.

source A modifiable buffer representing the memory region from which the bytes will be copied. The contents
of the source buffer will not be modified.

max_bytes_to_copy The maximum number of bytes to be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

725

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• buffer_size(target)

• buffer_size(source)

• max_bytes_to_copy

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_copy (30 of 30 overloads)

Copies a limited number of bytes from a source buffer sequence to a target buffer sequence.

template<
typename MutableBufferSequence,
typename ConstBufferSequence>

std::size_t buffer_copy(
const MutableBufferSequence & target,
const ConstBufferSequence & source,
std::size_t max_bytes_to_copy);

Parameters

target A modifiable buffer sequence representing the memory regions to which the bytes will be copied.

source A non-modifiable buffer sequence representing the memory regions from which the bytes will be copied.

max_bytes_to_copy The maximum number of bytes to be copied.

Return Value

The number of bytes copied.

Remarks

The number of bytes copied is the lesser of:

• buffer_size(target)

• buffer_size(source)

• max_bytes_to_copy

This function is implemented in terms of memcpy, and consequently it cannot be used to copy between overlapping memory regions.

buffer_size
The boost::asio::buffer_size function determines the total number of bytes in a buffer or buffer sequence.

726

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t buffer_size(
const mutable_buffer & b);

» more...

std::size_t buffer_size(
const mutable_buffers_1 & b);

» more...

std::size_t buffer_size(
const const_buffer & b);

» more...

std::size_t buffer_size(
const const_buffers_1 & b);

» more...

template<
typename BufferSequence>

std::size_t buffer_size(
const BufferSequence & b);

» more...

Requirements

Header: boost/asio/buffer.hpp

Convenience header: boost/asio.hpp

buffer_size (1 of 5 overloads)

Get the number of bytes in a modifiable buffer.

std::size_t buffer_size(
const mutable_buffer & b);

buffer_size (2 of 5 overloads)

Get the number of bytes in a modifiable buffer.

std::size_t buffer_size(
const mutable_buffers_1 & b);

buffer_size (3 of 5 overloads)

Get the number of bytes in a non-modifiable buffer.

std::size_t buffer_size(
const const_buffer & b);

buffer_size (4 of 5 overloads)

Get the number of bytes in a non-modifiable buffer.

std::size_t buffer_size(
const const_buffers_1 & b);

727

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffer_size (5 of 5 overloads)

Get the total number of bytes in a buffer sequence.

template<
typename BufferSequence>

std::size_t buffer_size(
const BufferSequence & b);

The BufferSequence template parameter may meet either of the ConstBufferSequence or MutableBufferSequence type
requirements.

buffered_read_stream
Adds buffering to the read-related operations of a stream.

template<
typename Stream>

class buffered_read_stream :
noncopyable

Types

DescriptionName

The type of the lowest layer.lowest_layer_type

The type of the next layer.next_layer_type

728

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Start an asynchronous fill.async_fill

Start an asynchronous read. The buffer into which the data will
be read must be valid for the lifetime of the asynchronous oper-
ation.

async_read_some

Start an asynchronous write. The data being written must be
valid for the lifetime of the asynchronous operation.

async_write_some

Construct, passing the specified argument to initialise the next
layer.

buffered_read_stream

Close the stream.close

Fill the buffer with some data. Returns the number of bytes
placed in the buffer as a result of the operation. Throws an ex-
ception on failure.

Fill the buffer with some data. Returns the number of bytes
placed in the buffer as a result of the operation, or 0 if an error
occurred.

fill

Get the io_service associated with the object.get_io_service

Determine the amount of data that may be read without blocking.in_avail

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get a reference to the next layer.next_layer

Peek at the incoming data on the stream. Returns the number of
bytes read. Throws an exception on failure.

Peek at the incoming data on the stream. Returns the number of
bytes read, or 0 if an error occurred.

peek

Read some data from the stream. Returns the number of bytes
read. Throws an exception on failure.

Read some data from the stream. Returns the number of bytes
read or 0 if an error occurred.

read_some

Write the given data to the stream. Returns the number of bytes
written. Throws an exception on failure.

Write the given data to the stream. Returns the number of bytes
written, or 0 if an error occurred.

write_some

729

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

The default buffer size.default_buffer_size

The buffered_read_stream class template can be used to add buffering to the synchronous and asynchronous read operations
of a stream.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/buffered_read_stream.hpp

Convenience header: boost/asio.hpp

buffered_read_stream::async_fill

Start an asynchronous fill.

template<
typename ReadHandler>

void-or-deduced async_fill(
ReadHandler handler);

buffered_read_stream::async_read_some

Start an asynchronous read. The buffer into which the data will be read must be valid for the lifetime of the asynchronous operation.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read_some(
const MutableBufferSequence & buffers,
ReadHandler handler);

buffered_read_stream::async_write_some

Start an asynchronous write. The data being written must be valid for the lifetime of the asynchronous operation.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write_some(
const ConstBufferSequence & buffers,
WriteHandler handler);

buffered_read_stream::buffered_read_stream

Construct, passing the specified argument to initialise the next layer.

730

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Arg>

explicit buffered_read_stream(
Arg & a);

» more...

template<
typename Arg>

buffered_read_stream(
Arg & a,
std::size_t buffer_size);

» more...

buffered_read_stream::buffered_read_stream (1 of 2 overloads)

Construct, passing the specified argument to initialise the next layer.

template<
typename Arg>

buffered_read_stream(
Arg & a);

buffered_read_stream::buffered_read_stream (2 of 2 overloads)

Construct, passing the specified argument to initialise the next layer.

template<
typename Arg>

buffered_read_stream(
Arg & a,
std::size_t buffer_size);

buffered_read_stream::close

Close the stream.

void close();
» more...

boost::system::error_code close(
boost::system::error_code & ec);

» more...

buffered_read_stream::close (1 of 2 overloads)

Close the stream.

void close();

buffered_read_stream::close (2 of 2 overloads)

Close the stream.

boost::system::error_code close(
boost::system::error_code & ec);

731

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffered_read_stream::default_buffer_size

The default buffer size.

static const std::size_t default_buffer_size = implementation_defined;

buffered_read_stream::fill

Fill the buffer with some data. Returns the number of bytes placed in the buffer as a result of the operation. Throws an exception on
failure.

std::size_t fill();
» more...

Fill the buffer with some data. Returns the number of bytes placed in the buffer as a result of the operation, or 0 if an error occurred.

std::size_t fill(
boost::system::error_code & ec);

» more...

buffered_read_stream::fill (1 of 2 overloads)

Fill the buffer with some data. Returns the number of bytes placed in the buffer as a result of the operation. Throws an exception on
failure.

std::size_t fill();

buffered_read_stream::fill (2 of 2 overloads)

Fill the buffer with some data. Returns the number of bytes placed in the buffer as a result of the operation, or 0 if an error occurred.

std::size_t fill(
boost::system::error_code & ec);

buffered_read_stream::get_io_service

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

buffered_read_stream::in_avail

Determine the amount of data that may be read without blocking.

std::size_t in_avail();
» more...

std::size_t in_avail(
boost::system::error_code & ec);

» more...

buffered_read_stream::in_avail (1 of 2 overloads)

Determine the amount of data that may be read without blocking.

732

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t in_avail();

buffered_read_stream::in_avail (2 of 2 overloads)

Determine the amount of data that may be read without blocking.

std::size_t in_avail(
boost::system::error_code & ec);

buffered_read_stream::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();
» more...

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;
» more...

buffered_read_stream::lowest_layer (1 of 2 overloads)

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

buffered_read_stream::lowest_layer (2 of 2 overloads)

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

buffered_read_stream::lowest_layer_type

The type of the lowest layer.

typedef next_layer_type::lowest_layer_type lowest_layer_type;

Requirements

Header: boost/asio/buffered_read_stream.hpp

Convenience header: boost/asio.hpp

buffered_read_stream::next_layer

Get a reference to the next layer.

next_layer_type & next_layer();

733

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffered_read_stream::next_layer_type

The type of the next layer.

typedef remove_reference< Stream >::type next_layer_type;

Requirements

Header: boost/asio/buffered_read_stream.hpp

Convenience header: boost/asio.hpp

buffered_read_stream::peek

Peek at the incoming data on the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers);

» more...

Peek at the incoming data on the stream. Returns the number of bytes read, or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

» more...

buffered_read_stream::peek (1 of 2 overloads)

Peek at the incoming data on the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers);

buffered_read_stream::peek (2 of 2 overloads)

Peek at the incoming data on the stream. Returns the number of bytes read, or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

buffered_read_stream::read_some

Read some data from the stream. Returns the number of bytes read. Throws an exception on failure.

734

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

» more...

Read some data from the stream. Returns the number of bytes read or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

» more...

buffered_read_stream::read_some (1 of 2 overloads)

Read some data from the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

buffered_read_stream::read_some (2 of 2 overloads)

Read some data from the stream. Returns the number of bytes read or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

buffered_read_stream::write_some

Write the given data to the stream. Returns the number of bytes written. Throws an exception on failure.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

» more...

Write the given data to the stream. Returns the number of bytes written, or 0 if an error occurred.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

» more...

buffered_read_stream::write_some (1 of 2 overloads)

Write the given data to the stream. Returns the number of bytes written. Throws an exception on failure.

735

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

buffered_read_stream::write_some (2 of 2 overloads)

Write the given data to the stream. Returns the number of bytes written, or 0 if an error occurred.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

buffered_stream
Adds buffering to the read- and write-related operations of a stream.

template<
typename Stream>

class buffered_stream :
noncopyable

Types

DescriptionName

The type of the lowest layer.lowest_layer_type

The type of the next layer.next_layer_type

736

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

737

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Start an asynchronous fill.async_fill

Start an asynchronous flush.async_flush

Start an asynchronous read. The buffer into which the data will
be read must be valid for the lifetime of the asynchronous oper-
ation.

async_read_some

Start an asynchronous write. The data being written must be
valid for the lifetime of the asynchronous operation.

async_write_some

Construct, passing the specified argument to initialise the next
layer.

buffered_stream

Close the stream.close

Fill the buffer with some data. Returns the number of bytes
placed in the buffer as a result of the operation. Throws an ex-
ception on failure.

fill

Fill the buffer with some data. Returns the number of bytes
placed in the buffer as a result of the operation, or 0 if an error
occurred.

Flush all data from the buffer to the next layer. Returns the
number of bytes written to the next layer on the last write oper-
ation. Throws an exception on failure.

flush

Flush all data from the buffer to the next layer. Returns the
number of bytes written to the next layer on the last write oper-
ation, or 0 if an error occurred.

Get the io_service associated with the object.get_io_service

Determine the amount of data that may be read without blocking.in_avail

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

Get a reference to the next layer.next_layer

Peek at the incoming data on the stream. Returns the number of
bytes read. Throws an exception on failure.

peek

Peek at the incoming data on the stream. Returns the number of
bytes read, or 0 if an error occurred.

Read some data from the stream. Returns the number of bytes
read. Throws an exception on failure.

read_some

Read some data from the stream. Returns the number of bytes
read or 0 if an error occurred.

738

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Write the given data to the stream. Returns the number of bytes
written. Throws an exception on failure.

Write the given data to the stream. Returns the number of bytes
written, or 0 if an error occurred.

write_some

The buffered_stream class template can be used to add buffering to the synchronous and asynchronous read and write operations
of a stream.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/buffered_stream.hpp

Convenience header: boost/asio.hpp

buffered_stream::async_fill

Start an asynchronous fill.

template<
typename ReadHandler>

void-or-deduced async_fill(
ReadHandler handler);

buffered_stream::async_flush

Start an asynchronous flush.

template<
typename WriteHandler>

void-or-deduced async_flush(
WriteHandler handler);

buffered_stream::async_read_some

Start an asynchronous read. The buffer into which the data will be read must be valid for the lifetime of the asynchronous operation.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read_some(
const MutableBufferSequence & buffers,
ReadHandler handler);

buffered_stream::async_write_some

Start an asynchronous write. The data being written must be valid for the lifetime of the asynchronous operation.

739

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write_some(
const ConstBufferSequence & buffers,
WriteHandler handler);

buffered_stream::buffered_stream

Construct, passing the specified argument to initialise the next layer.

template<
typename Arg>

explicit buffered_stream(
Arg & a);

» more...

template<
typename Arg>

explicit buffered_stream(
Arg & a,
std::size_t read_buffer_size,
std::size_t write_buffer_size);

» more...

buffered_stream::buffered_stream (1 of 2 overloads)

Construct, passing the specified argument to initialise the next layer.

template<
typename Arg>

buffered_stream(
Arg & a);

buffered_stream::buffered_stream (2 of 2 overloads)

Construct, passing the specified argument to initialise the next layer.

template<
typename Arg>

buffered_stream(
Arg & a,
std::size_t read_buffer_size,
std::size_t write_buffer_size);

buffered_stream::close

Close the stream.

void close();
» more...

boost::system::error_code close(
boost::system::error_code & ec);

» more...

740

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffered_stream::close (1 of 2 overloads)

Close the stream.

void close();

buffered_stream::close (2 of 2 overloads)

Close the stream.

boost::system::error_code close(
boost::system::error_code & ec);

buffered_stream::fill

Fill the buffer with some data. Returns the number of bytes placed in the buffer as a result of the operation. Throws an exception on
failure.

std::size_t fill();
» more...

Fill the buffer with some data. Returns the number of bytes placed in the buffer as a result of the operation, or 0 if an error occurred.

std::size_t fill(
boost::system::error_code & ec);

» more...

buffered_stream::fill (1 of 2 overloads)

Fill the buffer with some data. Returns the number of bytes placed in the buffer as a result of the operation. Throws an exception on
failure.

std::size_t fill();

buffered_stream::fill (2 of 2 overloads)

Fill the buffer with some data. Returns the number of bytes placed in the buffer as a result of the operation, or 0 if an error occurred.

std::size_t fill(
boost::system::error_code & ec);

buffered_stream::flush

Flush all data from the buffer to the next layer. Returns the number of bytes written to the next layer on the last write operation.
Throws an exception on failure.

std::size_t flush();
» more...

Flush all data from the buffer to the next layer. Returns the number of bytes written to the next layer on the last write operation, or
0 if an error occurred.

741

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t flush(
boost::system::error_code & ec);

» more...

buffered_stream::flush (1 of 2 overloads)

Flush all data from the buffer to the next layer. Returns the number of bytes written to the next layer on the last write operation.
Throws an exception on failure.

std::size_t flush();

buffered_stream::flush (2 of 2 overloads)

Flush all data from the buffer to the next layer. Returns the number of bytes written to the next layer on the last write operation, or
0 if an error occurred.

std::size_t flush(
boost::system::error_code & ec);

buffered_stream::get_io_service

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

buffered_stream::in_avail

Determine the amount of data that may be read without blocking.

std::size_t in_avail();
» more...

std::size_t in_avail(
boost::system::error_code & ec);

» more...

buffered_stream::in_avail (1 of 2 overloads)

Determine the amount of data that may be read without blocking.

std::size_t in_avail();

buffered_stream::in_avail (2 of 2 overloads)

Determine the amount of data that may be read without blocking.

std::size_t in_avail(
boost::system::error_code & ec);

buffered_stream::lowest_layer

Get a reference to the lowest layer.

742

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

lowest_layer_type & lowest_layer();
» more...

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;
» more...

buffered_stream::lowest_layer (1 of 2 overloads)

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

buffered_stream::lowest_layer (2 of 2 overloads)

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

buffered_stream::lowest_layer_type

The type of the lowest layer.

typedef next_layer_type::lowest_layer_type lowest_layer_type;

Requirements

Header: boost/asio/buffered_stream.hpp

Convenience header: boost/asio.hpp

buffered_stream::next_layer

Get a reference to the next layer.

next_layer_type & next_layer();

buffered_stream::next_layer_type

The type of the next layer.

typedef remove_reference< Stream >::type next_layer_type;

Requirements

Header: boost/asio/buffered_stream.hpp

Convenience header: boost/asio.hpp

buffered_stream::peek

Peek at the incoming data on the stream. Returns the number of bytes read. Throws an exception on failure.

743

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers);

» more...

Peek at the incoming data on the stream. Returns the number of bytes read, or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

» more...

buffered_stream::peek (1 of 2 overloads)

Peek at the incoming data on the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers);

buffered_stream::peek (2 of 2 overloads)

Peek at the incoming data on the stream. Returns the number of bytes read, or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

buffered_stream::read_some

Read some data from the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

» more...

Read some data from the stream. Returns the number of bytes read or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

» more...

buffered_stream::read_some (1 of 2 overloads)

Read some data from the stream. Returns the number of bytes read. Throws an exception on failure.

744

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

buffered_stream::read_some (2 of 2 overloads)

Read some data from the stream. Returns the number of bytes read or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

buffered_stream::write_some

Write the given data to the stream. Returns the number of bytes written. Throws an exception on failure.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

» more...

Write the given data to the stream. Returns the number of bytes written, or 0 if an error occurred.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

» more...

buffered_stream::write_some (1 of 2 overloads)

Write the given data to the stream. Returns the number of bytes written. Throws an exception on failure.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

buffered_stream::write_some (2 of 2 overloads)

Write the given data to the stream. Returns the number of bytes written, or 0 if an error occurred.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

buffered_write_stream
Adds buffering to the write-related operations of a stream.

745

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Stream>

class buffered_write_stream :
noncopyable

Types

DescriptionName

The type of the lowest layer.lowest_layer_type

The type of the next layer.next_layer_type

746

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Start an asynchronous flush.async_flush

Start an asynchronous read. The buffer into which the data will
be read must be valid for the lifetime of the asynchronous oper-
ation.

async_read_some

Start an asynchronous write. The data being written must be
valid for the lifetime of the asynchronous operation.

async_write_some

Construct, passing the specified argument to initialise the next
layer.

buffered_write_stream

Close the stream.close

Flush all data from the buffer to the next layer. Returns the
number of bytes written to the next layer on the last write oper-
ation. Throws an exception on failure.

Flush all data from the buffer to the next layer. Returns the
number of bytes written to the next layer on the last write oper-
ation, or 0 if an error occurred.

flush

Get the io_service associated with the object.get_io_service

Determine the amount of data that may be read without blocking.in_avail

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

Get a reference to the next layer.next_layer

Peek at the incoming data on the stream. Returns the number of
bytes read. Throws an exception on failure.

Peek at the incoming data on the stream. Returns the number of
bytes read, or 0 if an error occurred.

peek

Read some data from the stream. Returns the number of bytes
read. Throws an exception on failure.

Read some data from the stream. Returns the number of bytes
read or 0 if an error occurred.

read_some

Write the given data to the stream. Returns the number of bytes
written. Throws an exception on failure.

Write the given data to the stream. Returns the number of bytes
written, or 0 if an error occurred and the error handler did not
throw.

write_some

747

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

The default buffer size.default_buffer_size

The buffered_write_stream class template can be used to add buffering to the synchronous and asynchronous write operations
of a stream.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/buffered_write_stream.hpp

Convenience header: boost/asio.hpp

buffered_write_stream::async_flush

Start an asynchronous flush.

template<
typename WriteHandler>

void-or-deduced async_flush(
WriteHandler handler);

buffered_write_stream::async_read_some

Start an asynchronous read. The buffer into which the data will be read must be valid for the lifetime of the asynchronous operation.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read_some(
const MutableBufferSequence & buffers,
ReadHandler handler);

buffered_write_stream::async_write_some

Start an asynchronous write. The data being written must be valid for the lifetime of the asynchronous operation.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write_some(
const ConstBufferSequence & buffers,
WriteHandler handler);

buffered_write_stream::buffered_write_stream

Construct, passing the specified argument to initialise the next layer.

748

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Arg>

explicit buffered_write_stream(
Arg & a);

» more...

template<
typename Arg>

buffered_write_stream(
Arg & a,
std::size_t buffer_size);

» more...

buffered_write_stream::buffered_write_stream (1 of 2 overloads)

Construct, passing the specified argument to initialise the next layer.

template<
typename Arg>

buffered_write_stream(
Arg & a);

buffered_write_stream::buffered_write_stream (2 of 2 overloads)

Construct, passing the specified argument to initialise the next layer.

template<
typename Arg>

buffered_write_stream(
Arg & a,
std::size_t buffer_size);

buffered_write_stream::close

Close the stream.

void close();
» more...

boost::system::error_code close(
boost::system::error_code & ec);

» more...

buffered_write_stream::close (1 of 2 overloads)

Close the stream.

void close();

buffered_write_stream::close (2 of 2 overloads)

Close the stream.

boost::system::error_code close(
boost::system::error_code & ec);

749

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffered_write_stream::default_buffer_size

The default buffer size.

static const std::size_t default_buffer_size = implementation_defined;

buffered_write_stream::flush

Flush all data from the buffer to the next layer. Returns the number of bytes written to the next layer on the last write operation.
Throws an exception on failure.

std::size_t flush();
» more...

Flush all data from the buffer to the next layer. Returns the number of bytes written to the next layer on the last write operation, or
0 if an error occurred.

std::size_t flush(
boost::system::error_code & ec);

» more...

buffered_write_stream::flush (1 of 2 overloads)

Flush all data from the buffer to the next layer. Returns the number of bytes written to the next layer on the last write operation.
Throws an exception on failure.

std::size_t flush();

buffered_write_stream::flush (2 of 2 overloads)

Flush all data from the buffer to the next layer. Returns the number of bytes written to the next layer on the last write operation, or
0 if an error occurred.

std::size_t flush(
boost::system::error_code & ec);

buffered_write_stream::get_io_service

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

buffered_write_stream::in_avail

Determine the amount of data that may be read without blocking.

std::size_t in_avail();
» more...

std::size_t in_avail(
boost::system::error_code & ec);

» more...

750

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffered_write_stream::in_avail (1 of 2 overloads)

Determine the amount of data that may be read without blocking.

std::size_t in_avail();

buffered_write_stream::in_avail (2 of 2 overloads)

Determine the amount of data that may be read without blocking.

std::size_t in_avail(
boost::system::error_code & ec);

buffered_write_stream::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();
» more...

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;
» more...

buffered_write_stream::lowest_layer (1 of 2 overloads)

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

buffered_write_stream::lowest_layer (2 of 2 overloads)

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

buffered_write_stream::lowest_layer_type

The type of the lowest layer.

typedef next_layer_type::lowest_layer_type lowest_layer_type;

Requirements

Header: boost/asio/buffered_write_stream.hpp

Convenience header: boost/asio.hpp

buffered_write_stream::next_layer

Get a reference to the next layer.

751

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

next_layer_type & next_layer();

buffered_write_stream::next_layer_type

The type of the next layer.

typedef remove_reference< Stream >::type next_layer_type;

Requirements

Header: boost/asio/buffered_write_stream.hpp

Convenience header: boost/asio.hpp

buffered_write_stream::peek

Peek at the incoming data on the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers);

» more...

Peek at the incoming data on the stream. Returns the number of bytes read, or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

» more...

buffered_write_stream::peek (1 of 2 overloads)

Peek at the incoming data on the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers);

buffered_write_stream::peek (2 of 2 overloads)

Peek at the incoming data on the stream. Returns the number of bytes read, or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t peek(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

buffered_write_stream::read_some

Read some data from the stream. Returns the number of bytes read. Throws an exception on failure.

752

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

» more...

Read some data from the stream. Returns the number of bytes read or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

» more...

buffered_write_stream::read_some (1 of 2 overloads)

Read some data from the stream. Returns the number of bytes read. Throws an exception on failure.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

buffered_write_stream::read_some (2 of 2 overloads)

Read some data from the stream. Returns the number of bytes read or 0 if an error occurred.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

buffered_write_stream::write_some

Write the given data to the stream. Returns the number of bytes written. Throws an exception on failure.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

» more...

Write the given data to the stream. Returns the number of bytes written, or 0 if an error occurred and the error handler did not throw.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

» more...

buffered_write_stream::write_some (1 of 2 overloads)

Write the given data to the stream. Returns the number of bytes written. Throws an exception on failure.

753

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

buffered_write_stream::write_some (2 of 2 overloads)

Write the given data to the stream. Returns the number of bytes written, or 0 if an error occurred and the error handler did not throw.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

buffers_begin
Construct an iterator representing the beginning of the buffers' data.

template<
typename BufferSequence>

buffers_iterator< BufferSequence > buffers_begin(
const BufferSequence & buffers);

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_end
Construct an iterator representing the end of the buffers' data.

template<
typename BufferSequence>

buffers_iterator< BufferSequence > buffers_end(
const BufferSequence & buffers);

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_iterator
A random access iterator over the bytes in a buffer sequence.

template<
typename BufferSequence,
typename ByteType = char>

class buffers_iterator

754

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The type used for the distance between two iterators.difference_type

The iterator category.iterator_category

The type of the result of applying operator->() to the iterator.pointer

The type of the result of applying operator*() to the iterator.reference

The type of the value pointed to by the iterator.value_type

Member Functions

DescriptionName

Construct an iterator representing the beginning of the buffers'
data.

begin

Default constructor. Creates an iterator in an undefined state.buffers_iterator

Construct an iterator representing the end of the buffers' data.end

Dereference an iterator.operator *

Increment operator (prefix).

Increment operator (postfix).

operator++

Addition operator.operator+=

Decrement operator (prefix).

Decrement operator (postfix).

operator--

Subtraction operator.operator-=

Dereference an iterator.operator->

Access an individual element.operator[]

755

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Friends

DescriptionName

Test two iterators for inequality.operator!=

Addition operator.operator+

Subtraction operator.operator-

Compare two iterators.operator<

Compare two iterators.operator<=

Test two iterators for equality.operator==

Compare two iterators.operator>

Compare two iterators.operator>=

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_iterator::begin

Construct an iterator representing the beginning of the buffers' data.

static buffers_iterator begin(
const BufferSequence & buffers);

buffers_iterator::buffers_iterator

Default constructor. Creates an iterator in an undefined state.

buffers_iterator();

buffers_iterator::difference_type

The type used for the distance between two iterators.

typedef std::ptrdiff_t difference_type;

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_iterator::end

Construct an iterator representing the end of the buffers' data.

756

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static buffers_iterator end(
const BufferSequence & buffers);

buffers_iterator::iterator_category

The iterator category.

typedef std::random_access_iterator_tag iterator_category;

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_iterator::operator *

Dereference an iterator.

reference operator *() const;

buffers_iterator::operator!=

Test two iterators for inequality.

friend bool operator!=(
const buffers_iterator & a,
const buffers_iterator & b);

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_iterator::operator+

Addition operator.

friend buffers_iterator operator+(
const buffers_iterator & iter,
std::ptrdiff_t difference);

» more...

friend buffers_iterator operator+(
std::ptrdiff_t difference,
const buffers_iterator & iter);

» more...

buffers_iterator::operator+ (1 of 2 overloads)

Addition operator.

757

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

friend buffers_iterator operator+(
const buffers_iterator & iter,
std::ptrdiff_t difference);

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_iterator::operator+ (2 of 2 overloads)

Addition operator.

friend buffers_iterator operator+(
std::ptrdiff_t difference,
const buffers_iterator & iter);

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_iterator::operator++

Increment operator (prefix).

buffers_iterator & operator++();
» more...

Increment operator (postfix).

buffers_iterator operator++(
int);

» more...

buffers_iterator::operator++ (1 of 2 overloads)

Increment operator (prefix).

buffers_iterator & operator++();

buffers_iterator::operator++ (2 of 2 overloads)

Increment operator (postfix).

buffers_iterator operator++(
int);

buffers_iterator::operator+=

Addition operator.

758

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffers_iterator & operator+=(
std::ptrdiff_t difference);

buffers_iterator::operator-

Subtraction operator.

friend buffers_iterator operator-(
const buffers_iterator & iter,
std::ptrdiff_t difference);

» more...

friend std::ptrdiff_t operator-(
const buffers_iterator & a,
const buffers_iterator & b);

» more...

buffers_iterator::operator- (1 of 2 overloads)

Subtraction operator.

friend buffers_iterator operator-(
const buffers_iterator & iter,
std::ptrdiff_t difference);

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_iterator::operator- (2 of 2 overloads)

Subtraction operator.

friend std::ptrdiff_t operator-(
const buffers_iterator & a,
const buffers_iterator & b);

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_iterator::operator--

Decrement operator (prefix).

buffers_iterator & operator--();
» more...

Decrement operator (postfix).

759

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffers_iterator operator--(
int);

» more...

buffers_iterator::operator-- (1 of 2 overloads)

Decrement operator (prefix).

buffers_iterator & operator--();

buffers_iterator::operator-- (2 of 2 overloads)

Decrement operator (postfix).

buffers_iterator operator--(
int);

buffers_iterator::operator-=

Subtraction operator.

buffers_iterator & operator-=(
std::ptrdiff_t difference);

buffers_iterator::operator->

Dereference an iterator.

pointer operator->() const;

buffers_iterator::operator<

Compare two iterators.

friend bool operator<(
const buffers_iterator & a,
const buffers_iterator & b);

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_iterator::operator<=

Compare two iterators.

friend bool operator<=(
const buffers_iterator & a,
const buffers_iterator & b);

760

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_iterator::operator==

Test two iterators for equality.

friend bool operator==(
const buffers_iterator & a,
const buffers_iterator & b);

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_iterator::operator>

Compare two iterators.

friend bool operator>(
const buffers_iterator & a,
const buffers_iterator & b);

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_iterator::operator>=

Compare two iterators.

friend bool operator>=(
const buffers_iterator & a,
const buffers_iterator & b);

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_iterator::operator[]

Access an individual element.

reference operator[](
std::ptrdiff_t difference) const;

761

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffers_iterator::pointer

The type of the result of applying operator->() to the iterator.

typedef const_or_non_const_ByteType * pointer;

If the buffer sequence stores buffer objects that are convertible to mutable_buffer, this is a pointer to a non-const ByteType.
Otherwise, a pointer to a const ByteType.

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_iterator::reference

The type of the result of applying operator*() to the iterator.

typedef const_or_non_const_ByteType & reference;

If the buffer sequence stores buffer objects that are convertible to mutable_buffer, this is a reference to a non-const ByteType.
Otherwise, a reference to a const ByteType.

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

buffers_iterator::value_type

The type of the value pointed to by the iterator.

typedef ByteType value_type;

Requirements

Header: boost/asio/buffers_iterator.hpp

Convenience header: boost/asio.hpp

connect
Establishes a socket connection by trying each endpoint in a sequence.

762

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename SocketService,
typename Iterator>

Iterator connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin);

» more...

template<
typename Protocol,
typename SocketService,
typename Iterator>

Iterator connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
boost::system::error_code & ec);

» more...

template<
typename Protocol,
typename SocketService,
typename Iterator>

Iterator connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
Iterator end);

» more...

template<
typename Protocol,
typename SocketService,
typename Iterator>

Iterator connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
Iterator end,
boost::system::error_code & ec);

» more...

template<
typename Protocol,
typename SocketService,
typename Iterator,
typename ConnectCondition>

Iterator connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
ConnectCondition connect_condition);

» more...

template<
typename Protocol,
typename SocketService,
typename Iterator,
typename ConnectCondition>

Iterator connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
ConnectCondition connect_condition,
boost::system::error_code & ec);

» more...

763

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename SocketService,
typename Iterator,
typename ConnectCondition>

Iterator connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
Iterator end,
ConnectCondition connect_condition);

» more...

template<
typename Protocol,
typename SocketService,
typename Iterator,
typename ConnectCondition>

Iterator connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
Iterator end,
ConnectCondition connect_condition,
boost::system::error_code & ec);

» more...

Requirements

Header: boost/asio/connect.hpp

Convenience header: boost/asio.hpp

connect (1 of 8 overloads)

Establishes a socket connection by trying each endpoint in a sequence.

template<
typename Protocol,
typename SocketService,
typename Iterator>

Iterator connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin);

This function attempts to connect a socket to one of a sequence of endpoints. It does this by repeated calls to the socket's connect
member function, once for each endpoint in the sequence, until a connection is successfully established.

Parameters

s The socket to be connected. If the socket is already open, it will be closed.

begin An iterator pointing to the start of a sequence of endpoints.

Return Value

On success, an iterator denoting the successfully connected endpoint. Otherwise, the end iterator.

764

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure. If the sequence is empty, the associated error_code is
boost::asio::error::not_found. Otherwise, contains the error from the last connection
attempt.

Remarks

This overload assumes that a default constructed object of type Iterator represents the end of the sequence. This is a valid assumption
for iterator types such as boost::asio::ip::tcp::resolver::iterator.

Example

tcp::resolver r(io_service);
tcp::resolver::query q("host", "service");
tcp::socket s(io_service);
boost::asio::connect(s, r.resolve(q));

connect (2 of 8 overloads)

Establishes a socket connection by trying each endpoint in a sequence.

template<
typename Protocol,
typename SocketService,
typename Iterator>

Iterator connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
boost::system::error_code & ec);

This function attempts to connect a socket to one of a sequence of endpoints. It does this by repeated calls to the socket's connect
member function, once for each endpoint in the sequence, until a connection is successfully established.

Parameters

s The socket to be connected. If the socket is already open, it will be closed.

begin An iterator pointing to the start of a sequence of endpoints.

ec Set to indicate what error occurred, if any. If the sequence is empty, set to boost::asio::error::not_found. Otherwise,
contains the error from the last connection attempt.

Return Value

On success, an iterator denoting the successfully connected endpoint. Otherwise, the end iterator.

Remarks

This overload assumes that a default constructed object of type Iterator represents the end of the sequence. This is a valid assumption
for iterator types such as boost::asio::ip::tcp::resolver::iterator.

765

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

tcp::resolver r(io_service);
tcp::resolver::query q("host", "service");
tcp::socket s(io_service);
boost::system::error_code ec;
boost::asio::connect(s, r.resolve(q), ec);
if (ec)
{
// An error occurred.

}

connect (3 of 8 overloads)

Establishes a socket connection by trying each endpoint in a sequence.

template<
typename Protocol,
typename SocketService,
typename Iterator>

Iterator connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
Iterator end);

This function attempts to connect a socket to one of a sequence of endpoints. It does this by repeated calls to the socket's connect
member function, once for each endpoint in the sequence, until a connection is successfully established.

Parameters

s The socket to be connected. If the socket is already open, it will be closed.

begin An iterator pointing to the start of a sequence of endpoints.

end An iterator pointing to the end of a sequence of endpoints.

Return Value

On success, an iterator denoting the successfully connected endpoint. Otherwise, the end iterator.

Exceptions

boost::system::system_error Thrown on failure. If the sequence is empty, the associated error_code is
boost::asio::error::not_found. Otherwise, contains the error from the last connection
attempt.

Example

tcp::resolver r(io_service);
tcp::resolver::query q("host", "service");
tcp::resolver::iterator i = r.resolve(q), end;
tcp::socket s(io_service);
boost::asio::connect(s, i, end);

connect (4 of 8 overloads)

Establishes a socket connection by trying each endpoint in a sequence.

766

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename SocketService,
typename Iterator>

Iterator connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
Iterator end,
boost::system::error_code & ec);

This function attempts to connect a socket to one of a sequence of endpoints. It does this by repeated calls to the socket's connect
member function, once for each endpoint in the sequence, until a connection is successfully established.

Parameters

s The socket to be connected. If the socket is already open, it will be closed.

begin An iterator pointing to the start of a sequence of endpoints.

end An iterator pointing to the end of a sequence of endpoints.

ec Set to indicate what error occurred, if any. If the sequence is empty, set to boost::asio::error::not_found. Otherwise,
contains the error from the last connection attempt.

Return Value

On success, an iterator denoting the successfully connected endpoint. Otherwise, the end iterator.

Example

tcp::resolver r(io_service);
tcp::resolver::query q("host", "service");
tcp::resolver::iterator i = r.resolve(q), end;
tcp::socket s(io_service);
boost::system::error_code ec;
boost::asio::connect(s, i, end, ec);
if (ec)
{
// An error occurred.

}

connect (5 of 8 overloads)

Establishes a socket connection by trying each endpoint in a sequence.

template<
typename Protocol,
typename SocketService,
typename Iterator,
typename ConnectCondition>

Iterator connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
ConnectCondition connect_condition);

This function attempts to connect a socket to one of a sequence of endpoints. It does this by repeated calls to the socket's connect
member function, once for each endpoint in the sequence, until a connection is successfully established.

767

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

s The socket to be connected. If the socket is already open, it will be closed.

begin An iterator pointing to the start of a sequence of endpoints.

connect_condition A function object that is called prior to each connection attempt. The signature of the function object
must be:

Iterator connect_condition(
const boost::system::error_code& ec,
Iterator next);

The ec parameter contains the result from the most recent connect operation. Before the first connection
attempt, ec is always set to indicate success. The next parameter is an iterator pointing to the next end-
point to be tried. The function object should return the next iterator, but is permitted to return a different
iterator so that endpoints may be skipped. The implementation guarantees that the function object will
never be called with the end iterator.

Return Value

On success, an iterator denoting the successfully connected endpoint. Otherwise, the end iterator.

Exceptions

boost::system::system_error Thrown on failure. If the sequence is empty, the associated error_code is
boost::asio::error::not_found. Otherwise, contains the error from the last connection
attempt.

Remarks

This overload assumes that a default constructed object of type Iterator represents the end of the sequence. This is a valid assumption
for iterator types such as boost::asio::ip::tcp::resolver::iterator.

Example

The following connect condition function object can be used to output information about the individual connection attempts:

struct my_connect_condition
{
template <typename Iterator>
Iterator operator()(

const boost::system::error_code& ec,
Iterator next)

{
if (ec) std::cout << "Error: " << ec.message() << std::endl;
std::cout << "Trying: " << next->endpoint() << std::endl;
return next;

}
};

It would be used with the boost::asio::connect function as follows:

tcp::resolver r(io_service);
tcp::resolver::query q("host", "service");
tcp::socket s(io_service);
tcp::resolver::iterator i = boost::asio::connect(

s, r.resolve(q), my_connect_condition());
std::cout << "Connected to: " << i->endpoint() << std::endl;

768

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

connect (6 of 8 overloads)

Establishes a socket connection by trying each endpoint in a sequence.

template<
typename Protocol,
typename SocketService,
typename Iterator,
typename ConnectCondition>

Iterator connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
ConnectCondition connect_condition,
boost::system::error_code & ec);

This function attempts to connect a socket to one of a sequence of endpoints. It does this by repeated calls to the socket's connect
member function, once for each endpoint in the sequence, until a connection is successfully established.

Parameters

s The socket to be connected. If the socket is already open, it will be closed.

begin An iterator pointing to the start of a sequence of endpoints.

connect_condition A function object that is called prior to each connection attempt. The signature of the function object
must be:

Iterator connect_condition(
const boost::system::error_code& ec,
Iterator next);

The ec parameter contains the result from the most recent connect operation. Before the first connection
attempt, ec is always set to indicate success. The next parameter is an iterator pointing to the next end-
point to be tried. The function object should return the next iterator, but is permitted to return a different
iterator so that endpoints may be skipped. The implementation guarantees that the function object will
never be called with the end iterator.

ec Set to indicate what error occurred, if any. If the sequence is empty, set to boost::asio::er-
ror::not_found. Otherwise, contains the error from the last connection attempt.

Return Value

On success, an iterator denoting the successfully connected endpoint. Otherwise, the end iterator.

Remarks

This overload assumes that a default constructed object of type Iterator represents the end of the sequence. This is a valid assumption
for iterator types such as boost::asio::ip::tcp::resolver::iterator.

Example

The following connect condition function object can be used to output information about the individual connection attempts:

769

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct my_connect_condition
{
template <typename Iterator>
Iterator operator()(

const boost::system::error_code& ec,
Iterator next)

{
if (ec) std::cout << "Error: " << ec.message() << std::endl;
std::cout << "Trying: " << next->endpoint() << std::endl;
return next;

}
};

It would be used with the boost::asio::connect function as follows:

tcp::resolver r(io_service);
tcp::resolver::query q("host", "service");
tcp::socket s(io_service);
boost::system::error_code ec;
tcp::resolver::iterator i = boost::asio::connect(

s, r.resolve(q), my_connect_condition(), ec);
if (ec)
{
// An error occurred.

}
else
{
std::cout << "Connected to: " << i->endpoint() << std::endl;

}

connect (7 of 8 overloads)

Establishes a socket connection by trying each endpoint in a sequence.

template<
typename Protocol,
typename SocketService,
typename Iterator,
typename ConnectCondition>

Iterator connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
Iterator end,
ConnectCondition connect_condition);

This function attempts to connect a socket to one of a sequence of endpoints. It does this by repeated calls to the socket's connect
member function, once for each endpoint in the sequence, until a connection is successfully established.

Parameters

s The socket to be connected. If the socket is already open, it will be closed.

begin An iterator pointing to the start of a sequence of endpoints.

end An iterator pointing to the end of a sequence of endpoints.

connect_condition A function object that is called prior to each connection attempt. The signature of the function object
must be:

770

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Iterator connect_condition(
const boost::system::error_code& ec,
Iterator next);

The ec parameter contains the result from the most recent connect operation. Before the first connection
attempt, ec is always set to indicate success. The next parameter is an iterator pointing to the next end-
point to be tried. The function object should return the next iterator, but is permitted to return a different
iterator so that endpoints may be skipped. The implementation guarantees that the function object will
never be called with the end iterator.

Return Value

On success, an iterator denoting the successfully connected endpoint. Otherwise, the end iterator.

Exceptions

boost::system::system_error Thrown on failure. If the sequence is empty, the associated error_code is
boost::asio::error::not_found. Otherwise, contains the error from the last connection
attempt.

Example

The following connect condition function object can be used to output information about the individual connection attempts:

struct my_connect_condition
{
template <typename Iterator>
Iterator operator()(

const boost::system::error_code& ec,
Iterator next)

{
if (ec) std::cout << "Error: " << ec.message() << std::endl;
std::cout << "Trying: " << next->endpoint() << std::endl;
return next;

}
};

It would be used with the boost::asio::connect function as follows:

tcp::resolver r(io_service);
tcp::resolver::query q("host", "service");
tcp::resolver::iterator i = r.resolve(q), end;
tcp::socket s(io_service);
i = boost::asio::connect(s, i, end, my_connect_condition());
std::cout << "Connected to: " << i->endpoint() << std::endl;

connect (8 of 8 overloads)

Establishes a socket connection by trying each endpoint in a sequence.

771

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename SocketService,
typename Iterator,
typename ConnectCondition>

Iterator connect(
basic_socket< Protocol, SocketService > & s,
Iterator begin,
Iterator end,
ConnectCondition connect_condition,
boost::system::error_code & ec);

This function attempts to connect a socket to one of a sequence of endpoints. It does this by repeated calls to the socket's connect
member function, once for each endpoint in the sequence, until a connection is successfully established.

Parameters

s The socket to be connected. If the socket is already open, it will be closed.

begin An iterator pointing to the start of a sequence of endpoints.

end An iterator pointing to the end of a sequence of endpoints.

connect_condition A function object that is called prior to each connection attempt. The signature of the function object
must be:

Iterator connect_condition(
const boost::system::error_code& ec,
Iterator next);

The ec parameter contains the result from the most recent connect operation. Before the first connection
attempt, ec is always set to indicate success. The next parameter is an iterator pointing to the next end-
point to be tried. The function object should return the next iterator, but is permitted to return a different
iterator so that endpoints may be skipped. The implementation guarantees that the function object will
never be called with the end iterator.

ec Set to indicate what error occurred, if any. If the sequence is empty, set to boost::asio::er-
ror::not_found. Otherwise, contains the error from the last connection attempt.

Return Value

On success, an iterator denoting the successfully connected endpoint. Otherwise, the end iterator.

Example

The following connect condition function object can be used to output information about the individual connection attempts:

struct my_connect_condition
{
template <typename Iterator>
Iterator operator()(

const boost::system::error_code& ec,
Iterator next)

{
if (ec) std::cout << "Error: " << ec.message() << std::endl;
std::cout << "Trying: " << next->endpoint() << std::endl;
return next;

}
};

772

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

It would be used with the boost::asio::connect function as follows:

tcp::resolver r(io_service);
tcp::resolver::query q("host", "service");
tcp::resolver::iterator i = r.resolve(q), end;
tcp::socket s(io_service);
boost::system::error_code ec;
i = boost::asio::connect(s, i, end, my_connect_condition(), ec);
if (ec)
{
// An error occurred.

}
else
{
std::cout << "Connected to: " << i->endpoint() << std::endl;

}

const_buffer
Holds a buffer that cannot be modified.

class const_buffer

Member Functions

DescriptionName

Construct an empty buffer.

Construct a buffer to represent a given memory range.

Construct a non-modifiable buffer from a modifiable one.

const_buffer

Related Functions

DescriptionName

Create a new non-modifiable buffer that is offset from the start
of another.

operator+

The const_buffer class provides a safe representation of a buffer that cannot be modified. It does not own the underlying data,
and so is cheap to copy or assign.

Accessing Buffer Contents

The contents of a buffer may be accessed using the buffer_size and buffer_cast functions:

boost::asio::const_buffer b1 = ...;
std::size_t s1 = boost::asio::buffer_size(b1);
const unsigned char* p1 = boost::asio::buffer_cast<const unsigned char*>(b1);

The boost::asio::buffer_cast function permits violations of type safety, so uses of it in application code should be carefully
considered.

773

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/buffer.hpp

Convenience header: boost/asio.hpp

const_buffer::const_buffer

Construct an empty buffer.

const_buffer();
» more...

Construct a buffer to represent a given memory range.

const_buffer(
const void * data,
std::size_t size);

» more...

Construct a non-modifiable buffer from a modifiable one.

const_buffer(
const mutable_buffer & b);

» more...

const_buffer::const_buffer (1 of 3 overloads)

Construct an empty buffer.

const_buffer();

const_buffer::const_buffer (2 of 3 overloads)

Construct a buffer to represent a given memory range.

const_buffer(
const void * data,
std::size_t size);

const_buffer::const_buffer (3 of 3 overloads)

Construct a non-modifiable buffer from a modifiable one.

const_buffer(
const mutable_buffer & b);

const_buffer::operator+

Create a new non-modifiable buffer that is offset from the start of another.

774

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

const_buffer operator+(
const const_buffer & b,
std::size_t start);

» more...

const_buffer operator+(
std::size_t start,
const const_buffer & b);

» more...

const_buffer::operator+ (1 of 2 overloads)

Create a new non-modifiable buffer that is offset from the start of another.

const_buffer operator+(
const const_buffer & b,
std::size_t start);

const_buffer::operator+ (2 of 2 overloads)

Create a new non-modifiable buffer that is offset from the start of another.

const_buffer operator+(
std::size_t start,
const const_buffer & b);

const_buffers_1
Adapts a single non-modifiable buffer so that it meets the requirements of the ConstBufferSequence concept.

class const_buffers_1 :
public const_buffer

Types

DescriptionName

A random-access iterator type that may be used to read elements.const_iterator

The type for each element in the list of buffers.value_type

Member Functions

DescriptionName

Get a random-access iterator to the first element.begin

Construct to represent a given memory range.

Construct to represent a single non-modifiable buffer.

const_buffers_1

Get a random-access iterator for one past the last element.end

775

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Related Functions

DescriptionName

Create a new non-modifiable buffer that is offset from the start
of another.

operator+

Requirements

Header: boost/asio/buffer.hpp

Convenience header: boost/asio.hpp

const_buffers_1::begin

Get a random-access iterator to the first element.

const_iterator begin() const;

const_buffers_1::const_buffers_1

Construct to represent a given memory range.

const_buffers_1(
const void * data,
std::size_t size);

» more...

Construct to represent a single non-modifiable buffer.

explicit const_buffers_1(
const const_buffer & b);

» more...

const_buffers_1::const_buffers_1 (1 of 2 overloads)

Construct to represent a given memory range.

const_buffers_1(
const void * data,
std::size_t size);

const_buffers_1::const_buffers_1 (2 of 2 overloads)

Construct to represent a single non-modifiable buffer.

const_buffers_1(
const const_buffer & b);

const_buffers_1::const_iterator

A random-access iterator type that may be used to read elements.

typedef const const_buffer * const_iterator;

776

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/buffer.hpp

Convenience header: boost/asio.hpp

const_buffers_1::end

Get a random-access iterator for one past the last element.

const_iterator end() const;

const_buffers_1::operator+

Create a new non-modifiable buffer that is offset from the start of another.

const_buffer operator+(
const const_buffer & b,
std::size_t start);

» more...

const_buffer operator+(
std::size_t start,
const const_buffer & b);

» more...

const_buffers_1::operator+ (1 of 2 overloads)

Inherited from const_buffer.

Create a new non-modifiable buffer that is offset from the start of another.

const_buffer operator+(
const const_buffer & b,
std::size_t start);

const_buffers_1::operator+ (2 of 2 overloads)

Inherited from const_buffer.

Create a new non-modifiable buffer that is offset from the start of another.

const_buffer operator+(
std::size_t start,
const const_buffer & b);

const_buffers_1::value_type

The type for each element in the list of buffers.

typedef const_buffer value_type;

777

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Construct an empty buffer.

Construct a buffer to represent a given memory range.

Construct a non-modifiable buffer from a modifiable one.

const_buffer

Related Functions

DescriptionName

Create a new non-modifiable buffer that is offset from the start
of another.

operator+

The const_buffer class provides a safe representation of a buffer that cannot be modified. It does not own the underlying data,
and so is cheap to copy or assign.

Accessing Buffer Contents

The contents of a buffer may be accessed using the buffer_size and buffer_cast functions:

boost::asio::const_buffer b1 = ...;
std::size_t s1 = boost::asio::buffer_size(b1);
const unsigned char* p1 = boost::asio::buffer_cast<const unsigned char*>(b1);

The boost::asio::buffer_cast function permits violations of type safety, so uses of it in application code should be carefully
considered.

Requirements

Header: boost/asio/buffer.hpp

Convenience header: boost/asio.hpp

coroutine
Provides support for implementing stackless coroutines.

class coroutine

Member Functions

DescriptionName

Constructs a coroutine in its initial state.coroutine

Returns true if the coroutine is the child of a fork.is_child

Returns true if the coroutine has reached its terminal state.is_complete

Returns true if the coroutine is the parent of a fork.is_parent

The coroutine class may be used to implement stackless coroutines. The class itself is used to store the current state of the coroutine.

778

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Coroutines are copy-constructible and assignable, and the space overhead is a single int. They can be used as a base class:

class session : coroutine
{
...

};

or as a data member:

class session
{
...
coroutine coro_;

};

or even bound in as a function argument using lambdas or bind(). The important thing is that as the application maintains a copy
of the object for as long as the coroutine must be kept alive.

Pseudo-keywords

A coroutine is used in conjunction with certain "pseudo-keywords", which are implemented as macros. These macros are defined
by a header file:

#include <boost/asio/yield.hpp>

and may conversely be undefined as follows:

#include <boost/asio/unyield.hpp>

reenter

The reenter macro is used to define the body of a coroutine. It takes a single argument: a pointer or reference to a coroutine object.
For example, if the base class is a coroutine object you may write:

reenter (this)
{
... coroutine body ...

}

and if a data member or other variable you can write:

reenter (coro_)
{
... coroutine body ...

}

When reenter is executed at runtime, control jumps to the location of the last yield or fork.

The coroutine body may also be a single statement, such as:

reenter (this) for (;;)
{
...

}

779

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Limitation: The reenter macro is implemented using a switch. This means that you must take care when using local variables
within the coroutine body. The local variable is not allowed in a position where reentering the coroutine could bypass the variable
definition.

yield statement

This form of the yield keyword is often used with asynchronous operations:

yield socket_->async_read_some(buffer(*buffer_), *this);

This divides into four logical steps:

• yield saves the current state of the coroutine.

• The statement initiates the asynchronous operation.

• The resume point is defined immediately following the statement.

• Control is transferred to the end of the coroutine body.

When the asynchronous operation completes, the function object is invoked and reenter causes control to transfer to the resume
point. It is important to remember to carry the coroutine state forward with the asynchronous operation. In the above snippet, the
current class is a function object object with a coroutine object as base class or data member.

The statement may also be a compound statement, and this permits us to define local variables with limited scope:

yield
{
mutable_buffers_1 b = buffer(*buffer_);
socket_->async_read_some(b, *this);

}

yield return expression ;

This form of yield is often used in generators or coroutine-based parsers. For example, the function object:

struct interleave : coroutine
{
istream& is1;
istream& is2;
char operator()(char c)
{
reenter (this) for (;;)
{
yield return is1.get();
yield return is2.get();

}
}

};

defines a trivial coroutine that interleaves the characters from two input streams.

This type of yield divides into three logical steps:

• yield saves the current state of the coroutine.

• The resume point is defined immediately following the semicolon.

• The value of the expression is returned from the function.

780

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

yield ;

This form of yield is equivalent to the following steps:

• yield saves the current state of the coroutine.

• The resume point is defined immediately following the semicolon.

• Control is transferred to the end of the coroutine body.

This form might be applied when coroutines are used for cooperative threading and scheduling is explicitly managed. For example:

struct task : coroutine
{
...
void operator()()
{
reenter (this)
{
while (... not finished ...)
{

... do something ...
yield;
... do some more ...
yield;

}
}

}
...

};
...
task t1, t2;
for (;;)
{
t1();
t2();

}

yield break ;

The final form of yield is used to explicitly terminate the coroutine. This form is comprised of two steps:

• yield sets the coroutine state to indicate termination.

• Control is transferred to the end of the coroutine body.

Once terminated, calls to is_complete() return true and the coroutine cannot be reentered.

Note that a coroutine may also be implicitly terminated if the coroutine body is exited without a yield, e.g. by return, throw or by
running to the end of the body.

fork statement

The fork pseudo-keyword is used when "forking" a coroutine, i.e. splitting it into two (or more) copies. One use of fork is in a
server, where a new coroutine is created to handle each client connection:

781

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

reenter (this)
{
do
{
socket_.reset(new tcp::socket(io_service_));
yield acceptor->async_accept(*socket_, *this);
fork server(*this)();

} while (is_parent());
... client-specific handling follows ...

}

The logical steps involved in a fork are:

• fork saves the current state of the coroutine.

• The statement creates a copy of the coroutine and either executes it immediately or schedules it for later execution.

• The resume point is defined immediately following the semicolon.

• For the "parent", control immediately continues from the next line.

The functions is_parent() and is_child() can be used to differentiate between parent and child. You would use these functions
to alter subsequent control flow.

Note that fork doesn't do the actual forking by itself. It is the application's responsibility to create a clone of the coroutine and call
it. The clone can be called immediately, as above, or scheduled for delayed execution using something like io_service::post().

Alternate macro names

If preferred, an application can use macro names that follow a more typical naming convention, rather than the pseudo-keywords.
These are:

• BOOST_ASIO_CORO_REENTER instead of reenter

• BOOST_ASIO_CORO_YIELD instead of yield

• BOOST_ASIO_CORO_FORK instead of fork

Requirements

Header: boost/asio/coroutine.hpp

Convenience header: boost/asio.hpp

coroutine::coroutine

Constructs a coroutine in its initial state.

coroutine();

coroutine::is_child

Returns true if the coroutine is the child of a fork.

bool is_child() const;

782

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

coroutine::is_complete

Returns true if the coroutine has reached its terminal state.

bool is_complete() const;

coroutine::is_parent

Returns true if the coroutine is the parent of a fork.

bool is_parent() const;

datagram_socket_service
Default service implementation for a datagram socket.

template<
typename Protocol>

class datagram_socket_service :
public io_service::service

Types

DescriptionName

The endpoint type.endpoint_type

The type of a datagram socket.implementation_type

The native socket type.native_handle_type

(Deprecated: Use native_handle_type.) The native socket type.native_type

The protocol type.protocol_type

783

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

784

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to a datagram socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive.async_receive

Start an asynchronous receive that will get the endpoint of the
sender.

async_receive_from

Start an asynchronous send.async_send

Start an asynchronous send.async_send_to

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

bind

Cancel all asynchronous operations associated with the socket.cancel

Close a datagram socket implementation.close

Connect the datagram socket to the specified endpoint.connect

Construct a new datagram socket implementation.construct

Move-construct a new datagram socket implementation from
another protocol type.

converting_move_construct

Construct a new datagram socket service for the specified
io_service.

datagram_socket_service

Destroy a datagram socket implementation.destroy

Get the io_service object that owns the service.get_io_service

Get a socket option.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint.local_endpoint

Move-assign from another datagram socket implementation.move_assign

Move-construct a new datagram socket implementation.move_construct

(Deprecated: Use native_handle().) Get the native socket imple-
mentation.

native

Get the native socket implementation.native_handle

785

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Gets the non-blocking mode of the native socket implementation.

Sets the non-blocking mode of the native socket implementation.

native_non_blocking

Gets the non-blocking mode of the socket.

Sets the non-blocking mode of the socket.

non_blocking

open

Receive some data from the peer.receive

Receive a datagram with the endpoint of the sender.receive_from

Get the remote endpoint.remote_endpoint

Send the given data to the peer.send

Send a datagram to the specified endpoint.send_to

Set a socket option.set_option

Disable sends or receives on the socket.shutdown

Data Members

DescriptionName

The unique service identifier.id

Requirements

Header: boost/asio/datagram_socket_service.hpp

Convenience header: boost/asio.hpp

datagram_socket_service::assign

Assign an existing native socket to a datagram socket.

boost::system::error_code assign(
implementation_type & impl,
const protocol_type & protocol,
const native_handle_type & native_socket,
boost::system::error_code & ec);

datagram_socket_service::async_connect

Start an asynchronous connect.

786

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConnectHandler>

void-or-deduced async_connect(
implementation_type & impl,
const endpoint_type & peer_endpoint,
ConnectHandler handler);

datagram_socket_service::async_receive

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
implementation_type & impl,
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
ReadHandler handler);

datagram_socket_service::async_receive_from

Start an asynchronous receive that will get the endpoint of the sender.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive_from(
implementation_type & impl,
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
socket_base::message_flags flags,
ReadHandler handler);

datagram_socket_service::async_send

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
implementation_type & impl,
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
WriteHandler handler);

datagram_socket_service::async_send_to

Start an asynchronous send.

787

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send_to(
implementation_type & impl,
const ConstBufferSequence & buffers,
const endpoint_type & destination,
socket_base::message_flags flags,
WriteHandler handler);

datagram_socket_service::at_mark

Determine whether the socket is at the out-of-band data mark.

bool at_mark(
const implementation_type & impl,
boost::system::error_code & ec) const;

datagram_socket_service::available

Determine the number of bytes available for reading.

std::size_t available(
const implementation_type & impl,
boost::system::error_code & ec) const;

datagram_socket_service::bind

boost::system::error_code bind(
implementation_type & impl,
const endpoint_type & endpoint,
boost::system::error_code & ec);

datagram_socket_service::cancel

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
implementation_type & impl,
boost::system::error_code & ec);

datagram_socket_service::close

Close a datagram socket implementation.

boost::system::error_code close(
implementation_type & impl,
boost::system::error_code & ec);

datagram_socket_service::connect

Connect the datagram socket to the specified endpoint.

788

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code connect(
implementation_type & impl,
const endpoint_type & peer_endpoint,
boost::system::error_code & ec);

datagram_socket_service::construct

Construct a new datagram socket implementation.

void construct(
implementation_type & impl);

datagram_socket_service::converting_move_construct

Move-construct a new datagram socket implementation from another protocol type.

template<
typename Protocol1>

void converting_move_construct(
implementation_type & impl,
typename datagram_socket_service< Protocol1 >::implementation_type & other_impl,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

datagram_socket_service::datagram_socket_service

Construct a new datagram socket service for the specified io_service.

datagram_socket_service(
boost::asio::io_service & io_service);

datagram_socket_service::destroy

Destroy a datagram socket implementation.

void destroy(
implementation_type & impl);

datagram_socket_service::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

Requirements

Header: boost/asio/datagram_socket_service.hpp

Convenience header: boost/asio.hpp

datagram_socket_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

789

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & get_io_service();

datagram_socket_service::get_option

Get a socket option.

template<
typename GettableSocketOption>

boost::system::error_code get_option(
const implementation_type & impl,
GettableSocketOption & option,
boost::system::error_code & ec) const;

datagram_socket_service::id

The unique service identifier.

static boost::asio::io_service::id id;

datagram_socket_service::implementation_type

The type of a datagram socket.

typedef implementation_defined implementation_type;

Requirements

Header: boost/asio/datagram_socket_service.hpp

Convenience header: boost/asio.hpp

datagram_socket_service::io_control

Perform an IO control command on the socket.

template<
typename IoControlCommand>

boost::system::error_code io_control(
implementation_type & impl,
IoControlCommand & command,
boost::system::error_code & ec);

datagram_socket_service::is_open

Determine whether the socket is open.

bool is_open(
const implementation_type & impl) const;

datagram_socket_service::local_endpoint

Get the local endpoint.

790

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

endpoint_type local_endpoint(
const implementation_type & impl,
boost::system::error_code & ec) const;

datagram_socket_service::move_assign

Move-assign from another datagram socket implementation.

void move_assign(
implementation_type & impl,
datagram_socket_service & other_service,
implementation_type & other_impl);

datagram_socket_service::move_construct

Move-construct a new datagram socket implementation.

void move_construct(
implementation_type & impl,
implementation_type & other_impl);

datagram_socket_service::native

(Deprecated: Use native_handle().) Get the native socket implementation.

native_type native(
implementation_type & impl);

datagram_socket_service::native_handle

Get the native socket implementation.

native_handle_type native_handle(
implementation_type & impl);

datagram_socket_service::native_handle_type

The native socket type.

typedef implementation_defined native_handle_type;

Requirements

Header: boost/asio/datagram_socket_service.hpp

Convenience header: boost/asio.hpp

datagram_socket_service::native_non_blocking

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking(
const implementation_type & impl) const;

» more...

791

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Sets the non-blocking mode of the native socket implementation.

boost::system::error_code native_non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

» more...

datagram_socket_service::native_non_blocking (1 of 2 overloads)

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking(
const implementation_type & impl) const;

datagram_socket_service::native_non_blocking (2 of 2 overloads)

Sets the non-blocking mode of the native socket implementation.

boost::system::error_code native_non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

datagram_socket_service::native_type

(Deprecated: Use native_handle_type.) The native socket type.

typedef implementation_defined native_type;

Requirements

Header: boost/asio/datagram_socket_service.hpp

Convenience header: boost/asio.hpp

datagram_socket_service::non_blocking

Gets the non-blocking mode of the socket.

bool non_blocking(
const implementation_type & impl) const;

» more...

Sets the non-blocking mode of the socket.

boost::system::error_code non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

» more...

datagram_socket_service::non_blocking (1 of 2 overloads)

Gets the non-blocking mode of the socket.

792

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool non_blocking(
const implementation_type & impl) const;

datagram_socket_service::non_blocking (2 of 2 overloads)

Sets the non-blocking mode of the socket.

boost::system::error_code non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

datagram_socket_service::open

boost::system::error_code open(
implementation_type & impl,
const protocol_type & protocol,
boost::system::error_code & ec);

datagram_socket_service::protocol_type

The protocol type.

typedef Protocol protocol_type;

Requirements

Header: boost/asio/datagram_socket_service.hpp

Convenience header: boost/asio.hpp

datagram_socket_service::receive

Receive some data from the peer.

template<
typename MutableBufferSequence>

std::size_t receive(
implementation_type & impl,
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

datagram_socket_service::receive_from

Receive a datagram with the endpoint of the sender.

template<
typename MutableBufferSequence>

std::size_t receive_from(
implementation_type & impl,
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
socket_base::message_flags flags,
boost::system::error_code & ec);

793

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

datagram_socket_service::remote_endpoint

Get the remote endpoint.

endpoint_type remote_endpoint(
const implementation_type & impl,
boost::system::error_code & ec) const;

datagram_socket_service::send

Send the given data to the peer.

template<
typename ConstBufferSequence>

std::size_t send(
implementation_type & impl,
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

datagram_socket_service::send_to

Send a datagram to the specified endpoint.

template<
typename ConstBufferSequence>

std::size_t send_to(
implementation_type & impl,
const ConstBufferSequence & buffers,
const endpoint_type & destination,
socket_base::message_flags flags,
boost::system::error_code & ec);

datagram_socket_service::set_option

Set a socket option.

template<
typename SettableSocketOption>

boost::system::error_code set_option(
implementation_type & impl,
const SettableSocketOption & option,
boost::system::error_code & ec);

datagram_socket_service::shutdown

Disable sends or receives on the socket.

boost::system::error_code shutdown(
implementation_type & impl,
socket_base::shutdown_type what,
boost::system::error_code & ec);

794

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

deadline_timer
Typedef for the typical usage of timer. Uses a UTC clock.

typedef basic_deadline_timer< boost::posix_time::ptime > deadline_timer;

Types

DescriptionName

The duration type.duration_type

The underlying implementation type of I/O object.implementation_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

The time type.time_type

The time traits type.traits_type

Member Functions

DescriptionName

Start an asynchronous wait on the timer.async_wait

Constructor.

Constructor to set a particular expiry time as an absolute time.

Constructor to set a particular expiry time relative to now.

basic_deadline_timer

Cancel any asynchronous operations that are waiting on the
timer.

cancel

Cancels one asynchronous operation that is waiting on the timer.cancel_one

Get the timer's expiry time as an absolute time.

Set the timer's expiry time as an absolute time.

expires_at

Get the timer's expiry time relative to now.

Set the timer's expiry time relative to now.

expires_from_now

Get the io_service associated with the object.get_io_service

Perform a blocking wait on the timer.wait

795

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_deadline_timer class template provides the ability to perform a blocking or asynchronous wait for a timer to expire.

A deadline timer is always in one of two states: "expired" or "not expired". If the wait() or async_wait() function is called on
an expired timer, the wait operation will complete immediately.

Most applications will use the deadline_timer typedef.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Examples

Performing a blocking wait:

// Construct a timer without setting an expiry time.
boost::asio::deadline_timer timer(io_service);

// Set an expiry time relative to now.
timer.expires_from_now(boost::posix_time::seconds(5));

// Wait for the timer to expire.
timer.wait();

Performing an asynchronous wait:

796

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void handler(const boost::system::error_code& error)
{
if (!error)
{
// Timer expired.

}
}

...

// Construct a timer with an absolute expiry time.
boost::asio::deadline_timer timer(io_service,

boost::posix_time::time_from_string("2005-12-07 23:59:59.000"));

// Start an asynchronous wait.
timer.async_wait(handler);

Changing an active deadline_timer's expiry time

Changing the expiry time of a timer while there are pending asynchronous waits causes those wait operations to be cancelled. To
ensure that the action associated with the timer is performed only once, use something like this: used:

void on_some_event()
{
if (my_timer.expires_from_now(seconds(5)) > 0)
{
// We managed to cancel the timer. Start new asynchronous wait.
my_timer.async_wait(on_timeout);

}
else
{
// Too late, timer has already expired!

}
}

void on_timeout(const boost::system::error_code& e)
{
if (e != boost::asio::error::operation_aborted)
{
// Timer was not cancelled, take necessary action.

}
}

• The boost::asio::basic_deadline_timer::expires_from_now() function cancels any pending asynchronous waits,
and returns the number of asynchronous waits that were cancelled. If it returns 0 then you were too late and the wait handler has
already been executed, or will soon be executed. If it returns 1 then the wait handler was successfully cancelled.

• If a wait handler is cancelled, the boost::system::error_code passed to it contains the value boost::asio::error::opera-
tion_aborted.

Requirements

Header: boost/asio/deadline_timer.hpp

Convenience header: boost/asio.hpp

deadline_timer_service
Default service implementation for a timer.

797

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename TimeType,
typename TimeTraits = boost::asio::time_traits<TimeType>>

class deadline_timer_service :
public io_service::service

Types

DescriptionName

The duration type.duration_type

The implementation type of the deadline timer.implementation_type

The time type.time_type

The time traits type.traits_type

Member Functions

DescriptionName

async_wait

Cancel any asynchronous wait operations associated with the
timer.

cancel

Cancels one asynchronous wait operation associated with the
timer.

cancel_one

Construct a new timer implementation.construct

Construct a new timer service for the specified io_service.deadline_timer_service

Destroy a timer implementation.destroy

Get the expiry time for the timer as an absolute time.

Set the expiry time for the timer as an absolute time.

expires_at

Get the expiry time for the timer relative to now.

Set the expiry time for the timer relative to now.

expires_from_now

Get the io_service object that owns the service.get_io_service

wait

Data Members

DescriptionName

The unique service identifier.id

798

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/deadline_timer_service.hpp

Convenience header: boost/asio.hpp

deadline_timer_service::async_wait

template<
typename WaitHandler>

void-or-deduced async_wait(
implementation_type & impl,
WaitHandler handler);

deadline_timer_service::cancel

Cancel any asynchronous wait operations associated with the timer.

std::size_t cancel(
implementation_type & impl,
boost::system::error_code & ec);

deadline_timer_service::cancel_one

Cancels one asynchronous wait operation associated with the timer.

std::size_t cancel_one(
implementation_type & impl,
boost::system::error_code & ec);

deadline_timer_service::construct

Construct a new timer implementation.

void construct(
implementation_type & impl);

deadline_timer_service::deadline_timer_service

Construct a new timer service for the specified io_service.

deadline_timer_service(
boost::asio::io_service & io_service);

deadline_timer_service::destroy

Destroy a timer implementation.

void destroy(
implementation_type & impl);

deadline_timer_service::duration_type

The duration type.

799

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef traits_type::duration_type duration_type;

Requirements

Header: boost/asio/deadline_timer_service.hpp

Convenience header: boost/asio.hpp

deadline_timer_service::expires_at

Get the expiry time for the timer as an absolute time.

time_type expires_at(
const implementation_type & impl) const;

» more...

Set the expiry time for the timer as an absolute time.

std::size_t expires_at(
implementation_type & impl,
const time_type & expiry_time,
boost::system::error_code & ec);

» more...

deadline_timer_service::expires_at (1 of 2 overloads)

Get the expiry time for the timer as an absolute time.

time_type expires_at(
const implementation_type & impl) const;

deadline_timer_service::expires_at (2 of 2 overloads)

Set the expiry time for the timer as an absolute time.

std::size_t expires_at(
implementation_type & impl,
const time_type & expiry_time,
boost::system::error_code & ec);

deadline_timer_service::expires_from_now

Get the expiry time for the timer relative to now.

duration_type expires_from_now(
const implementation_type & impl) const;

» more...

Set the expiry time for the timer relative to now.

std::size_t expires_from_now(
implementation_type & impl,
const duration_type & expiry_time,
boost::system::error_code & ec);

» more...

800

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

deadline_timer_service::expires_from_now (1 of 2 overloads)

Get the expiry time for the timer relative to now.

duration_type expires_from_now(
const implementation_type & impl) const;

deadline_timer_service::expires_from_now (2 of 2 overloads)

Set the expiry time for the timer relative to now.

std::size_t expires_from_now(
implementation_type & impl,
const duration_type & expiry_time,
boost::system::error_code & ec);

deadline_timer_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

deadline_timer_service::id

The unique service identifier.

static boost::asio::io_service::id id;

deadline_timer_service::implementation_type

The implementation type of the deadline timer.

typedef implementation_defined implementation_type;

Requirements

Header: boost/asio/deadline_timer_service.hpp

Convenience header: boost/asio.hpp

deadline_timer_service::time_type

The time type.

typedef traits_type::time_type time_type;

Requirements

Header: boost/asio/deadline_timer_service.hpp

Convenience header: boost/asio.hpp

801

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

deadline_timer_service::traits_type

The time traits type.

typedef TimeTraits traits_type;

Requirements

Header: boost/asio/deadline_timer_service.hpp

Convenience header: boost/asio.hpp

deadline_timer_service::wait

void wait(
implementation_type & impl,
boost::system::error_code & ec);

error::addrinfo_category

static const boost::system::error_category & addrinfo_category = boost::asio::error::get_ad↵
drinfo_category();

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

error::addrinfo_errors

enum addrinfo_errors

Values

service_not_found The service is not supported for the given socket type.

socket_type_not_supported The socket type is not supported.

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

error::basic_errors

enum basic_errors

Values

access_denied Permission denied.

802

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

address_family_not_supported Address family not supported by protocol.

address_in_use Address already in use.

already_connected Transport endpoint is already connected.

already_started Operation already in progress.

broken_pipe Broken pipe.

connection_aborted A connection has been aborted.

connection_refused Connection refused.

connection_reset Connection reset by peer.

bad_descriptor Bad file descriptor.

fault Bad address.

host_unreachable No route to host.

in_progress Operation now in progress.

interrupted Interrupted system call.

invalid_argument Invalid argument.

message_size Message too long.

name_too_long The name was too long.

network_down Network is down.

network_reset Network dropped connection on reset.

network_unreachable Network is unreachable.

no_descriptors Too many open files.

no_buffer_space No buffer space available.

no_memory Cannot allocate memory.

no_permission Operation not permitted.

no_protocol_option Protocol not available.

not_connected Transport endpoint is not connected.

not_socket Socket operation on non-socket.

operation_aborted Operation cancelled.

operation_not_supported Operation not supported.

shut_down Cannot send after transport endpoint shutdown.

timed_out Connection timed out.

try_again Resource temporarily unavailable.

would_block The socket is marked non-blocking and the requested operation would block.

803

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

error::get_addrinfo_category

const boost::system::error_category & get_addrinfo_category();

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

error::get_misc_category

const boost::system::error_category & get_misc_category();

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

error::get_netdb_category

const boost::system::error_category & get_netdb_category();

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

error::get_ssl_category

const boost::system::error_category & get_ssl_category();

Requirements

Header: boost/asio/ssl/error.hpp

Convenience header: boost/asio/ssl.hpp

error::get_system_category

const boost::system::error_category & get_system_category();

804

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

error::make_error_code

boost::system::error_code make_error_code(
basic_errors e);

» more...

boost::system::error_code make_error_code(
netdb_errors e);

» more...

boost::system::error_code make_error_code(
addrinfo_errors e);

» more...

boost::system::error_code make_error_code(
misc_errors e);

» more...

boost::system::error_code make_error_code(
ssl_errors e);

» more...

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

error::make_error_code (1 of 5 overloads)

boost::system::error_code make_error_code(
basic_errors e);

error::make_error_code (2 of 5 overloads)

boost::system::error_code make_error_code(
netdb_errors e);

error::make_error_code (3 of 5 overloads)

boost::system::error_code make_error_code(
addrinfo_errors e);

error::make_error_code (4 of 5 overloads)

boost::system::error_code make_error_code(
misc_errors e);

805

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

error::make_error_code (5 of 5 overloads)

boost::system::error_code make_error_code(
ssl_errors e);

error::misc_category

static const boost::system::error_category & misc_category = boost::asio::error::get_misc_cat↵
egory();

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

error::misc_errors

enum misc_errors

Values

already_open Already open.

eof End of file or stream.

not_found Element not found.

fd_set_failure The descriptor cannot fit into the select system call's fd_set.

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

error::netdb_category

static const boost::system::error_category & netdb_category = boost::asio::error::get_netdb_cat↵
egory();

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

error::netdb_errors

enum netdb_errors

806

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Values

host_not_found Host not found (authoritative).

host_not_found_try_again Host not found (non-authoritative).

no_data The query is valid but does not have associated address data.

no_recovery A non-recoverable error occurred.

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

error::ssl_category

static const boost::system::error_category & ssl_category = boost::asio::error::get_ssl_category();

Requirements

Header: boost/asio/ssl/error.hpp

Convenience header: boost/asio/ssl.hpp

error::ssl_errors

enum ssl_errors

Requirements

Header: boost/asio/ssl/error.hpp

Convenience header: boost/asio/ssl.hpp

error::system_category

static const boost::system::error_category & system_category = boost::asio::error::get_system_cat↵
egory();

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

generic::basic_endpoint
Describes an endpoint for any socket type.

807

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol>

class basic_endpoint

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

Member Functions

DescriptionName

Default constructor.

Construct an endpoint from the specified socket address.

Construct an endpoint from the specific endpoint type.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare endpoints for ordering.operator<=

Compare two endpoints for equality.operator==

Compare endpoints for ordering.operator>

Compare endpoints for ordering.operator>=

The generic::basic_endpoint class template describes an endpoint that may be associated with any socket type.

808

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The socket types sockaddr type must be able to fit into a sockaddr_storage structure.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/generic/basic_endpoint.hpp

Convenience header: boost/asio.hpp

generic::basic_endpoint::basic_endpoint

Default constructor.

basic_endpoint();
» more...

Construct an endpoint from the specified socket address.

basic_endpoint(
const void * socket_address,
std::size_t socket_address_size,
int socket_protocol = 0);

» more...

Construct an endpoint from the specific endpoint type.

template<
typename Endpoint>

basic_endpoint(
const Endpoint & endpoint);

» more...

Copy constructor.

basic_endpoint(
const basic_endpoint & other);

» more...

generic::basic_endpoint::basic_endpoint (1 of 4 overloads)

Default constructor.

basic_endpoint();

generic::basic_endpoint::basic_endpoint (2 of 4 overloads)

Construct an endpoint from the specified socket address.

809

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_endpoint(
const void * socket_address,
std::size_t socket_address_size,
int socket_protocol = 0);

generic::basic_endpoint::basic_endpoint (3 of 4 overloads)

Construct an endpoint from the specific endpoint type.

template<
typename Endpoint>

basic_endpoint(
const Endpoint & endpoint);

generic::basic_endpoint::basic_endpoint (4 of 4 overloads)

Copy constructor.

basic_endpoint(
const basic_endpoint & other);

generic::basic_endpoint::capacity

Get the capacity of the endpoint in the native type.

std::size_t capacity() const;

generic::basic_endpoint::data

Get the underlying endpoint in the native type.

data_type * data();
» more...

const data_type * data() const;
» more...

generic::basic_endpoint::data (1 of 2 overloads)

Get the underlying endpoint in the native type.

data_type * data();

generic::basic_endpoint::data (2 of 2 overloads)

Get the underlying endpoint in the native type.

const data_type * data() const;

generic::basic_endpoint::data_type

The type of the endpoint structure. This type is dependent on the underlying implementation of the socket layer.

810

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined data_type;

Requirements

Header: boost/asio/generic/basic_endpoint.hpp

Convenience header: boost/asio.hpp

generic::basic_endpoint::operator!=

Compare two endpoints for inequality.

friend bool operator!=(
const basic_endpoint< Protocol > & e1,
const basic_endpoint< Protocol > & e2);

Requirements

Header: boost/asio/generic/basic_endpoint.hpp

Convenience header: boost/asio.hpp

generic::basic_endpoint::operator<

Compare endpoints for ordering.

friend bool operator<(
const basic_endpoint< Protocol > & e1,
const basic_endpoint< Protocol > & e2);

Requirements

Header: boost/asio/generic/basic_endpoint.hpp

Convenience header: boost/asio.hpp

generic::basic_endpoint::operator<=

Compare endpoints for ordering.

friend bool operator<=(
const basic_endpoint< Protocol > & e1,
const basic_endpoint< Protocol > & e2);

Requirements

Header: boost/asio/generic/basic_endpoint.hpp

Convenience header: boost/asio.hpp

generic::basic_endpoint::operator=

Assign from another endpoint.

basic_endpoint & operator=(
const basic_endpoint & other);

811

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

generic::basic_endpoint::operator==

Compare two endpoints for equality.

friend bool operator==(
const basic_endpoint< Protocol > & e1,
const basic_endpoint< Protocol > & e2);

Requirements

Header: boost/asio/generic/basic_endpoint.hpp

Convenience header: boost/asio.hpp

generic::basic_endpoint::operator>

Compare endpoints for ordering.

friend bool operator>(
const basic_endpoint< Protocol > & e1,
const basic_endpoint< Protocol > & e2);

Requirements

Header: boost/asio/generic/basic_endpoint.hpp

Convenience header: boost/asio.hpp

generic::basic_endpoint::operator>=

Compare endpoints for ordering.

friend bool operator>=(
const basic_endpoint< Protocol > & e1,
const basic_endpoint< Protocol > & e2);

Requirements

Header: boost/asio/generic/basic_endpoint.hpp

Convenience header: boost/asio.hpp

generic::basic_endpoint::protocol

The protocol associated with the endpoint.

protocol_type protocol() const;

generic::basic_endpoint::protocol_type

The protocol type associated with the endpoint.

typedef Protocol protocol_type;

812

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/generic/basic_endpoint.hpp

Convenience header: boost/asio.hpp

generic::basic_endpoint::resize

Set the underlying size of the endpoint in the native type.

void resize(
std::size_t new_size);

generic::basic_endpoint::size

Get the underlying size of the endpoint in the native type.

std::size_t size() const;

generic::datagram_protocol
Encapsulates the flags needed for a generic datagram-oriented socket.

class datagram_protocol

Types

DescriptionName

The type of an endpoint.endpoint

The generic socket type.socket

Member Functions

DescriptionName

Construct a protocol object for a specific address family and
protocol.

Construct a generic protocol object from a specific protocol.

datagram_protocol

Obtain an identifier for the protocol family.family

Obtain an identifier for the protocol.protocol

Obtain an identifier for the type of the protocol.type

813

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Friends

DescriptionName

Compare two protocols for inequality.operator!=

Compare two protocols for equality.operator==

The generic::datagram_protocol class contains flags necessary for datagram-oriented sockets of any address family and protocol.

Examples

Constructing using a native address family and socket protocol:

datagram_protocol p(AF_INET, IPPROTO_UDP);

Constructing from a specific protocol type:

datagram_protocol p(boost::asio::ip::udp::v4());

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

Requirements

Header: boost/asio/generic/datagram_protocol.hpp

Convenience header: boost/asio.hpp

generic::datagram_protocol::datagram_protocol

Construct a protocol object for a specific address family and protocol.

datagram_protocol(
int address_family,
int socket_protocol);

» more...

Construct a generic protocol object from a specific protocol.

template<
typename Protocol>

datagram_protocol(
const Protocol & source_protocol);

» more...

generic::datagram_protocol::datagram_protocol (1 of 2 overloads)

Construct a protocol object for a specific address family and protocol.

814

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

datagram_protocol(
int address_family,
int socket_protocol);

generic::datagram_protocol::datagram_protocol (2 of 2 overloads)

Construct a generic protocol object from a specific protocol.

template<
typename Protocol>

datagram_protocol(
const Protocol & source_protocol);

Exceptions

@c bad_cast Thrown if the source protocol is not datagram-oriented.

generic::datagram_protocol::endpoint

The type of an endpoint.

typedef basic_endpoint< datagram_protocol > endpoint;

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

Member Functions

DescriptionName

Default constructor.

Construct an endpoint from the specified socket address.

Construct an endpoint from the specific endpoint type.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

815

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare endpoints for ordering.operator<=

Compare two endpoints for equality.operator==

Compare endpoints for ordering.operator>

Compare endpoints for ordering.operator>=

The generic::basic_endpoint class template describes an endpoint that may be associated with any socket type.

Remarks

The socket types sockaddr type must be able to fit into a sockaddr_storage structure.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/generic/datagram_protocol.hpp

Convenience header: boost/asio.hpp

generic::datagram_protocol::family

Obtain an identifier for the protocol family.

int family() const;

generic::datagram_protocol::operator!=

Compare two protocols for inequality.

friend bool operator!=(
const datagram_protocol & p1,
const datagram_protocol & p2);

Requirements

Header: boost/asio/generic/datagram_protocol.hpp

Convenience header: boost/asio.hpp

generic::datagram_protocol::operator==

Compare two protocols for equality.

816

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

friend bool operator==(
const datagram_protocol & p1,
const datagram_protocol & p2);

Requirements

Header: boost/asio/generic/datagram_protocol.hpp

Convenience header: boost/asio.hpp

generic::datagram_protocol::protocol

Obtain an identifier for the protocol.

int protocol() const;

generic::datagram_protocol::socket

The generic socket type.

typedef basic_datagram_socket< datagram_protocol > socket;

817

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

818

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

819

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive on a connected socket.async_receive

Start an asynchronous receive.async_receive_from

Start an asynchronous send on a connected socket.async_send

Start an asynchronous send.async_send_to

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_datagram_socket without opening it.basic_datagram_socket

Construct and open a basic_datagram_socket.

Construct a basic_datagram_socket, opening it and binding it
to the given local endpoint.

Construct a basic_datagram_socket on an existing native socket.

Move-construct a basic_datagram_socket from another.

Move-construct a basic_datagram_socket from a socket of an-
other protocol type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

820

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Gets the non-blocking mode of the native socket implementation.

Sets the non-blocking mode of the native socket implementation.

native_non_blocking

Gets the non-blocking mode of the socket.

Sets the non-blocking mode of the socket.

non_blocking

Open the socket using the specified protocol.open

Move-assign a basic_datagram_socket from another.

Move-assign a basic_datagram_socket from a socket of another
protocol type.

operator=

Receive some data on a connected socket.receive

Receive a datagram with the endpoint of the sender.receive_from

Get the remote endpoint of the socket.remote_endpoint

Send some data on a connected socket.send

Send a datagram to the specified endpoint.send_to

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

821

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_datagram_socket class template provides asynchronous and blocking datagram-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/generic/datagram_protocol.hpp

Convenience header: boost/asio.hpp

generic::datagram_protocol::type

Obtain an identifier for the type of the protocol.

int type() const;

generic::raw_protocol
Encapsulates the flags needed for a generic raw socket.

class raw_protocol

Types

DescriptionName

The type of an endpoint.endpoint

The generic socket type.socket

822

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Obtain an identifier for the protocol family.family

Obtain an identifier for the protocol.protocol

Construct a protocol object for a specific address family and
protocol.

Construct a generic protocol object from a specific protocol.

raw_protocol

Obtain an identifier for the type of the protocol.type

Friends

DescriptionName

Compare two protocols for inequality.operator!=

Compare two protocols for equality.operator==

The generic::raw_protocol class contains flags necessary for raw sockets of any address family and protocol.

Examples

Constructing using a native address family and socket protocol:

raw_protocol p(AF_INET, IPPROTO_ICMP);

Constructing from a specific protocol type:

raw_protocol p(boost::asio::ip::icmp::v4());

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

Requirements

Header: boost/asio/generic/raw_protocol.hpp

Convenience header: boost/asio.hpp

generic::raw_protocol::endpoint

The type of an endpoint.

typedef basic_endpoint< raw_protocol > endpoint;

823

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

Member Functions

DescriptionName

Default constructor.

Construct an endpoint from the specified socket address.

Construct an endpoint from the specific endpoint type.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare endpoints for ordering.operator<=

Compare two endpoints for equality.operator==

Compare endpoints for ordering.operator>

Compare endpoints for ordering.operator>=

The generic::basic_endpoint class template describes an endpoint that may be associated with any socket type.

Remarks

The socket types sockaddr type must be able to fit into a sockaddr_storage structure.

824

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/generic/raw_protocol.hpp

Convenience header: boost/asio.hpp

generic::raw_protocol::family

Obtain an identifier for the protocol family.

int family() const;

generic::raw_protocol::operator!=

Compare two protocols for inequality.

friend bool operator!=(
const raw_protocol & p1,
const raw_protocol & p2);

Requirements

Header: boost/asio/generic/raw_protocol.hpp

Convenience header: boost/asio.hpp

generic::raw_protocol::operator==

Compare two protocols for equality.

friend bool operator==(
const raw_protocol & p1,
const raw_protocol & p2);

Requirements

Header: boost/asio/generic/raw_protocol.hpp

Convenience header: boost/asio.hpp

generic::raw_protocol::protocol

Obtain an identifier for the protocol.

int protocol() const;

generic::raw_protocol::raw_protocol

Construct a protocol object for a specific address family and protocol.

825

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

raw_protocol(
int address_family,
int socket_protocol);

» more...

Construct a generic protocol object from a specific protocol.

template<
typename Protocol>

raw_protocol(
const Protocol & source_protocol);

» more...

generic::raw_protocol::raw_protocol (1 of 2 overloads)

Construct a protocol object for a specific address family and protocol.

raw_protocol(
int address_family,
int socket_protocol);

generic::raw_protocol::raw_protocol (2 of 2 overloads)

Construct a generic protocol object from a specific protocol.

template<
typename Protocol>

raw_protocol(
const Protocol & source_protocol);

Exceptions

@c bad_cast Thrown if the source protocol is not raw-oriented.

generic::raw_protocol::socket

The generic socket type.

typedef basic_raw_socket< raw_protocol > socket;

826

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

827

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

828

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive on a connected socket.async_receive

Start an asynchronous receive.async_receive_from

Start an asynchronous send on a connected socket.async_send

Start an asynchronous send.async_send_to

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_raw_socket without opening it.basic_raw_socket

Construct and open a basic_raw_socket.

Construct a basic_raw_socket, opening it and binding it to the
given local endpoint.

Construct a basic_raw_socket on an existing native socket.

Move-construct a basic_raw_socket from another.

Move-construct a basic_raw_socket from a socket of another
protocol type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

829

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Gets the non-blocking mode of the native socket implementation.

Sets the non-blocking mode of the native socket implementation.

native_non_blocking

Gets the non-blocking mode of the socket.

Sets the non-blocking mode of the socket.

non_blocking

Open the socket using the specified protocol.open

Move-assign a basic_raw_socket from another.

Move-assign a basic_raw_socket from a socket of another pro-
tocol type.

operator=

Receive some data on a connected socket.receive

Receive raw data with the endpoint of the sender.receive_from

Get the remote endpoint of the socket.remote_endpoint

Send some data on a connected socket.send

Send raw data to the specified endpoint.send_to

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

830

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_raw_socket class template provides asynchronous and blocking raw-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/generic/raw_protocol.hpp

Convenience header: boost/asio.hpp

generic::raw_protocol::type

Obtain an identifier for the type of the protocol.

int type() const;

generic::seq_packet_protocol
Encapsulates the flags needed for a generic sequenced packet socket.

class seq_packet_protocol

Types

DescriptionName

The type of an endpoint.endpoint

The generic socket type.socket

831

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Obtain an identifier for the protocol family.family

Obtain an identifier for the protocol.protocol

Construct a protocol object for a specific address family and
protocol.

Construct a generic protocol object from a specific protocol.

seq_packet_protocol

Obtain an identifier for the type of the protocol.type

Friends

DescriptionName

Compare two protocols for inequality.operator!=

Compare two protocols for equality.operator==

The generic::seq_packet_protocol class contains flags necessary for seq_packet-oriented sockets of any address family and
protocol.

Examples

Constructing using a native address family and socket protocol:

seq_packet_protocol p(AF_INET, IPPROTO_SCTP);

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

Requirements

Header: boost/asio/generic/seq_packet_protocol.hpp

Convenience header: boost/asio.hpp

generic::seq_packet_protocol::endpoint

The type of an endpoint.

typedef basic_endpoint< seq_packet_protocol > endpoint;

832

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

Member Functions

DescriptionName

Default constructor.

Construct an endpoint from the specified socket address.

Construct an endpoint from the specific endpoint type.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare endpoints for ordering.operator<=

Compare two endpoints for equality.operator==

Compare endpoints for ordering.operator>

Compare endpoints for ordering.operator>=

The generic::basic_endpoint class template describes an endpoint that may be associated with any socket type.

Remarks

The socket types sockaddr type must be able to fit into a sockaddr_storage structure.

833

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/generic/seq_packet_protocol.hpp

Convenience header: boost/asio.hpp

generic::seq_packet_protocol::family

Obtain an identifier for the protocol family.

int family() const;

generic::seq_packet_protocol::operator!=

Compare two protocols for inequality.

friend bool operator!=(
const seq_packet_protocol & p1,
const seq_packet_protocol & p2);

Requirements

Header: boost/asio/generic/seq_packet_protocol.hpp

Convenience header: boost/asio.hpp

generic::seq_packet_protocol::operator==

Compare two protocols for equality.

friend bool operator==(
const seq_packet_protocol & p1,
const seq_packet_protocol & p2);

Requirements

Header: boost/asio/generic/seq_packet_protocol.hpp

Convenience header: boost/asio.hpp

generic::seq_packet_protocol::protocol

Obtain an identifier for the protocol.

int protocol() const;

generic::seq_packet_protocol::seq_packet_protocol

Construct a protocol object for a specific address family and protocol.

834

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

seq_packet_protocol(
int address_family,
int socket_protocol);

» more...

Construct a generic protocol object from a specific protocol.

template<
typename Protocol>

seq_packet_protocol(
const Protocol & source_protocol);

» more...

generic::seq_packet_protocol::seq_packet_protocol (1 of 2 overloads)

Construct a protocol object for a specific address family and protocol.

seq_packet_protocol(
int address_family,
int socket_protocol);

generic::seq_packet_protocol::seq_packet_protocol (2 of 2 overloads)

Construct a generic protocol object from a specific protocol.

template<
typename Protocol>

seq_packet_protocol(
const Protocol & source_protocol);

Exceptions

@c bad_cast Thrown if the source protocol is not based around sequenced packets.

generic::seq_packet_protocol::socket

The generic socket type.

typedef basic_seq_packet_socket< seq_packet_protocol > socket;

835

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

836

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

837

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive.async_receive

Start an asynchronous send.async_send

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_seq_packet_socket without opening it.basic_seq_packet_socket

Construct and open a basic_seq_packet_socket.

Construct a basic_seq_packet_socket, opening it and binding it
to the given local endpoint.

Construct a basic_seq_packet_socket on an existing native
socket.

Move-construct a basic_seq_packet_socket from another.

Move-construct a basic_seq_packet_socket from a socket of
another protocol type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

Gets the non-blocking mode of the native socket implementation.native_non_blocking

Sets the non-blocking mode of the native socket implementation.

838

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Gets the non-blocking mode of the socket.

Sets the non-blocking mode of the socket.

non_blocking

Open the socket using the specified protocol.open

Move-assign a basic_seq_packet_socket from another.

Move-assign a basic_seq_packet_socket from a socket of another
protocol type.

operator=

Receive some data on the socket.

Receive some data on a connected socket.

receive

Get the remote endpoint of the socket.remote_endpoint

Send some data on the socket.send

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

839

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_seq_packet_socket class template provides asynchronous and blocking sequenced packet socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/generic/seq_packet_protocol.hpp

Convenience header: boost/asio.hpp

generic::seq_packet_protocol::type

Obtain an identifier for the type of the protocol.

int type() const;

generic::stream_protocol
Encapsulates the flags needed for a generic stream-oriented socket.

class stream_protocol

Types

DescriptionName

The type of an endpoint.endpoint

The generic socket iostream type.iostream

The generic socket type.socket

840

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Obtain an identifier for the protocol family.family

Obtain an identifier for the protocol.protocol

Construct a protocol object for a specific address family and
protocol.

Construct a generic protocol object from a specific protocol.

stream_protocol

Obtain an identifier for the type of the protocol.type

Friends

DescriptionName

Compare two protocols for inequality.operator!=

Compare two protocols for equality.operator==

The generic::stream_protocol class contains flags necessary for stream-oriented sockets of any address family and protocol.

Examples

Constructing using a native address family and socket protocol:

stream_protocol p(AF_INET, IPPROTO_TCP);

Constructing from a specific protocol type:

stream_protocol p(boost::asio::ip::tcp::v4());

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

Requirements

Header: boost/asio/generic/stream_protocol.hpp

Convenience header: boost/asio.hpp

generic::stream_protocol::endpoint

The type of an endpoint.

typedef basic_endpoint< stream_protocol > endpoint;

841

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

Member Functions

DescriptionName

Default constructor.

Construct an endpoint from the specified socket address.

Construct an endpoint from the specific endpoint type.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare endpoints for ordering.operator<=

Compare two endpoints for equality.operator==

Compare endpoints for ordering.operator>

Compare endpoints for ordering.operator>=

The generic::basic_endpoint class template describes an endpoint that may be associated with any socket type.

Remarks

The socket types sockaddr type must be able to fit into a sockaddr_storage structure.

842

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/generic/stream_protocol.hpp

Convenience header: boost/asio.hpp

generic::stream_protocol::family

Obtain an identifier for the protocol family.

int family() const;

generic::stream_protocol::iostream

The generic socket iostream type.

typedef basic_socket_iostream< stream_protocol > iostream;

Types

DescriptionName

The duration type.duration_type

The endpoint type.endpoint_type

The time type.time_type

843

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Construct a basic_socket_iostream without establishing a con-
nection.

Establish a connection to an endpoint corresponding to a resolver
query.

basic_socket_iostream

Close the connection.close

Establish a connection to an endpoint corresponding to a resolver
query.

connect

Get the last error associated with the stream.error

Get the stream's expiry time as an absolute time.

Set the stream's expiry time as an absolute time.

expires_at

Get the timer's expiry time relative to now.

Set the stream's expiry time relative to now.

expires_from_now

Return a pointer to the underlying streambuf.rdbuf

Requirements

Header: boost/asio/generic/stream_protocol.hpp

Convenience header: boost/asio.hpp

generic::stream_protocol::operator!=

Compare two protocols for inequality.

friend bool operator!=(
const stream_protocol & p1,
const stream_protocol & p2);

Requirements

Header: boost/asio/generic/stream_protocol.hpp

Convenience header: boost/asio.hpp

generic::stream_protocol::operator==

Compare two protocols for equality.

friend bool operator==(
const stream_protocol & p1,
const stream_protocol & p2);

Requirements

Header: boost/asio/generic/stream_protocol.hpp

844

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Convenience header: boost/asio.hpp

generic::stream_protocol::protocol

Obtain an identifier for the protocol.

int protocol() const;

generic::stream_protocol::socket

The generic socket type.

typedef basic_stream_socket< stream_protocol > socket;

845

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

846

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

847

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous read.async_read_some

Start an asynchronous receive.async_receive

Start an asynchronous send.async_send

Start an asynchronous write.async_write_some

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_stream_socket without opening it.basic_stream_socket

Construct and open a basic_stream_socket.

Construct a basic_stream_socket, opening it and binding it to
the given local endpoint.

Construct a basic_stream_socket on an existing native socket.

Move-construct a basic_stream_socket from another.

Move-construct a basic_stream_socket from a socket of another
protocol type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

848

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Gets the non-blocking mode of the native socket implementation.

Sets the non-blocking mode of the native socket implementation.

native_non_blocking

Gets the non-blocking mode of the socket.

Sets the non-blocking mode of the socket.

non_blocking

Open the socket using the specified protocol.open

Move-assign a basic_stream_socket from another.

Move-assign a basic_stream_socket from a socket of another
protocol type.

operator=

Read some data from the socket.read_some

Receive some data on the socket.

Receive some data on a connected socket.

receive

Get the remote endpoint of the socket.remote_endpoint

Send some data on the socket.send

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Write some data to the socket.write_some

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

849

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_stream_socket class template provides asynchronous and blocking stream-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/generic/stream_protocol.hpp

Convenience header: boost/asio.hpp

generic::stream_protocol::stream_protocol

Construct a protocol object for a specific address family and protocol.

stream_protocol(
int address_family,
int socket_protocol);

» more...

Construct a generic protocol object from a specific protocol.

template<
typename Protocol>

stream_protocol(
const Protocol & source_protocol);

» more...

generic::stream_protocol::stream_protocol (1 of 2 overloads)

Construct a protocol object for a specific address family and protocol.

stream_protocol(
int address_family,
int socket_protocol);

generic::stream_protocol::stream_protocol (2 of 2 overloads)

Construct a generic protocol object from a specific protocol.

template<
typename Protocol>

stream_protocol(
const Protocol & source_protocol);

850

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

@c bad_cast Thrown if the source protocol is not stream-oriented.

generic::stream_protocol::type

Obtain an identifier for the type of the protocol.

int type() const;

handler_type
Default handler type traits provided for all handlers.

template<
typename Handler,
typename Signature>

struct handler_type

Types

DescriptionName

The handler type for the specific signature.type

The handler_type traits class is used for determining the concrete handler type to be used for an asynchronous operation. It allows
the handler type to be determined at the point where the specific completion handler signature is known.

This template may be specialised for user-defined handler types.

Requirements

Header: boost/asio/handler_type.hpp

Convenience header: boost/asio.hpp

handler_type::type

The handler type for the specific signature.

typedef Handler type;

Requirements

Header: boost/asio/handler_type.hpp

Convenience header: boost/asio.hpp

has_service

template<
typename Service>

bool has_service(
io_service & ios);

851

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This function is used to determine whether the io_service contains a service object corresponding to the given service type.

Parameters

ios The io_service object that owns the service.

Return Value

A boolean indicating whether the io_service contains the service.

Requirements

Header: boost/asio/io_service.hpp

Convenience header: boost/asio.hpp

high_resolution_timer
Typedef for a timer based on the high resolution clock.

typedef basic_waitable_timer< chrono::high_resolution_clock > high_resolution_timer;

Types

DescriptionName

The clock type.clock_type

The duration type of the clock.duration

The underlying implementation type of I/O object.implementation_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

The time point type of the clock.time_point

The wait traits type.traits_type

852

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Start an asynchronous wait on the timer.async_wait

Constructor.

Constructor to set a particular expiry time as an absolute time.

Constructor to set a particular expiry time relative to now.

basic_waitable_timer

Cancel any asynchronous operations that are waiting on the
timer.

cancel

Cancels one asynchronous operation that is waiting on the timer.cancel_one

Get the timer's expiry time as an absolute time.

Set the timer's expiry time as an absolute time.

expires_at

Get the timer's expiry time relative to now.

Set the timer's expiry time relative to now.

expires_from_now

Get the io_service associated with the object.get_io_service

Perform a blocking wait on the timer.wait

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_waitable_timer class template provides the ability to perform a blocking or asynchronous wait for a timer to expire.

A waitable timer is always in one of two states: "expired" or "not expired". If the wait() or async_wait() function is called on
an expired timer, the wait operation will complete immediately.

Most applications will use one of the steady_timer, system_timer or high_resolution_timer typedefs.

Remarks

This waitable timer functionality is for use with the C++11 standard library's <chrono> facility, or with the Boost.Chrono library.

853

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Examples

Performing a blocking wait (C++11):

// Construct a timer without setting an expiry time.
boost::asio::steady_timer timer(io_service);

// Set an expiry time relative to now.
timer.expires_from_now(std::chrono::seconds(5));

// Wait for the timer to expire.
timer.wait();

Performing an asynchronous wait (C++11):

void handler(const boost::system::error_code& error)
{
if (!error)
{
// Timer expired.

}
}

...

// Construct a timer with an absolute expiry time.
boost::asio::steady_timer timer(io_service,

std::chrono::steady_clock::now() + std::chrono::seconds(60));

// Start an asynchronous wait.
timer.async_wait(handler);

Changing an active waitable timer's expiry time

Changing the expiry time of a timer while there are pending asynchronous waits causes those wait operations to be cancelled. To
ensure that the action associated with the timer is performed only once, use something like this: used:

854

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void on_some_event()
{
if (my_timer.expires_from_now(seconds(5)) > 0)
{
// We managed to cancel the timer. Start new asynchronous wait.
my_timer.async_wait(on_timeout);

}
else
{
// Too late, timer has already expired!

}
}

void on_timeout(const boost::system::error_code& e)
{
if (e != boost::asio::error::operation_aborted)
{
// Timer was not cancelled, take necessary action.

}
}

• The boost::asio::basic_waitable_timer::expires_from_now() function cancels any pending asynchronous waits,
and returns the number of asynchronous waits that were cancelled. If it returns 0 then you were too late and the wait handler has
already been executed, or will soon be executed. If it returns 1 then the wait handler was successfully cancelled.

• If a wait handler is cancelled, the boost::system::error_code passed to it contains the value boost::asio::error::opera-
tion_aborted.

This typedef uses the C++11 <chrono> standard library facility, if available. Otherwise, it may use the Boost.Chrono library. To
explicitly utilise Boost.Chrono, use the basic_waitable_timer template directly:

typedef basic_waitable_timer<boost::chrono::high_resolution_clock> timer;

Requirements

Header: boost/asio/high_resolution_timer.hpp

Convenience header: None

invalid_service_owner
Exception thrown when trying to add a service object to an io_service where the service has a different owner.

class invalid_service_owner

Member Functions

DescriptionName

invalid_service_owner

Requirements

Header: boost/asio/io_service.hpp

Convenience header: boost/asio.hpp

855

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

invalid_service_owner::invalid_service_owner

invalid_service_owner();

io_service
Provides core I/O functionality.

class io_service :
noncopyable

Types

DescriptionName

Class used to uniquely identify a service.id

Base class for all io_service services.service

Provides serialised handler execution.strand

Class to inform the io_service when it has work to do.work

Fork-related event notifications.fork_event

856

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Request the io_service to invoke the given handler.dispatch

Constructor.io_service

Notify the io_service of a fork-related event.notify_fork

Run the io_service object's event processing loop to execute
ready handlers.

poll

Run the io_service object's event processing loop to execute
one ready handler.

poll_one

Request the io_service to invoke the given handler and return
immediately.

post

Reset the io_service in preparation for a subsequent run() invoc-
ation.

reset

Run the io_service object's event processing loop.run

Run the io_service object's event processing loop to execute at
most one handler.

run_one

Stop the io_service object's event processing loop.stop

Determine whether the io_service object has been stopped.stopped

Create a new handler that automatically dispatches the wrapped
handler on the io_service.

wrap

Destructor.~io_service

Friends

DescriptionName

Add a service object to the io_service.add_service

Determine if an io_service contains a specified service type.has_service

Obtain the service object corresponding to the given type.use_service

The io_service class provides the core I/O functionality for users of the asynchronous I/O objects, including:

• boost::asio::ip::tcp::socket

• boost::asio::ip::tcp::acceptor

• boost::asio::ip::udp::socket

• deadline_timer.

The io_service class also includes facilities intended for developers of custom asynchronous services.

857

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Safe, with the specific exceptions of the reset() and notify_fork() functions. Calling reset() while there
are unfinished run(), run_one(), poll() or poll_one() calls results in undefined behaviour. The notify_fork() function
should not be called while any io_service function, or any function on an I/O object that is associated with the io_service, is
being called in another thread.

Synchronous and asynchronous operations

Synchronous operations on I/O objects implicitly run the io_service object for an individual operation. The io_service functions
run(), run_one(), poll() or poll_one() must be called for the io_service to perform asynchronous operations on behalf
of a C++ program. Notification that an asynchronous operation has completed is delivered by invocation of the associated handler.
Handlers are invoked only by a thread that is currently calling any overload of run(), run_one(), poll() or poll_one() for
the io_service.

Effect of exceptions thrown from handlers

If an exception is thrown from a handler, the exception is allowed to propagate through the throwing thread's invocation of run(),
run_one(), poll() or poll_one(). No other threads that are calling any of these functions are affected. It is then the responsib-
ility of the application to catch the exception.

After the exception has been caught, the run(), run_one(), poll() or poll_one() call may be restarted without the need for
an intervening call to reset(). This allows the thread to rejoin the io_service object's thread pool without impacting any other
threads in the pool.

For example:

boost::asio::io_service io_service;
...
for (;;)
{
try
{
io_service.run();
break; // run() exited normally

}
catch (my_exception& e)
{
// Deal with exception as appropriate.

}
}

Stopping the io_service from running out of work

Some applications may need to prevent an io_service object's run() call from returning when there is no more work to do. For
example, the io_service may be being run in a background thread that is launched prior to the application's asynchronous operations.
The run() call may be kept running by creating an object of type io_service::work:

boost::asio::io_service io_service;
boost::asio::io_service::work work(io_service);
...

To effect a shutdown, the application will then need to call the io_service object's stop() member function. This will cause the
io_service run() call to return as soon as possible, abandoning unfinished operations and without permitting ready handlers to
be dispatched.

858

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Alternatively, if the application requires that all operations and handlers be allowed to finish normally, the work object may be ex-
plicitly destroyed.

boost::asio::io_service io_service;
auto_ptr<boost::asio::io_service::work> work(

new boost::asio::io_service::work(io_service));
...
work.reset(); // Allow run() to exit.

The io_service class and I/O services

Class io_service implements an extensible, type-safe, polymorphic set of I/O services, indexed by service type. An object of class
io_service must be initialised before I/O objects such as sockets, resolvers and timers can be used. These I/O objects are distinguished
by having constructors that accept an io_service& parameter.

I/O services exist to manage the logical interface to the operating system on behalf of the I/O objects. In particular, there are resources
that are shared across a class of I/O objects. For example, timers may be implemented in terms of a single timer queue. The I/O
services manage these shared resources.

Access to the services of an io_service is via three function templates, use_service(), add_service() and has_service().

In a call to use_service<Service>(), the type argument chooses a service, making available all members of the named type. If
Service is not present in an io_service, an object of type Service is created and added to the io_service. A C++ program
can check if an io_service implements a particular service with the function template has_service<Service>().

Service objects may be explicitly added to an io_service using the function template add_service<Service>(). If the Service
is already present, the service_already_exists exception is thrown. If the owner of the service is not the same object as the
io_service parameter, the invalid_service_owner exception is thrown.

Once a service reference is obtained from an io_service object by calling use_service(), that reference remains usable as long
as the owning io_service object exists.

All I/O service implementations have io_service::service as a public base class. Custom I/O services may be implemented by
deriving from this class and then added to an io_service using the facilities described above.

Requirements

Header: boost/asio/io_service.hpp

Convenience header: boost/asio.hpp

io_service::add_service

Add a service object to the io_service.

template<
typename Service>

friend void add_service(
io_service & ios,
Service * svc);

This function is used to add a service to the io_service.

Parameters

ios The io_service object that owns the service.

svc The service object. On success, ownership of the service object is transferred to the io_service. When the io_service
object is destroyed, it will destroy the service object by performing:

859

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

delete static_cast<io_service::service*>(svc)

Exceptions

boost::asio::service_already_exists Thrown if a service of the given type is already present in the io_service.

boost::asio::invalid_service_owner Thrown if the service's owning io_service is not the io_service object specified by the
ios parameter.

Requirements

Header: boost/asio/io_service.hpp

Convenience header: boost/asio.hpp

io_service::dispatch

Request the io_service to invoke the given handler.

template<
typename CompletionHandler>

void-or-deduced dispatch(
CompletionHandler handler);

This function is used to ask the io_service to execute the given handler.

The io_service guarantees that the handler will only be called in a thread in which the run(), run_one(), poll() or poll_one()
member functions is currently being invoked. The handler may be executed inside this function if the guarantee can be met.

Parameters

handler The handler to be called. The io_service will make a copy of the handler object as required. The function signature
of the handler must be:

void handler();

Remarks

This function throws an exception only if:

• the handler's asio_handler_allocate function; or

• the handler's copy constructor

throws an exception.

io_service::fork_event

Fork-related event notifications.

enum fork_event

Values

fork_prepare Notify the io_service that the process is about to fork.

860

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

fork_parent Notify the io_service that the process has forked and is the parent.

fork_child Notify the io_service that the process has forked and is the child.

io_service::has_service

Determine if an io_service contains a specified service type.

template<
typename Service>

friend bool has_service(
io_service & ios);

This function is used to determine whether the io_service contains a service object corresponding to the given service type.

Parameters

ios The io_service object that owns the service.

Return Value

A boolean indicating whether the io_service contains the service.

Requirements

Header: boost/asio/io_service.hpp

Convenience header: boost/asio.hpp

io_service::io_service

Constructor.

io_service();
» more...

explicit io_service(
std::size_t concurrency_hint);

» more...

io_service::io_service (1 of 2 overloads)

Constructor.

io_service();

io_service::io_service (2 of 2 overloads)

Constructor.

io_service(
std::size_t concurrency_hint);

Construct with a hint about the required level of concurrency.

Parameters

concurrency_hint A suggestion to the implementation on how many threads it should allow to run simultaneously.

861

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

io_service::notify_fork

Notify the io_service of a fork-related event.

void notify_fork(
boost::asio::io_service::fork_event event);

This function is used to inform the io_service that the process is about to fork, or has just forked. This allows the io_service,
and the services it contains, to perform any necessary housekeeping to ensure correct operation following a fork.

This function must not be called while any other io_service function, or any function on an I/O object associated with the
io_service, is being called in another thread. It is, however, safe to call this function from within a completion handler, provided
no other thread is accessing the io_service.

Parameters

event A fork-related event.

Exceptions

boost::system::system_error Thrown on failure. If the notification fails the io_service object should no longer be used
and should be destroyed.

Example

The following code illustrates how to incorporate the notify_fork() function:

my_io_service.notify_fork(boost::asio::io_service::fork_prepare);
if (fork() == 0)
{
// This is the child process.
my_io_service.notify_fork(boost::asio::io_service::fork_child);

}
else
{
// This is the parent process.
my_io_service.notify_fork(boost::asio::io_service::fork_parent);

}

Remarks

For each service object svc in the io_service set, performs svc->fork_service();. When processing the fork_prepare event,
services are visited in reverse order of the beginning of service object lifetime. Otherwise, services are visited in order of the beginning
of service object lifetime.

io_service::poll

Run the io_service object's event processing loop to execute ready handlers.

std::size_t poll();
» more...

std::size_t poll(
boost::system::error_code & ec);

» more...

862

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

io_service::poll (1 of 2 overloads)

Run the io_service object's event processing loop to execute ready handlers.

std::size_t poll();

The poll() function runs handlers that are ready to run, without blocking, until the io_service has been stopped or there are no
more ready handlers.

Return Value

The number of handlers that were executed.

Exceptions

boost::system::system_error Thrown on failure.

io_service::poll (2 of 2 overloads)

Run the io_service object's event processing loop to execute ready handlers.

std::size_t poll(
boost::system::error_code & ec);

The poll() function runs handlers that are ready to run, without blocking, until the io_service has been stopped or there are no
more ready handlers.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of handlers that were executed.

io_service::poll_one

Run the io_service object's event processing loop to execute one ready handler.

std::size_t poll_one();
» more...

std::size_t poll_one(
boost::system::error_code & ec);

» more...

io_service::poll_one (1 of 2 overloads)

Run the io_service object's event processing loop to execute one ready handler.

std::size_t poll_one();

The poll_one() function runs at most one handler that is ready to run, without blocking.

Return Value

The number of handlers that were executed.

863

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

io_service::poll_one (2 of 2 overloads)

Run the io_service object's event processing loop to execute one ready handler.

std::size_t poll_one(
boost::system::error_code & ec);

The poll_one() function runs at most one handler that is ready to run, without blocking.

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of handlers that were executed.

io_service::post

Request the io_service to invoke the given handler and return immediately.

template<
typename CompletionHandler>

void-or-deduced post(
CompletionHandler handler);

This function is used to ask the io_service to execute the given handler, but without allowing the io_service to call the handler
from inside this function.

The io_service guarantees that the handler will only be called in a thread in which the run(), run_one(), poll() or poll_one()
member functions is currently being invoked.

Parameters

handler The handler to be called. The io_service will make a copy of the handler object as required. The function signature
of the handler must be:

void handler();

Remarks

This function throws an exception only if:

• the handler's asio_handler_allocate function; or

• the handler's copy constructor

throws an exception.

io_service::reset

Reset the io_service in preparation for a subsequent run() invocation.

864

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void reset();

This function must be called prior to any second or later set of invocations of the run(), run_one(), poll() or poll_one()
functions when a previous invocation of these functions returned due to the io_service being stopped or running out of work.
After a call to reset(), the io_service object's stopped() function will return false.

This function must not be called while there are any unfinished calls to the run(), run_one(), poll() or poll_one() functions.

io_service::run

Run the io_service object's event processing loop.

std::size_t run();
» more...

std::size_t run(
boost::system::error_code & ec);

» more...

io_service::run (1 of 2 overloads)

Run the io_service object's event processing loop.

std::size_t run();

The run() function blocks until all work has finished and there are no more handlers to be dispatched, or until the io_service
has been stopped.

Multiple threads may call the run() function to set up a pool of threads from which the io_service may execute handlers. All
threads that are waiting in the pool are equivalent and the io_service may choose any one of them to invoke a handler.

A normal exit from the run() function implies that the io_service object is stopped (the stopped() function returns true).
Subsequent calls to run(), run_one(), poll() or poll_one() will return immediately unless there is a prior call to reset().

Return Value

The number of handlers that were executed.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The run() function must not be called from a thread that is currently calling one of run(), run_one(), poll() or poll_one()
on the same io_service object.

The poll() function may also be used to dispatch ready handlers, but without blocking.

io_service::run (2 of 2 overloads)

Run the io_service object's event processing loop.

std::size_t run(
boost::system::error_code & ec);

865

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The run() function blocks until all work has finished and there are no more handlers to be dispatched, or until the io_service
has been stopped.

Multiple threads may call the run() function to set up a pool of threads from which the io_service may execute handlers. All
threads that are waiting in the pool are equivalent and the io_service may choose any one of them to invoke a handler.

A normal exit from the run() function implies that the io_service object is stopped (the stopped() function returns true).
Subsequent calls to run(), run_one(), poll() or poll_one() will return immediately unless there is a prior call to reset().

Parameters

ec Set to indicate what error occurred, if any.

Return Value

The number of handlers that were executed.

Remarks

The run() function must not be called from a thread that is currently calling one of run(), run_one(), poll() or poll_one()
on the same io_service object.

The poll() function may also be used to dispatch ready handlers, but without blocking.

io_service::run_one

Run the io_service object's event processing loop to execute at most one handler.

std::size_t run_one();
» more...

std::size_t run_one(
boost::system::error_code & ec);

» more...

io_service::run_one (1 of 2 overloads)

Run the io_service object's event processing loop to execute at most one handler.

std::size_t run_one();

The run_one() function blocks until one handler has been dispatched, or until the io_service has been stopped.

Return Value

The number of handlers that were executed. A zero return value implies that the io_service object is stopped (the stopped()
function returns true). Subsequent calls to run(), run_one(), poll() or poll_one() will return immediately unless there is a
prior call to reset().

Exceptions

boost::system::system_error Thrown on failure.

io_service::run_one (2 of 2 overloads)

Run the io_service object's event processing loop to execute at most one handler.

866

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t run_one(
boost::system::error_code & ec);

The run_one() function blocks until one handler has been dispatched, or until the io_service has been stopped.

Return Value

The number of handlers that were executed. A zero return value implies that the io_service object is stopped (the stopped()
function returns true). Subsequent calls to run(), run_one(), poll() or poll_one() will return immediately unless there is a
prior call to reset().

The number of handlers that were executed.

io_service::stop

Stop the io_service object's event processing loop.

void stop();

This function does not block, but instead simply signals the io_service to stop. All invocations of its run() or run_one()
member functions should return as soon as possible. Subsequent calls to run(), run_one(), poll() or poll_one() will return
immediately until reset() is called.

io_service::stopped

Determine whether the io_service object has been stopped.

bool stopped() const;

This function is used to determine whether an io_service object has been stopped, either through an explicit call to stop(), or
due to running out of work. When an io_service object is stopped, calls to run(), run_one(), poll() or poll_one() will
return immediately without invoking any handlers.

Return Value

true if the io_service object is stopped, otherwise false.

io_service::use_service

Obtain the service object corresponding to the given type.

template<
typename Service>

friend Service & use_service(
io_service & ios);

This function is used to locate a service object that corresponds to the given service type. If there is no existing implementation of
the service, then the io_service will create a new instance of the service.

Parameters

ios The io_service object that owns the service.

Return Value

The service interface implementing the specified service type. Ownership of the service interface is not transferred to the caller.

867

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/io_service.hpp

Convenience header: boost/asio.hpp

io_service::wrap

Create a new handler that automatically dispatches the wrapped handler on the io_service.

template<
typename Handler>

unspecified wrap(
Handler handler);

This function is used to create a new handler function object that, when invoked, will automatically pass the wrapped handler to the
io_service object's dispatch function.

Parameters

handler The handler to be wrapped. The io_service will make a copy of the handler object as required. The function signature
of the handler must be:

void handler(A1 a1, ... An an);

Return Value

A function object that, when invoked, passes the wrapped handler to the io_service object's dispatch function. Given a function
object with the signature:

R f(A1 a1, ... An an);

If this function object is passed to the wrap function like so:

io_service.wrap(f);

then the return value is a function object with the signature

void g(A1 a1, ... An an);

that, when invoked, executes code equivalent to:

io_service.dispatch(boost::bind(f, a1, ... an));

io_service::~io_service

Destructor.

~io_service();

On destruction, the io_service performs the following sequence of operations:

• For each service object svc in the io_service set, in reverse order of the beginning of service object lifetime, performs
svc->shutdown_service().

868

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Uninvoked handler objects that were scheduled for deferred invocation on the io_service, or any associated strand, are destroyed.

• For each service object svc in the io_service set, in reverse order of the beginning of service object lifetime, performs delete
static_cast<io_service::service*>(svc).

Remarks

The destruction sequence described above permits programs to simplify their resource management by using shared_ptr<>. Where
an object's lifetime is tied to the lifetime of a connection (or some other sequence of asynchronous operations), a shared_ptr to
the object would be bound into the handlers for all asynchronous operations associated with it. This works as follows:

• When a single connection ends, all associated asynchronous operations complete. The corresponding handler objects are destroyed,
and all shared_ptr references to the objects are destroyed.

• To shut down the whole program, the io_service function stop() is called to terminate any run() calls as soon as possible.
The io_service destructor defined above destroys all handlers, causing all shared_ptr references to all connection objects to
be destroyed.

io_service::id
Class used to uniquely identify a service.

class id :
noncopyable

Member Functions

DescriptionName

Constructor.id

Requirements

Header: boost/asio/io_service.hpp

Convenience header: boost/asio.hpp

io_service::id::id

Constructor.

id();

io_service::service
Base class for all io_service services.

class service :
noncopyable

869

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Get the io_service object that owns the service.get_io_service

Protected Member Functions

DescriptionName

Constructor.service

Destructor.~service

Private Member Functions

DescriptionName

Handle notification of a fork-related event to perform any neces-
sary housekeeping.

fork_service

Destroy all user-defined handler objects owned by the service.shutdown_service

Requirements

Header: boost/asio/io_service.hpp

Convenience header: boost/asio.hpp

io_service::service::get_io_service

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

io_service::service::service

Constructor.

service(
boost::asio::io_service & owner);

Parameters

owner The io_service object that owns the service.

io_service::service::~service

Destructor.

virtual ~service();

870

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

io_service::service::fork_service

Handle notification of a fork-related event to perform any necessary housekeeping.

virtual void fork_service(
boost::asio::io_service::fork_event event);

This function is not a pure virtual so that services only have to implement it if necessary. The default implementation does nothing.

io_service::service::shutdown_service

Destroy all user-defined handler objects owned by the service.

void shutdown_service();

io_service::strand
Provides serialised handler execution.

class strand

Member Functions

DescriptionName

Request the strand to invoke the given handler.dispatch

Get the io_service associated with the strand.get_io_service

Request the strand to invoke the given handler and return imme-
diately.

post

Determine whether the strand is running in the current thread.running_in_this_thread

Constructor.strand

Create a new handler that automatically dispatches the wrapped
handler on the strand.

wrap

Destructor.~strand

The io_service::strand class provides the ability to post and dispatch handlers with the guarantee that none of those handlers
will execute concurrently.

Order of handler invocation

Given:

• a strand object s

• an object a meeting completion handler requirements

• an object a1 which is an arbitrary copy of a made by the implementation

• an object b meeting completion handler requirements

871

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• an object b1 which is an arbitrary copy of b made by the implementation

if any of the following conditions are true:

• s.post(a) happens-before s.post(b)

• s.post(a) happens-before s.dispatch(b), where the latter is performed outside the strand

• s.dispatch(a) happens-before s.post(b), where the former is performed outside the strand

• s.dispatch(a) happens-before s.dispatch(b), where both are performed outside the strand

then asio_handler_invoke(a1, &a1) happens-before asio_handler_invoke(b1, &b1).

Note that in the following case:

async_op_1(..., s.wrap(a));
async_op_2(..., s.wrap(b));

the completion of the first async operation will perform s.dispatch(a), and the second will perform s.dispatch(b), but the
order in which those are performed is unspecified. That is, you cannot state whether one happens-before the other. Therefore none
of the above conditions are met and no ordering guarantee is made.

Remarks

The implementation makes no guarantee that handlers posted or dispatched through different strand objects will be invoked con-
currently.

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

Requirements

Header: boost/asio/strand.hpp

Convenience header: boost/asio.hpp

io_service::strand::dispatch

Request the strand to invoke the given handler.

template<
typename CompletionHandler>

void-or-deduced dispatch(
CompletionHandler handler);

This function is used to ask the strand to execute the given handler.

The strand object guarantees that handlers posted or dispatched through the strand will not be executed concurrently. The handler
may be executed inside this function if the guarantee can be met. If this function is called from within a handler that was posted or
dispatched through the same strand, then the new handler will be executed immediately.

The strand's guarantee is in addition to the guarantee provided by the underlying io_service. The io_service guarantees that
the handler will only be called in a thread in which the io_service's run member function is currently being invoked.

872

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

handler The handler to be called. The strand will make a copy of the handler object as required. The function signature of the
handler must be:

void handler();

io_service::strand::get_io_service

Get the io_service associated with the strand.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the strand uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the strand will use to dispatch handlers. Ownership is not transferred to the caller.

io_service::strand::post

Request the strand to invoke the given handler and return immediately.

template<
typename CompletionHandler>

void-or-deduced post(
CompletionHandler handler);

This function is used to ask the strand to execute the given handler, but without allowing the strand to call the handler from inside
this function.

The strand object guarantees that handlers posted or dispatched through the strand will not be executed concurrently. The strand's
guarantee is in addition to the guarantee provided by the underlying io_service. The io_service guarantees that the handler
will only be called in a thread in which the io_service's run member function is currently being invoked.

Parameters

handler The handler to be called. The strand will make a copy of the handler object as required. The function signature of the
handler must be:

void handler();

io_service::strand::running_in_this_thread

Determine whether the strand is running in the current thread.

bool running_in_this_thread() const;

Return Value

true if the current thread is executing a handler that was submitted to the strand using post(), dispatch() or wrap(). Otherwise
returns false.

873

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

io_service::strand::strand

Constructor.

strand(
boost::asio::io_service & io_service);

Constructs the strand.

Parameters

io_service The io_service object that the strand will use to dispatch handlers that are ready to be run.

io_service::strand::wrap

Create a new handler that automatically dispatches the wrapped handler on the strand.

template<
typename Handler>

unspecified wrap(
Handler handler);

This function is used to create a new handler function object that, when invoked, will automatically pass the wrapped handler to the
strand's dispatch function.

Parameters

handler The handler to be wrapped. The strand will make a copy of the handler object as required. The function signature of
the handler must be:

void handler(A1 a1, ... An an);

Return Value

A function object that, when invoked, passes the wrapped handler to the strand's dispatch function. Given a function object with the
signature:

R f(A1 a1, ... An an);

If this function object is passed to the wrap function like so:

strand.wrap(f);

then the return value is a function object with the signature

void g(A1 a1, ... An an);

that, when invoked, executes code equivalent to:

strand.dispatch(boost::bind(f, a1, ... an));

874

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

io_service::strand::~strand

Destructor.

~strand();

Destroys a strand.

Handlers posted through the strand that have not yet been invoked will still be dispatched in a way that meets the guarantee of non-
concurrency.

io_service::work
Class to inform the io_service when it has work to do.

class work

Member Functions

DescriptionName

Get the io_service associated with the work.get_io_service

Constructor notifies the io_service that work is starting.

Copy constructor notifies the io_service that work is starting.

work

Destructor notifies the io_service that the work is complete.~work

The work class is used to inform the io_service when work starts and finishes. This ensures that the io_service object's run()
function will not exit while work is underway, and that it does exit when there is no unfinished work remaining.

The work class is copy-constructible so that it may be used as a data member in a handler class. It is not assignable.

Requirements

Header: boost/asio/io_service.hpp

Convenience header: boost/asio.hpp

io_service::work::get_io_service

Get the io_service associated with the work.

boost::asio::io_service & get_io_service();

io_service::work::work

Constructor notifies the io_service that work is starting.

explicit work(
boost::asio::io_service & io_service);

» more...

Copy constructor notifies the io_service that work is starting.

875

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

work(
const work & other);

» more...

io_service::work::work (1 of 2 overloads)

Constructor notifies the io_service that work is starting.

work(
boost::asio::io_service & io_service);

The constructor is used to inform the io_service that some work has begun. This ensures that the io_service object's run()
function will not exit while the work is underway.

io_service::work::work (2 of 2 overloads)

Copy constructor notifies the io_service that work is starting.

work(
const work & other);

The constructor is used to inform the io_service that some work has begun. This ensures that the io_service object's run()
function will not exit while the work is underway.

io_service::work::~work

Destructor notifies the io_service that the work is complete.

~work();

The destructor is used to inform the io_service that some work has finished. Once the count of unfinished work reaches zero, the
io_service object's run() function is permitted to exit.

ip::address
Implements version-independent IP addresses.

class address

876

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Default constructor.

Construct an address from an IPv4 address.

Construct an address from an IPv6 address.

Copy constructor.

address

Create an address from an IPv4 address string in dotted decimal
form, or from an IPv6 address in hexadecimal notation.

from_string

Determine whether the address is a loopback address.is_loopback

Determine whether the address is a multicast address.is_multicast

Determine whether the address is unspecified.is_unspecified

Get whether the address is an IP version 4 address.is_v4

Get whether the address is an IP version 6 address.is_v6

Assign from another address.

Assign from an IPv4 address.

Assign from an IPv6 address.

operator=

Get the address as a string in dotted decimal format.to_string

Get the address as an IP version 4 address.to_v4

Get the address as an IP version 6 address.to_v6

Friends

DescriptionName

Compare two addresses for inequality.operator!=

Compare addresses for ordering.operator<

Compare addresses for ordering.operator<=

Compare two addresses for equality.operator==

Compare addresses for ordering.operator>

Compare addresses for ordering.operator>=

877

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Related Functions

DescriptionName

Output an address as a string.operator<<

The ip::address class provides the ability to use either IP version 4 or version 6 addresses.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/address.hpp

Convenience header: boost/asio.hpp

ip::address::address

Default constructor.

address();
» more...

Construct an address from an IPv4 address.

address(
const boost::asio::ip::address_v4 & ipv4_address);

» more...

Construct an address from an IPv6 address.

address(
const boost::asio::ip::address_v6 & ipv6_address);

» more...

Copy constructor.

address(
const address & other);

» more...

ip::address::address (1 of 4 overloads)

Default constructor.

address();

ip::address::address (2 of 4 overloads)

Construct an address from an IPv4 address.

878

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

address(
const boost::asio::ip::address_v4 & ipv4_address);

ip::address::address (3 of 4 overloads)

Construct an address from an IPv6 address.

address(
const boost::asio::ip::address_v6 & ipv6_address);

ip::address::address (4 of 4 overloads)

Copy constructor.

address(
const address & other);

ip::address::from_string

Create an address from an IPv4 address string in dotted decimal form, or from an IPv6 address in hexadecimal notation.

static address from_string(
const char * str);

» more...

static address from_string(
const char * str,
boost::system::error_code & ec);

» more...

static address from_string(
const std::string & str);

» more...

static address from_string(
const std::string & str,
boost::system::error_code & ec);

» more...

ip::address::from_string (1 of 4 overloads)

Create an address from an IPv4 address string in dotted decimal form, or from an IPv6 address in hexadecimal notation.

static address from_string(
const char * str);

ip::address::from_string (2 of 4 overloads)

Create an address from an IPv4 address string in dotted decimal form, or from an IPv6 address in hexadecimal notation.

static address from_string(
const char * str,
boost::system::error_code & ec);

879

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::address::from_string (3 of 4 overloads)

Create an address from an IPv4 address string in dotted decimal form, or from an IPv6 address in hexadecimal notation.

static address from_string(
const std::string & str);

ip::address::from_string (4 of 4 overloads)

Create an address from an IPv4 address string in dotted decimal form, or from an IPv6 address in hexadecimal notation.

static address from_string(
const std::string & str,
boost::system::error_code & ec);

ip::address::is_loopback

Determine whether the address is a loopback address.

bool is_loopback() const;

ip::address::is_multicast

Determine whether the address is a multicast address.

bool is_multicast() const;

ip::address::is_unspecified

Determine whether the address is unspecified.

bool is_unspecified() const;

ip::address::is_v4

Get whether the address is an IP version 4 address.

bool is_v4() const;

ip::address::is_v6

Get whether the address is an IP version 6 address.

bool is_v6() const;

ip::address::operator!=

Compare two addresses for inequality.

friend bool operator!=(
const address & a1,
const address & a2);

880

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/ip/address.hpp

Convenience header: boost/asio.hpp

ip::address::operator<

Compare addresses for ordering.

friend bool operator<(
const address & a1,
const address & a2);

Requirements

Header: boost/asio/ip/address.hpp

Convenience header: boost/asio.hpp

ip::address::operator<<

Output an address as a string.

template<
typename Elem,
typename Traits>

std::basic_ostream< Elem, Traits > & operator<<(
std::basic_ostream< Elem, Traits > & os,
const address & addr);

Used to output a human-readable string for a specified address.

Parameters

os The output stream to which the string will be written.

addr The address to be written.

Return Value

The output stream.

ip::address::operator<=

Compare addresses for ordering.

friend bool operator<=(
const address & a1,
const address & a2);

Requirements

Header: boost/asio/ip/address.hpp

Convenience header: boost/asio.hpp

881

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::address::operator=

Assign from another address.

address & operator=(
const address & other);

» more...

Assign from an IPv4 address.

address & operator=(
const boost::asio::ip::address_v4 & ipv4_address);

» more...

Assign from an IPv6 address.

address & operator=(
const boost::asio::ip::address_v6 & ipv6_address);

» more...

ip::address::operator= (1 of 3 overloads)

Assign from another address.

address & operator=(
const address & other);

ip::address::operator= (2 of 3 overloads)

Assign from an IPv4 address.

address & operator=(
const boost::asio::ip::address_v4 & ipv4_address);

ip::address::operator= (3 of 3 overloads)

Assign from an IPv6 address.

address & operator=(
const boost::asio::ip::address_v6 & ipv6_address);

ip::address::operator==

Compare two addresses for equality.

friend bool operator==(
const address & a1,
const address & a2);

Requirements

Header: boost/asio/ip/address.hpp

Convenience header: boost/asio.hpp

882

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::address::operator>

Compare addresses for ordering.

friend bool operator>(
const address & a1,
const address & a2);

Requirements

Header: boost/asio/ip/address.hpp

Convenience header: boost/asio.hpp

ip::address::operator>=

Compare addresses for ordering.

friend bool operator>=(
const address & a1,
const address & a2);

Requirements

Header: boost/asio/ip/address.hpp

Convenience header: boost/asio.hpp

ip::address::to_string

Get the address as a string in dotted decimal format.

std::string to_string() const;
» more...

std::string to_string(
boost::system::error_code & ec) const;

» more...

ip::address::to_string (1 of 2 overloads)

Get the address as a string in dotted decimal format.

std::string to_string() const;

ip::address::to_string (2 of 2 overloads)

Get the address as a string in dotted decimal format.

std::string to_string(
boost::system::error_code & ec) const;

ip::address::to_v4

Get the address as an IP version 4 address.

883

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::address_v4 to_v4() const;

ip::address::to_v6

Get the address as an IP version 6 address.

boost::asio::ip::address_v6 to_v6() const;

ip::address_v4
Implements IP version 4 style addresses.

class address_v4

Types

DescriptionName

The type used to represent an address as an array of bytes.bytes_type

884

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Default constructor.

Construct an address from raw bytes.

Construct an address from a unsigned long in host byte order.

Copy constructor.

address_v4

Obtain an address object that represents any address.any

Obtain an address object that represents the broadcast address.

Obtain an address object that represents the broadcast address
that corresponds to the specified address and netmask.

broadcast

Create an address from an IP address string in dotted decimal
form.

from_string

Determine whether the address is a class A address.is_class_a

Determine whether the address is a class B address.is_class_b

Determine whether the address is a class C address.is_class_c

Determine whether the address is a loopback address.is_loopback

Determine whether the address is a multicast address.is_multicast

Determine whether the address is unspecified.is_unspecified

Obtain an address object that represents the loopback address.loopback

Obtain the netmask that corresponds to the address, based on
its address class.

netmask

Assign from another address.operator=

Get the address in bytes, in network byte order.to_bytes

Get the address as a string in dotted decimal format.to_string

Get the address as an unsigned long in host byte order.to_ulong

885

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Friends

DescriptionName

Compare two addresses for inequality.operator!=

Compare addresses for ordering.operator<

Compare addresses for ordering.operator<=

Compare two addresses for equality.operator==

Compare addresses for ordering.operator>

Compare addresses for ordering.operator>=

Related Functions

DescriptionName

Output an address as a string.operator<<

The ip::address_v4 class provides the ability to use and manipulate IP version 4 addresses.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/address_v4.hpp

Convenience header: boost/asio.hpp

ip::address_v4::address_v4

Default constructor.

address_v4();
» more...

Construct an address from raw bytes.

explicit address_v4(
const bytes_type & bytes);

» more...

Construct an address from a unsigned long in host byte order.

explicit address_v4(
unsigned long addr);

» more...

Copy constructor.

886

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

address_v4(
const address_v4 & other);

» more...

ip::address_v4::address_v4 (1 of 4 overloads)

Default constructor.

address_v4();

ip::address_v4::address_v4 (2 of 4 overloads)

Construct an address from raw bytes.

address_v4(
const bytes_type & bytes);

ip::address_v4::address_v4 (3 of 4 overloads)

Construct an address from a unsigned long in host byte order.

address_v4(
unsigned long addr);

ip::address_v4::address_v4 (4 of 4 overloads)

Copy constructor.

address_v4(
const address_v4 & other);

ip::address_v4::any

Obtain an address object that represents any address.

static address_v4 any();

ip::address_v4::broadcast

Obtain an address object that represents the broadcast address.

static address_v4 broadcast();
» more...

Obtain an address object that represents the broadcast address that corresponds to the specified address and netmask.

static address_v4 broadcast(
const address_v4 & addr,
const address_v4 & mask);

» more...

887

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::address_v4::broadcast (1 of 2 overloads)

Obtain an address object that represents the broadcast address.

static address_v4 broadcast();

ip::address_v4::broadcast (2 of 2 overloads)

Obtain an address object that represents the broadcast address that corresponds to the specified address and netmask.

static address_v4 broadcast(
const address_v4 & addr,
const address_v4 & mask);

ip::address_v4::bytes_type

The type used to represent an address as an array of bytes.

typedef array< unsigned char, 4 > bytes_type;

Remarks

This type is defined in terms of the C++0x template std::array when it is available. Otherwise, it uses boost:array.

Requirements

Header: boost/asio/ip/address_v4.hpp

Convenience header: boost/asio.hpp

ip::address_v4::from_string

Create an address from an IP address string in dotted decimal form.

static address_v4 from_string(
const char * str);

» more...

static address_v4 from_string(
const char * str,
boost::system::error_code & ec);

» more...

static address_v4 from_string(
const std::string & str);

» more...

static address_v4 from_string(
const std::string & str,
boost::system::error_code & ec);

» more...

ip::address_v4::from_string (1 of 4 overloads)

Create an address from an IP address string in dotted decimal form.

888

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static address_v4 from_string(
const char * str);

ip::address_v4::from_string (2 of 4 overloads)

Create an address from an IP address string in dotted decimal form.

static address_v4 from_string(
const char * str,
boost::system::error_code & ec);

ip::address_v4::from_string (3 of 4 overloads)

Create an address from an IP address string in dotted decimal form.

static address_v4 from_string(
const std::string & str);

ip::address_v4::from_string (4 of 4 overloads)

Create an address from an IP address string in dotted decimal form.

static address_v4 from_string(
const std::string & str,
boost::system::error_code & ec);

ip::address_v4::is_class_a

Determine whether the address is a class A address.

bool is_class_a() const;

ip::address_v4::is_class_b

Determine whether the address is a class B address.

bool is_class_b() const;

ip::address_v4::is_class_c

Determine whether the address is a class C address.

bool is_class_c() const;

ip::address_v4::is_loopback

Determine whether the address is a loopback address.

bool is_loopback() const;

889

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::address_v4::is_multicast

Determine whether the address is a multicast address.

bool is_multicast() const;

ip::address_v4::is_unspecified

Determine whether the address is unspecified.

bool is_unspecified() const;

ip::address_v4::loopback

Obtain an address object that represents the loopback address.

static address_v4 loopback();

ip::address_v4::netmask

Obtain the netmask that corresponds to the address, based on its address class.

static address_v4 netmask(
const address_v4 & addr);

ip::address_v4::operator!=

Compare two addresses for inequality.

friend bool operator!=(
const address_v4 & a1,
const address_v4 & a2);

Requirements

Header: boost/asio/ip/address_v4.hpp

Convenience header: boost/asio.hpp

ip::address_v4::operator<

Compare addresses for ordering.

friend bool operator<(
const address_v4 & a1,
const address_v4 & a2);

Requirements

Header: boost/asio/ip/address_v4.hpp

Convenience header: boost/asio.hpp

890

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::address_v4::operator<<

Output an address as a string.

template<
typename Elem,
typename Traits>

std::basic_ostream< Elem, Traits > & operator<<(
std::basic_ostream< Elem, Traits > & os,
const address_v4 & addr);

Used to output a human-readable string for a specified address.

Parameters

os The output stream to which the string will be written.

addr The address to be written.

Return Value

The output stream.

ip::address_v4::operator<=

Compare addresses for ordering.

friend bool operator<=(
const address_v4 & a1,
const address_v4 & a2);

Requirements

Header: boost/asio/ip/address_v4.hpp

Convenience header: boost/asio.hpp

ip::address_v4::operator=

Assign from another address.

address_v4 & operator=(
const address_v4 & other);

ip::address_v4::operator==

Compare two addresses for equality.

friend bool operator==(
const address_v4 & a1,
const address_v4 & a2);

Requirements

Header: boost/asio/ip/address_v4.hpp

Convenience header: boost/asio.hpp

891

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::address_v4::operator>

Compare addresses for ordering.

friend bool operator>(
const address_v4 & a1,
const address_v4 & a2);

Requirements

Header: boost/asio/ip/address_v4.hpp

Convenience header: boost/asio.hpp

ip::address_v4::operator>=

Compare addresses for ordering.

friend bool operator>=(
const address_v4 & a1,
const address_v4 & a2);

Requirements

Header: boost/asio/ip/address_v4.hpp

Convenience header: boost/asio.hpp

ip::address_v4::to_bytes

Get the address in bytes, in network byte order.

bytes_type to_bytes() const;

ip::address_v4::to_string

Get the address as a string in dotted decimal format.

std::string to_string() const;
» more...

std::string to_string(
boost::system::error_code & ec) const;

» more...

ip::address_v4::to_string (1 of 2 overloads)

Get the address as a string in dotted decimal format.

std::string to_string() const;

ip::address_v4::to_string (2 of 2 overloads)

Get the address as a string in dotted decimal format.

892

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::string to_string(
boost::system::error_code & ec) const;

ip::address_v4::to_ulong

Get the address as an unsigned long in host byte order.

unsigned long to_ulong() const;

ip::address_v6
Implements IP version 6 style addresses.

class address_v6

Types

DescriptionName

The type used to represent an address as an array of bytes.bytes_type

893

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Default constructor.

Construct an address from raw bytes and scope ID.

Copy constructor.

address_v6

Obtain an address object that represents any address.any

Create an address from an IP address string.from_string

Determine whether the address is link local.is_link_local

Determine whether the address is a loopback address.is_loopback

Determine whether the address is a multicast address.is_multicast

Determine whether the address is a global multicast address.is_multicast_global

Determine whether the address is a link-local multicast address.is_multicast_link_local

Determine whether the address is a node-local multicast address.is_multicast_node_local

Determine whether the address is a org-local multicast address.is_multicast_org_local

Determine whether the address is a site-local multicast address.is_multicast_site_local

Determine whether the address is site local.is_site_local

Determine whether the address is unspecified.is_unspecified

Determine whether the address is an IPv4-compatible address.is_v4_compatible

Determine whether the address is a mapped IPv4 address.is_v4_mapped

Obtain an address object that represents the loopback address.loopback

Assign from another address.operator=

The scope ID of the address.scope_id

Get the address in bytes, in network byte order.to_bytes

Get the address as a string.to_string

Converts an IPv4-mapped or IPv4-compatible address to an
IPv4 address.

to_v4

Create an IPv4-compatible IPv6 address.v4_compatible

Create an IPv4-mapped IPv6 address.v4_mapped

894

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Friends

DescriptionName

Compare two addresses for inequality.operator!=

Compare addresses for ordering.operator<

Compare addresses for ordering.operator<=

Compare two addresses for equality.operator==

Compare addresses for ordering.operator>

Compare addresses for ordering.operator>=

Related Functions

DescriptionName

Output an address as a string.operator<<

The ip::address_v6 class provides the ability to use and manipulate IP version 6 addresses.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/address_v6.hpp

Convenience header: boost/asio.hpp

ip::address_v6::address_v6

Default constructor.

address_v6();
» more...

Construct an address from raw bytes and scope ID.

explicit address_v6(
const bytes_type & bytes,
unsigned long scope_id = 0);

» more...

Copy constructor.

address_v6(
const address_v6 & other);

» more...

895

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::address_v6::address_v6 (1 of 3 overloads)

Default constructor.

address_v6();

ip::address_v6::address_v6 (2 of 3 overloads)

Construct an address from raw bytes and scope ID.

address_v6(
const bytes_type & bytes,
unsigned long scope_id = 0);

ip::address_v6::address_v6 (3 of 3 overloads)

Copy constructor.

address_v6(
const address_v6 & other);

ip::address_v6::any

Obtain an address object that represents any address.

static address_v6 any();

ip::address_v6::bytes_type

The type used to represent an address as an array of bytes.

typedef array< unsigned char, 16 > bytes_type;

Remarks

This type is defined in terms of the C++0x template std::array when it is available. Otherwise, it uses boost:array.

Requirements

Header: boost/asio/ip/address_v6.hpp

Convenience header: boost/asio.hpp

ip::address_v6::from_string

Create an address from an IP address string.

896

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static address_v6 from_string(
const char * str);

» more...

static address_v6 from_string(
const char * str,
boost::system::error_code & ec);

» more...

static address_v6 from_string(
const std::string & str);

» more...

static address_v6 from_string(
const std::string & str,
boost::system::error_code & ec);

» more...

ip::address_v6::from_string (1 of 4 overloads)

Create an address from an IP address string.

static address_v6 from_string(
const char * str);

ip::address_v6::from_string (2 of 4 overloads)

Create an address from an IP address string.

static address_v6 from_string(
const char * str,
boost::system::error_code & ec);

ip::address_v6::from_string (3 of 4 overloads)

Create an address from an IP address string.

static address_v6 from_string(
const std::string & str);

ip::address_v6::from_string (4 of 4 overloads)

Create an address from an IP address string.

static address_v6 from_string(
const std::string & str,
boost::system::error_code & ec);

ip::address_v6::is_link_local

Determine whether the address is link local.

bool is_link_local() const;

897

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::address_v6::is_loopback

Determine whether the address is a loopback address.

bool is_loopback() const;

ip::address_v6::is_multicast

Determine whether the address is a multicast address.

bool is_multicast() const;

ip::address_v6::is_multicast_global

Determine whether the address is a global multicast address.

bool is_multicast_global() const;

ip::address_v6::is_multicast_link_local

Determine whether the address is a link-local multicast address.

bool is_multicast_link_local() const;

ip::address_v6::is_multicast_node_local

Determine whether the address is a node-local multicast address.

bool is_multicast_node_local() const;

ip::address_v6::is_multicast_org_local

Determine whether the address is a org-local multicast address.

bool is_multicast_org_local() const;

ip::address_v6::is_multicast_site_local

Determine whether the address is a site-local multicast address.

bool is_multicast_site_local() const;

ip::address_v6::is_site_local

Determine whether the address is site local.

bool is_site_local() const;

ip::address_v6::is_unspecified

Determine whether the address is unspecified.

898

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool is_unspecified() const;

ip::address_v6::is_v4_compatible

Determine whether the address is an IPv4-compatible address.

bool is_v4_compatible() const;

ip::address_v6::is_v4_mapped

Determine whether the address is a mapped IPv4 address.

bool is_v4_mapped() const;

ip::address_v6::loopback

Obtain an address object that represents the loopback address.

static address_v6 loopback();

ip::address_v6::operator!=

Compare two addresses for inequality.

friend bool operator!=(
const address_v6 & a1,
const address_v6 & a2);

Requirements

Header: boost/asio/ip/address_v6.hpp

Convenience header: boost/asio.hpp

ip::address_v6::operator<

Compare addresses for ordering.

friend bool operator<(
const address_v6 & a1,
const address_v6 & a2);

Requirements

Header: boost/asio/ip/address_v6.hpp

Convenience header: boost/asio.hpp

ip::address_v6::operator<<

Output an address as a string.

899

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Elem,
typename Traits>

std::basic_ostream< Elem, Traits > & operator<<(
std::basic_ostream< Elem, Traits > & os,
const address_v6 & addr);

Used to output a human-readable string for a specified address.

Parameters

os The output stream to which the string will be written.

addr The address to be written.

Return Value

The output stream.

ip::address_v6::operator<=

Compare addresses for ordering.

friend bool operator<=(
const address_v6 & a1,
const address_v6 & a2);

Requirements

Header: boost/asio/ip/address_v6.hpp

Convenience header: boost/asio.hpp

ip::address_v6::operator=

Assign from another address.

address_v6 & operator=(
const address_v6 & other);

ip::address_v6::operator==

Compare two addresses for equality.

friend bool operator==(
const address_v6 & a1,
const address_v6 & a2);

Requirements

Header: boost/asio/ip/address_v6.hpp

Convenience header: boost/asio.hpp

ip::address_v6::operator>

Compare addresses for ordering.

900

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

friend bool operator>(
const address_v6 & a1,
const address_v6 & a2);

Requirements

Header: boost/asio/ip/address_v6.hpp

Convenience header: boost/asio.hpp

ip::address_v6::operator>=

Compare addresses for ordering.

friend bool operator>=(
const address_v6 & a1,
const address_v6 & a2);

Requirements

Header: boost/asio/ip/address_v6.hpp

Convenience header: boost/asio.hpp

ip::address_v6::scope_id

The scope ID of the address.

unsigned long scope_id() const;
» more...

void scope_id(
unsigned long id);

» more...

ip::address_v6::scope_id (1 of 2 overloads)

The scope ID of the address.

unsigned long scope_id() const;

Returns the scope ID associated with the IPv6 address.

ip::address_v6::scope_id (2 of 2 overloads)

The scope ID of the address.

void scope_id(
unsigned long id);

Modifies the scope ID associated with the IPv6 address.

ip::address_v6::to_bytes

Get the address in bytes, in network byte order.

901

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bytes_type to_bytes() const;

ip::address_v6::to_string

Get the address as a string.

std::string to_string() const;
» more...

std::string to_string(
boost::system::error_code & ec) const;

» more...

ip::address_v6::to_string (1 of 2 overloads)

Get the address as a string.

std::string to_string() const;

ip::address_v6::to_string (2 of 2 overloads)

Get the address as a string.

std::string to_string(
boost::system::error_code & ec) const;

ip::address_v6::to_v4

Converts an IPv4-mapped or IPv4-compatible address to an IPv4 address.

address_v4 to_v4() const;

ip::address_v6::v4_compatible

Create an IPv4-compatible IPv6 address.

static address_v6 v4_compatible(
const address_v4 & addr);

ip::address_v6::v4_mapped

Create an IPv4-mapped IPv6 address.

static address_v6 v4_mapped(
const address_v4 & addr);

ip::basic_endpoint
Describes an endpoint for a version-independent IP socket.

902

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename InternetProtocol>

class basic_endpoint

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

Member Functions

DescriptionName

Get the IP address associated with the endpoint.

Set the IP address associated with the endpoint.

address

Default constructor.

Construct an endpoint using a port number, specified in the
host's byte order. The IP address will be the any address (i.e.
INADDR_ANY or in6addr_any). This constructor would typic-
ally be used for accepting new connections.

Construct an endpoint using a port number and an IP address.
This constructor may be used for accepting connections on a
specific interface or for making a connection to a remote end-
point.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

Get the port associated with the endpoint. The port number is
always in the host's byte order.

Set the port associated with the endpoint. The port number is
always in the host's byte order.

port

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

903

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare endpoints for ordering.operator<=

Compare two endpoints for equality.operator==

Compare endpoints for ordering.operator>

Compare endpoints for ordering.operator>=

Related Functions

DescriptionName

Output an endpoint as a string.operator<<

The ip::basic_endpoint class template describes an endpoint that may be associated with a particular socket.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/basic_endpoint.hpp

Convenience header: boost/asio.hpp

ip::basic_endpoint::address

Get the IP address associated with the endpoint.

boost::asio::ip::address address() const;
» more...

Set the IP address associated with the endpoint.

void address(
const boost::asio::ip::address & addr);

» more...

ip::basic_endpoint::address (1 of 2 overloads)

Get the IP address associated with the endpoint.

boost::asio::ip::address address() const;

904

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::basic_endpoint::address (2 of 2 overloads)

Set the IP address associated with the endpoint.

void address(
const boost::asio::ip::address & addr);

ip::basic_endpoint::basic_endpoint

Default constructor.

basic_endpoint();
» more...

Construct an endpoint using a port number, specified in the host's byte order. The IP address will be the any address (i.e. INAD-
DR_ANY or in6addr_any). This constructor would typically be used for accepting new connections.

basic_endpoint(
const InternetProtocol & internet_protocol,
unsigned short port_num);

» more...

Construct an endpoint using a port number and an IP address. This constructor may be used for accepting connections on a specific
interface or for making a connection to a remote endpoint.

basic_endpoint(
const boost::asio::ip::address & addr,
unsigned short port_num);

» more...

Copy constructor.

basic_endpoint(
const basic_endpoint & other);

» more...

ip::basic_endpoint::basic_endpoint (1 of 4 overloads)

Default constructor.

basic_endpoint();

ip::basic_endpoint::basic_endpoint (2 of 4 overloads)

Construct an endpoint using a port number, specified in the host's byte order. The IP address will be the any address (i.e. INAD-
DR_ANY or in6addr_any). This constructor would typically be used for accepting new connections.

basic_endpoint(
const InternetProtocol & internet_protocol,
unsigned short port_num);

Examples

To initialise an IPv4 TCP endpoint for port 1234, use:

905

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::endpoint ep(boost::asio::ip::tcp::v4(), 1234);

To specify an IPv6 UDP endpoint for port 9876, use:

boost::asio::ip::udp::endpoint ep(boost::asio::ip::udp::v6(), 9876);

ip::basic_endpoint::basic_endpoint (3 of 4 overloads)

Construct an endpoint using a port number and an IP address. This constructor may be used for accepting connections on a specific
interface or for making a connection to a remote endpoint.

basic_endpoint(
const boost::asio::ip::address & addr,
unsigned short port_num);

ip::basic_endpoint::basic_endpoint (4 of 4 overloads)

Copy constructor.

basic_endpoint(
const basic_endpoint & other);

ip::basic_endpoint::capacity

Get the capacity of the endpoint in the native type.

std::size_t capacity() const;

ip::basic_endpoint::data

Get the underlying endpoint in the native type.

data_type * data();
» more...

const data_type * data() const;
» more...

ip::basic_endpoint::data (1 of 2 overloads)

Get the underlying endpoint in the native type.

data_type * data();

ip::basic_endpoint::data (2 of 2 overloads)

Get the underlying endpoint in the native type.

const data_type * data() const;

ip::basic_endpoint::data_type

The type of the endpoint structure. This type is dependent on the underlying implementation of the socket layer.

906

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined data_type;

Requirements

Header: boost/asio/ip/basic_endpoint.hpp

Convenience header: boost/asio.hpp

ip::basic_endpoint::operator!=

Compare two endpoints for inequality.

friend bool operator!=(
const basic_endpoint< InternetProtocol > & e1,
const basic_endpoint< InternetProtocol > & e2);

Requirements

Header: boost/asio/ip/basic_endpoint.hpp

Convenience header: boost/asio.hpp

ip::basic_endpoint::operator<

Compare endpoints for ordering.

friend bool operator<(
const basic_endpoint< InternetProtocol > & e1,
const basic_endpoint< InternetProtocol > & e2);

Requirements

Header: boost/asio/ip/basic_endpoint.hpp

Convenience header: boost/asio.hpp

ip::basic_endpoint::operator<<

Output an endpoint as a string.

std::basic_ostream< Elem, Traits > & operator<<(
std::basic_ostream< Elem, Traits > & os,
const basic_endpoint< InternetProtocol > & endpoint);

Used to output a human-readable string for a specified endpoint.

Parameters

os The output stream to which the string will be written.

endpoint The endpoint to be written.

Return Value

The output stream.

907

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::basic_endpoint::operator<=

Compare endpoints for ordering.

friend bool operator<=(
const basic_endpoint< InternetProtocol > & e1,
const basic_endpoint< InternetProtocol > & e2);

Requirements

Header: boost/asio/ip/basic_endpoint.hpp

Convenience header: boost/asio.hpp

ip::basic_endpoint::operator=

Assign from another endpoint.

basic_endpoint & operator=(
const basic_endpoint & other);

ip::basic_endpoint::operator==

Compare two endpoints for equality.

friend bool operator==(
const basic_endpoint< InternetProtocol > & e1,
const basic_endpoint< InternetProtocol > & e2);

Requirements

Header: boost/asio/ip/basic_endpoint.hpp

Convenience header: boost/asio.hpp

ip::basic_endpoint::operator>

Compare endpoints for ordering.

friend bool operator>(
const basic_endpoint< InternetProtocol > & e1,
const basic_endpoint< InternetProtocol > & e2);

Requirements

Header: boost/asio/ip/basic_endpoint.hpp

Convenience header: boost/asio.hpp

ip::basic_endpoint::operator>=

Compare endpoints for ordering.

friend bool operator>=(
const basic_endpoint< InternetProtocol > & e1,
const basic_endpoint< InternetProtocol > & e2);

908

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/ip/basic_endpoint.hpp

Convenience header: boost/asio.hpp

ip::basic_endpoint::port

Get the port associated with the endpoint. The port number is always in the host's byte order.

unsigned short port() const;
» more...

Set the port associated with the endpoint. The port number is always in the host's byte order.

void port(
unsigned short port_num);

» more...

ip::basic_endpoint::port (1 of 2 overloads)

Get the port associated with the endpoint. The port number is always in the host's byte order.

unsigned short port() const;

ip::basic_endpoint::port (2 of 2 overloads)

Set the port associated with the endpoint. The port number is always in the host's byte order.

void port(
unsigned short port_num);

ip::basic_endpoint::protocol

The protocol associated with the endpoint.

protocol_type protocol() const;

ip::basic_endpoint::protocol_type

The protocol type associated with the endpoint.

typedef InternetProtocol protocol_type;

Requirements

Header: boost/asio/ip/basic_endpoint.hpp

Convenience header: boost/asio.hpp

ip::basic_endpoint::resize

Set the underlying size of the endpoint in the native type.

909

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void resize(
std::size_t new_size);

ip::basic_endpoint::size

Get the underlying size of the endpoint in the native type.

std::size_t size() const;

ip::basic_resolver
Provides endpoint resolution functionality.

template<
typename InternetProtocol,
typename ResolverService = resolver_service<InternetProtocol>>

class basic_resolver :
public basic_io_object< ResolverService >

Types

DescriptionName

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

The iterator type.iterator

The protocol type.protocol_type

The query type.query

The type of the service that will be used to provide I/O opera-
tions.

service_type

910

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Asynchronously perform forward resolution of a query to a list
of entries.

Asynchronously perform reverse resolution of an endpoint to a
list of entries.

async_resolve

Constructor.basic_resolver

Cancel any asynchronous operations that are waiting on the re-
solver.

cancel

Get the io_service associated with the object.get_io_service

Perform forward resolution of a query to a list of entries.

Perform reverse resolution of an endpoint to a list of entries.

resolve

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The ip::basic_resolver class template provides the ability to resolve a query to a list of endpoints.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/basic_resolver.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver::async_resolve

Asynchronously perform forward resolution of a query to a list of entries.

911

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ResolveHandler>

void-or-deduced async_resolve(
const query & q,
ResolveHandler handler);

» more...

Asynchronously perform reverse resolution of an endpoint to a list of entries.

template<
typename ResolveHandler>

void-or-deduced async_resolve(
const endpoint_type & e,
ResolveHandler handler);

» more...

ip::basic_resolver::async_resolve (1 of 2 overloads)

Asynchronously perform forward resolution of a query to a list of entries.

template<
typename ResolveHandler>

void-or-deduced async_resolve(
const query & q,
ResolveHandler handler);

This function is used to asynchronously resolve a query into a list of endpoint entries.

Parameters

q A query object that determines what endpoints will be returned.

handler The handler to be called when the resolve operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
resolver::iterator iterator // Forward-only iterator that can

// be used to traverse the list
// of endpoint entries.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

A default constructed iterator represents the end of the list.

A successful resolve operation is guaranteed to pass at least one entry to the handler.

ip::basic_resolver::async_resolve (2 of 2 overloads)

Asynchronously perform reverse resolution of an endpoint to a list of entries.

912

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ResolveHandler>

void-or-deduced async_resolve(
const endpoint_type & e,
ResolveHandler handler);

This function is used to asynchronously resolve an endpoint into a list of endpoint entries.

Parameters

e An endpoint object that determines what endpoints will be returned.

handler The handler to be called when the resolve operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
resolver::iterator iterator // Forward-only iterator that can

// be used to traverse the list
// of endpoint entries.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

A default constructed iterator represents the end of the list.

A successful resolve operation is guaranteed to pass at least one entry to the handler.

ip::basic_resolver::basic_resolver

Constructor.

basic_resolver(
boost::asio::io_service & io_service);

This constructor creates a ip::basic_resolver.

Parameters

io_service The io_service object that the resolver will use to dispatch handlers for any asynchronous operations performed
on the timer.

ip::basic_resolver::cancel

Cancel any asynchronous operations that are waiting on the resolver.

void cancel();

This function forces the completion of any pending asynchronous operations on the host resolver. The handler for each cancelled
operation will be invoked with the boost::asio::error::operation_aborted error code.

913

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::basic_resolver::endpoint_type

The endpoint type.

typedef InternetProtocol::endpoint endpoint_type;

Requirements

Header: boost/asio/ip/basic_resolver.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

ip::basic_resolver::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

ip::basic_resolver::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

ip::basic_resolver::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

ip::basic_resolver::get_service

Get the service associated with the I/O object.

914

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

ip::basic_resolver::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

service_type & get_service();

ip::basic_resolver::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

ip::basic_resolver::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

ip::basic_resolver::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/ip/basic_resolver.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver::iterator

The iterator type.

typedef basic_resolver_iterator< InternetProtocol > iterator;

915

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The type used for the distance between two iterators.difference_type

The iterator category.iterator_category

The type of the result of applying operator->() to the iterator.pointer

The type of the result of applying operator*() to the iterator.reference

The type of the value pointed to by the iterator.value_type

Member Functions

DescriptionName

Default constructor creates an end iterator.basic_resolver_iterator

Create an iterator from an addrinfo list returned by getaddrinfo.

Create an iterator from an endpoint, host name and service name.

Create an iterator from a sequence of endpoints, host and service
name.

create

Dereference an iterator.operator *

Increment operator (prefix).

Increment operator (postfix).

operator++

Dereference an iterator.operator->

Friends

DescriptionName

Test two iterators for inequality.operator!=

Test two iterators for equality.operator==

The ip::basic_resolver_iterator class template is used to define iterators over the results returned by a resolver.

The iterator's value_type, obtained when the iterator is dereferenced, is:

const basic_resolver_entry<InternetProtocol>

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

916

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/ip/basic_resolver.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver::protocol_type

The protocol type.

typedef InternetProtocol protocol_type;

Requirements

Header: boost/asio/ip/basic_resolver.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver::query

The query type.

typedef basic_resolver_query< InternetProtocol > query;

Types

DescriptionName

A bitmask type (C++ Std [lib.bitmask.types]).flags

The protocol type associated with the endpoint query.protocol_type

Member Functions

DescriptionName

Construct with specified service name for any protocol.

Construct with specified service name for a given protocol.

Construct with specified host name and service name for any
protocol.

Construct with specified host name and service name for a given
protocol.

basic_resolver_query

Get the hints associated with the query.hints

Get the host name associated with the query.host_name

Get the service name associated with the query.service_name

917

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

Only return IPv4 addresses if a non-loopback IPv4 address is
configured for the system. Only return IPv6 addresses if a non-
loopback IPv6 address is configured for the system.

address_configured

If used with v4_mapped, return all matching IPv6 and IPv4 ad-
dresses.

all_matching

Determine the canonical name of the host specified in the query.canonical_name

Host name should be treated as a numeric string defining an
IPv4 or IPv6 address and no name resolution should be attemp-
ted.

numeric_host

Service name should be treated as a numeric string defining a
port number and no name resolution should be attempted.

numeric_service

Indicate that returned endpoint is intended for use as a locally
bound socket endpoint.

passive

If the query protocol family is specified as IPv6, return IPv4-
mapped IPv6 addresses on finding no IPv6 addresses.

v4_mapped

The ip::basic_resolver_query class template describes a query that can be passed to a resolver.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/basic_resolver.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver::resolve

Perform forward resolution of a query to a list of entries.

iterator resolve(
const query & q);

» more...

iterator resolve(
const query & q,
boost::system::error_code & ec);

» more...

Perform reverse resolution of an endpoint to a list of entries.

918

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

iterator resolve(
const endpoint_type & e);

» more...

iterator resolve(
const endpoint_type & e,
boost::system::error_code & ec);

» more...

ip::basic_resolver::resolve (1 of 4 overloads)

Perform forward resolution of a query to a list of entries.

iterator resolve(
const query & q);

This function is used to resolve a query into a list of endpoint entries.

Parameters

q A query object that determines what endpoints will be returned.

Return Value

A forward-only iterator that can be used to traverse the list of endpoint entries.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

A default constructed iterator represents the end of the list.

A successful call to this function is guaranteed to return at least one entry.

ip::basic_resolver::resolve (2 of 4 overloads)

Perform forward resolution of a query to a list of entries.

iterator resolve(
const query & q,
boost::system::error_code & ec);

This function is used to resolve a query into a list of endpoint entries.

Parameters

q A query object that determines what endpoints will be returned.

ec Set to indicate what error occurred, if any.

Return Value

A forward-only iterator that can be used to traverse the list of endpoint entries. Returns a default constructed iterator if an error occurs.

Remarks

A default constructed iterator represents the end of the list.

919

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

A successful call to this function is guaranteed to return at least one entry.

ip::basic_resolver::resolve (3 of 4 overloads)

Perform reverse resolution of an endpoint to a list of entries.

iterator resolve(
const endpoint_type & e);

This function is used to resolve an endpoint into a list of endpoint entries.

Parameters

e An endpoint object that determines what endpoints will be returned.

Return Value

A forward-only iterator that can be used to traverse the list of endpoint entries.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

A default constructed iterator represents the end of the list.

A successful call to this function is guaranteed to return at least one entry.

ip::basic_resolver::resolve (4 of 4 overloads)

Perform reverse resolution of an endpoint to a list of entries.

iterator resolve(
const endpoint_type & e,
boost::system::error_code & ec);

This function is used to resolve an endpoint into a list of endpoint entries.

Parameters

e An endpoint object that determines what endpoints will be returned.

ec Set to indicate what error occurred, if any.

Return Value

A forward-only iterator that can be used to traverse the list of endpoint entries. Returns a default constructed iterator if an error occurs.

Remarks

A default constructed iterator represents the end of the list.

A successful call to this function is guaranteed to return at least one entry.

ip::basic_resolver::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

920

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

service_type & service;

Remarks

Available only for services that do not support movability.

ip::basic_resolver::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef ResolverService service_type;

Requirements

Header: boost/asio/ip/basic_resolver.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver_entry
An entry produced by a resolver.

template<
typename InternetProtocol>

class basic_resolver_entry

Types

DescriptionName

The endpoint type associated with the endpoint entry.endpoint_type

The protocol type associated with the endpoint entry.protocol_type

Member Functions

DescriptionName

Default constructor.

Construct with specified endpoint, host name and service name.

basic_resolver_entry

Get the endpoint associated with the entry.endpoint

Get the host name associated with the entry.host_name

Convert to the endpoint associated with the entry.operator endpoint_type

Get the service name associated with the entry.service_name

The ip::basic_resolver_entry class template describes an entry as returned by a resolver.

921

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/basic_resolver_entry.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver_entry::basic_resolver_entry

Default constructor.

basic_resolver_entry();
» more...

Construct with specified endpoint, host name and service name.

basic_resolver_entry(
const endpoint_type & ep,
const std::string & host,
const std::string & service);

» more...

ip::basic_resolver_entry::basic_resolver_entry (1 of 2 overloads)

Default constructor.

basic_resolver_entry();

ip::basic_resolver_entry::basic_resolver_entry (2 of 2 overloads)

Construct with specified endpoint, host name and service name.

basic_resolver_entry(
const endpoint_type & ep,
const std::string & host,
const std::string & service);

ip::basic_resolver_entry::endpoint

Get the endpoint associated with the entry.

endpoint_type endpoint() const;

ip::basic_resolver_entry::endpoint_type

The endpoint type associated with the endpoint entry.

typedef InternetProtocol::endpoint endpoint_type;

922

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/ip/basic_resolver_entry.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver_entry::host_name

Get the host name associated with the entry.

std::string host_name() const;

ip::basic_resolver_entry::operator endpoint_type

Convert to the endpoint associated with the entry.

operator endpoint_type() const;

ip::basic_resolver_entry::protocol_type

The protocol type associated with the endpoint entry.

typedef InternetProtocol protocol_type;

Requirements

Header: boost/asio/ip/basic_resolver_entry.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver_entry::service_name

Get the service name associated with the entry.

std::string service_name() const;

ip::basic_resolver_iterator
An iterator over the entries produced by a resolver.

template<
typename InternetProtocol>

class basic_resolver_iterator

923

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The type used for the distance between two iterators.difference_type

The iterator category.iterator_category

The type of the result of applying operator->() to the iterator.pointer

The type of the result of applying operator*() to the iterator.reference

The type of the value pointed to by the iterator.value_type

Member Functions

DescriptionName

Default constructor creates an end iterator.basic_resolver_iterator

Create an iterator from an addrinfo list returned by getaddrinfo.

Create an iterator from an endpoint, host name and service name.

Create an iterator from a sequence of endpoints, host and service
name.

create

Dereference an iterator.operator *

Increment operator (prefix).

Increment operator (postfix).

operator++

Dereference an iterator.operator->

Friends

DescriptionName

Test two iterators for inequality.operator!=

Test two iterators for equality.operator==

The ip::basic_resolver_iterator class template is used to define iterators over the results returned by a resolver.

The iterator's value_type, obtained when the iterator is dereferenced, is:

const basic_resolver_entry<InternetProtocol>

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

924

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/ip/basic_resolver_iterator.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver_iterator::basic_resolver_iterator

Default constructor creates an end iterator.

basic_resolver_iterator();

ip::basic_resolver_iterator::create

Create an iterator from an addrinfo list returned by getaddrinfo.

static basic_resolver_iterator create(
boost::asio::detail::addrinfo_type * address_info,
const std::string & host_name,
const std::string & service_name);

» more...

Create an iterator from an endpoint, host name and service name.

static basic_resolver_iterator create(
const typename InternetProtocol::endpoint & endpoint,
const std::string & host_name,
const std::string & service_name);

» more...

Create an iterator from a sequence of endpoints, host and service name.

template<
typename EndpointIterator>

static basic_resolver_iterator create(
EndpointIterator begin,
EndpointIterator end,
const std::string & host_name,
const std::string & service_name);

» more...

ip::basic_resolver_iterator::create (1 of 3 overloads)

Create an iterator from an addrinfo list returned by getaddrinfo.

static basic_resolver_iterator create(
boost::asio::detail::addrinfo_type * address_info,
const std::string & host_name,
const std::string & service_name);

ip::basic_resolver_iterator::create (2 of 3 overloads)

Create an iterator from an endpoint, host name and service name.

925

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static basic_resolver_iterator create(
const typename InternetProtocol::endpoint & endpoint,
const std::string & host_name,
const std::string & service_name);

ip::basic_resolver_iterator::create (3 of 3 overloads)

Create an iterator from a sequence of endpoints, host and service name.

template<
typename EndpointIterator>

static basic_resolver_iterator create(
EndpointIterator begin,
EndpointIterator end,
const std::string & host_name,
const std::string & service_name);

ip::basic_resolver_iterator::difference_type

The type used for the distance between two iterators.

typedef std::ptrdiff_t difference_type;

Requirements

Header: boost/asio/ip/basic_resolver_iterator.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver_iterator::iterator_category

The iterator category.

typedef std::forward_iterator_tag iterator_category;

Requirements

Header: boost/asio/ip/basic_resolver_iterator.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver_iterator::operator *

Dereference an iterator.

const basic_resolver_entry< InternetProtocol > & operator *() const;

ip::basic_resolver_iterator::operator!=

Test two iterators for inequality.

friend bool operator!=(
const basic_resolver_iterator & a,
const basic_resolver_iterator & b);

926

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/ip/basic_resolver_iterator.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver_iterator::operator++

Increment operator (prefix).

basic_resolver_iterator & operator++();
» more...

Increment operator (postfix).

basic_resolver_iterator operator++(
int);

» more...

ip::basic_resolver_iterator::operator++ (1 of 2 overloads)

Increment operator (prefix).

basic_resolver_iterator & operator++();

ip::basic_resolver_iterator::operator++ (2 of 2 overloads)

Increment operator (postfix).

basic_resolver_iterator operator++(
int);

ip::basic_resolver_iterator::operator->

Dereference an iterator.

const basic_resolver_entry< InternetProtocol > * operator->() const;

ip::basic_resolver_iterator::operator==

Test two iterators for equality.

friend bool operator==(
const basic_resolver_iterator & a,
const basic_resolver_iterator & b);

Requirements

Header: boost/asio/ip/basic_resolver_iterator.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver_iterator::pointer

The type of the result of applying operator->() to the iterator.

927

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef const basic_resolver_entry< InternetProtocol > * pointer;

Requirements

Header: boost/asio/ip/basic_resolver_iterator.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver_iterator::reference

The type of the result of applying operator*() to the iterator.

typedef const basic_resolver_entry< InternetProtocol > & reference;

Types

DescriptionName

The endpoint type associated with the endpoint entry.endpoint_type

The protocol type associated with the endpoint entry.protocol_type

Member Functions

DescriptionName

Default constructor.

Construct with specified endpoint, host name and service name.

basic_resolver_entry

Get the endpoint associated with the entry.endpoint

Get the host name associated with the entry.host_name

Convert to the endpoint associated with the entry.operator endpoint_type

Get the service name associated with the entry.service_name

The ip::basic_resolver_entry class template describes an entry as returned by a resolver.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/basic_resolver_iterator.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver_iterator::value_type

The type of the value pointed to by the iterator.

928

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_resolver_entry< InternetProtocol > value_type;

Types

DescriptionName

The endpoint type associated with the endpoint entry.endpoint_type

The protocol type associated with the endpoint entry.protocol_type

Member Functions

DescriptionName

Default constructor.

Construct with specified endpoint, host name and service name.

basic_resolver_entry

Get the endpoint associated with the entry.endpoint

Get the host name associated with the entry.host_name

Convert to the endpoint associated with the entry.operator endpoint_type

Get the service name associated with the entry.service_name

The ip::basic_resolver_entry class template describes an entry as returned by a resolver.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/basic_resolver_iterator.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver_query
An query to be passed to a resolver.

template<
typename InternetProtocol>

class basic_resolver_query :
public ip::resolver_query_base

929

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

A bitmask type (C++ Std [lib.bitmask.types]).flags

The protocol type associated with the endpoint query.protocol_type

Member Functions

DescriptionName

Construct with specified service name for any protocol.

Construct with specified service name for a given protocol.

Construct with specified host name and service name for any
protocol.

Construct with specified host name and service name for a given
protocol.

basic_resolver_query

Get the hints associated with the query.hints

Get the host name associated with the query.host_name

Get the service name associated with the query.service_name

Data Members

DescriptionName

Only return IPv4 addresses if a non-loopback IPv4 address is
configured for the system. Only return IPv6 addresses if a non-
loopback IPv6 address is configured for the system.

address_configured

If used with v4_mapped, return all matching IPv6 and IPv4 ad-
dresses.

all_matching

Determine the canonical name of the host specified in the query.canonical_name

Host name should be treated as a numeric string defining an
IPv4 or IPv6 address and no name resolution should be attemp-
ted.

numeric_host

Service name should be treated as a numeric string defining a
port number and no name resolution should be attempted.

numeric_service

Indicate that returned endpoint is intended for use as a locally
bound socket endpoint.

passive

If the query protocol family is specified as IPv6, return IPv4-
mapped IPv6 addresses on finding no IPv6 addresses.

v4_mapped

The ip::basic_resolver_query class template describes a query that can be passed to a resolver.

930

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/basic_resolver_query.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver_query::address_configured

Inherited from ip::resolver_query_base.

Only return IPv4 addresses if a non-loopback IPv4 address is configured for the system. Only return IPv6 addresses if a non-loopback
IPv6 address is configured for the system.

static const flags address_configured = implementation_defined;

ip::basic_resolver_query::all_matching

Inherited from ip::resolver_query_base.

If used with v4_mapped, return all matching IPv6 and IPv4 addresses.

static const flags all_matching = implementation_defined;

ip::basic_resolver_query::basic_resolver_query

Construct with specified service name for any protocol.

basic_resolver_query(
const std::string & service,
resolver_query_base::flags resolve_flags = passive|address_configured);

» more...

Construct with specified service name for a given protocol.

basic_resolver_query(
const protocol_type & protocol,
const std::string & service,
resolver_query_base::flags resolve_flags = passive|address_configured);

» more...

Construct with specified host name and service name for any protocol.

basic_resolver_query(
const std::string & host,
const std::string & service,
resolver_query_base::flags resolve_flags = address_configured);

» more...

Construct with specified host name and service name for a given protocol.

931

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_resolver_query(
const protocol_type & protocol,
const std::string & host,
const std::string & service,
resolver_query_base::flags resolve_flags = address_configured);

» more...

ip::basic_resolver_query::basic_resolver_query (1 of 4 overloads)

Construct with specified service name for any protocol.

basic_resolver_query(
const std::string & service,
resolver_query_base::flags resolve_flags = passive|address_configured);

This constructor is typically used to perform name resolution for local service binding.

Parameters

service A string identifying the requested service. This may be a descriptive name or a numeric string corresponding
to a port number.

resolve_flags A set of flags that determine how name resolution should be performed. The default flags are suitable for local
service binding.

Remarks

On POSIX systems, service names are typically defined in the file /etc/services. On Windows, service names may be found in
the file c:\windows\system32\drivers\etc\services. Operating systems may use additional locations when resolving service
names.

ip::basic_resolver_query::basic_resolver_query (2 of 4 overloads)

Construct with specified service name for a given protocol.

basic_resolver_query(
const protocol_type & protocol,
const std::string & service,
resolver_query_base::flags resolve_flags = passive|address_configured);

This constructor is typically used to perform name resolution for local service binding with a specific protocol version.

Parameters

protocol A protocol object, normally representing either the IPv4 or IPv6 version of an internet protocol.

service A string identifying the requested service. This may be a descriptive name or a numeric string corresponding
to a port number.

resolve_flags A set of flags that determine how name resolution should be performed. The default flags are suitable for local
service binding.

Remarks

On POSIX systems, service names are typically defined in the file /etc/services. On Windows, service names may be found in
the file c:\windows\system32\drivers\etc\services. Operating systems may use additional locations when resolving service
names.

932

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::basic_resolver_query::basic_resolver_query (3 of 4 overloads)

Construct with specified host name and service name for any protocol.

basic_resolver_query(
const std::string & host,
const std::string & service,
resolver_query_base::flags resolve_flags = address_configured);

This constructor is typically used to perform name resolution for communication with remote hosts.

Parameters

host A string identifying a location. May be a descriptive name or a numeric address string. If an empty string and
the passive flag has been specified, the resolved endpoints are suitable for local service binding. If an empty
string and passive is not specified, the resolved endpoints will use the loopback address.

service A string identifying the requested service. This may be a descriptive name or a numeric string corresponding
to a port number. May be an empty string, in which case all resolved endpoints will have a port number of 0.

resolve_flags A set of flags that determine how name resolution should be performed. The default flags are suitable for
communication with remote hosts.

Remarks

On POSIX systems, host names may be locally defined in the file /etc/hosts. On Windows, host names may be defined in the
file c:\windows\system32\drivers\etc\hosts. Remote host name resolution is performed using DNS. Operating systems
may use additional locations when resolving host names (such as NETBIOS names on Windows).

On POSIX systems, service names are typically defined in the file /etc/services. On Windows, service names may be found in
the file c:\windows\system32\drivers\etc\services. Operating systems may use additional locations when resolving service
names.

ip::basic_resolver_query::basic_resolver_query (4 of 4 overloads)

Construct with specified host name and service name for a given protocol.

basic_resolver_query(
const protocol_type & protocol,
const std::string & host,
const std::string & service,
resolver_query_base::flags resolve_flags = address_configured);

This constructor is typically used to perform name resolution for communication with remote hosts.

Parameters

protocol A protocol object, normally representing either the IPv4 or IPv6 version of an internet protocol.

host A string identifying a location. May be a descriptive name or a numeric address string. If an empty string and
the passive flag has been specified, the resolved endpoints are suitable for local service binding. If an empty
string and passive is not specified, the resolved endpoints will use the loopback address.

service A string identifying the requested service. This may be a descriptive name or a numeric string corresponding
to a port number. May be an empty string, in which case all resolved endpoints will have a port number of 0.

resolve_flags A set of flags that determine how name resolution should be performed. The default flags are suitable for
communication with remote hosts.

933

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

On POSIX systems, host names may be locally defined in the file /etc/hosts. On Windows, host names may be defined in the
file c:\windows\system32\drivers\etc\hosts. Remote host name resolution is performed using DNS. Operating systems
may use additional locations when resolving host names (such as NETBIOS names on Windows).

On POSIX systems, service names are typically defined in the file /etc/services. On Windows, service names may be found in
the file c:\windows\system32\drivers\etc\services. Operating systems may use additional locations when resolving service
names.

ip::basic_resolver_query::canonical_name

Inherited from ip::resolver_query_base.

Determine the canonical name of the host specified in the query.

static const flags canonical_name = implementation_defined;

ip::basic_resolver_query::flags

Inherited from ip::resolver_query_base.

A bitmask type (C++ Std [lib.bitmask.types]).

typedef unspecified flags;

Requirements

Header: boost/asio/ip/basic_resolver_query.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver_query::hints

Get the hints associated with the query.

const boost::asio::detail::addrinfo_type & hints() const;

ip::basic_resolver_query::host_name

Get the host name associated with the query.

std::string host_name() const;

ip::basic_resolver_query::numeric_host

Inherited from ip::resolver_query_base.

Host name should be treated as a numeric string defining an IPv4 or IPv6 address and no name resolution should be attempted.

static const flags numeric_host = implementation_defined;

ip::basic_resolver_query::numeric_service

Inherited from ip::resolver_query_base.

934

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Service name should be treated as a numeric string defining a port number and no name resolution should be attempted.

static const flags numeric_service = implementation_defined;

ip::basic_resolver_query::passive

Inherited from ip::resolver_query_base.

Indicate that returned endpoint is intended for use as a locally bound socket endpoint.

static const flags passive = implementation_defined;

ip::basic_resolver_query::protocol_type

The protocol type associated with the endpoint query.

typedef InternetProtocol protocol_type;

Requirements

Header: boost/asio/ip/basic_resolver_query.hpp

Convenience header: boost/asio.hpp

ip::basic_resolver_query::service_name

Get the service name associated with the query.

std::string service_name() const;

ip::basic_resolver_query::v4_mapped

Inherited from ip::resolver_query_base.

If the query protocol family is specified as IPv6, return IPv4-mapped IPv6 addresses on finding no IPv6 addresses.

static const flags v4_mapped = implementation_defined;

ip::host_name
Get the current host name.

std::string host_name();
» more...

std::string host_name(
boost::system::error_code & ec);

» more...

Requirements

Header: boost/asio/ip/host_name.hpp

Convenience header: boost/asio.hpp

935

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::host_name (1 of 2 overloads)

Get the current host name.

std::string host_name();

ip::host_name (2 of 2 overloads)

Get the current host name.

std::string host_name(
boost::system::error_code & ec);

ip::icmp
Encapsulates the flags needed for ICMP.

class icmp

Types

DescriptionName

The type of a ICMP endpoint.endpoint

The ICMP resolver type.resolver

The ICMP socket type.socket

Member Functions

DescriptionName

Obtain an identifier for the protocol family.family

Obtain an identifier for the protocol.protocol

Obtain an identifier for the type of the protocol.type

Construct to represent the IPv4 ICMP protocol.v4

Construct to represent the IPv6 ICMP protocol.v6

Friends

DescriptionName

Compare two protocols for inequality.operator!=

Compare two protocols for equality.operator==

The ip::icmp class contains flags necessary for ICMP sockets.

936

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

Requirements

Header: boost/asio/ip/icmp.hpp

Convenience header: boost/asio.hpp

ip::icmp::endpoint

The type of a ICMP endpoint.

typedef basic_endpoint< icmp > endpoint;

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

937

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Get the IP address associated with the endpoint.

Set the IP address associated with the endpoint.

address

Default constructor.

Construct an endpoint using a port number, specified in the
host's byte order. The IP address will be the any address (i.e.
INADDR_ANY or in6addr_any). This constructor would typic-
ally be used for accepting new connections.

Construct an endpoint using a port number and an IP address.
This constructor may be used for accepting connections on a
specific interface or for making a connection to a remote end-
point.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

Get the port associated with the endpoint. The port number is
always in the host's byte order.

Set the port associated with the endpoint. The port number is
always in the host's byte order.

port

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare endpoints for ordering.operator<=

Compare two endpoints for equality.operator==

Compare endpoints for ordering.operator>

Compare endpoints for ordering.operator>=

938

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Related Functions

DescriptionName

Output an endpoint as a string.operator<<

The ip::basic_endpoint class template describes an endpoint that may be associated with a particular socket.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/icmp.hpp

Convenience header: boost/asio.hpp

ip::icmp::family

Obtain an identifier for the protocol family.

int family() const;

ip::icmp::operator!=

Compare two protocols for inequality.

friend bool operator!=(
const icmp & p1,
const icmp & p2);

Requirements

Header: boost/asio/ip/icmp.hpp

Convenience header: boost/asio.hpp

ip::icmp::operator==

Compare two protocols for equality.

friend bool operator==(
const icmp & p1,
const icmp & p2);

Requirements

Header: boost/asio/ip/icmp.hpp

Convenience header: boost/asio.hpp

ip::icmp::protocol

Obtain an identifier for the protocol.

939

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

int protocol() const;

ip::icmp::resolver

The ICMP resolver type.

typedef basic_resolver< icmp > resolver;

Types

DescriptionName

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

The iterator type.iterator

The protocol type.protocol_type

The query type.query

The type of the service that will be used to provide I/O opera-
tions.

service_type

Member Functions

DescriptionName

Asynchronously perform forward resolution of a query to a list
of entries.

Asynchronously perform reverse resolution of an endpoint to a
list of entries.

async_resolve

Constructor.basic_resolver

Cancel any asynchronous operations that are waiting on the re-
solver.

cancel

Get the io_service associated with the object.get_io_service

Perform forward resolution of a query to a list of entries.

Perform reverse resolution of an endpoint to a list of entries.

resolve

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

940

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The ip::basic_resolver class template provides the ability to resolve a query to a list of endpoints.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/icmp.hpp

Convenience header: boost/asio.hpp

ip::icmp::socket

The ICMP socket type.

typedef basic_raw_socket< icmp > socket;

941

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

942

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

943

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive on a connected socket.async_receive

Start an asynchronous receive.async_receive_from

Start an asynchronous send on a connected socket.async_send

Start an asynchronous send.async_send_to

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_raw_socket without opening it.basic_raw_socket

Construct and open a basic_raw_socket.

Construct a basic_raw_socket, opening it and binding it to the
given local endpoint.

Construct a basic_raw_socket on an existing native socket.

Move-construct a basic_raw_socket from another.

Move-construct a basic_raw_socket from a socket of another
protocol type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

944

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Gets the non-blocking mode of the native socket implementation.

Sets the non-blocking mode of the native socket implementation.

native_non_blocking

Gets the non-blocking mode of the socket.

Sets the non-blocking mode of the socket.

non_blocking

Open the socket using the specified protocol.open

Move-assign a basic_raw_socket from another.

Move-assign a basic_raw_socket from a socket of another pro-
tocol type.

operator=

Receive some data on a connected socket.receive

Receive raw data with the endpoint of the sender.receive_from

Get the remote endpoint of the socket.remote_endpoint

Send some data on a connected socket.send

Send raw data to the specified endpoint.send_to

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

945

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_raw_socket class template provides asynchronous and blocking raw-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/icmp.hpp

Convenience header: boost/asio.hpp

ip::icmp::type

Obtain an identifier for the type of the protocol.

int type() const;

ip::icmp::v4

Construct to represent the IPv4 ICMP protocol.

static icmp v4();

ip::icmp::v6

Construct to represent the IPv6 ICMP protocol.

static icmp v6();

ip::multicast::enable_loopback
Socket option determining whether outgoing multicast packets will be received on the same socket if it is a member of the multicast
group.

typedef implementation_defined enable_loopback;

Implements the IPPROTO_IP/IP_MULTICAST_LOOP socket option.

Examples

Setting the option:

946

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::multicast::enable_loopback option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::multicast::enable_loopback option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/ip/multicast.hpp

Convenience header: boost/asio.hpp

ip::multicast::hops
Socket option for time-to-live associated with outgoing multicast packets.

typedef implementation_defined hops;

Implements the IPPROTO_IP/IP_MULTICAST_TTL socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::multicast::hops option(4);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::multicast::hops option;
socket.get_option(option);
int ttl = option.value();

Requirements

Header: boost/asio/ip/multicast.hpp

Convenience header: boost/asio.hpp

ip::multicast::join_group
Socket option to join a multicast group on a specified interface.

typedef implementation_defined join_group;

947

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Implements the IPPROTO_IP/IP_ADD_MEMBERSHIP socket option.

Examples

Setting the option to join a multicast group:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::address multicast_address =
boost::asio::ip::address::from_string("225.0.0.1");

boost::asio::ip::multicast::join_group option(multicast_address);
socket.set_option(option);

Requirements

Header: boost/asio/ip/multicast.hpp

Convenience header: boost/asio.hpp

ip::multicast::leave_group
Socket option to leave a multicast group on a specified interface.

typedef implementation_defined leave_group;

Implements the IPPROTO_IP/IP_DROP_MEMBERSHIP socket option.

Examples

Setting the option to leave a multicast group:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::address multicast_address =
boost::asio::ip::address::from_string("225.0.0.1");

boost::asio::ip::multicast::leave_group option(multicast_address);
socket.set_option(option);

Requirements

Header: boost/asio/ip/multicast.hpp

Convenience header: boost/asio.hpp

ip::multicast::outbound_interface
Socket option for local interface to use for outgoing multicast packets.

typedef implementation_defined outbound_interface;

Implements the IPPROTO_IP/IP_MULTICAST_IF socket option.

Examples

Setting the option:

948

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::address_v4 local_interface =
boost::asio::ip::address_v4::from_string("1.2.3.4");

boost::asio::ip::multicast::outbound_interface option(local_interface);
socket.set_option(option);

Requirements

Header: boost/asio/ip/multicast.hpp

Convenience header: boost/asio.hpp

ip::resolver_query_base
The ip::resolver_query_base class is used as a base for the ip::basic_resolver_query class templates to provide a
common place to define the flag constants.

class resolver_query_base

Types

DescriptionName

A bitmask type (C++ Std [lib.bitmask.types]).flags

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~resolver_query_base

949

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

Only return IPv4 addresses if a non-loopback IPv4 address is
configured for the system. Only return IPv6 addresses if a non-
loopback IPv6 address is configured for the system.

address_configured

If used with v4_mapped, return all matching IPv6 and IPv4 ad-
dresses.

all_matching

Determine the canonical name of the host specified in the query.canonical_name

Host name should be treated as a numeric string defining an
IPv4 or IPv6 address and no name resolution should be attemp-
ted.

numeric_host

Service name should be treated as a numeric string defining a
port number and no name resolution should be attempted.

numeric_service

Indicate that returned endpoint is intended for use as a locally
bound socket endpoint.

passive

If the query protocol family is specified as IPv6, return IPv4-
mapped IPv6 addresses on finding no IPv6 addresses.

v4_mapped

Requirements

Header: boost/asio/ip/resolver_query_base.hpp

Convenience header: boost/asio.hpp

ip::resolver_query_base::address_configured

Only return IPv4 addresses if a non-loopback IPv4 address is configured for the system. Only return IPv6 addresses if a non-loopback
IPv6 address is configured for the system.

static const flags address_configured = implementation_defined;

ip::resolver_query_base::all_matching

If used with v4_mapped, return all matching IPv6 and IPv4 addresses.

static const flags all_matching = implementation_defined;

ip::resolver_query_base::canonical_name

Determine the canonical name of the host specified in the query.

static const flags canonical_name = implementation_defined;

ip::resolver_query_base::flags

A bitmask type (C++ Std [lib.bitmask.types]).

950

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef unspecified flags;

Requirements

Header: boost/asio/ip/resolver_query_base.hpp

Convenience header: boost/asio.hpp

ip::resolver_query_base::numeric_host

Host name should be treated as a numeric string defining an IPv4 or IPv6 address and no name resolution should be attempted.

static const flags numeric_host = implementation_defined;

ip::resolver_query_base::numeric_service

Service name should be treated as a numeric string defining a port number and no name resolution should be attempted.

static const flags numeric_service = implementation_defined;

ip::resolver_query_base::passive

Indicate that returned endpoint is intended for use as a locally bound socket endpoint.

static const flags passive = implementation_defined;

ip::resolver_query_base::v4_mapped

If the query protocol family is specified as IPv6, return IPv4-mapped IPv6 addresses on finding no IPv6 addresses.

static const flags v4_mapped = implementation_defined;

ip::resolver_query_base::~resolver_query_base

Protected destructor to prevent deletion through this type.

~resolver_query_base();

ip::resolver_service
Default service implementation for a resolver.

template<
typename InternetProtocol>

class resolver_service :
public io_service::service

951

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The endpoint type.endpoint_type

The type of a resolver implementation.implementation_type

The iterator type.iterator_type

The protocol type.protocol_type

The query type.query_type

Member Functions

DescriptionName

Asynchronously resolve a query to a list of entries.

Asynchronously resolve an endpoint to a list of entries.

async_resolve

Cancel pending asynchronous operations.cancel

Construct a new resolver implementation.construct

Destroy a resolver implementation.destroy

Get the io_service object that owns the service.get_io_service

Resolve a query to a list of entries.

Resolve an endpoint to a list of entries.

resolve

Construct a new resolver service for the specified io_service.resolver_service

Data Members

DescriptionName

The unique service identifier.id

Requirements

Header: boost/asio/ip/resolver_service.hpp

Convenience header: boost/asio.hpp

ip::resolver_service::async_resolve

Asynchronously resolve a query to a list of entries.

952

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ResolveHandler>

void-or-deduced async_resolve(
implementation_type & impl,
const query_type & query,
ResolveHandler handler);

» more...

Asynchronously resolve an endpoint to a list of entries.

template<
typename ResolveHandler>

void-or-deduced async_resolve(
implementation_type & impl,
const endpoint_type & endpoint,
ResolveHandler handler);

» more...

ip::resolver_service::async_resolve (1 of 2 overloads)

Asynchronously resolve a query to a list of entries.

template<
typename ResolveHandler>

void-or-deduced async_resolve(
implementation_type & impl,
const query_type & query,
ResolveHandler handler);

ip::resolver_service::async_resolve (2 of 2 overloads)

Asynchronously resolve an endpoint to a list of entries.

template<
typename ResolveHandler>

void-or-deduced async_resolve(
implementation_type & impl,
const endpoint_type & endpoint,
ResolveHandler handler);

ip::resolver_service::cancel

Cancel pending asynchronous operations.

void cancel(
implementation_type & impl);

ip::resolver_service::construct

Construct a new resolver implementation.

void construct(
implementation_type & impl);

953

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::resolver_service::destroy

Destroy a resolver implementation.

void destroy(
implementation_type & impl);

ip::resolver_service::endpoint_type

The endpoint type.

typedef InternetProtocol::endpoint endpoint_type;

Requirements

Header: boost/asio/ip/resolver_service.hpp

Convenience header: boost/asio.hpp

ip::resolver_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

ip::resolver_service::id

The unique service identifier.

static boost::asio::io_service::id id;

ip::resolver_service::implementation_type

The type of a resolver implementation.

typedef implementation_defined implementation_type;

Requirements

Header: boost/asio/ip/resolver_service.hpp

Convenience header: boost/asio.hpp

ip::resolver_service::iterator_type

The iterator type.

typedef basic_resolver_iterator< InternetProtocol > iterator_type;

954

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The type used for the distance between two iterators.difference_type

The iterator category.iterator_category

The type of the result of applying operator->() to the iterator.pointer

The type of the result of applying operator*() to the iterator.reference

The type of the value pointed to by the iterator.value_type

Member Functions

DescriptionName

Default constructor creates an end iterator.basic_resolver_iterator

Create an iterator from an addrinfo list returned by getaddrinfo.

Create an iterator from an endpoint, host name and service name.

Create an iterator from a sequence of endpoints, host and service
name.

create

Dereference an iterator.operator *

Increment operator (prefix).

Increment operator (postfix).

operator++

Dereference an iterator.operator->

Friends

DescriptionName

Test two iterators for inequality.operator!=

Test two iterators for equality.operator==

The ip::basic_resolver_iterator class template is used to define iterators over the results returned by a resolver.

The iterator's value_type, obtained when the iterator is dereferenced, is:

const basic_resolver_entry<InternetProtocol>

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

955

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/ip/resolver_service.hpp

Convenience header: boost/asio.hpp

ip::resolver_service::protocol_type

The protocol type.

typedef InternetProtocol protocol_type;

Requirements

Header: boost/asio/ip/resolver_service.hpp

Convenience header: boost/asio.hpp

ip::resolver_service::query_type

The query type.

typedef basic_resolver_query< InternetProtocol > query_type;

Types

DescriptionName

A bitmask type (C++ Std [lib.bitmask.types]).flags

The protocol type associated with the endpoint query.protocol_type

Member Functions

DescriptionName

Construct with specified service name for any protocol.

Construct with specified service name for a given protocol.

Construct with specified host name and service name for any
protocol.

Construct with specified host name and service name for a given
protocol.

basic_resolver_query

Get the hints associated with the query.hints

Get the host name associated with the query.host_name

Get the service name associated with the query.service_name

956

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

Only return IPv4 addresses if a non-loopback IPv4 address is
configured for the system. Only return IPv6 addresses if a non-
loopback IPv6 address is configured for the system.

address_configured

If used with v4_mapped, return all matching IPv6 and IPv4 ad-
dresses.

all_matching

Determine the canonical name of the host specified in the query.canonical_name

Host name should be treated as a numeric string defining an
IPv4 or IPv6 address and no name resolution should be attemp-
ted.

numeric_host

Service name should be treated as a numeric string defining a
port number and no name resolution should be attempted.

numeric_service

Indicate that returned endpoint is intended for use as a locally
bound socket endpoint.

passive

If the query protocol family is specified as IPv6, return IPv4-
mapped IPv6 addresses on finding no IPv6 addresses.

v4_mapped

The ip::basic_resolver_query class template describes a query that can be passed to a resolver.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/resolver_service.hpp

Convenience header: boost/asio.hpp

ip::resolver_service::resolve

Resolve a query to a list of entries.

iterator_type resolve(
implementation_type & impl,
const query_type & query,
boost::system::error_code & ec);

» more...

Resolve an endpoint to a list of entries.

iterator_type resolve(
implementation_type & impl,
const endpoint_type & endpoint,
boost::system::error_code & ec);

» more...

957

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::resolver_service::resolve (1 of 2 overloads)

Resolve a query to a list of entries.

iterator_type resolve(
implementation_type & impl,
const query_type & query,
boost::system::error_code & ec);

ip::resolver_service::resolve (2 of 2 overloads)

Resolve an endpoint to a list of entries.

iterator_type resolve(
implementation_type & impl,
const endpoint_type & endpoint,
boost::system::error_code & ec);

ip::resolver_service::resolver_service

Construct a new resolver service for the specified io_service.

resolver_service(
boost::asio::io_service & io_service);

ip::tcp
Encapsulates the flags needed for TCP.

class tcp

Types

DescriptionName

The TCP acceptor type.acceptor

The type of a TCP endpoint.endpoint

The TCP iostream type.iostream

Socket option for disabling the Nagle algorithm.no_delay

The TCP resolver type.resolver

The TCP socket type.socket

958

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Obtain an identifier for the protocol family.family

Obtain an identifier for the protocol.protocol

Obtain an identifier for the type of the protocol.type

Construct to represent the IPv4 TCP protocol.v4

Construct to represent the IPv6 TCP protocol.v6

Friends

DescriptionName

Compare two protocols for inequality.operator!=

Compare two protocols for equality.operator==

The ip::tcp class contains flags necessary for TCP sockets.

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

Requirements

Header: boost/asio/ip/tcp.hpp

Convenience header: boost/asio.hpp

ip::tcp::acceptor

The TCP acceptor type.

typedef basic_socket_acceptor< tcp > acceptor;

959

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of an acceptor.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of an acceptor.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

960

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

961

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Accept a new connection.accept

Accept a new connection and obtain the endpoint of the peer.

Assigns an existing native acceptor to the acceptor.assign

Start an asynchronous accept.async_accept

Construct an acceptor without opening it.basic_socket_acceptor

Construct an open acceptor.

Construct an acceptor opened on the given endpoint.

Construct a basic_socket_acceptor on an existing native acceptor.

Move-construct a basic_socket_acceptor from another.

Move-construct a basic_socket_acceptor from an acceptor of
another protocol type.

Bind the acceptor to the given local endpoint.bind

Cancel all asynchronous operations associated with the acceptor.cancel

Close the acceptor.close

Get the io_service associated with the object.get_io_service

Get an option from the acceptor.get_option

Perform an IO control command on the acceptor.io_control

Determine whether the acceptor is open.is_open

Place the acceptor into the state where it will listen for new
connections.

listen

Get the local endpoint of the acceptor.local_endpoint

(Deprecated: Use native_handle().) Get the native acceptor
representation.

native

Get the native acceptor representation.native_handle

Gets the non-blocking mode of the native acceptor implementa-
tion.

native_non_blocking

Sets the non-blocking mode of the native acceptor implementa-
tion.

Gets the non-blocking mode of the acceptor.non_blocking

Sets the non-blocking mode of the acceptor.

Open the acceptor using the specified protocol.open

962

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Move-assign a basic_socket_acceptor from another.

Move-assign a basic_socket_acceptor from an acceptor of an-
other protocol type.

operator=

Set an option on the acceptor.set_option

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_socket_acceptor class template is used for accepting new socket connections.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Example

Opening a socket acceptor with the SO_REUSEADDR option enabled:

963

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::acceptor acceptor(io_service);
boost::asio::ip::tcp::endpoint endpoint(boost::asio::ip::tcp::v4(), port);
acceptor.open(endpoint.protocol());
acceptor.set_option(boost::asio::ip::tcp::acceptor::reuse_address(true));
acceptor.bind(endpoint);
acceptor.listen();

Requirements

Header: boost/asio/ip/tcp.hpp

Convenience header: boost/asio.hpp

ip::tcp::endpoint

The type of a TCP endpoint.

typedef basic_endpoint< tcp > endpoint;

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

964

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Get the IP address associated with the endpoint.

Set the IP address associated with the endpoint.

address

Default constructor.

Construct an endpoint using a port number, specified in the
host's byte order. The IP address will be the any address (i.e.
INADDR_ANY or in6addr_any). This constructor would typic-
ally be used for accepting new connections.

Construct an endpoint using a port number and an IP address.
This constructor may be used for accepting connections on a
specific interface or for making a connection to a remote end-
point.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

Get the port associated with the endpoint. The port number is
always in the host's byte order.

Set the port associated with the endpoint. The port number is
always in the host's byte order.

port

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare endpoints for ordering.operator<=

Compare two endpoints for equality.operator==

Compare endpoints for ordering.operator>

Compare endpoints for ordering.operator>=

965

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Related Functions

DescriptionName

Output an endpoint as a string.operator<<

The ip::basic_endpoint class template describes an endpoint that may be associated with a particular socket.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/tcp.hpp

Convenience header: boost/asio.hpp

ip::tcp::family

Obtain an identifier for the protocol family.

int family() const;

ip::tcp::iostream

The TCP iostream type.

typedef basic_socket_iostream< tcp > iostream;

Types

DescriptionName

The duration type.duration_type

The endpoint type.endpoint_type

The time type.time_type

966

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Construct a basic_socket_iostream without establishing a con-
nection.

Establish a connection to an endpoint corresponding to a resolver
query.

basic_socket_iostream

Close the connection.close

Establish a connection to an endpoint corresponding to a resolver
query.

connect

Get the last error associated with the stream.error

Get the stream's expiry time as an absolute time.

Set the stream's expiry time as an absolute time.

expires_at

Get the timer's expiry time relative to now.

Set the stream's expiry time relative to now.

expires_from_now

Return a pointer to the underlying streambuf.rdbuf

Requirements

Header: boost/asio/ip/tcp.hpp

Convenience header: boost/asio.hpp

ip::tcp::no_delay

Socket option for disabling the Nagle algorithm.

typedef implementation_defined no_delay;

Implements the IPPROTO_TCP/TCP_NODELAY socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::tcp::no_delay option;
socket.get_option(option);
bool is_set = option.value();

967

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/ip/tcp.hpp

Convenience header: boost/asio.hpp

ip::tcp::operator!=

Compare two protocols for inequality.

friend bool operator!=(
const tcp & p1,
const tcp & p2);

Requirements

Header: boost/asio/ip/tcp.hpp

Convenience header: boost/asio.hpp

ip::tcp::operator==

Compare two protocols for equality.

friend bool operator==(
const tcp & p1,
const tcp & p2);

Requirements

Header: boost/asio/ip/tcp.hpp

Convenience header: boost/asio.hpp

ip::tcp::protocol

Obtain an identifier for the protocol.

int protocol() const;

ip::tcp::resolver

The TCP resolver type.

typedef basic_resolver< tcp > resolver;

968

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

The iterator type.iterator

The protocol type.protocol_type

The query type.query

The type of the service that will be used to provide I/O opera-
tions.

service_type

Member Functions

DescriptionName

Asynchronously perform forward resolution of a query to a list
of entries.

Asynchronously perform reverse resolution of an endpoint to a
list of entries.

async_resolve

Constructor.basic_resolver

Cancel any asynchronous operations that are waiting on the re-
solver.

cancel

Get the io_service associated with the object.get_io_service

Perform forward resolution of a query to a list of entries.

Perform reverse resolution of an endpoint to a list of entries.

resolve

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

969

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The ip::basic_resolver class template provides the ability to resolve a query to a list of endpoints.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/tcp.hpp

Convenience header: boost/asio.hpp

ip::tcp::socket

The TCP socket type.

typedef basic_stream_socket< tcp > socket;

970

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

971

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

972

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous read.async_read_some

Start an asynchronous receive.async_receive

Start an asynchronous send.async_send

Start an asynchronous write.async_write_some

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_stream_socket without opening it.basic_stream_socket

Construct and open a basic_stream_socket.

Construct a basic_stream_socket, opening it and binding it to
the given local endpoint.

Construct a basic_stream_socket on an existing native socket.

Move-construct a basic_stream_socket from another.

Move-construct a basic_stream_socket from a socket of another
protocol type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

973

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Gets the non-blocking mode of the native socket implementation.

Sets the non-blocking mode of the native socket implementation.

native_non_blocking

Gets the non-blocking mode of the socket.

Sets the non-blocking mode of the socket.

non_blocking

Open the socket using the specified protocol.open

Move-assign a basic_stream_socket from another.

Move-assign a basic_stream_socket from a socket of another
protocol type.

operator=

Read some data from the socket.read_some

Receive some data on the socket.

Receive some data on a connected socket.

receive

Get the remote endpoint of the socket.remote_endpoint

Send some data on the socket.send

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Write some data to the socket.write_some

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

974

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_stream_socket class template provides asynchronous and blocking stream-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/tcp.hpp

Convenience header: boost/asio.hpp

ip::tcp::type

Obtain an identifier for the type of the protocol.

int type() const;

ip::tcp::v4

Construct to represent the IPv4 TCP protocol.

static tcp v4();

ip::tcp::v6

Construct to represent the IPv6 TCP protocol.

static tcp v6();

ip::udp
Encapsulates the flags needed for UDP.

class udp

975

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The type of a UDP endpoint.endpoint

The UDP resolver type.resolver

The UDP socket type.socket

Member Functions

DescriptionName

Obtain an identifier for the protocol family.family

Obtain an identifier for the protocol.protocol

Obtain an identifier for the type of the protocol.type

Construct to represent the IPv4 UDP protocol.v4

Construct to represent the IPv6 UDP protocol.v6

Friends

DescriptionName

Compare two protocols for inequality.operator!=

Compare two protocols for equality.operator==

The ip::udp class contains flags necessary for UDP sockets.

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

Requirements

Header: boost/asio/ip/udp.hpp

Convenience header: boost/asio.hpp

ip::udp::endpoint

The type of a UDP endpoint.

typedef basic_endpoint< udp > endpoint;

976

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

Member Functions

DescriptionName

Get the IP address associated with the endpoint.

Set the IP address associated with the endpoint.

address

Default constructor.

Construct an endpoint using a port number, specified in the
host's byte order. The IP address will be the any address (i.e.
INADDR_ANY or in6addr_any). This constructor would typic-
ally be used for accepting new connections.

Construct an endpoint using a port number and an IP address.
This constructor may be used for accepting connections on a
specific interface or for making a connection to a remote end-
point.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

Get the port associated with the endpoint. The port number is
always in the host's byte order.

Set the port associated with the endpoint. The port number is
always in the host's byte order.

port

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

977

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare endpoints for ordering.operator<=

Compare two endpoints for equality.operator==

Compare endpoints for ordering.operator>

Compare endpoints for ordering.operator>=

Related Functions

DescriptionName

Output an endpoint as a string.operator<<

The ip::basic_endpoint class template describes an endpoint that may be associated with a particular socket.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/udp.hpp

Convenience header: boost/asio.hpp

ip::udp::family

Obtain an identifier for the protocol family.

int family() const;

ip::udp::operator!=

Compare two protocols for inequality.

friend bool operator!=(
const udp & p1,
const udp & p2);

Requirements

Header: boost/asio/ip/udp.hpp

Convenience header: boost/asio.hpp

978

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::udp::operator==

Compare two protocols for equality.

friend bool operator==(
const udp & p1,
const udp & p2);

Requirements

Header: boost/asio/ip/udp.hpp

Convenience header: boost/asio.hpp

ip::udp::protocol

Obtain an identifier for the protocol.

int protocol() const;

ip::udp::resolver

The UDP resolver type.

typedef basic_resolver< udp > resolver;

Types

DescriptionName

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

The iterator type.iterator

The protocol type.protocol_type

The query type.query

The type of the service that will be used to provide I/O opera-
tions.

service_type

979

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Asynchronously perform forward resolution of a query to a list
of entries.

Asynchronously perform reverse resolution of an endpoint to a
list of entries.

async_resolve

Constructor.basic_resolver

Cancel any asynchronous operations that are waiting on the re-
solver.

cancel

Get the io_service associated with the object.get_io_service

Perform forward resolution of a query to a list of entries.

Perform reverse resolution of an endpoint to a list of entries.

resolve

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The ip::basic_resolver class template provides the ability to resolve a query to a list of endpoints.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/udp.hpp

Convenience header: boost/asio.hpp

ip::udp::socket

The UDP socket type.

980

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_datagram_socket< udp > socket;

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

981

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

982

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive on a connected socket.async_receive

Start an asynchronous receive.async_receive_from

Start an asynchronous send on a connected socket.async_send

Start an asynchronous send.async_send_to

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_datagram_socket without opening it.basic_datagram_socket

Construct and open a basic_datagram_socket.

Construct a basic_datagram_socket, opening it and binding it
to the given local endpoint.

Construct a basic_datagram_socket on an existing native socket.

Move-construct a basic_datagram_socket from another.

Move-construct a basic_datagram_socket from a socket of an-
other protocol type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

983

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Gets the non-blocking mode of the native socket implementation.

Sets the non-blocking mode of the native socket implementation.

native_non_blocking

Gets the non-blocking mode of the socket.

Sets the non-blocking mode of the socket.

non_blocking

Open the socket using the specified protocol.open

Move-assign a basic_datagram_socket from another.

Move-assign a basic_datagram_socket from a socket of another
protocol type.

operator=

Receive some data on a connected socket.receive

Receive a datagram with the endpoint of the sender.receive_from

Get the remote endpoint of the socket.remote_endpoint

Send some data on a connected socket.send

Send a datagram to the specified endpoint.send_to

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

984

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_datagram_socket class template provides asynchronous and blocking datagram-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/ip/udp.hpp

Convenience header: boost/asio.hpp

ip::udp::type

Obtain an identifier for the type of the protocol.

int type() const;

ip::udp::v4

Construct to represent the IPv4 UDP protocol.

static udp v4();

ip::udp::v6

Construct to represent the IPv6 UDP protocol.

static udp v6();

ip::unicast::hops
Socket option for time-to-live associated with outgoing unicast packets.

typedef implementation_defined hops;

Implements the IPPROTO_IP/IP_UNICAST_TTL socket option.

Examples

Setting the option:

985

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::unicast::hops option(4);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::ip::unicast::hops option;
socket.get_option(option);
int ttl = option.value();

Requirements

Header: boost/asio/ip/unicast.hpp

Convenience header: boost/asio.hpp

ip::v6_only
Socket option for determining whether an IPv6 socket supports IPv6 communication only.

typedef implementation_defined v6_only;

Implements the IPPROTO_IPV6/IP_V6ONLY socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::v6_only option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::ip::v6_only option;
socket.get_option(option);
bool v6_only = option.value();

Requirements

Header: boost/asio/ip/v6_only.hpp

Convenience header: boost/asio.hpp

is_match_condition
Type trait used to determine whether a type can be used as a match condition function with read_until and async_read_until.

986

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename T>

struct is_match_condition

Data Members

DescriptionName

The value member is true if the type may be used as a match
condition.

value

Requirements

Header: boost/asio/read_until.hpp

Convenience header: boost/asio.hpp

is_match_condition::value

The value member is true if the type may be used as a match condition.

static const bool value;

is_read_buffered
The is_read_buffered class is a traits class that may be used to determine whether a stream type supports buffering of read data.

template<
typename Stream>

class is_read_buffered

Data Members

DescriptionName

The value member is true only if the Stream type supports buf-
fering of read data.

value

Requirements

Header: boost/asio/is_read_buffered.hpp

Convenience header: boost/asio.hpp

is_read_buffered::value

The value member is true only if the Stream type supports buffering of read data.

static const bool value;

987

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

is_write_buffered
The is_write_buffered class is a traits class that may be used to determine whether a stream type supports buffering of written
data.

template<
typename Stream>

class is_write_buffered

Data Members

DescriptionName

The value member is true only if the Stream type supports buf-
fering of written data.

value

Requirements

Header: boost/asio/is_write_buffered.hpp

Convenience header: boost/asio.hpp

is_write_buffered::value

The value member is true only if the Stream type supports buffering of written data.

static const bool value;

local::basic_endpoint
Describes an endpoint for a UNIX socket.

template<
typename Protocol>

class basic_endpoint

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

988

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Default constructor.

Construct an endpoint using the specified path name.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

Get the path associated with the endpoint.

Set the path associated with the endpoint.

path

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare endpoints for ordering.operator<=

Compare two endpoints for equality.operator==

Compare endpoints for ordering.operator>

Compare endpoints for ordering.operator>=

Related Functions

DescriptionName

Output an endpoint as a string.operator<<

The local::basic_endpoint class template describes an endpoint that may be associated with a particular UNIX socket.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

989

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/local/basic_endpoint.hpp

Convenience header: boost/asio.hpp

local::basic_endpoint::basic_endpoint

Default constructor.

basic_endpoint();
» more...

Construct an endpoint using the specified path name.

basic_endpoint(
const char * path_name);

» more...

basic_endpoint(
const std::string & path_name);

» more...

Copy constructor.

basic_endpoint(
const basic_endpoint & other);

» more...

local::basic_endpoint::basic_endpoint (1 of 4 overloads)

Default constructor.

basic_endpoint();

local::basic_endpoint::basic_endpoint (2 of 4 overloads)

Construct an endpoint using the specified path name.

basic_endpoint(
const char * path_name);

local::basic_endpoint::basic_endpoint (3 of 4 overloads)

Construct an endpoint using the specified path name.

basic_endpoint(
const std::string & path_name);

local::basic_endpoint::basic_endpoint (4 of 4 overloads)

Copy constructor.

basic_endpoint(
const basic_endpoint & other);

990

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

local::basic_endpoint::capacity

Get the capacity of the endpoint in the native type.

std::size_t capacity() const;

local::basic_endpoint::data

Get the underlying endpoint in the native type.

data_type * data();
» more...

const data_type * data() const;
» more...

local::basic_endpoint::data (1 of 2 overloads)

Get the underlying endpoint in the native type.

data_type * data();

local::basic_endpoint::data (2 of 2 overloads)

Get the underlying endpoint in the native type.

const data_type * data() const;

local::basic_endpoint::data_type

The type of the endpoint structure. This type is dependent on the underlying implementation of the socket layer.

typedef implementation_defined data_type;

Requirements

Header: boost/asio/local/basic_endpoint.hpp

Convenience header: boost/asio.hpp

local::basic_endpoint::operator!=

Compare two endpoints for inequality.

friend bool operator!=(
const basic_endpoint< Protocol > & e1,
const basic_endpoint< Protocol > & e2);

Requirements

Header: boost/asio/local/basic_endpoint.hpp

Convenience header: boost/asio.hpp

991

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

local::basic_endpoint::operator<

Compare endpoints for ordering.

friend bool operator<(
const basic_endpoint< Protocol > & e1,
const basic_endpoint< Protocol > & e2);

Requirements

Header: boost/asio/local/basic_endpoint.hpp

Convenience header: boost/asio.hpp

local::basic_endpoint::operator<<

Output an endpoint as a string.

std::basic_ostream< Elem, Traits > & operator<<(
std::basic_ostream< Elem, Traits > & os,
const basic_endpoint< Protocol > & endpoint);

Used to output a human-readable string for a specified endpoint.

Parameters

os The output stream to which the string will be written.

endpoint The endpoint to be written.

Return Value

The output stream.

local::basic_endpoint::operator<=

Compare endpoints for ordering.

friend bool operator<=(
const basic_endpoint< Protocol > & e1,
const basic_endpoint< Protocol > & e2);

Requirements

Header: boost/asio/local/basic_endpoint.hpp

Convenience header: boost/asio.hpp

local::basic_endpoint::operator=

Assign from another endpoint.

basic_endpoint & operator=(
const basic_endpoint & other);

992

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

local::basic_endpoint::operator==

Compare two endpoints for equality.

friend bool operator==(
const basic_endpoint< Protocol > & e1,
const basic_endpoint< Protocol > & e2);

Requirements

Header: boost/asio/local/basic_endpoint.hpp

Convenience header: boost/asio.hpp

local::basic_endpoint::operator>

Compare endpoints for ordering.

friend bool operator>(
const basic_endpoint< Protocol > & e1,
const basic_endpoint< Protocol > & e2);

Requirements

Header: boost/asio/local/basic_endpoint.hpp

Convenience header: boost/asio.hpp

local::basic_endpoint::operator>=

Compare endpoints for ordering.

friend bool operator>=(
const basic_endpoint< Protocol > & e1,
const basic_endpoint< Protocol > & e2);

Requirements

Header: boost/asio/local/basic_endpoint.hpp

Convenience header: boost/asio.hpp

local::basic_endpoint::path

Get the path associated with the endpoint.

std::string path() const;
» more...

Set the path associated with the endpoint.

993

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void path(
const char * p);

» more...

void path(
const std::string & p);

» more...

local::basic_endpoint::path (1 of 3 overloads)

Get the path associated with the endpoint.

std::string path() const;

local::basic_endpoint::path (2 of 3 overloads)

Set the path associated with the endpoint.

void path(
const char * p);

local::basic_endpoint::path (3 of 3 overloads)

Set the path associated with the endpoint.

void path(
const std::string & p);

local::basic_endpoint::protocol

The protocol associated with the endpoint.

protocol_type protocol() const;

local::basic_endpoint::protocol_type

The protocol type associated with the endpoint.

typedef Protocol protocol_type;

Requirements

Header: boost/asio/local/basic_endpoint.hpp

Convenience header: boost/asio.hpp

local::basic_endpoint::resize

Set the underlying size of the endpoint in the native type.

void resize(
std::size_t new_size);

994

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

local::basic_endpoint::size

Get the underlying size of the endpoint in the native type.

std::size_t size() const;

local::connect_pair
Create a pair of connected sockets.

template<
typename Protocol,
typename SocketService1,
typename SocketService2>

void connect_pair(
basic_socket< Protocol, SocketService1 > & socket1,
basic_socket< Protocol, SocketService2 > & socket2);

» more...

template<
typename Protocol,
typename SocketService1,
typename SocketService2>

boost::system::error_code connect_pair(
basic_socket< Protocol, SocketService1 > & socket1,
basic_socket< Protocol, SocketService2 > & socket2,
boost::system::error_code & ec);

» more...

Requirements

Header: boost/asio/local/connect_pair.hpp

Convenience header: boost/asio.hpp

local::connect_pair (1 of 2 overloads)

Create a pair of connected sockets.

template<
typename Protocol,
typename SocketService1,
typename SocketService2>

void connect_pair(
basic_socket< Protocol, SocketService1 > & socket1,
basic_socket< Protocol, SocketService2 > & socket2);

local::connect_pair (2 of 2 overloads)

Create a pair of connected sockets.

995

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Protocol,
typename SocketService1,
typename SocketService2>

boost::system::error_code connect_pair(
basic_socket< Protocol, SocketService1 > & socket1,
basic_socket< Protocol, SocketService2 > & socket2,
boost::system::error_code & ec);

local::datagram_protocol
Encapsulates the flags needed for datagram-oriented UNIX sockets.

class datagram_protocol

Types

DescriptionName

The type of a UNIX domain endpoint.endpoint

The UNIX domain socket type.socket

Member Functions

DescriptionName

Obtain an identifier for the protocol family.family

Obtain an identifier for the protocol.protocol

Obtain an identifier for the type of the protocol.type

The local::datagram_protocol class contains flags necessary for datagram-oriented UNIX domain sockets.

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

Requirements

Header: boost/asio/local/datagram_protocol.hpp

Convenience header: boost/asio.hpp

local::datagram_protocol::endpoint

The type of a UNIX domain endpoint.

typedef basic_endpoint< datagram_protocol > endpoint;

996

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

Member Functions

DescriptionName

Default constructor.

Construct an endpoint using the specified path name.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

Get the path associated with the endpoint.

Set the path associated with the endpoint.

path

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare endpoints for ordering.operator<=

Compare two endpoints for equality.operator==

Compare endpoints for ordering.operator>

Compare endpoints for ordering.operator>=

Related Functions

DescriptionName

Output an endpoint as a string.operator<<

997

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The local::basic_endpoint class template describes an endpoint that may be associated with a particular UNIX socket.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/local/datagram_protocol.hpp

Convenience header: boost/asio.hpp

local::datagram_protocol::family

Obtain an identifier for the protocol family.

int family() const;

local::datagram_protocol::protocol

Obtain an identifier for the protocol.

int protocol() const;

local::datagram_protocol::socket

The UNIX domain socket type.

typedef basic_datagram_socket< datagram_protocol > socket;

998

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

999

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

1000

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive on a connected socket.async_receive

Start an asynchronous receive.async_receive_from

Start an asynchronous send on a connected socket.async_send

Start an asynchronous send.async_send_to

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_datagram_socket without opening it.basic_datagram_socket

Construct and open a basic_datagram_socket.

Construct a basic_datagram_socket, opening it and binding it
to the given local endpoint.

Construct a basic_datagram_socket on an existing native socket.

Move-construct a basic_datagram_socket from another.

Move-construct a basic_datagram_socket from a socket of an-
other protocol type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

1001

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Gets the non-blocking mode of the native socket implementation.

Sets the non-blocking mode of the native socket implementation.

native_non_blocking

Gets the non-blocking mode of the socket.

Sets the non-blocking mode of the socket.

non_blocking

Open the socket using the specified protocol.open

Move-assign a basic_datagram_socket from another.

Move-assign a basic_datagram_socket from a socket of another
protocol type.

operator=

Receive some data on a connected socket.receive

Receive a datagram with the endpoint of the sender.receive_from

Get the remote endpoint of the socket.remote_endpoint

Send some data on a connected socket.send

Send a datagram to the specified endpoint.send_to

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

1002

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_datagram_socket class template provides asynchronous and blocking datagram-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/local/datagram_protocol.hpp

Convenience header: boost/asio.hpp

local::datagram_protocol::type

Obtain an identifier for the type of the protocol.

int type() const;

local::stream_protocol
Encapsulates the flags needed for stream-oriented UNIX sockets.

class stream_protocol

Types

DescriptionName

The UNIX domain acceptor type.acceptor

The type of a UNIX domain endpoint.endpoint

The UNIX domain iostream type.iostream

The UNIX domain socket type.socket

1003

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Obtain an identifier for the protocol family.family

Obtain an identifier for the protocol.protocol

Obtain an identifier for the type of the protocol.type

The local::stream_protocol class contains flags necessary for stream-oriented UNIX domain sockets.

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

Requirements

Header: boost/asio/local/stream_protocol.hpp

Convenience header: boost/asio.hpp

local::stream_protocol::acceptor

The UNIX domain acceptor type.

typedef basic_socket_acceptor< stream_protocol > acceptor;

1004

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of an acceptor.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of an acceptor.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

1005

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

1006

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Accept a new connection.accept

Accept a new connection and obtain the endpoint of the peer.

Assigns an existing native acceptor to the acceptor.assign

Start an asynchronous accept.async_accept

Construct an acceptor without opening it.basic_socket_acceptor

Construct an open acceptor.

Construct an acceptor opened on the given endpoint.

Construct a basic_socket_acceptor on an existing native acceptor.

Move-construct a basic_socket_acceptor from another.

Move-construct a basic_socket_acceptor from an acceptor of
another protocol type.

Bind the acceptor to the given local endpoint.bind

Cancel all asynchronous operations associated with the acceptor.cancel

Close the acceptor.close

Get the io_service associated with the object.get_io_service

Get an option from the acceptor.get_option

Perform an IO control command on the acceptor.io_control

Determine whether the acceptor is open.is_open

Place the acceptor into the state where it will listen for new
connections.

listen

Get the local endpoint of the acceptor.local_endpoint

(Deprecated: Use native_handle().) Get the native acceptor
representation.

native

Get the native acceptor representation.native_handle

Gets the non-blocking mode of the native acceptor implementa-
tion.

native_non_blocking

Sets the non-blocking mode of the native acceptor implementa-
tion.

Gets the non-blocking mode of the acceptor.non_blocking

Sets the non-blocking mode of the acceptor.

Open the acceptor using the specified protocol.open

1007

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Move-assign a basic_socket_acceptor from another.

Move-assign a basic_socket_acceptor from an acceptor of an-
other protocol type.

operator=

Set an option on the acceptor.set_option

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_socket_acceptor class template is used for accepting new socket connections.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Example

Opening a socket acceptor with the SO_REUSEADDR option enabled:

1008

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::acceptor acceptor(io_service);
boost::asio::ip::tcp::endpoint endpoint(boost::asio::ip::tcp::v4(), port);
acceptor.open(endpoint.protocol());
acceptor.set_option(boost::asio::ip::tcp::acceptor::reuse_address(true));
acceptor.bind(endpoint);
acceptor.listen();

Requirements

Header: boost/asio/local/stream_protocol.hpp

Convenience header: boost/asio.hpp

local::stream_protocol::endpoint

The type of a UNIX domain endpoint.

typedef basic_endpoint< stream_protocol > endpoint;

Types

DescriptionName

The type of the endpoint structure. This type is dependent on
the underlying implementation of the socket layer.

data_type

The protocol type associated with the endpoint.protocol_type

Member Functions

DescriptionName

Default constructor.

Construct an endpoint using the specified path name.

Copy constructor.

basic_endpoint

Get the capacity of the endpoint in the native type.capacity

Get the underlying endpoint in the native type.data

Assign from another endpoint.operator=

Get the path associated with the endpoint.

Set the path associated with the endpoint.

path

The protocol associated with the endpoint.protocol

Set the underlying size of the endpoint in the native type.resize

Get the underlying size of the endpoint in the native type.size

1009

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Friends

DescriptionName

Compare two endpoints for inequality.operator!=

Compare endpoints for ordering.operator<

Compare endpoints for ordering.operator<=

Compare two endpoints for equality.operator==

Compare endpoints for ordering.operator>

Compare endpoints for ordering.operator>=

Related Functions

DescriptionName

Output an endpoint as a string.operator<<

The local::basic_endpoint class template describes an endpoint that may be associated with a particular UNIX socket.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/local/stream_protocol.hpp

Convenience header: boost/asio.hpp

local::stream_protocol::family

Obtain an identifier for the protocol family.

int family() const;

local::stream_protocol::iostream

The UNIX domain iostream type.

typedef basic_socket_iostream< stream_protocol > iostream;

1010

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The duration type.duration_type

The endpoint type.endpoint_type

The time type.time_type

Member Functions

DescriptionName

Construct a basic_socket_iostream without establishing a con-
nection.

Establish a connection to an endpoint corresponding to a resolver
query.

basic_socket_iostream

Close the connection.close

Establish a connection to an endpoint corresponding to a resolver
query.

connect

Get the last error associated with the stream.error

Get the stream's expiry time as an absolute time.

Set the stream's expiry time as an absolute time.

expires_at

Get the timer's expiry time relative to now.

Set the stream's expiry time relative to now.

expires_from_now

Return a pointer to the underlying streambuf.rdbuf

Requirements

Header: boost/asio/local/stream_protocol.hpp

Convenience header: boost/asio.hpp

local::stream_protocol::protocol

Obtain an identifier for the protocol.

int protocol() const;

local::stream_protocol::socket

The UNIX domain socket type.

typedef basic_stream_socket< stream_protocol > socket;

1011

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

The endpoint type.endpoint_type

The underlying implementation type of I/O object.implementation_type

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

A basic_socket is always the lowest layer.lowest_layer_type

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

The native representation of a socket.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a socket.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

The protocol type.protocol_type

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

The type of the service that will be used to provide I/O opera-
tions.

service_type

Different ways a socket may be shutdown.shutdown_type

1012

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

1013

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to the socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous read.async_read_some

Start an asynchronous receive.async_receive

Start an asynchronous send.async_send

Start an asynchronous write.async_write_some

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Construct a basic_stream_socket without opening it.basic_stream_socket

Construct and open a basic_stream_socket.

Construct a basic_stream_socket, opening it and binding it to
the given local endpoint.

Construct a basic_stream_socket on an existing native socket.

Move-construct a basic_stream_socket from another.

Move-construct a basic_stream_socket from a socket of another
protocol type.

Bind the socket to the given local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close the socket.close

Connect the socket to the specified endpoint.connect

Get the io_service associated with the object.get_io_service

Get an option from the socket.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint of the socket.local_endpoint

Get a reference to the lowest layer.lowest_layer

Get a const reference to the lowest layer.

(Deprecated: Use native_handle().) Get the native socket repres-
entation.

native

Get the native socket representation.native_handle

1014

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Gets the non-blocking mode of the native socket implementation.

Sets the non-blocking mode of the native socket implementation.

native_non_blocking

Gets the non-blocking mode of the socket.

Sets the non-blocking mode of the socket.

non_blocking

Open the socket using the specified protocol.open

Move-assign a basic_stream_socket from another.

Move-assign a basic_stream_socket from a socket of another
protocol type.

operator=

Read some data from the socket.read_some

Receive some data on the socket.

Receive some data on a connected socket.

receive

Get the remote endpoint of the socket.remote_endpoint

Send some data on the socket.send

Set an option on the socket.set_option

Disable sends or receives on the socket.shutdown

Write some data to the socket.write_some

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

1015

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_stream_socket class template provides asynchronous and blocking stream-oriented socket functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/local/stream_protocol.hpp

Convenience header: boost/asio.hpp

local::stream_protocol::type

Obtain an identifier for the type of the protocol.

int type() const;

mutable_buffer
Holds a buffer that can be modified.

class mutable_buffer

Member Functions

DescriptionName

Construct an empty buffer.

Construct a buffer to represent a given memory range.

mutable_buffer

Related Functions

DescriptionName

Create a new modifiable buffer that is offset from the start of
another.

operator+

The mutable_buffer class provides a safe representation of a buffer that can be modified. It does not own the underlying data,
and so is cheap to copy or assign.

1016

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Accessing Buffer Contents

The contents of a buffer may be accessed using the buffer_size and buffer_cast functions:

boost::asio::mutable_buffer b1 = ...;
std::size_t s1 = boost::asio::buffer_size(b1);
unsigned char* p1 = boost::asio::buffer_cast<unsigned char*>(b1);

The boost::asio::buffer_cast function permits violations of type safety, so uses of it in application code should be carefully
considered.

Requirements

Header: boost/asio/buffer.hpp

Convenience header: boost/asio.hpp

mutable_buffer::mutable_buffer

Construct an empty buffer.

mutable_buffer();
» more...

Construct a buffer to represent a given memory range.

mutable_buffer(
void * data,
std::size_t size);

» more...

mutable_buffer::mutable_buffer (1 of 2 overloads)

Construct an empty buffer.

mutable_buffer();

mutable_buffer::mutable_buffer (2 of 2 overloads)

Construct a buffer to represent a given memory range.

mutable_buffer(
void * data,
std::size_t size);

mutable_buffer::operator+

Create a new modifiable buffer that is offset from the start of another.

1017

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

mutable_buffer operator+(
const mutable_buffer & b,
std::size_t start);

» more...

mutable_buffer operator+(
std::size_t start,
const mutable_buffer & b);

» more...

mutable_buffer::operator+ (1 of 2 overloads)

Create a new modifiable buffer that is offset from the start of another.

mutable_buffer operator+(
const mutable_buffer & b,
std::size_t start);

mutable_buffer::operator+ (2 of 2 overloads)

Create a new modifiable buffer that is offset from the start of another.

mutable_buffer operator+(
std::size_t start,
const mutable_buffer & b);

mutable_buffers_1
Adapts a single modifiable buffer so that it meets the requirements of the MutableBufferSequence concept.

class mutable_buffers_1 :
public mutable_buffer

Types

DescriptionName

A random-access iterator type that may be used to read elements.const_iterator

The type for each element in the list of buffers.value_type

Member Functions

DescriptionName

Get a random-access iterator to the first element.begin

Get a random-access iterator for one past the last element.end

Construct to represent a given memory range.

Construct to represent a single modifiable buffer.

mutable_buffers_1

1018

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Related Functions

DescriptionName

Create a new modifiable buffer that is offset from the start of
another.

operator+

Requirements

Header: boost/asio/buffer.hpp

Convenience header: boost/asio.hpp

mutable_buffers_1::begin

Get a random-access iterator to the first element.

const_iterator begin() const;

mutable_buffers_1::const_iterator

A random-access iterator type that may be used to read elements.

typedef const mutable_buffer * const_iterator;

Requirements

Header: boost/asio/buffer.hpp

Convenience header: boost/asio.hpp

mutable_buffers_1::end

Get a random-access iterator for one past the last element.

const_iterator end() const;

mutable_buffers_1::mutable_buffers_1

Construct to represent a given memory range.

mutable_buffers_1(
void * data,
std::size_t size);

» more...

Construct to represent a single modifiable buffer.

explicit mutable_buffers_1(
const mutable_buffer & b);

» more...

1019

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

mutable_buffers_1::mutable_buffers_1 (1 of 2 overloads)

Construct to represent a given memory range.

mutable_buffers_1(
void * data,
std::size_t size);

mutable_buffers_1::mutable_buffers_1 (2 of 2 overloads)

Construct to represent a single modifiable buffer.

mutable_buffers_1(
const mutable_buffer & b);

mutable_buffers_1::operator+

Create a new modifiable buffer that is offset from the start of another.

mutable_buffer operator+(
const mutable_buffer & b,
std::size_t start);

» more...

mutable_buffer operator+(
std::size_t start,
const mutable_buffer & b);

» more...

mutable_buffers_1::operator+ (1 of 2 overloads)

Inherited from mutable_buffer.

Create a new modifiable buffer that is offset from the start of another.

mutable_buffer operator+(
const mutable_buffer & b,
std::size_t start);

mutable_buffers_1::operator+ (2 of 2 overloads)

Inherited from mutable_buffer.

Create a new modifiable buffer that is offset from the start of another.

mutable_buffer operator+(
std::size_t start,
const mutable_buffer & b);

mutable_buffers_1::value_type

The type for each element in the list of buffers.

typedef mutable_buffer value_type;

1020

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Construct an empty buffer.

Construct a buffer to represent a given memory range.

mutable_buffer

Related Functions

DescriptionName

Create a new modifiable buffer that is offset from the start of
another.

operator+

The mutable_buffer class provides a safe representation of a buffer that can be modified. It does not own the underlying data,
and so is cheap to copy or assign.

Accessing Buffer Contents

The contents of a buffer may be accessed using the buffer_size and buffer_cast functions:

boost::asio::mutable_buffer b1 = ...;
std::size_t s1 = boost::asio::buffer_size(b1);
unsigned char* p1 = boost::asio::buffer_cast<unsigned char*>(b1);

The boost::asio::buffer_cast function permits violations of type safety, so uses of it in application code should be carefully
considered.

Requirements

Header: boost/asio/buffer.hpp

Convenience header: boost/asio.hpp

null_buffers
An implementation of both the ConstBufferSequence and MutableBufferSequence concepts to represent a null buffer sequence.

class null_buffers

Types

DescriptionName

A random-access iterator type that may be used to read elements.const_iterator

The type for each element in the list of buffers.value_type

1021

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Get a random-access iterator to the first element.begin

Get a random-access iterator for one past the last element.end

Requirements

Header: boost/asio/buffer.hpp

Convenience header: boost/asio.hpp

null_buffers::begin

Get a random-access iterator to the first element.

const_iterator begin() const;

null_buffers::const_iterator

A random-access iterator type that may be used to read elements.

typedef const mutable_buffer * const_iterator;

Requirements

Header: boost/asio/buffer.hpp

Convenience header: boost/asio.hpp

null_buffers::end

Get a random-access iterator for one past the last element.

const_iterator end() const;

null_buffers::value_type

The type for each element in the list of buffers.

typedef mutable_buffer value_type;

Member Functions

DescriptionName

Construct an empty buffer.

Construct a buffer to represent a given memory range.

mutable_buffer

1022

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Related Functions

DescriptionName

Create a new modifiable buffer that is offset from the start of
another.

operator+

The mutable_buffer class provides a safe representation of a buffer that can be modified. It does not own the underlying data,
and so is cheap to copy or assign.

Accessing Buffer Contents

The contents of a buffer may be accessed using the buffer_size and buffer_cast functions:

boost::asio::mutable_buffer b1 = ...;
std::size_t s1 = boost::asio::buffer_size(b1);
unsigned char* p1 = boost::asio::buffer_cast<unsigned char*>(b1);

The boost::asio::buffer_cast function permits violations of type safety, so uses of it in application code should be carefully
considered.

Requirements

Header: boost/asio/buffer.hpp

Convenience header: boost/asio.hpp

placeholders::bytes_transferred
An argument placeholder, for use with boost::bind(), that corresponds to the bytes_transferred argument of a handler for asynchronous
functions such as boost::asio::basic_stream_socket::async_write_some or boost::asio::async_write.

unspecified bytes_transferred;

Requirements

Header: boost/asio/placeholders.hpp

Convenience header: boost/asio.hpp

placeholders::error
An argument placeholder, for use with boost::bind(), that corresponds to the error argument of a handler for any of the asynchronous
functions.

unspecified error;

Requirements

Header: boost/asio/placeholders.hpp

Convenience header: boost/asio.hpp

1023

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

placeholders::iterator
An argument placeholder, for use with boost::bind(), that corresponds to the iterator argument of a handler for asynchronous functions
such as boost::asio::basic_resolver::async_resolve.

unspecified iterator;

Requirements

Header: boost/asio/placeholders.hpp

Convenience header: boost/asio.hpp

placeholders::signal_number
An argument placeholder, for use with boost::bind(), that corresponds to the signal_number argument of a handler for asynchronous
functions such as boost::asio::signal_set::async_wait.

unspecified signal_number;

Requirements

Header: boost/asio/placeholders.hpp

Convenience header: boost/asio.hpp

posix::basic_descriptor
Provides POSIX descriptor functionality.

template<
typename DescriptorService>

class basic_descriptor :
public basic_io_object< DescriptorService >,
public posix::descriptor_base

1024

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

The underlying implementation type of I/O object.implementation_type

A basic_descriptor is always the lowest layer.lowest_layer_type

The native representation of a descriptor.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a descriptor.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the descriptor.

non_blocking_io

The type of the service that will be used to provide I/O opera-
tions.

service_type

1025

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native descriptor to the descriptor.assign

Construct a basic_descriptor without opening it.

Construct a basic_descriptor on an existing native descriptor.

Move-construct a basic_descriptor from another.

basic_descriptor

Cancel all asynchronous operations associated with the
descriptor.

cancel

Close the descriptor.close

Get the io_service associated with the object.get_io_service

Perform an IO control command on the descriptor.io_control

Determine whether the descriptor is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native descriptor
representation.

native

Get the native descriptor representation.native_handle

Gets the non-blocking mode of the native descriptor implement-
ation.

Sets the non-blocking mode of the native descriptor implement-
ation.

native_non_blocking

Gets the non-blocking mode of the descriptor.

Sets the non-blocking mode of the descriptor.

non_blocking

Move-assign a basic_descriptor from another.operator=

Release ownership of the native descriptor implementation.release

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected destructor to prevent deletion through this type.~basic_descriptor

1026

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The posix::basic_descriptor class template provides the ability to wrap a POSIX descriptor.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/posix/basic_descriptor.hpp

Convenience header: boost/asio.hpp

posix::basic_descriptor::assign

Assign an existing native descriptor to the descriptor.

void assign(
const native_handle_type & native_descriptor);

» more...

boost::system::error_code assign(
const native_handle_type & native_descriptor,
boost::system::error_code & ec);

» more...

posix::basic_descriptor::assign (1 of 2 overloads)

Assign an existing native descriptor to the descriptor.

void assign(
const native_handle_type & native_descriptor);

posix::basic_descriptor::assign (2 of 2 overloads)

Assign an existing native descriptor to the descriptor.

boost::system::error_code assign(
const native_handle_type & native_descriptor,
boost::system::error_code & ec);

posix::basic_descriptor::basic_descriptor

Construct a posix::basic_descriptor without opening it.

1027

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

explicit basic_descriptor(
boost::asio::io_service & io_service);

» more...

Construct a posix::basic_descriptor on an existing native descriptor.

basic_descriptor(
boost::asio::io_service & io_service,
const native_handle_type & native_descriptor);

» more...

Move-construct a posix::basic_descriptor from another.

basic_descriptor(
basic_descriptor && other);

» more...

posix::basic_descriptor::basic_descriptor (1 of 3 overloads)

Construct a posix::basic_descriptor without opening it.

basic_descriptor(
boost::asio::io_service & io_service);

This constructor creates a descriptor without opening it.

Parameters

io_service The io_service object that the descriptor will use to dispatch handlers for any asynchronous operations performed
on the descriptor.

posix::basic_descriptor::basic_descriptor (2 of 3 overloads)

Construct a posix::basic_descriptor on an existing native descriptor.

basic_descriptor(
boost::asio::io_service & io_service,
const native_handle_type & native_descriptor);

This constructor creates a descriptor object to hold an existing native descriptor.

Parameters

io_service The io_service object that the descriptor will use to dispatch handlers for any asynchronous operations
performed on the descriptor.

native_descriptor A native descriptor.

Exceptions

boost::system::system_error Thrown on failure.

posix::basic_descriptor::basic_descriptor (3 of 3 overloads)

Move-construct a posix::basic_descriptor from another.

1028

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_descriptor(
basic_descriptor && other);

This constructor moves a descriptor from one object to another.

Parameters

other The other posix::basic_descriptor object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_descriptor(io_service&)
constructor.

posix::basic_descriptor::bytes_readable

Inherited from posix::descriptor_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

Example

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::descriptor_base::bytes_readable command(true);
descriptor.io_control(command);
std::size_t bytes_readable = command.get();

Requirements

Header: boost/asio/posix/basic_descriptor.hpp

Convenience header: boost/asio.hpp

posix::basic_descriptor::cancel

Cancel all asynchronous operations associated with the descriptor.

void cancel();
» more...

boost::system::error_code cancel(
boost::system::error_code & ec);

» more...

posix::basic_descriptor::cancel (1 of 2 overloads)

Cancel all asynchronous operations associated with the descriptor.

void cancel();

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

1029

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

posix::basic_descriptor::cancel (2 of 2 overloads)

Cancel all asynchronous operations associated with the descriptor.

boost::system::error_code cancel(
boost::system::error_code & ec);

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

posix::basic_descriptor::close

Close the descriptor.

void close();
» more...

boost::system::error_code close(
boost::system::error_code & ec);

» more...

posix::basic_descriptor::close (1 of 2 overloads)

Close the descriptor.

void close();

This function is used to close the descriptor. Any asynchronous read or write operations will be cancelled immediately, and will
complete with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure. Note that, even if the function indicates an error, the underlying descriptor
is closed.

posix::basic_descriptor::close (2 of 2 overloads)

Close the descriptor.

boost::system::error_code close(
boost::system::error_code & ec);

This function is used to close the descriptor. Any asynchronous read or write operations will be cancelled immediately, and will
complete with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any. Note that, even if the function indicates an error, the underlying descriptor is closed.

1030

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_descriptor::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

posix::basic_descriptor::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

posix::basic_descriptor::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

posix::basic_descriptor::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

posix::basic_descriptor::get_service

Get the service associated with the I/O object.

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

posix::basic_descriptor::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

1031

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

service_type & get_service();

posix::basic_descriptor::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

posix::basic_descriptor::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

posix::basic_descriptor::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/posix/basic_descriptor.hpp

Convenience header: boost/asio.hpp

posix::basic_descriptor::io_control

Perform an IO control command on the descriptor.

template<
typename IoControlCommand>

void io_control(
IoControlCommand & command);

» more...

template<
typename IoControlCommand>

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

» more...

posix::basic_descriptor::io_control (1 of 2 overloads)

Perform an IO control command on the descriptor.

1032

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename IoControlCommand>

void io_control(
IoControlCommand & command);

This function is used to execute an IO control command on the descriptor.

Parameters

command The IO control command to be performed on the descriptor.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the number of bytes ready to read:

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::posix::stream_descriptor::bytes_readable command;
descriptor.io_control(command);
std::size_t bytes_readable = command.get();

posix::basic_descriptor::io_control (2 of 2 overloads)

Perform an IO control command on the descriptor.

template<
typename IoControlCommand>

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

This function is used to execute an IO control command on the descriptor.

Parameters

command The IO control command to be performed on the descriptor.

ec Set to indicate what error occurred, if any.

Example

Getting the number of bytes ready to read:

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::posix::stream_descriptor::bytes_readable command;
boost::system::error_code ec;
descriptor.io_control(command, ec);
if (ec)
{
// An error occurred.

}
std::size_t bytes_readable = command.get();

1033

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_descriptor::is_open

Determine whether the descriptor is open.

bool is_open() const;

posix::basic_descriptor::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();
» more...

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;
» more...

posix::basic_descriptor::lowest_layer (1 of 2 overloads)

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a posix::basic_descriptor cannot contain any
further layers, it simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

posix::basic_descriptor::lowest_layer (2 of 2 overloads)

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a posix::basic_descriptor cannot contain
any further layers, it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

posix::basic_descriptor::lowest_layer_type

A posix::basic_descriptor is always the lowest layer.

typedef basic_descriptor< DescriptorService > lowest_layer_type;

1034

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

The underlying implementation type of I/O object.implementation_type

A basic_descriptor is always the lowest layer.lowest_layer_type

The native representation of a descriptor.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a descriptor.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the descriptor.

non_blocking_io

The type of the service that will be used to provide I/O opera-
tions.

service_type

1035

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native descriptor to the descriptor.assign

Construct a basic_descriptor without opening it.

Construct a basic_descriptor on an existing native descriptor.

Move-construct a basic_descriptor from another.

basic_descriptor

Cancel all asynchronous operations associated with the
descriptor.

cancel

Close the descriptor.close

Get the io_service associated with the object.get_io_service

Perform an IO control command on the descriptor.io_control

Determine whether the descriptor is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native descriptor
representation.

native

Get the native descriptor representation.native_handle

Gets the non-blocking mode of the native descriptor implement-
ation.

Sets the non-blocking mode of the native descriptor implement-
ation.

native_non_blocking

Gets the non-blocking mode of the descriptor.

Sets the non-blocking mode of the descriptor.

non_blocking

Move-assign a basic_descriptor from another.operator=

Release ownership of the native descriptor implementation.release

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected destructor to prevent deletion through this type.~basic_descriptor

1036

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The posix::basic_descriptor class template provides the ability to wrap a POSIX descriptor.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/posix/basic_descriptor.hpp

Convenience header: boost/asio.hpp

posix::basic_descriptor::native

(Deprecated: Use native_handle().) Get the native descriptor representation.

native_type native();

This function may be used to obtain the underlying representation of the descriptor. This is intended to allow access to native descriptor
functionality that is not otherwise provided.

posix::basic_descriptor::native_handle

Get the native descriptor representation.

native_handle_type native_handle();

This function may be used to obtain the underlying representation of the descriptor. This is intended to allow access to native descriptor
functionality that is not otherwise provided.

posix::basic_descriptor::native_handle_type

The native representation of a descriptor.

typedef DescriptorService::native_handle_type native_handle_type;

Requirements

Header: boost/asio/posix/basic_descriptor.hpp

Convenience header: boost/asio.hpp

1037

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_descriptor::native_non_blocking

Gets the non-blocking mode of the native descriptor implementation.

bool native_non_blocking() const;
» more...

Sets the non-blocking mode of the native descriptor implementation.

void native_non_blocking(
bool mode);

» more...

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

posix::basic_descriptor::native_non_blocking (1 of 3 overloads)

Gets the non-blocking mode of the native descriptor implementation.

bool native_non_blocking() const;

This function is used to retrieve the non-blocking mode of the underlying native descriptor. This mode has no effect on the behaviour
of the descriptor object's synchronous operations.

Return Value

true if the underlying descriptor is in non-blocking mode and direct system calls may fail with boost::asio::er-
ror::would_block (or the equivalent system error).

Remarks

The current non-blocking mode is cached by the descriptor object. Consequently, the return value may be incorrect if the non-
blocking mode was set directly on the native descriptor.

posix::basic_descriptor::native_non_blocking (2 of 3 overloads)

Sets the non-blocking mode of the native descriptor implementation.

void native_non_blocking(
bool mode);

This function is used to modify the non-blocking mode of the underlying native descriptor. It has no effect on the behaviour of the
descriptor object's synchronous operations.

Parameters

mode If true, the underlying descriptor is put into non-blocking mode and direct system calls may fail with
boost::asio::error::would_block (or the equivalent system error).

Exceptions

boost::system::system_error Thrown on failure. If the mode is false, but the current value of non_blocking() is true,
this function fails with boost::asio::error::invalid_argument, as the combination
does not make sense.

1038

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_descriptor::native_non_blocking (3 of 3 overloads)

Sets the non-blocking mode of the native descriptor implementation.

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

This function is used to modify the non-blocking mode of the underlying native descriptor. It has no effect on the behaviour of the
descriptor object's synchronous operations.

Parameters

mode If true, the underlying descriptor is put into non-blocking mode and direct system calls may fail with
boost::asio::error::would_block (or the equivalent system error).

ec Set to indicate what error occurred, if any. If the mode is false, but the current value of non_blocking() is true, this
function fails with boost::asio::error::invalid_argument, as the combination does not make sense.

posix::basic_descriptor::native_type

(Deprecated: Use native_handle_type.) The native representation of a descriptor.

typedef DescriptorService::native_handle_type native_type;

Requirements

Header: boost/asio/posix/basic_descriptor.hpp

Convenience header: boost/asio.hpp

posix::basic_descriptor::non_blocking

Gets the non-blocking mode of the descriptor.

bool non_blocking() const;
» more...

Sets the non-blocking mode of the descriptor.

void non_blocking(
bool mode);

» more...

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

posix::basic_descriptor::non_blocking (1 of 3 overloads)

Gets the non-blocking mode of the descriptor.

bool non_blocking() const;

1039

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

true if the descriptor's synchronous operations will fail with boost::asio::error::would_block if they are unable to perform
the requested operation immediately. If false, synchronous operations will block until complete.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

posix::basic_descriptor::non_blocking (2 of 3 overloads)

Sets the non-blocking mode of the descriptor.

void non_blocking(
bool mode);

Parameters

mode If true, the descriptor's synchronous operations will fail with boost::asio::error::would_block if they are unable
to perform the requested operation immediately. If false, synchronous operations will block until complete.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

posix::basic_descriptor::non_blocking (3 of 3 overloads)

Sets the non-blocking mode of the descriptor.

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

Parameters

mode If true, the descriptor's synchronous operations will fail with boost::asio::error::would_block if they are unable
to perform the requested operation immediately. If false, synchronous operations will block until complete.

ec Set to indicate what error occurred, if any.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

posix::basic_descriptor::non_blocking_io

Inherited from posix::descriptor_base.

(Deprecated: Use non_blocking().) IO control command to set the blocking mode of the descriptor.

typedef implementation_defined non_blocking_io;

1040

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Implements the FIONBIO IO control command.

Example

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::descriptor_base::non_blocking_io command(true);
descriptor.io_control(command);

Requirements

Header: boost/asio/posix/basic_descriptor.hpp

Convenience header: boost/asio.hpp

posix::basic_descriptor::operator=

Move-assign a posix::basic_descriptor from another.

basic_descriptor & operator=(
basic_descriptor && other);

This assignment operator moves a descriptor from one object to another.

Parameters

other The other posix::basic_descriptor object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_descriptor(io_service&)
constructor.

posix::basic_descriptor::release

Release ownership of the native descriptor implementation.

native_handle_type release();

This function may be used to obtain the underlying representation of the descriptor. After calling this function, is_open() returns
false. The caller is responsible for closing the descriptor.

All outstanding asynchronous read or write operations will finish immediately, and the handlers for cancelled operations will be
passed the boost::asio::error::operation_aborted error.

posix::basic_descriptor::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

Remarks

Available only for services that do not support movability.

1041

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_descriptor::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef DescriptorService service_type;

Requirements

Header: boost/asio/posix/basic_descriptor.hpp

Convenience header: boost/asio.hpp

posix::basic_descriptor::~basic_descriptor

Protected destructor to prevent deletion through this type.

~basic_descriptor();

posix::basic_stream_descriptor
Provides stream-oriented descriptor functionality.

template<
typename StreamDescriptorService = stream_descriptor_service>

class basic_stream_descriptor :
public posix::basic_descriptor< StreamDescriptorService >

Types

DescriptionName

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

The underlying implementation type of I/O object.implementation_type

A basic_descriptor is always the lowest layer.lowest_layer_type

The native representation of a descriptor.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a descriptor.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the descriptor.

non_blocking_io

The type of the service that will be used to provide I/O opera-
tions.

service_type

1042

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native descriptor to the descriptor.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Construct a basic_stream_descriptor without opening it.

Construct a basic_stream_descriptor on an existing native
descriptor.

Move-construct a basic_stream_descriptor from another.

basic_stream_descriptor

Cancel all asynchronous operations associated with the
descriptor.

cancel

Close the descriptor.close

Get the io_service associated with the object.get_io_service

Perform an IO control command on the descriptor.io_control

Determine whether the descriptor is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native descriptor
representation.

native

Get the native descriptor representation.native_handle

Gets the non-blocking mode of the native descriptor implement-
ation.

Sets the non-blocking mode of the native descriptor implement-
ation.

native_non_blocking

Gets the non-blocking mode of the descriptor.

Sets the non-blocking mode of the descriptor.

non_blocking

Move-assign a basic_stream_descriptor from another.operator=

Read some data from the descriptor.read_some

Release ownership of the native descriptor implementation.release

Write some data to the descriptor.write_some

1043

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The posix::basic_stream_descriptor class template provides asynchronous and blocking stream-oriented descriptor func-
tionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/posix/basic_stream_descriptor.hpp

Convenience header: boost/asio.hpp

posix::basic_stream_descriptor::assign

Assign an existing native descriptor to the descriptor.

void assign(
const native_handle_type & native_descriptor);

» more...

boost::system::error_code assign(
const native_handle_type & native_descriptor,
boost::system::error_code & ec);

» more...

posix::basic_stream_descriptor::assign (1 of 2 overloads)

Inherited from posix::basic_descriptor.

Assign an existing native descriptor to the descriptor.

void assign(
const native_handle_type & native_descriptor);

1044

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_stream_descriptor::assign (2 of 2 overloads)

Inherited from posix::basic_descriptor.

Assign an existing native descriptor to the descriptor.

boost::system::error_code assign(
const native_handle_type & native_descriptor,
boost::system::error_code & ec);

posix::basic_stream_descriptor::async_read_some

Start an asynchronous read.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read_some(
const MutableBufferSequence & buffers,
ReadHandler handler);

This function is used to asynchronously read data from the stream descriptor. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be read. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes read.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The read operation may not read all of the requested number of bytes. Consider using the async_read function if you need to ensure
that the requested amount of data is read before the asynchronous operation completes.

Example

To read into a single data buffer use the buffer function as follows:

descriptor.async_read_some(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

1045

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_stream_descriptor::async_write_some

Start an asynchronous write.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write_some(
const ConstBufferSequence & buffers,
WriteHandler handler);

This function is used to asynchronously write data to the stream descriptor. The function call always returns immediately.

Parameters

buffers One or more data buffers to be written to the descriptor. Although the buffers object may be copied as necessary,
ownership of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until
the handler is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes written.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The write operation may not transmit all of the data to the peer. Consider using the async_write function if you need to ensure
that all data is written before the asynchronous operation completes.

Example

To write a single data buffer use the buffer function as follows:

descriptor.async_write_some(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

posix::basic_stream_descriptor::basic_stream_descriptor

Construct a posix::basic_stream_descriptor without opening it.

explicit basic_stream_descriptor(
boost::asio::io_service & io_service);

» more...

Construct a posix::basic_stream_descriptor on an existing native descriptor.

1046

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_descriptor(
boost::asio::io_service & io_service,
const native_handle_type & native_descriptor);

» more...

Move-construct a posix::basic_stream_descriptor from another.

basic_stream_descriptor(
basic_stream_descriptor && other);

» more...

posix::basic_stream_descriptor::basic_stream_descriptor (1 of 3 overloads)

Construct a posix::basic_stream_descriptor without opening it.

basic_stream_descriptor(
boost::asio::io_service & io_service);

This constructor creates a stream descriptor without opening it. The descriptor needs to be opened and then connected or accepted
before data can be sent or received on it.

Parameters

io_service The io_service object that the stream descriptor will use to dispatch handlers for any asynchronous operations
performed on the descriptor.

posix::basic_stream_descriptor::basic_stream_descriptor (2 of 3 overloads)

Construct a posix::basic_stream_descriptor on an existing native descriptor.

basic_stream_descriptor(
boost::asio::io_service & io_service,
const native_handle_type & native_descriptor);

This constructor creates a stream descriptor object to hold an existing native descriptor.

Parameters

io_service The io_service object that the stream descriptor will use to dispatch handlers for any asynchronous
operations performed on the descriptor.

native_descriptor The new underlying descriptor implementation.

Exceptions

boost::system::system_error Thrown on failure.

posix::basic_stream_descriptor::basic_stream_descriptor (3 of 3 overloads)

Move-construct a posix::basic_stream_descriptor from another.

basic_stream_descriptor(
basic_stream_descriptor && other);

This constructor moves a stream descriptor from one object to another.

1047

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

other The other posix::basic_stream_descriptor object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_stream_descriptor(io_ser-
vice&) constructor.

posix::basic_stream_descriptor::bytes_readable

Inherited from posix::descriptor_base.

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

Example

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::descriptor_base::bytes_readable command(true);
descriptor.io_control(command);
std::size_t bytes_readable = command.get();

Requirements

Header: boost/asio/posix/basic_stream_descriptor.hpp

Convenience header: boost/asio.hpp

posix::basic_stream_descriptor::cancel

Cancel all asynchronous operations associated with the descriptor.

void cancel();
» more...

boost::system::error_code cancel(
boost::system::error_code & ec);

» more...

posix::basic_stream_descriptor::cancel (1 of 2 overloads)

Inherited from posix::basic_descriptor.

Cancel all asynchronous operations associated with the descriptor.

void cancel();

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

1048

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_stream_descriptor::cancel (2 of 2 overloads)

Inherited from posix::basic_descriptor.

Cancel all asynchronous operations associated with the descriptor.

boost::system::error_code cancel(
boost::system::error_code & ec);

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

posix::basic_stream_descriptor::close

Close the descriptor.

void close();
» more...

boost::system::error_code close(
boost::system::error_code & ec);

» more...

posix::basic_stream_descriptor::close (1 of 2 overloads)

Inherited from posix::basic_descriptor.

Close the descriptor.

void close();

This function is used to close the descriptor. Any asynchronous read or write operations will be cancelled immediately, and will
complete with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure. Note that, even if the function indicates an error, the underlying descriptor
is closed.

posix::basic_stream_descriptor::close (2 of 2 overloads)

Inherited from posix::basic_descriptor.

Close the descriptor.

boost::system::error_code close(
boost::system::error_code & ec);

This function is used to close the descriptor. Any asynchronous read or write operations will be cancelled immediately, and will
complete with the boost::asio::error::operation_aborted error.

1049

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

ec Set to indicate what error occurred, if any. Note that, even if the function indicates an error, the underlying descriptor is closed.

posix::basic_stream_descriptor::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

posix::basic_stream_descriptor::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

posix::basic_stream_descriptor::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

posix::basic_stream_descriptor::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

posix::basic_stream_descriptor::get_service

Get the service associated with the I/O object.

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

1050

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_stream_descriptor::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

service_type & get_service();

posix::basic_stream_descriptor::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

posix::basic_stream_descriptor::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

posix::basic_stream_descriptor::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/posix/basic_stream_descriptor.hpp

Convenience header: boost/asio.hpp

posix::basic_stream_descriptor::io_control

Perform an IO control command on the descriptor.

void io_control(
IoControlCommand & command);

» more...

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

» more...

posix::basic_stream_descriptor::io_control (1 of 2 overloads)

Inherited from posix::basic_descriptor.

Perform an IO control command on the descriptor.

1051

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename IoControlCommand>

void io_control(
IoControlCommand & command);

This function is used to execute an IO control command on the descriptor.

Parameters

command The IO control command to be performed on the descriptor.

Exceptions

boost::system::system_error Thrown on failure.

Example

Getting the number of bytes ready to read:

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::posix::stream_descriptor::bytes_readable command;
descriptor.io_control(command);
std::size_t bytes_readable = command.get();

posix::basic_stream_descriptor::io_control (2 of 2 overloads)

Inherited from posix::basic_descriptor.

Perform an IO control command on the descriptor.

template<
typename IoControlCommand>

boost::system::error_code io_control(
IoControlCommand & command,
boost::system::error_code & ec);

This function is used to execute an IO control command on the descriptor.

Parameters

command The IO control command to be performed on the descriptor.

ec Set to indicate what error occurred, if any.

Example

Getting the number of bytes ready to read:

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::posix::stream_descriptor::bytes_readable command;
boost::system::error_code ec;
descriptor.io_control(command, ec);
if (ec)
{
// An error occurred.

}
std::size_t bytes_readable = command.get();

1052

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_stream_descriptor::is_open

Inherited from posix::basic_descriptor.

Determine whether the descriptor is open.

bool is_open() const;

posix::basic_stream_descriptor::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();
» more...

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;
» more...

posix::basic_stream_descriptor::lowest_layer (1 of 2 overloads)

Inherited from posix::basic_descriptor.

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a posix::basic_descriptor cannot contain any
further layers, it simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

posix::basic_stream_descriptor::lowest_layer (2 of 2 overloads)

Inherited from posix::basic_descriptor.

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a posix::basic_descriptor cannot contain
any further layers, it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

posix::basic_stream_descriptor::lowest_layer_type

Inherited from posix::basic_descriptor.

A posix::basic_descriptor is always the lowest layer.

1053

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef basic_descriptor< StreamDescriptorService > lowest_layer_type;

Types

DescriptionName

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

The underlying implementation type of I/O object.implementation_type

A basic_descriptor is always the lowest layer.lowest_layer_type

The native representation of a descriptor.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a descriptor.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the descriptor.

non_blocking_io

The type of the service that will be used to provide I/O opera-
tions.

service_type

1054

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native descriptor to the descriptor.assign

Construct a basic_descriptor without opening it.

Construct a basic_descriptor on an existing native descriptor.

Move-construct a basic_descriptor from another.

basic_descriptor

Cancel all asynchronous operations associated with the
descriptor.

cancel

Close the descriptor.close

Get the io_service associated with the object.get_io_service

Perform an IO control command on the descriptor.io_control

Determine whether the descriptor is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native descriptor
representation.

native

Get the native descriptor representation.native_handle

Gets the non-blocking mode of the native descriptor implement-
ation.

Sets the non-blocking mode of the native descriptor implement-
ation.

native_non_blocking

Gets the non-blocking mode of the descriptor.

Sets the non-blocking mode of the descriptor.

non_blocking

Move-assign a basic_descriptor from another.operator=

Release ownership of the native descriptor implementation.release

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected destructor to prevent deletion through this type.~basic_descriptor

1055

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The posix::basic_descriptor class template provides the ability to wrap a POSIX descriptor.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/posix/basic_stream_descriptor.hpp

Convenience header: boost/asio.hpp

posix::basic_stream_descriptor::native

Inherited from posix::basic_descriptor.

(Deprecated: Use native_handle().) Get the native descriptor representation.

native_type native();

This function may be used to obtain the underlying representation of the descriptor. This is intended to allow access to native descriptor
functionality that is not otherwise provided.

posix::basic_stream_descriptor::native_handle

Inherited from posix::basic_descriptor.

Get the native descriptor representation.

native_handle_type native_handle();

This function may be used to obtain the underlying representation of the descriptor. This is intended to allow access to native descriptor
functionality that is not otherwise provided.

posix::basic_stream_descriptor::native_handle_type

The native representation of a descriptor.

typedef StreamDescriptorService::native_handle_type native_handle_type;

Requirements

Header: boost/asio/posix/basic_stream_descriptor.hpp

Convenience header: boost/asio.hpp

1056

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_stream_descriptor::native_non_blocking

Gets the non-blocking mode of the native descriptor implementation.

bool native_non_blocking() const;
» more...

Sets the non-blocking mode of the native descriptor implementation.

void native_non_blocking(
bool mode);

» more...

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

posix::basic_stream_descriptor::native_non_blocking (1 of 3 overloads)

Inherited from posix::basic_descriptor.

Gets the non-blocking mode of the native descriptor implementation.

bool native_non_blocking() const;

This function is used to retrieve the non-blocking mode of the underlying native descriptor. This mode has no effect on the behaviour
of the descriptor object's synchronous operations.

Return Value

true if the underlying descriptor is in non-blocking mode and direct system calls may fail with boost::asio::er-
ror::would_block (or the equivalent system error).

Remarks

The current non-blocking mode is cached by the descriptor object. Consequently, the return value may be incorrect if the non-
blocking mode was set directly on the native descriptor.

posix::basic_stream_descriptor::native_non_blocking (2 of 3 overloads)

Inherited from posix::basic_descriptor.

Sets the non-blocking mode of the native descriptor implementation.

void native_non_blocking(
bool mode);

This function is used to modify the non-blocking mode of the underlying native descriptor. It has no effect on the behaviour of the
descriptor object's synchronous operations.

Parameters

mode If true, the underlying descriptor is put into non-blocking mode and direct system calls may fail with
boost::asio::error::would_block (or the equivalent system error).

1057

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure. If the mode is false, but the current value of non_blocking() is true,
this function fails with boost::asio::error::invalid_argument, as the combination
does not make sense.

posix::basic_stream_descriptor::native_non_blocking (3 of 3 overloads)

Inherited from posix::basic_descriptor.

Sets the non-blocking mode of the native descriptor implementation.

boost::system::error_code native_non_blocking(
bool mode,
boost::system::error_code & ec);

This function is used to modify the non-blocking mode of the underlying native descriptor. It has no effect on the behaviour of the
descriptor object's synchronous operations.

Parameters

mode If true, the underlying descriptor is put into non-blocking mode and direct system calls may fail with
boost::asio::error::would_block (or the equivalent system error).

ec Set to indicate what error occurred, if any. If the mode is false, but the current value of non_blocking() is true, this
function fails with boost::asio::error::invalid_argument, as the combination does not make sense.

posix::basic_stream_descriptor::native_type

(Deprecated: Use native_handle_type.) The native representation of a descriptor.

typedef StreamDescriptorService::native_handle_type native_type;

Requirements

Header: boost/asio/posix/basic_stream_descriptor.hpp

Convenience header: boost/asio.hpp

posix::basic_stream_descriptor::non_blocking

Gets the non-blocking mode of the descriptor.

bool non_blocking() const;
» more...

Sets the non-blocking mode of the descriptor.

void non_blocking(
bool mode);

» more...

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

» more...

1058

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_stream_descriptor::non_blocking (1 of 3 overloads)

Inherited from posix::basic_descriptor.

Gets the non-blocking mode of the descriptor.

bool non_blocking() const;

Return Value

true if the descriptor's synchronous operations will fail with boost::asio::error::would_block if they are unable to perform
the requested operation immediately. If false, synchronous operations will block until complete.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

posix::basic_stream_descriptor::non_blocking (2 of 3 overloads)

Inherited from posix::basic_descriptor.

Sets the non-blocking mode of the descriptor.

void non_blocking(
bool mode);

Parameters

mode If true, the descriptor's synchronous operations will fail with boost::asio::error::would_block if they are unable
to perform the requested operation immediately. If false, synchronous operations will block until complete.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

posix::basic_stream_descriptor::non_blocking (3 of 3 overloads)

Inherited from posix::basic_descriptor.

Sets the non-blocking mode of the descriptor.

boost::system::error_code non_blocking(
bool mode,
boost::system::error_code & ec);

Parameters

mode If true, the descriptor's synchronous operations will fail with boost::asio::error::would_block if they are unable
to perform the requested operation immediately. If false, synchronous operations will block until complete.

ec Set to indicate what error occurred, if any.

1059

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The non-blocking mode has no effect on the behaviour of asynchronous operations. Asynchronous operations will never fail with
the error boost::asio::error::would_block.

posix::basic_stream_descriptor::non_blocking_io

Inherited from posix::descriptor_base.

(Deprecated: Use non_blocking().) IO control command to set the blocking mode of the descriptor.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

Example

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::descriptor_base::non_blocking_io command(true);
descriptor.io_control(command);

Requirements

Header: boost/asio/posix/basic_stream_descriptor.hpp

Convenience header: boost/asio.hpp

posix::basic_stream_descriptor::operator=

Move-assign a posix::basic_stream_descriptor from another.

basic_stream_descriptor & operator=(
basic_stream_descriptor && other);

This assignment operator moves a stream descriptor from one object to another.

Parameters

other The other posix::basic_stream_descriptor object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_stream_descriptor(io_ser-
vice&) constructor.

posix::basic_stream_descriptor::read_some

Read some data from the descriptor.

1060

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

» more...

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

» more...

posix::basic_stream_descriptor::read_some (1 of 2 overloads)

Read some data from the descriptor.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

This function is used to read data from the stream descriptor. The function call will block until one or more bytes of data has been
read successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be read.

Return Value

The number of bytes read.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection
was closed by the peer.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

Example

To read into a single data buffer use the buffer function as follows:

descriptor.read_some(boost::asio::buffer(data, size));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

posix::basic_stream_descriptor::read_some (2 of 2 overloads)

Read some data from the descriptor.

1061

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to read data from the stream descriptor. The function call will block until one or more bytes of data has been
read successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be read.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. Returns 0 if an error occurred.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

posix::basic_stream_descriptor::release

Inherited from posix::basic_descriptor.

Release ownership of the native descriptor implementation.

native_handle_type release();

This function may be used to obtain the underlying representation of the descriptor. After calling this function, is_open() returns
false. The caller is responsible for closing the descriptor.

All outstanding asynchronous read or write operations will finish immediately, and the handlers for cancelled operations will be
passed the boost::asio::error::operation_aborted error.

posix::basic_stream_descriptor::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

Remarks

Available only for services that do not support movability.

posix::basic_stream_descriptor::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef StreamDescriptorService service_type;

1062

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/posix/basic_stream_descriptor.hpp

Convenience header: boost/asio.hpp

posix::basic_stream_descriptor::write_some

Write some data to the descriptor.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

» more...

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

» more...

posix::basic_stream_descriptor::write_some (1 of 2 overloads)

Write some data to the descriptor.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

This function is used to write data to the stream descriptor. The function call will block until one or more bytes of the data has been
written successfully, or until an error occurs.

Parameters

buffers One or more data buffers to be written to the descriptor.

Return Value

The number of bytes written.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection
was closed by the peer.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

Example

To write a single data buffer use the buffer function as follows:

descriptor.write_some(boost::asio::buffer(data, size));

1063

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

posix::basic_stream_descriptor::write_some (2 of 2 overloads)

Write some data to the descriptor.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to write data to the stream descriptor. The function call will block until one or more bytes of the data has been
written successfully, or until an error occurs.

Parameters

buffers One or more data buffers to be written to the descriptor.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. Returns 0 if an error occurred.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

posix::descriptor_base
The posix::descriptor_base class is used as a base for the posix::basic_stream_descriptor class template so that we
have a common place to define the associated IO control commands.

class descriptor_base

Types

DescriptionName

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the descriptor.

non_blocking_io

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~descriptor_base

1064

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/posix/descriptor_base.hpp

Convenience header: boost/asio.hpp

posix::descriptor_base::bytes_readable

IO control command to get the amount of data that can be read without blocking.

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

Example

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::descriptor_base::bytes_readable command(true);
descriptor.io_control(command);
std::size_t bytes_readable = command.get();

Requirements

Header: boost/asio/posix/descriptor_base.hpp

Convenience header: boost/asio.hpp

posix::descriptor_base::non_blocking_io

(Deprecated: Use non_blocking().) IO control command to set the blocking mode of the descriptor.

typedef implementation_defined non_blocking_io;

Implements the FIONBIO IO control command.

Example

boost::asio::posix::stream_descriptor descriptor(io_service);
...
boost::asio::descriptor_base::non_blocking_io command(true);
descriptor.io_control(command);

Requirements

Header: boost/asio/posix/descriptor_base.hpp

Convenience header: boost/asio.hpp

posix::descriptor_base::~descriptor_base

Protected destructor to prevent deletion through this type.

~descriptor_base();

1065

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::stream_descriptor
Typedef for the typical usage of a stream-oriented descriptor.

typedef basic_stream_descriptor stream_descriptor;

Types

DescriptionName

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

The underlying implementation type of I/O object.implementation_type

A basic_descriptor is always the lowest layer.lowest_layer_type

The native representation of a descriptor.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a descriptor.

native_type

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the descriptor.

non_blocking_io

The type of the service that will be used to provide I/O opera-
tions.

service_type

1066

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native descriptor to the descriptor.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Construct a basic_stream_descriptor without opening it.

Construct a basic_stream_descriptor on an existing native
descriptor.

Move-construct a basic_stream_descriptor from another.

basic_stream_descriptor

Cancel all asynchronous operations associated with the
descriptor.

cancel

Close the descriptor.close

Get the io_service associated with the object.get_io_service

Perform an IO control command on the descriptor.io_control

Determine whether the descriptor is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native descriptor
representation.

native

Get the native descriptor representation.native_handle

Gets the non-blocking mode of the native descriptor implement-
ation.

Sets the non-blocking mode of the native descriptor implement-
ation.

native_non_blocking

Gets the non-blocking mode of the descriptor.

Sets the non-blocking mode of the descriptor.

non_blocking

Move-assign a basic_stream_descriptor from another.operator=

Read some data from the descriptor.read_some

Release ownership of the native descriptor implementation.release

Write some data to the descriptor.write_some

1067

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The posix::basic_stream_descriptor class template provides asynchronous and blocking stream-oriented descriptor func-
tionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/posix/stream_descriptor.hpp

Convenience header: boost/asio.hpp

posix::stream_descriptor_service
Default service implementation for a stream descriptor.

class stream_descriptor_service :
public io_service::service

Types

DescriptionName

The type of a stream descriptor implementation.implementation_type

The native descriptor type.native_handle_type

(Deprecated: Use native_handle_type.) The native descriptor
type.

native_type

1068

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native descriptor to a stream descriptor.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Cancel all asynchronous operations associated with the
descriptor.

cancel

Close a stream descriptor implementation.close

Construct a new stream descriptor implementation.construct

Destroy a stream descriptor implementation.destroy

Get the io_service object that owns the service.get_io_service

Perform an IO control command on the descriptor.io_control

Determine whether the descriptor is open.is_open

Move-assign from another stream descriptor implementation.move_assign

Move-construct a new stream descriptor implementation.move_construct

(Deprecated: Use native_handle().) Get the native descriptor
implementation.

native

Get the native descriptor implementation.native_handle

Gets the non-blocking mode of the native descriptor implement-
ation.

Sets the non-blocking mode of the native descriptor implement-
ation.

native_non_blocking

Gets the non-blocking mode of the descriptor.

Sets the non-blocking mode of the descriptor.

non_blocking

Read some data from the stream.read_some

Release ownership of the native descriptor implementation.release

Construct a new stream descriptor service for the specified
io_service.

stream_descriptor_service

Write the given data to the stream.write_some

1069

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

The unique service identifier.id

Requirements

Header: boost/asio/posix/stream_descriptor_service.hpp

Convenience header: boost/asio.hpp

posix::stream_descriptor_service::assign

Assign an existing native descriptor to a stream descriptor.

boost::system::error_code assign(
implementation_type & impl,
const native_handle_type & native_descriptor,
boost::system::error_code & ec);

posix::stream_descriptor_service::async_read_some

Start an asynchronous read.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read_some(
implementation_type & impl,
const MutableBufferSequence & buffers,
ReadHandler handler);

posix::stream_descriptor_service::async_write_some

Start an asynchronous write.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write_some(
implementation_type & impl,
const ConstBufferSequence & buffers,
WriteHandler handler);

posix::stream_descriptor_service::cancel

Cancel all asynchronous operations associated with the descriptor.

boost::system::error_code cancel(
implementation_type & impl,
boost::system::error_code & ec);

1070

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::stream_descriptor_service::close

Close a stream descriptor implementation.

boost::system::error_code close(
implementation_type & impl,
boost::system::error_code & ec);

posix::stream_descriptor_service::construct

Construct a new stream descriptor implementation.

void construct(
implementation_type & impl);

posix::stream_descriptor_service::destroy

Destroy a stream descriptor implementation.

void destroy(
implementation_type & impl);

posix::stream_descriptor_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

posix::stream_descriptor_service::id

The unique service identifier.

static boost::asio::io_service::id id;

posix::stream_descriptor_service::implementation_type

The type of a stream descriptor implementation.

typedef implementation_defined implementation_type;

Requirements

Header: boost/asio/posix/stream_descriptor_service.hpp

Convenience header: boost/asio.hpp

posix::stream_descriptor_service::io_control

Perform an IO control command on the descriptor.

1071

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename IoControlCommand>

boost::system::error_code io_control(
implementation_type & impl,
IoControlCommand & command,
boost::system::error_code & ec);

posix::stream_descriptor_service::is_open

Determine whether the descriptor is open.

bool is_open(
const implementation_type & impl) const;

posix::stream_descriptor_service::move_assign

Move-assign from another stream descriptor implementation.

void move_assign(
implementation_type & impl,
stream_descriptor_service & other_service,
implementation_type & other_impl);

posix::stream_descriptor_service::move_construct

Move-construct a new stream descriptor implementation.

void move_construct(
implementation_type & impl,
implementation_type & other_impl);

posix::stream_descriptor_service::native

(Deprecated: Use native_handle().) Get the native descriptor implementation.

native_type native(
implementation_type & impl);

posix::stream_descriptor_service::native_handle

Get the native descriptor implementation.

native_handle_type native_handle(
implementation_type & impl);

posix::stream_descriptor_service::native_handle_type

The native descriptor type.

typedef implementation_defined native_handle_type;

Requirements

Header: boost/asio/posix/stream_descriptor_service.hpp

1072

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Convenience header: boost/asio.hpp

posix::stream_descriptor_service::native_non_blocking

Gets the non-blocking mode of the native descriptor implementation.

bool native_non_blocking(
const implementation_type & impl) const;

» more...

Sets the non-blocking mode of the native descriptor implementation.

boost::system::error_code native_non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

» more...

posix::stream_descriptor_service::native_non_blocking (1 of 2 overloads)

Gets the non-blocking mode of the native descriptor implementation.

bool native_non_blocking(
const implementation_type & impl) const;

posix::stream_descriptor_service::native_non_blocking (2 of 2 overloads)

Sets the non-blocking mode of the native descriptor implementation.

boost::system::error_code native_non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

posix::stream_descriptor_service::native_type

(Deprecated: Use native_handle_type.) The native descriptor type.

typedef implementation_defined native_type;

Requirements

Header: boost/asio/posix/stream_descriptor_service.hpp

Convenience header: boost/asio.hpp

posix::stream_descriptor_service::non_blocking

Gets the non-blocking mode of the descriptor.

bool non_blocking(
const implementation_type & impl) const;

» more...

Sets the non-blocking mode of the descriptor.

1073

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

» more...

posix::stream_descriptor_service::non_blocking (1 of 2 overloads)

Gets the non-blocking mode of the descriptor.

bool non_blocking(
const implementation_type & impl) const;

posix::stream_descriptor_service::non_blocking (2 of 2 overloads)

Sets the non-blocking mode of the descriptor.

boost::system::error_code non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

posix::stream_descriptor_service::read_some

Read some data from the stream.

template<
typename MutableBufferSequence>

std::size_t read_some(
implementation_type & impl,
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

posix::stream_descriptor_service::release

Release ownership of the native descriptor implementation.

native_handle_type release(
implementation_type & impl);

posix::stream_descriptor_service::stream_descriptor_service

Construct a new stream descriptor service for the specified io_service.

stream_descriptor_service(
boost::asio::io_service & io_service);

posix::stream_descriptor_service::write_some

Write the given data to the stream.

1074

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t write_some(
implementation_type & impl,
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

raw_socket_service
Default service implementation for a raw socket.

template<
typename Protocol>

class raw_socket_service :
public io_service::service

Types

DescriptionName

The endpoint type.endpoint_type

The type of a raw socket.implementation_type

The native socket type.native_handle_type

(Deprecated: Use native_handle_type.) The native socket type.native_type

The protocol type.protocol_type

1075

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

1076

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to a raw socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive.async_receive

Start an asynchronous receive that will get the endpoint of the
sender.

async_receive_from

Start an asynchronous send.async_send

Start an asynchronous send.async_send_to

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

bind

Cancel all asynchronous operations associated with the socket.cancel

Close a raw socket implementation.close

Connect the raw socket to the specified endpoint.connect

Construct a new raw socket implementation.construct

Move-construct a new raw socket implementation from another
protocol type.

converting_move_construct

Destroy a raw socket implementation.destroy

Get the io_service object that owns the service.get_io_service

Get a socket option.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint.local_endpoint

Move-assign from another raw socket implementation.move_assign

Move-construct a new raw socket implementation.move_construct

(Deprecated: Use native_handle().) Get the native socket imple-
mentation.

native

Get the native socket implementation.native_handle

Gets the non-blocking mode of the native socket implementation.native_non_blocking

Sets the non-blocking mode of the native socket implementation.

1077

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Gets the non-blocking mode of the socket.

Sets the non-blocking mode of the socket.

non_blocking

open

Construct a new raw socket service for the specified io_service.raw_socket_service

Receive some data from the peer.receive

Receive raw data with the endpoint of the sender.receive_from

Get the remote endpoint.remote_endpoint

Send the given data to the peer.send

Send raw data to the specified endpoint.send_to

Set a socket option.set_option

Disable sends or receives on the socket.shutdown

Data Members

DescriptionName

The unique service identifier.id

Requirements

Header: boost/asio/raw_socket_service.hpp

Convenience header: boost/asio.hpp

raw_socket_service::assign

Assign an existing native socket to a raw socket.

boost::system::error_code assign(
implementation_type & impl,
const protocol_type & protocol,
const native_handle_type & native_socket,
boost::system::error_code & ec);

raw_socket_service::async_connect

Start an asynchronous connect.

template<
typename ConnectHandler>

void-or-deduced async_connect(
implementation_type & impl,
const endpoint_type & peer_endpoint,
ConnectHandler handler);

1078

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

raw_socket_service::async_receive

Start an asynchronous receive.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
implementation_type & impl,
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
ReadHandler handler);

raw_socket_service::async_receive_from

Start an asynchronous receive that will get the endpoint of the sender.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive_from(
implementation_type & impl,
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
socket_base::message_flags flags,
ReadHandler handler);

raw_socket_service::async_send

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
implementation_type & impl,
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
WriteHandler handler);

raw_socket_service::async_send_to

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send_to(
implementation_type & impl,
const ConstBufferSequence & buffers,
const endpoint_type & destination,
socket_base::message_flags flags,
WriteHandler handler);

raw_socket_service::at_mark

Determine whether the socket is at the out-of-band data mark.

1079

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool at_mark(
const implementation_type & impl,
boost::system::error_code & ec) const;

raw_socket_service::available

Determine the number of bytes available for reading.

std::size_t available(
const implementation_type & impl,
boost::system::error_code & ec) const;

raw_socket_service::bind

boost::system::error_code bind(
implementation_type & impl,
const endpoint_type & endpoint,
boost::system::error_code & ec);

raw_socket_service::cancel

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
implementation_type & impl,
boost::system::error_code & ec);

raw_socket_service::close

Close a raw socket implementation.

boost::system::error_code close(
implementation_type & impl,
boost::system::error_code & ec);

raw_socket_service::connect

Connect the raw socket to the specified endpoint.

boost::system::error_code connect(
implementation_type & impl,
const endpoint_type & peer_endpoint,
boost::system::error_code & ec);

raw_socket_service::construct

Construct a new raw socket implementation.

void construct(
implementation_type & impl);

1080

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

raw_socket_service::converting_move_construct

Move-construct a new raw socket implementation from another protocol type.

template<
typename Protocol1>

void converting_move_construct(
implementation_type & impl,
typename raw_socket_service< Protocol1 >::implementation_type & other_impl,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

raw_socket_service::destroy

Destroy a raw socket implementation.

void destroy(
implementation_type & impl);

raw_socket_service::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

Requirements

Header: boost/asio/raw_socket_service.hpp

Convenience header: boost/asio.hpp

raw_socket_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

raw_socket_service::get_option

Get a socket option.

template<
typename GettableSocketOption>

boost::system::error_code get_option(
const implementation_type & impl,
GettableSocketOption & option,
boost::system::error_code & ec) const;

raw_socket_service::id

The unique service identifier.

static boost::asio::io_service::id id;

1081

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

raw_socket_service::implementation_type

The type of a raw socket.

typedef implementation_defined implementation_type;

Requirements

Header: boost/asio/raw_socket_service.hpp

Convenience header: boost/asio.hpp

raw_socket_service::io_control

Perform an IO control command on the socket.

template<
typename IoControlCommand>

boost::system::error_code io_control(
implementation_type & impl,
IoControlCommand & command,
boost::system::error_code & ec);

raw_socket_service::is_open

Determine whether the socket is open.

bool is_open(
const implementation_type & impl) const;

raw_socket_service::local_endpoint

Get the local endpoint.

endpoint_type local_endpoint(
const implementation_type & impl,
boost::system::error_code & ec) const;

raw_socket_service::move_assign

Move-assign from another raw socket implementation.

void move_assign(
implementation_type & impl,
raw_socket_service & other_service,
implementation_type & other_impl);

raw_socket_service::move_construct

Move-construct a new raw socket implementation.

void move_construct(
implementation_type & impl,
implementation_type & other_impl);

1082

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

raw_socket_service::native

(Deprecated: Use native_handle().) Get the native socket implementation.

native_type native(
implementation_type & impl);

raw_socket_service::native_handle

Get the native socket implementation.

native_handle_type native_handle(
implementation_type & impl);

raw_socket_service::native_handle_type

The native socket type.

typedef implementation_defined native_handle_type;

Requirements

Header: boost/asio/raw_socket_service.hpp

Convenience header: boost/asio.hpp

raw_socket_service::native_non_blocking

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking(
const implementation_type & impl) const;

» more...

Sets the non-blocking mode of the native socket implementation.

boost::system::error_code native_non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

» more...

raw_socket_service::native_non_blocking (1 of 2 overloads)

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking(
const implementation_type & impl) const;

raw_socket_service::native_non_blocking (2 of 2 overloads)

Sets the non-blocking mode of the native socket implementation.

1083

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code native_non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

raw_socket_service::native_type

(Deprecated: Use native_handle_type.) The native socket type.

typedef implementation_defined native_type;

Requirements

Header: boost/asio/raw_socket_service.hpp

Convenience header: boost/asio.hpp

raw_socket_service::non_blocking

Gets the non-blocking mode of the socket.

bool non_blocking(
const implementation_type & impl) const;

» more...

Sets the non-blocking mode of the socket.

boost::system::error_code non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

» more...

raw_socket_service::non_blocking (1 of 2 overloads)

Gets the non-blocking mode of the socket.

bool non_blocking(
const implementation_type & impl) const;

raw_socket_service::non_blocking (2 of 2 overloads)

Sets the non-blocking mode of the socket.

boost::system::error_code non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

raw_socket_service::open

boost::system::error_code open(
implementation_type & impl,
const protocol_type & protocol,
boost::system::error_code & ec);

1084

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

raw_socket_service::protocol_type

The protocol type.

typedef Protocol protocol_type;

Requirements

Header: boost/asio/raw_socket_service.hpp

Convenience header: boost/asio.hpp

raw_socket_service::raw_socket_service

Construct a new raw socket service for the specified io_service.

raw_socket_service(
boost::asio::io_service & io_service);

raw_socket_service::receive

Receive some data from the peer.

template<
typename MutableBufferSequence>

std::size_t receive(
implementation_type & impl,
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

raw_socket_service::receive_from

Receive raw data with the endpoint of the sender.

template<
typename MutableBufferSequence>

std::size_t receive_from(
implementation_type & impl,
const MutableBufferSequence & buffers,
endpoint_type & sender_endpoint,
socket_base::message_flags flags,
boost::system::error_code & ec);

raw_socket_service::remote_endpoint

Get the remote endpoint.

endpoint_type remote_endpoint(
const implementation_type & impl,
boost::system::error_code & ec) const;

raw_socket_service::send

Send the given data to the peer.

1085

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence>

std::size_t send(
implementation_type & impl,
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

raw_socket_service::send_to

Send raw data to the specified endpoint.

template<
typename ConstBufferSequence>

std::size_t send_to(
implementation_type & impl,
const ConstBufferSequence & buffers,
const endpoint_type & destination,
socket_base::message_flags flags,
boost::system::error_code & ec);

raw_socket_service::set_option

Set a socket option.

template<
typename SettableSocketOption>

boost::system::error_code set_option(
implementation_type & impl,
const SettableSocketOption & option,
boost::system::error_code & ec);

raw_socket_service::shutdown

Disable sends or receives on the socket.

boost::system::error_code shutdown(
implementation_type & impl,
socket_base::shutdown_type what,
boost::system::error_code & ec);

read
Attempt to read a certain amount of data from a stream before returning.

1086

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncReadStream,
typename MutableBufferSequence>

std::size_t read(
SyncReadStream & s,
const MutableBufferSequence & buffers);

» more...

template<
typename SyncReadStream,
typename MutableBufferSequence>

std::size_t read(
SyncReadStream & s,
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

» more...

template<
typename SyncReadStream,
typename MutableBufferSequence,
typename CompletionCondition>

std::size_t read(
SyncReadStream & s,
const MutableBufferSequence & buffers,
CompletionCondition completion_condition);

» more...

template<
typename SyncReadStream,
typename MutableBufferSequence,
typename CompletionCondition>

std::size_t read(
SyncReadStream & s,
const MutableBufferSequence & buffers,
CompletionCondition completion_condition,
boost::system::error_code & ec);

» more...

template<
typename SyncReadStream,
typename Allocator>

std::size_t read(
SyncReadStream & s,
basic_streambuf< Allocator > & b);

» more...

template<
typename SyncReadStream,
typename Allocator>

std::size_t read(
SyncReadStream & s,
basic_streambuf< Allocator > & b,
boost::system::error_code & ec);

» more...

template<
typename SyncReadStream,
typename Allocator,
typename CompletionCondition>

std::size_t read(
SyncReadStream & s,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition);

1087

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

» more...

template<
typename SyncReadStream,
typename Allocator,
typename CompletionCondition>

std::size_t read(
SyncReadStream & s,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition,
boost::system::error_code & ec);

» more...

Requirements

Header: boost/asio/read.hpp

Convenience header: boost/asio.hpp

read (1 of 8 overloads)

Attempt to read a certain amount of data from a stream before returning.

template<
typename SyncReadStream,
typename MutableBufferSequence>

std::size_t read(
SyncReadStream & s,
const MutableBufferSequence & buffers);

This function is used to read a certain number of bytes of data from a stream. The call will block until one of the following conditions
is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the maximum number of
bytes to read from the stream.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Example

To read into a single data buffer use the buffer function as follows:

boost::asio::read(s, boost::asio::buffer(data, size));

1088

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

Remarks

This overload is equivalent to calling:

boost::asio::read(
s, buffers,
boost::asio::transfer_all());

read (2 of 8 overloads)

Attempt to read a certain amount of data from a stream before returning.

template<
typename SyncReadStream,
typename MutableBufferSequence>

std::size_t read(
SyncReadStream & s,
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to read a certain number of bytes of data from a stream. The call will block until one of the following conditions
is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the maximum number of
bytes to read from the stream.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes transferred.

Example

To read into a single data buffer use the buffer function as follows:

boost::asio::read(s, boost::asio::buffer(data, size), ec);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

Remarks

This overload is equivalent to calling:

1089

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::read(
s, buffers,
boost::asio::transfer_all(), ec);

read (3 of 8 overloads)

Attempt to read a certain amount of data from a stream before returning.

template<
typename SyncReadStream,
typename MutableBufferSequence,
typename CompletionCondition>

std::size_t read(
SyncReadStream & s,
const MutableBufferSequence & buffers,
CompletionCondition completion_condition);

This function is used to read a certain number of bytes of data from a stream. The call will block until one of the following conditions
is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the stream's read_some function.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the
maximum number of bytes to read from the stream.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest read_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the stream's read_some function.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Example

To read into a single data buffer use the buffer function as follows:

1090

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::read(s, boost::asio::buffer(data, size),
boost::asio::transfer_at_least(32));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

read (4 of 8 overloads)

Attempt to read a certain amount of data from a stream before returning.

template<
typename SyncReadStream,
typename MutableBufferSequence,
typename CompletionCondition>

std::size_t read(
SyncReadStream & s,
const MutableBufferSequence & buffers,
CompletionCondition completion_condition,
boost::system::error_code & ec);

This function is used to read a certain number of bytes of data from a stream. The call will block until one of the following conditions
is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the stream's read_some function.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the
maximum number of bytes to read from the stream.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest read_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the stream's read_some function.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. If an error occurs, returns the total number of bytes successfully transferred prior to the error.

read (5 of 8 overloads)

Attempt to read a certain amount of data from a stream before returning.

1091

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncReadStream,
typename Allocator>

std::size_t read(
SyncReadStream & s,
basic_streambuf< Allocator > & b);

This function is used to read a certain number of bytes of data from a stream. The call will block until one of the following conditions
is true:

• The supplied buffer is full (that is, it has reached maximum size).

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b The basic_streambuf object into which the data will be read.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

This overload is equivalent to calling:

boost::asio::read(
s, b,
boost::asio::transfer_all());

read (6 of 8 overloads)

Attempt to read a certain amount of data from a stream before returning.

template<
typename SyncReadStream,
typename Allocator>

std::size_t read(
SyncReadStream & s,
basic_streambuf< Allocator > & b,
boost::system::error_code & ec);

This function is used to read a certain number of bytes of data from a stream. The call will block until one of the following conditions
is true:

• The supplied buffer is full (that is, it has reached maximum size).

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function.

1092

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b The basic_streambuf object into which the data will be read.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes transferred.

Remarks

This overload is equivalent to calling:

boost::asio::read(
s, b,
boost::asio::transfer_all(), ec);

read (7 of 8 overloads)

Attempt to read a certain amount of data from a stream before returning.

template<
typename SyncReadStream,
typename Allocator,
typename CompletionCondition>

std::size_t read(
SyncReadStream & s,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition);

This function is used to read a certain number of bytes of data from a stream. The call will block until one of the following conditions
is true:

• The supplied buffer is full (that is, it has reached maximum size).

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the stream's read_some function.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b The basic_streambuf object into which the data will be read.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest read_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

1093

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the stream's read_some function.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

read (8 of 8 overloads)

Attempt to read a certain amount of data from a stream before returning.

template<
typename SyncReadStream,
typename Allocator,
typename CompletionCondition>

std::size_t read(
SyncReadStream & s,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition,
boost::system::error_code & ec);

This function is used to read a certain number of bytes of data from a stream. The call will block until one of the following conditions
is true:

• The supplied buffer is full (that is, it has reached maximum size).

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the stream's read_some function.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b The basic_streambuf object into which the data will be read.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest read_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the stream's read_some function.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. If an error occurs, returns the total number of bytes successfully transferred prior to the error.

1094

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

read_at
Attempt to read a certain amount of data at the specified offset before returning.

template<
typename SyncRandomAccessReadDevice,
typename MutableBufferSequence>

std::size_t read_at(
SyncRandomAccessReadDevice & d,
uint64_t offset,
const MutableBufferSequence & buffers);

» more...

template<
typename SyncRandomAccessReadDevice,
typename MutableBufferSequence>

std::size_t read_at(
SyncRandomAccessReadDevice & d,
uint64_t offset,
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

» more...

template<
typename SyncRandomAccessReadDevice,
typename MutableBufferSequence,
typename CompletionCondition>

std::size_t read_at(
SyncRandomAccessReadDevice & d,
uint64_t offset,
const MutableBufferSequence & buffers,
CompletionCondition completion_condition);

» more...

template<
typename SyncRandomAccessReadDevice,
typename MutableBufferSequence,
typename CompletionCondition>

std::size_t read_at(
SyncRandomAccessReadDevice & d,
uint64_t offset,
const MutableBufferSequence & buffers,
CompletionCondition completion_condition,
boost::system::error_code & ec);

» more...

template<
typename SyncRandomAccessReadDevice,
typename Allocator>

std::size_t read_at(
SyncRandomAccessReadDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b);

» more...

template<
typename SyncRandomAccessReadDevice,
typename Allocator>

std::size_t read_at(
SyncRandomAccessReadDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,

1095

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code & ec);
» more...

template<
typename SyncRandomAccessReadDevice,
typename Allocator,
typename CompletionCondition>

std::size_t read_at(
SyncRandomAccessReadDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition);

» more...

template<
typename SyncRandomAccessReadDevice,
typename Allocator,
typename CompletionCondition>

std::size_t read_at(
SyncRandomAccessReadDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition,
boost::system::error_code & ec);

» more...

Requirements

Header: boost/asio/read_at.hpp

Convenience header: boost/asio.hpp

read_at (1 of 8 overloads)

Attempt to read a certain amount of data at the specified offset before returning.

template<
typename SyncRandomAccessReadDevice,
typename MutableBufferSequence>

std::size_t read_at(
SyncRandomAccessReadDevice & d,
uint64_t offset,
const MutableBufferSequence & buffers);

This function is used to read a certain number of bytes of data from a random access device at the specified offset. The call will
block until one of the following conditions is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the SyncRandomAccessReadDevice concept.

offset The offset at which the data will be read.

1096

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the maximum number of
bytes to read from the device.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Example

To read into a single data buffer use the buffer function as follows:

boost::asio::read_at(d, 42, boost::asio::buffer(data, size));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

Remarks

This overload is equivalent to calling:

boost::asio::read_at(
d, 42, buffers,
boost::asio::transfer_all());

read_at (2 of 8 overloads)

Attempt to read a certain amount of data at the specified offset before returning.

template<
typename SyncRandomAccessReadDevice,
typename MutableBufferSequence>

std::size_t read_at(
SyncRandomAccessReadDevice & d,
uint64_t offset,
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to read a certain number of bytes of data from a random access device at the specified offset. The call will
block until one of the following conditions is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the SyncRandomAccessReadDevice concept.

offset The offset at which the data will be read.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the maximum number of
bytes to read from the device.

1097

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes transferred.

Example

To read into a single data buffer use the buffer function as follows:

boost::asio::read_at(d, 42,
boost::asio::buffer(data, size), ec);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

Remarks

This overload is equivalent to calling:

boost::asio::read_at(
d, 42, buffers,
boost::asio::transfer_all(), ec);

read_at (3 of 8 overloads)

Attempt to read a certain amount of data at the specified offset before returning.

template<
typename SyncRandomAccessReadDevice,
typename MutableBufferSequence,
typename CompletionCondition>

std::size_t read_at(
SyncRandomAccessReadDevice & d,
uint64_t offset,
const MutableBufferSequence & buffers,
CompletionCondition completion_condition);

This function is used to read a certain number of bytes of data from a random access device at the specified offset. The call will
block until one of the following conditions is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the device's read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the SyncRandomAccessRead-
Device concept.

offset The offset at which the data will be read.

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the
maximum number of bytes to read from the device.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

1098

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t completion_condition(
// Result of latest read_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the device's read_some_at function.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Example

To read into a single data buffer use the buffer function as follows:

boost::asio::read_at(d, 42, boost::asio::buffer(data, size),
boost::asio::transfer_at_least(32));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

read_at (4 of 8 overloads)

Attempt to read a certain amount of data at the specified offset before returning.

template<
typename SyncRandomAccessReadDevice,
typename MutableBufferSequence,
typename CompletionCondition>

std::size_t read_at(
SyncRandomAccessReadDevice & d,
uint64_t offset,
const MutableBufferSequence & buffers,
CompletionCondition completion_condition,
boost::system::error_code & ec);

This function is used to read a certain number of bytes of data from a random access device at the specified offset. The call will
block until one of the following conditions is true:

• The supplied buffers are full. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the device's read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the SyncRandomAccessRead-
Device concept.

offset The offset at which the data will be read.

1099

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffers One or more buffers into which the data will be read. The sum of the buffer sizes indicates the
maximum number of bytes to read from the device.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest read_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the device's read_some_at function.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. If an error occurs, returns the total number of bytes successfully transferred prior to the error.

read_at (5 of 8 overloads)

Attempt to read a certain amount of data at the specified offset before returning.

template<
typename SyncRandomAccessReadDevice,
typename Allocator>

std::size_t read_at(
SyncRandomAccessReadDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b);

This function is used to read a certain number of bytes of data from a random access device at the specified offset. The call will
block until one of the following conditions is true:

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the SyncRandomAccessReadDevice concept.

offset The offset at which the data will be read.

b The basic_streambuf object into which the data will be read.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

1100

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

This overload is equivalent to calling:

boost::asio::read_at(
d, 42, b,
boost::asio::transfer_all());

read_at (6 of 8 overloads)

Attempt to read a certain amount of data at the specified offset before returning.

template<
typename SyncRandomAccessReadDevice,
typename Allocator>

std::size_t read_at(
SyncRandomAccessReadDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
boost::system::error_code & ec);

This function is used to read a certain number of bytes of data from a random access device at the specified offset. The call will
block until one of the following conditions is true:

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the SyncRandomAccessReadDevice concept.

offset The offset at which the data will be read.

b The basic_streambuf object into which the data will be read.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes transferred.

Remarks

This overload is equivalent to calling:

boost::asio::read_at(
d, 42, b,
boost::asio::transfer_all(), ec);

read_at (7 of 8 overloads)

Attempt to read a certain amount of data at the specified offset before returning.

1101

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncRandomAccessReadDevice,
typename Allocator,
typename CompletionCondition>

std::size_t read_at(
SyncRandomAccessReadDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition);

This function is used to read a certain number of bytes of data from a random access device at the specified offset. The call will
block until one of the following conditions is true:

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the device's read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the SyncRandomAccessRead-
Device concept.

offset The offset at which the data will be read.

b The basic_streambuf object into which the data will be read.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest read_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the device's read_some_at function.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

read_at (8 of 8 overloads)

Attempt to read a certain amount of data at the specified offset before returning.

1102

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncRandomAccessReadDevice,
typename Allocator,
typename CompletionCondition>

std::size_t read_at(
SyncRandomAccessReadDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition,
boost::system::error_code & ec);

This function is used to read a certain number of bytes of data from a random access device at the specified offset. The call will
block until one of the following conditions is true:

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the device's read_some_at function.

Parameters

d The device from which the data is to be read. The type must support the SyncRandomAccessRead-
Device concept.

offset The offset at which the data will be read.

b The basic_streambuf object into which the data will be read.

completion_condition The function object to be called to determine whether the read operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest read_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the read operation is complete. A non-zero return value indicates
the maximum number of bytes to be read on the next call to the device's read_some_at function.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. If an error occurs, returns the total number of bytes successfully transferred prior to the error.

read_until
Read data into a streambuf until it contains a delimiter, matches a regular expression, or a function object indicates a match.

1103

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
SyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
char delim);

» more...

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
SyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
char delim,
boost::system::error_code & ec);

» more...

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
SyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
const std::string & delim);

» more...

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
SyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
const std::string & delim,
boost::system::error_code & ec);

» more...

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
SyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
const boost::regex & expr);

» more...

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
SyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
const boost::regex & expr,
boost::system::error_code & ec);

» more...

template<
typename SyncReadStream,
typename Allocator,
typename MatchCondition>

std::size_t read_until(
SyncReadStream & s,

1104

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::basic_streambuf< Allocator > & b,
MatchCondition match_condition,
typename enable_if< is_match_condition< MatchCondition >::value >::type * = 0);

» more...

template<
typename SyncReadStream,
typename Allocator,
typename MatchCondition>

std::size_t read_until(
SyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
MatchCondition match_condition,
boost::system::error_code & ec,
typename enable_if< is_match_condition< MatchCondition >::value >::type * = 0);

» more...

Requirements

Header: boost/asio/read_until.hpp

Convenience header: boost/asio.hpp

read_until (1 of 8 overloads)

Read data into a streambuf until it contains a specified delimiter.

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
SyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
char delim);

This function is used to read data into the specified streambuf until the streambuf's get area contains the specified delimiter. The call
will block until one of the following conditions is true:

• The get area of the streambuf contains the specified delimiter.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function. If the streambuf's get area already
contains the delimiter, the function returns immediately.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b A streambuf object into which the data will be read.

delim The delimiter character.

Return Value

The number of bytes in the streambuf's get area up to and including the delimiter.

Exceptions

boost::system::system_error Thrown on failure.

1105

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

After a successful read_until operation, the streambuf may contain additional data beyond the delimiter. An application will typically
leave that data in the streambuf for a subsequent read_until operation to examine.

Example

To read data into a streambuf until a newline is encountered:

boost::asio::streambuf b;
boost::asio::read_until(s, b, '\n');
std::istream is(&b);
std::string line;
std::getline(is, line);

After the read_until operation completes successfully, the buffer b contains the delimiter:

{ 'a', 'b', ..., 'c', '\n', 'd', 'e', ... }

The call to std::getline then extracts the data up to and including the delimiter, so that the string line contains:

{ 'a', 'b', ..., 'c', '\n' }

The remaining data is left in the buffer b as follows:

{ 'd', 'e', ... }

This data may be the start of a new line, to be extracted by a subsequent read_until operation.

read_until (2 of 8 overloads)

Read data into a streambuf until it contains a specified delimiter.

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
SyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
char delim,
boost::system::error_code & ec);

This function is used to read data into the specified streambuf until the streambuf's get area contains the specified delimiter. The call
will block until one of the following conditions is true:

• The get area of the streambuf contains the specified delimiter.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function. If the streambuf's get area already
contains the delimiter, the function returns immediately.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b A streambuf object into which the data will be read.

1106

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

delim The delimiter character.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes in the streambuf's get area up to and including the delimiter. Returns 0 if an error occurred.

Remarks

After a successful read_until operation, the streambuf may contain additional data beyond the delimiter. An application will typically
leave that data in the streambuf for a subsequent read_until operation to examine.

read_until (3 of 8 overloads)

Read data into a streambuf until it contains a specified delimiter.

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
SyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
const std::string & delim);

This function is used to read data into the specified streambuf until the streambuf's get area contains the specified delimiter. The call
will block until one of the following conditions is true:

• The get area of the streambuf contains the specified delimiter.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function. If the streambuf's get area already
contains the delimiter, the function returns immediately.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b A streambuf object into which the data will be read.

delim The delimiter string.

Return Value

The number of bytes in the streambuf's get area up to and including the delimiter.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

After a successful read_until operation, the streambuf may contain additional data beyond the delimiter. An application will typically
leave that data in the streambuf for a subsequent read_until operation to examine.

Example

To read data into a streambuf until a newline is encountered:

1107

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::streambuf b;
boost::asio::read_until(s, b, "\r\n");
std::istream is(&b);
std::string line;
std::getline(is, line);

After the read_until operation completes successfully, the buffer b contains the delimiter:

{ 'a', 'b', ..., 'c', '\r', '\n', 'd', 'e', ... }

The call to std::getline then extracts the data up to and including the delimiter, so that the string line contains:

{ 'a', 'b', ..., 'c', '\r', '\n' }

The remaining data is left in the buffer b as follows:

{ 'd', 'e', ... }

This data may be the start of a new line, to be extracted by a subsequent read_until operation.

read_until (4 of 8 overloads)

Read data into a streambuf until it contains a specified delimiter.

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
SyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
const std::string & delim,
boost::system::error_code & ec);

This function is used to read data into the specified streambuf until the streambuf's get area contains the specified delimiter. The call
will block until one of the following conditions is true:

• The get area of the streambuf contains the specified delimiter.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function. If the streambuf's get area already
contains the delimiter, the function returns immediately.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b A streambuf object into which the data will be read.

delim The delimiter string.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes in the streambuf's get area up to and including the delimiter. Returns 0 if an error occurred.

1108

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

After a successful read_until operation, the streambuf may contain additional data beyond the delimiter. An application will typically
leave that data in the streambuf for a subsequent read_until operation to examine.

read_until (5 of 8 overloads)

Read data into a streambuf until some part of the data it contains matches a regular expression.

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
SyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
const boost::regex & expr);

This function is used to read data into the specified streambuf until the streambuf's get area contains some data that matches a regular
expression. The call will block until one of the following conditions is true:

• A substring of the streambuf's get area matches the regular expression.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function. If the streambuf's get area already
contains data that matches the regular expression, the function returns immediately.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b A streambuf object into which the data will be read.

expr The regular expression.

Return Value

The number of bytes in the streambuf's get area up to and including the substring that matches the regular expression.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

After a successful read_until operation, the streambuf may contain additional data beyond that which matched the regular expression.
An application will typically leave that data in the streambuf for a subsequent read_until operation to examine.

Example

To read data into a streambuf until a CR-LF sequence is encountered:

boost::asio::streambuf b;
boost::asio::read_until(s, b, boost::regex("\r\n"));
std::istream is(&b);
std::string line;
std::getline(is, line);

After the read_until operation completes successfully, the buffer b contains the data which matched the regular expression:

1109

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

{ 'a', 'b', ..., 'c', '\r', '\n', 'd', 'e', ... }

The call to std::getline then extracts the data up to and including the match, so that the string line contains:

{ 'a', 'b', ..., 'c', '\r', '\n' }

The remaining data is left in the buffer b as follows:

{ 'd', 'e', ... }

This data may be the start of a new line, to be extracted by a subsequent read_until operation.

read_until (6 of 8 overloads)

Read data into a streambuf until some part of the data it contains matches a regular expression.

template<
typename SyncReadStream,
typename Allocator>

std::size_t read_until(
SyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
const boost::regex & expr,
boost::system::error_code & ec);

This function is used to read data into the specified streambuf until the streambuf's get area contains some data that matches a regular
expression. The call will block until one of the following conditions is true:

• A substring of the streambuf's get area matches the regular expression.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function. If the streambuf's get area already
contains data that matches the regular expression, the function returns immediately.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b A streambuf object into which the data will be read.

expr The regular expression.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes in the streambuf's get area up to and including the substring that matches the regular expression. Returns 0 if
an error occurred.

Remarks

After a successful read_until operation, the streambuf may contain additional data beyond that which matched the regular expression.
An application will typically leave that data in the streambuf for a subsequent read_until operation to examine.

read_until (7 of 8 overloads)

Read data into a streambuf until a function object indicates a match.

1110

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncReadStream,
typename Allocator,
typename MatchCondition>

std::size_t read_until(
SyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
MatchCondition match_condition,
typename enable_if< is_match_condition< MatchCondition >::value >::type * = 0);

This function is used to read data into the specified streambuf until a user-defined match condition function object, when applied to
the data contained in the streambuf, indicates a successful match. The call will block until one of the following conditions is true:

• The match condition function object returns a std::pair where the second element evaluates to true.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function. If the match condition function
object already indicates a match, the function returns immediately.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b A streambuf object into which the data will be read.

match_condition The function object to be called to determine whether a match exists. The signature of the function object
must be:

pair<iterator, bool> match_condition(iterator begin, iterator end);

where iterator represents the type:

buffers_iterator<basic_streambuf<Allocator>::const_buffers_type>

The iterator parameters begin and end define the range of bytes to be scanned to determine whether there
is a match. The first member of the return value is an iterator marking one-past-the-end of the bytes that
have been consumed by the match function. This iterator is used to calculate the begin parameter for any
subsequent invocation of the match condition. The second member of the return value is true if a match
has been found, false otherwise.

Return Value

The number of bytes in the streambuf's get area that have been fully consumed by the match function.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

After a successful read_until operation, the streambuf may contain additional data beyond that which matched the function object.
An application will typically leave that data in the streambuf for a subsequent

The default implementation of the is_match_condition type trait evaluates to true for function pointers and function objects with
a result_type typedef. It must be specialised for other user-defined function objects.

1111

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples

To read data into a streambuf until whitespace is encountered:

typedef boost::asio::buffers_iterator<
boost::asio::streambuf::const_buffers_type> iterator;

std::pair<iterator, bool>
match_whitespace(iterator begin, iterator end)
{
iterator i = begin;
while (i != end)
if (std::isspace(*i++))
return std::make_pair(i, true);

return std::make_pair(i, false);
}
...
boost::asio::streambuf b;
boost::asio::read_until(s, b, match_whitespace);

To read data into a streambuf until a matching character is found:

class match_char
{
public:
explicit match_char(char c) : c_(c) {}

template <typename Iterator>
std::pair<Iterator, bool> operator()(

Iterator begin, Iterator end) const
{
Iterator i = begin;
while (i != end)
if (c_ == *i++)

return std::make_pair(i, true);
return std::make_pair(i, false);

}

private:
char c_;

};

namespace asio {
template <> struct is_match_condition<match_char>
: public boost::true_type {};

} // namespace asio
...
boost::asio::streambuf b;
boost::asio::read_until(s, b, match_char('a'));

read_until (8 of 8 overloads)

Read data into a streambuf until a function object indicates a match.

1112

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncReadStream,
typename Allocator,
typename MatchCondition>

std::size_t read_until(
SyncReadStream & s,
boost::asio::basic_streambuf< Allocator > & b,
MatchCondition match_condition,
boost::system::error_code & ec,
typename enable_if< is_match_condition< MatchCondition >::value >::type * = 0);

This function is used to read data into the specified streambuf until a user-defined match condition function object, when applied to
the data contained in the streambuf, indicates a successful match. The call will block until one of the following conditions is true:

• The match condition function object returns a std::pair where the second element evaluates to true.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's read_some function. If the match condition function
object already indicates a match, the function returns immediately.

Parameters

s The stream from which the data is to be read. The type must support the SyncReadStream concept.

b A streambuf object into which the data will be read.

match_condition The function object to be called to determine whether a match exists. The signature of the function object
must be:

pair<iterator, bool> match_condition(iterator begin, iterator end);

where iterator represents the type:

buffers_iterator<basic_streambuf<Allocator>::const_buffers_type>

The iterator parameters begin and end define the range of bytes to be scanned to determine whether there
is a match. The first member of the return value is an iterator marking one-past-the-end of the bytes that
have been consumed by the match function. This iterator is used to calculate the begin parameter for any
subsequent invocation of the match condition. The second member of the return value is true if a match
has been found, false otherwise.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes in the streambuf's get area that have been fully consumed by the match function. Returns 0 if an error occurred.

Remarks

After a successful read_until operation, the streambuf may contain additional data beyond that which matched the function object.
An application will typically leave that data in the streambuf for a subsequent

The default implementation of the is_match_condition type trait evaluates to true for function pointers and function objects with
a result_type typedef. It must be specialised for other user-defined function objects.

1113

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

seq_packet_socket_service
Default service implementation for a sequenced packet socket.

template<
typename Protocol>

class seq_packet_socket_service :
public io_service::service

Types

DescriptionName

The endpoint type.endpoint_type

The type of a sequenced packet socket implementation.implementation_type

The native socket type.native_handle_type

(Deprecated: Use native_handle_type.) The native socket type.native_type

The protocol type.protocol_type

1114

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

1115

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to a sequenced packet socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive.async_receive

Start an asynchronous send.async_send

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Bind the sequenced packet socket to the specified local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close a sequenced packet socket implementation.close

Connect the sequenced packet socket to the specified endpoint.connect

Construct a new sequenced packet socket implementation.construct

Move-construct a new sequenced packet socket implementation
from another protocol type.

converting_move_construct

Destroy a sequenced packet socket implementation.destroy

Get the io_service object that owns the service.get_io_service

Get a socket option.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint.local_endpoint

Move-assign from another sequenced packet socket implement-
ation.

move_assign

Move-construct a new sequenced packet socket implementation.move_construct

(Deprecated: Use native_handle().) Get the native socket imple-
mentation.

native

Get the native socket implementation.native_handle

Gets the non-blocking mode of the native socket implementation.native_non_blocking

Sets the non-blocking mode of the native socket implementation.

Gets the non-blocking mode of the socket.non_blocking

Sets the non-blocking mode of the socket.

Open a sequenced packet socket.open

1116

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Receive some data from the peer.receive

Get the remote endpoint.remote_endpoint

Send the given data to the peer.send

Construct a new sequenced packet socket service for the spe-
cified io_service.

seq_packet_socket_service

Set a socket option.set_option

Disable sends or receives on the socket.shutdown

Data Members

DescriptionName

The unique service identifier.id

Requirements

Header: boost/asio/seq_packet_socket_service.hpp

Convenience header: boost/asio.hpp

seq_packet_socket_service::assign

Assign an existing native socket to a sequenced packet socket.

boost::system::error_code assign(
implementation_type & impl,
const protocol_type & protocol,
const native_handle_type & native_socket,
boost::system::error_code & ec);

seq_packet_socket_service::async_connect

Start an asynchronous connect.

template<
typename ConnectHandler>

void-or-deduced async_connect(
implementation_type & impl,
const endpoint_type & peer_endpoint,
ConnectHandler handler);

seq_packet_socket_service::async_receive

Start an asynchronous receive.

1117

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
implementation_type & impl,
const MutableBufferSequence & buffers,
socket_base::message_flags in_flags,
socket_base::message_flags & out_flags,
ReadHandler handler);

seq_packet_socket_service::async_send

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
implementation_type & impl,
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
WriteHandler handler);

seq_packet_socket_service::at_mark

Determine whether the socket is at the out-of-band data mark.

bool at_mark(
const implementation_type & impl,
boost::system::error_code & ec) const;

seq_packet_socket_service::available

Determine the number of bytes available for reading.

std::size_t available(
const implementation_type & impl,
boost::system::error_code & ec) const;

seq_packet_socket_service::bind

Bind the sequenced packet socket to the specified local endpoint.

boost::system::error_code bind(
implementation_type & impl,
const endpoint_type & endpoint,
boost::system::error_code & ec);

seq_packet_socket_service::cancel

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
implementation_type & impl,
boost::system::error_code & ec);

1118

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

seq_packet_socket_service::close

Close a sequenced packet socket implementation.

boost::system::error_code close(
implementation_type & impl,
boost::system::error_code & ec);

seq_packet_socket_service::connect

Connect the sequenced packet socket to the specified endpoint.

boost::system::error_code connect(
implementation_type & impl,
const endpoint_type & peer_endpoint,
boost::system::error_code & ec);

seq_packet_socket_service::construct

Construct a new sequenced packet socket implementation.

void construct(
implementation_type & impl);

seq_packet_socket_service::converting_move_construct

Move-construct a new sequenced packet socket implementation from another protocol type.

template<
typename Protocol1>

void converting_move_construct(
implementation_type & impl,
typename seq_packet_socket_service< Protocol1 >::implementation_type & other_impl,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

seq_packet_socket_service::destroy

Destroy a sequenced packet socket implementation.

void destroy(
implementation_type & impl);

seq_packet_socket_service::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

Requirements

Header: boost/asio/seq_packet_socket_service.hpp

Convenience header: boost/asio.hpp

1119

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

seq_packet_socket_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

seq_packet_socket_service::get_option

Get a socket option.

template<
typename GettableSocketOption>

boost::system::error_code get_option(
const implementation_type & impl,
GettableSocketOption & option,
boost::system::error_code & ec) const;

seq_packet_socket_service::id

The unique service identifier.

static boost::asio::io_service::id id;

seq_packet_socket_service::implementation_type

The type of a sequenced packet socket implementation.

typedef implementation_defined implementation_type;

Requirements

Header: boost/asio/seq_packet_socket_service.hpp

Convenience header: boost/asio.hpp

seq_packet_socket_service::io_control

Perform an IO control command on the socket.

template<
typename IoControlCommand>

boost::system::error_code io_control(
implementation_type & impl,
IoControlCommand & command,
boost::system::error_code & ec);

seq_packet_socket_service::is_open

Determine whether the socket is open.

bool is_open(
const implementation_type & impl) const;

1120

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

seq_packet_socket_service::local_endpoint

Get the local endpoint.

endpoint_type local_endpoint(
const implementation_type & impl,
boost::system::error_code & ec) const;

seq_packet_socket_service::move_assign

Move-assign from another sequenced packet socket implementation.

void move_assign(
implementation_type & impl,
seq_packet_socket_service & other_service,
implementation_type & other_impl);

seq_packet_socket_service::move_construct

Move-construct a new sequenced packet socket implementation.

void move_construct(
implementation_type & impl,
implementation_type & other_impl);

seq_packet_socket_service::native

(Deprecated: Use native_handle().) Get the native socket implementation.

native_type native(
implementation_type & impl);

seq_packet_socket_service::native_handle

Get the native socket implementation.

native_handle_type native_handle(
implementation_type & impl);

seq_packet_socket_service::native_handle_type

The native socket type.

typedef implementation_defined native_handle_type;

Requirements

Header: boost/asio/seq_packet_socket_service.hpp

Convenience header: boost/asio.hpp

seq_packet_socket_service::native_non_blocking

Gets the non-blocking mode of the native socket implementation.

1121

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool native_non_blocking(
const implementation_type & impl) const;

» more...

Sets the non-blocking mode of the native socket implementation.

boost::system::error_code native_non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

» more...

seq_packet_socket_service::native_non_blocking (1 of 2 overloads)

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking(
const implementation_type & impl) const;

seq_packet_socket_service::native_non_blocking (2 of 2 overloads)

Sets the non-blocking mode of the native socket implementation.

boost::system::error_code native_non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

seq_packet_socket_service::native_type

(Deprecated: Use native_handle_type.) The native socket type.

typedef implementation_defined native_type;

Requirements

Header: boost/asio/seq_packet_socket_service.hpp

Convenience header: boost/asio.hpp

seq_packet_socket_service::non_blocking

Gets the non-blocking mode of the socket.

bool non_blocking(
const implementation_type & impl) const;

» more...

Sets the non-blocking mode of the socket.

boost::system::error_code non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

» more...

1122

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

seq_packet_socket_service::non_blocking (1 of 2 overloads)

Gets the non-blocking mode of the socket.

bool non_blocking(
const implementation_type & impl) const;

seq_packet_socket_service::non_blocking (2 of 2 overloads)

Sets the non-blocking mode of the socket.

boost::system::error_code non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

seq_packet_socket_service::open

Open a sequenced packet socket.

boost::system::error_code open(
implementation_type & impl,
const protocol_type & protocol,
boost::system::error_code & ec);

seq_packet_socket_service::protocol_type

The protocol type.

typedef Protocol protocol_type;

Requirements

Header: boost/asio/seq_packet_socket_service.hpp

Convenience header: boost/asio.hpp

seq_packet_socket_service::receive

Receive some data from the peer.

template<
typename MutableBufferSequence>

std::size_t receive(
implementation_type & impl,
const MutableBufferSequence & buffers,
socket_base::message_flags in_flags,
socket_base::message_flags & out_flags,
boost::system::error_code & ec);

seq_packet_socket_service::remote_endpoint

Get the remote endpoint.

1123

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

endpoint_type remote_endpoint(
const implementation_type & impl,
boost::system::error_code & ec) const;

seq_packet_socket_service::send

Send the given data to the peer.

template<
typename ConstBufferSequence>

std::size_t send(
implementation_type & impl,
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

seq_packet_socket_service::seq_packet_socket_service

Construct a new sequenced packet socket service for the specified io_service.

seq_packet_socket_service(
boost::asio::io_service & io_service);

seq_packet_socket_service::set_option

Set a socket option.

template<
typename SettableSocketOption>

boost::system::error_code set_option(
implementation_type & impl,
const SettableSocketOption & option,
boost::system::error_code & ec);

seq_packet_socket_service::shutdown

Disable sends or receives on the socket.

boost::system::error_code shutdown(
implementation_type & impl,
socket_base::shutdown_type what,
boost::system::error_code & ec);

serial_port
Typedef for the typical usage of a serial port.

typedef basic_serial_port serial_port;

1124

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_serial_port is always the lowest layer.lowest_layer_type

The native representation of a serial port.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a serial port.

native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

1125

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native serial port to the serial port.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Construct a basic_serial_port without opening it.

Construct and open a basic_serial_port.

Construct a basic_serial_port on an existing native serial port.

Move-construct a basic_serial_port from another.

basic_serial_port

Cancel all asynchronous operations associated with the serial
port.

cancel

Close the serial port.close

Get the io_service associated with the object.get_io_service

Get an option from the serial port.get_option

Determine whether the serial port is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native serial port
representation.

native

Get the native serial port representation.native_handle

Open the serial port using the specified device name.open

Move-assign a basic_serial_port from another.operator=

Read some data from the serial port.read_some

Send a break sequence to the serial port.send_break

Set an option on the serial port.set_option

Write some data to the serial port.write_some

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

1126

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_serial_port class template provides functionality that is common to all serial ports.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/serial_port.hpp

Convenience header: boost/asio.hpp

serial_port_base
The serial_port_base class is used as a base for the basic_serial_port class template so that we have a common place to
define the serial port options.

class serial_port_base

Types

DescriptionName

Serial port option to permit changing the baud rate.baud_rate

Serial port option to permit changing the character size.character_size

Serial port option to permit changing the flow control.flow_control

Serial port option to permit changing the parity.parity

Serial port option to permit changing the number of stop bits.stop_bits

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~serial_port_base

Requirements

Header: boost/asio/serial_port_base.hpp

1127

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Convenience header: boost/asio.hpp

serial_port_base::~serial_port_base

Protected destructor to prevent deletion through this type.

~serial_port_base();

serial_port_base::baud_rate
Serial port option to permit changing the baud rate.

class baud_rate

Member Functions

DescriptionName

baud_rate

load

store

value

Implements changing the baud rate for a given serial port.

Requirements

Header: boost/asio/serial_port_base.hpp

Convenience header: boost/asio.hpp

serial_port_base::baud_rate::baud_rate

baud_rate(
unsigned int rate = 0);

serial_port_base::baud_rate::load

boost::system::error_code load(
const BOOST_ASIO_OPTION_STORAGE & storage,
boost::system::error_code & ec);

serial_port_base::baud_rate::store

boost::system::error_code store(
BOOST_ASIO_OPTION_STORAGE & storage,
boost::system::error_code & ec) const;

1128

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

serial_port_base::baud_rate::value

unsigned int value() const;

serial_port_base::character_size
Serial port option to permit changing the character size.

class character_size

Member Functions

DescriptionName

character_size

load

store

value

Implements changing the character size for a given serial port.

Requirements

Header: boost/asio/serial_port_base.hpp

Convenience header: boost/asio.hpp

serial_port_base::character_size::character_size

character_size(
unsigned int t = 8);

serial_port_base::character_size::load

boost::system::error_code load(
const BOOST_ASIO_OPTION_STORAGE & storage,
boost::system::error_code & ec);

serial_port_base::character_size::store

boost::system::error_code store(
BOOST_ASIO_OPTION_STORAGE & storage,
boost::system::error_code & ec) const;

serial_port_base::character_size::value

unsigned int value() const;

1129

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

serial_port_base::flow_control
Serial port option to permit changing the flow control.

class flow_control

Types

DescriptionName

type

Member Functions

DescriptionName

flow_control

load

store

value

Implements changing the flow control for a given serial port.

Requirements

Header: boost/asio/serial_port_base.hpp

Convenience header: boost/asio.hpp

serial_port_base::flow_control::flow_control

flow_control(
type t = none);

serial_port_base::flow_control::load

boost::system::error_code load(
const BOOST_ASIO_OPTION_STORAGE & storage,
boost::system::error_code & ec);

serial_port_base::flow_control::store

boost::system::error_code store(
BOOST_ASIO_OPTION_STORAGE & storage,
boost::system::error_code & ec) const;

serial_port_base::flow_control::type

enum type

1130

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Values

none

software

hardware

serial_port_base::flow_control::value

type value() const;

serial_port_base::parity
Serial port option to permit changing the parity.

class parity

Types

DescriptionName

type

Member Functions

DescriptionName

load

parity

store

value

Implements changing the parity for a given serial port.

Requirements

Header: boost/asio/serial_port_base.hpp

Convenience header: boost/asio.hpp

serial_port_base::parity::load

boost::system::error_code load(
const BOOST_ASIO_OPTION_STORAGE & storage,
boost::system::error_code & ec);

1131

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

serial_port_base::parity::parity

parity(
type t = none);

serial_port_base::parity::store

boost::system::error_code store(
BOOST_ASIO_OPTION_STORAGE & storage,
boost::system::error_code & ec) const;

serial_port_base::parity::type

enum type

Values

none

odd

even

serial_port_base::parity::value

type value() const;

serial_port_base::stop_bits
Serial port option to permit changing the number of stop bits.

class stop_bits

Types

DescriptionName

type

Member Functions

DescriptionName

load

stop_bits

store

value

Implements changing the number of stop bits for a given serial port.

1132

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/serial_port_base.hpp

Convenience header: boost/asio.hpp

serial_port_base::stop_bits::load

boost::system::error_code load(
const BOOST_ASIO_OPTION_STORAGE & storage,
boost::system::error_code & ec);

serial_port_base::stop_bits::stop_bits

stop_bits(
type t = one);

serial_port_base::stop_bits::store

boost::system::error_code store(
BOOST_ASIO_OPTION_STORAGE & storage,
boost::system::error_code & ec) const;

serial_port_base::stop_bits::type

enum type

Values

one

onepointfive

two

serial_port_base::stop_bits::value

type value() const;

serial_port_service
Default service implementation for a serial port.

class serial_port_service :
public io_service::service

1133

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The type of a serial port implementation.implementation_type

The native handle type.native_handle_type

(Deprecated: Use native_handle_type.) The native handle type.native_type

Member Functions

DescriptionName

Assign an existing native handle to a serial port.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Cancel all asynchronous operations associated with the handle.cancel

Close a serial port implementation.close

Construct a new serial port implementation.construct

Destroy a serial port implementation.destroy

Get the io_service object that owns the service.get_io_service

Get a serial port option.get_option

Determine whether the handle is open.is_open

Move-assign from another serial port implementation.move_assign

Move-construct a new serial port implementation.move_construct

(Deprecated: Use native_handle().) Get the native handle imple-
mentation.

native

Get the native handle implementation.native_handle

Open a serial port.open

Read some data from the stream.read_some

Send a break sequence to the serial port.send_break

Construct a new serial port service for the specified io_service.serial_port_service

Set a serial port option.set_option

Write the given data to the stream.write_some

1134

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

The unique service identifier.id

Requirements

Header: boost/asio/serial_port_service.hpp

Convenience header: boost/asio.hpp

serial_port_service::assign

Assign an existing native handle to a serial port.

boost::system::error_code assign(
implementation_type & impl,
const native_handle_type & handle,
boost::system::error_code & ec);

serial_port_service::async_read_some

Start an asynchronous read.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read_some(
implementation_type & impl,
const MutableBufferSequence & buffers,
ReadHandler handler);

serial_port_service::async_write_some

Start an asynchronous write.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write_some(
implementation_type & impl,
const ConstBufferSequence & buffers,
WriteHandler handler);

serial_port_service::cancel

Cancel all asynchronous operations associated with the handle.

boost::system::error_code cancel(
implementation_type & impl,
boost::system::error_code & ec);

1135

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

serial_port_service::close

Close a serial port implementation.

boost::system::error_code close(
implementation_type & impl,
boost::system::error_code & ec);

serial_port_service::construct

Construct a new serial port implementation.

void construct(
implementation_type & impl);

serial_port_service::destroy

Destroy a serial port implementation.

void destroy(
implementation_type & impl);

serial_port_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

serial_port_service::get_option

Get a serial port option.

template<
typename GettableSerialPortOption>

boost::system::error_code get_option(
const implementation_type & impl,
GettableSerialPortOption & option,
boost::system::error_code & ec) const;

serial_port_service::id

The unique service identifier.

static boost::asio::io_service::id id;

serial_port_service::implementation_type

The type of a serial port implementation.

typedef implementation_defined implementation_type;

1136

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/serial_port_service.hpp

Convenience header: boost/asio.hpp

serial_port_service::is_open

Determine whether the handle is open.

bool is_open(
const implementation_type & impl) const;

serial_port_service::move_assign

Move-assign from another serial port implementation.

void move_assign(
implementation_type & impl,
serial_port_service & other_service,
implementation_type & other_impl);

serial_port_service::move_construct

Move-construct a new serial port implementation.

void move_construct(
implementation_type & impl,
implementation_type & other_impl);

serial_port_service::native

(Deprecated: Use native_handle().) Get the native handle implementation.

native_type native(
implementation_type & impl);

serial_port_service::native_handle

Get the native handle implementation.

native_handle_type native_handle(
implementation_type & impl);

serial_port_service::native_handle_type

The native handle type.

typedef implementation_defined native_handle_type;

Requirements

Header: boost/asio/serial_port_service.hpp

1137

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Convenience header: boost/asio.hpp

serial_port_service::native_type

(Deprecated: Use native_handle_type.) The native handle type.

typedef implementation_defined native_type;

Requirements

Header: boost/asio/serial_port_service.hpp

Convenience header: boost/asio.hpp

serial_port_service::open

Open a serial port.

boost::system::error_code open(
implementation_type & impl,
const std::string & device,
boost::system::error_code & ec);

serial_port_service::read_some

Read some data from the stream.

template<
typename MutableBufferSequence>

std::size_t read_some(
implementation_type & impl,
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

serial_port_service::send_break

Send a break sequence to the serial port.

boost::system::error_code send_break(
implementation_type & impl,
boost::system::error_code & ec);

serial_port_service::serial_port_service

Construct a new serial port service for the specified io_service.

serial_port_service(
boost::asio::io_service & io_service);

serial_port_service::set_option

Set a serial port option.

1138

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SettableSerialPortOption>

boost::system::error_code set_option(
implementation_type & impl,
const SettableSerialPortOption & option,
boost::system::error_code & ec);

serial_port_service::write_some

Write the given data to the stream.

template<
typename ConstBufferSequence>

std::size_t write_some(
implementation_type & impl,
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

service_already_exists
Exception thrown when trying to add a duplicate service to an io_service.

class service_already_exists

Member Functions

DescriptionName

service_already_exists

Requirements

Header: boost/asio/io_service.hpp

Convenience header: boost/asio.hpp

service_already_exists::service_already_exists

service_already_exists();

signal_set
Typedef for the typical usage of a signal set.

typedef basic_signal_set signal_set;

1139

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

Member Functions

DescriptionName

Add a signal to a signal_set.add

Start an asynchronous operation to wait for a signal to be de-
livered.

async_wait

Construct a signal set without adding any signals.

Construct a signal set and add one signal.

Construct a signal set and add two signals.

Construct a signal set and add three signals.

basic_signal_set

Cancel all operations associated with the signal set.cancel

Remove all signals from a signal_set.clear

Get the io_service associated with the object.get_io_service

Remove a signal from a signal_set.remove

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_signal_set class template provides the ability to perform an asynchronous wait for one or more signals to occur.

Most applications will use the signal_set typedef.

1140

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Example

Performing an asynchronous wait:

void handler(
const boost::system::error_code& error,
int signal_number)

{
if (!error)
{
// A signal occurred.

}
}

...

// Construct a signal set registered for process termination.
boost::asio::signal_set signals(io_service, SIGINT, SIGTERM);

// Start an asynchronous wait for one of the signals to occur.
signals.async_wait(handler);

Queueing of signal notifications

If a signal is registered with a signal_set, and the signal occurs when there are no waiting handlers, then the signal notification is
queued. The next async_wait operation on that signal_set will dequeue the notification. If multiple notifications are queued, subsequent
async_wait operations dequeue them one at a time. Signal notifications are dequeued in order of ascending signal number.

If a signal number is removed from a signal_set (using the remove or erase member functions) then any queued notifications for
that signal are discarded.

Multiple registration of signals

The same signal number may be registered with different signal_set objects. When the signal occurs, one handler is called for each
signal_set object.

Note that multiple registration only works for signals that are registered using Asio. The application must not also register a signal
handler using functions such as signal() or sigaction().

Signal masking on POSIX platforms

POSIX allows signals to be blocked using functions such as sigprocmask() and pthread_sigmask(). For signals to be delivered,
programs must ensure that any signals registered using signal_set objects are unblocked in at least one thread.

Requirements

Header: boost/asio/signal_set.hpp

Convenience header: boost/asio.hpp

signal_set_service
Default service implementation for a signal set.

1141

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class signal_set_service :
public io_service::service

Types

DescriptionName

The type of a signal set implementation.implementation_type

Member Functions

DescriptionName

Add a signal to a signal_set.add

async_wait

Cancel all operations associated with the signal set.cancel

Remove all signals from a signal_set.clear

Construct a new signal set implementation.construct

Destroy a signal set implementation.destroy

Get the io_service object that owns the service.get_io_service

Remove a signal to a signal_set.remove

Construct a new signal set service for the specified io_service.signal_set_service

Data Members

DescriptionName

The unique service identifier.id

Requirements

Header: boost/asio/signal_set_service.hpp

Convenience header: boost/asio.hpp

signal_set_service::add

Add a signal to a signal_set.

boost::system::error_code add(
implementation_type & impl,
int signal_number,
boost::system::error_code & ec);

1142

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

signal_set_service::async_wait

template<
typename SignalHandler>

void-or-deduced async_wait(
implementation_type & impl,
SignalHandler handler);

signal_set_service::cancel

Cancel all operations associated with the signal set.

boost::system::error_code cancel(
implementation_type & impl,
boost::system::error_code & ec);

signal_set_service::clear

Remove all signals from a signal_set.

boost::system::error_code clear(
implementation_type & impl,
boost::system::error_code & ec);

signal_set_service::construct

Construct a new signal set implementation.

void construct(
implementation_type & impl);

signal_set_service::destroy

Destroy a signal set implementation.

void destroy(
implementation_type & impl);

signal_set_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

signal_set_service::id

The unique service identifier.

static boost::asio::io_service::id id;

1143

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

signal_set_service::implementation_type

The type of a signal set implementation.

typedef implementation_defined implementation_type;

Requirements

Header: boost/asio/signal_set_service.hpp

Convenience header: boost/asio.hpp

signal_set_service::remove

Remove a signal to a signal_set.

boost::system::error_code remove(
implementation_type & impl,
int signal_number,
boost::system::error_code & ec);

signal_set_service::signal_set_service

Construct a new signal set service for the specified io_service.

signal_set_service(
boost::asio::io_service & io_service);

socket_acceptor_service
Default service implementation for a socket acceptor.

template<
typename Protocol>

class socket_acceptor_service :
public io_service::service

Types

DescriptionName

The endpoint type.endpoint_type

The native type of the socket acceptor.implementation_type

The native acceptor type.native_handle_type

(Deprecated: Use native_handle_type.) The native acceptor type.native_type

The protocol type.protocol_type

1144

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

1145

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Accept a new connection.accept

Assign an existing native acceptor to a socket acceptor.assign

Start an asynchronous accept.async_accept

Bind the socket acceptor to the specified local endpoint.bind

Cancel all asynchronous operations associated with the acceptor.cancel

Close a socket acceptor implementation.close

Construct a new socket acceptor implementation.construct

Move-construct a new socket acceptor implementation from
another protocol type.

converting_move_construct

Destroy a socket acceptor implementation.destroy

Get the io_service object that owns the service.get_io_service

Get a socket option.get_option

Perform an IO control command on the socket.io_control

Determine whether the acceptor is open.is_open

Place the socket acceptor into the state where it will listen for
new connections.

listen

Get the local endpoint.local_endpoint

Move-assign from another socket acceptor implementation.move_assign

Move-construct a new socket acceptor implementation.move_construct

(Deprecated: Use native_handle().) Get the native acceptor im-
plementation.

native

Get the native acceptor implementation.native_handle

Gets the non-blocking mode of the native acceptor implementa-
tion.

native_non_blocking

Sets the non-blocking mode of the native acceptor implementa-
tion.

Gets the non-blocking mode of the acceptor.non_blocking

Sets the non-blocking mode of the acceptor.

Open a new socket acceptor implementation.open

Set a socket option.set_option

1146

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Construct a new socket acceptor service for the specified
io_service.

socket_acceptor_service

Data Members

DescriptionName

The unique service identifier.id

Requirements

Header: boost/asio/socket_acceptor_service.hpp

Convenience header: boost/asio.hpp

socket_acceptor_service::accept

Accept a new connection.

template<
typename Protocol1,
typename SocketService>

boost::system::error_code accept(
implementation_type & impl,
basic_socket< Protocol1, SocketService > & peer,
endpoint_type * peer_endpoint,
boost::system::error_code & ec,
typename enable_if< is_convertible< Protocol, Protocol1 >::value >::type * = 0);

socket_acceptor_service::assign

Assign an existing native acceptor to a socket acceptor.

boost::system::error_code assign(
implementation_type & impl,
const protocol_type & protocol,
const native_handle_type & native_acceptor,
boost::system::error_code & ec);

socket_acceptor_service::async_accept

Start an asynchronous accept.

template<
typename Protocol1,
typename SocketService,
typename AcceptHandler>

void-or-deduced async_accept(
implementation_type & impl,
basic_socket< Protocol1, SocketService > & peer,
endpoint_type * peer_endpoint,
AcceptHandler handler,
typename enable_if< is_convertible< Protocol, Protocol1 >::value >::type * = 0);

1147

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

socket_acceptor_service::bind

Bind the socket acceptor to the specified local endpoint.

boost::system::error_code bind(
implementation_type & impl,
const endpoint_type & endpoint,
boost::system::error_code & ec);

socket_acceptor_service::cancel

Cancel all asynchronous operations associated with the acceptor.

boost::system::error_code cancel(
implementation_type & impl,
boost::system::error_code & ec);

socket_acceptor_service::close

Close a socket acceptor implementation.

boost::system::error_code close(
implementation_type & impl,
boost::system::error_code & ec);

socket_acceptor_service::construct

Construct a new socket acceptor implementation.

void construct(
implementation_type & impl);

socket_acceptor_service::converting_move_construct

Move-construct a new socket acceptor implementation from another protocol type.

template<
typename Protocol1>

void converting_move_construct(
implementation_type & impl,
typename socket_acceptor_service< Protocol1 >::implementation_type & other_impl,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

socket_acceptor_service::destroy

Destroy a socket acceptor implementation.

void destroy(
implementation_type & impl);

socket_acceptor_service::endpoint_type

The endpoint type.

1148

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef protocol_type::endpoint endpoint_type;

Requirements

Header: boost/asio/socket_acceptor_service.hpp

Convenience header: boost/asio.hpp

socket_acceptor_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

socket_acceptor_service::get_option

Get a socket option.

template<
typename GettableSocketOption>

boost::system::error_code get_option(
const implementation_type & impl,
GettableSocketOption & option,
boost::system::error_code & ec) const;

socket_acceptor_service::id

The unique service identifier.

static boost::asio::io_service::id id;

socket_acceptor_service::implementation_type

The native type of the socket acceptor.

typedef implementation_defined implementation_type;

Requirements

Header: boost/asio/socket_acceptor_service.hpp

Convenience header: boost/asio.hpp

socket_acceptor_service::io_control

Perform an IO control command on the socket.

template<
typename IoControlCommand>

boost::system::error_code io_control(
implementation_type & impl,
IoControlCommand & command,
boost::system::error_code & ec);

1149

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

socket_acceptor_service::is_open

Determine whether the acceptor is open.

bool is_open(
const implementation_type & impl) const;

socket_acceptor_service::listen

Place the socket acceptor into the state where it will listen for new connections.

boost::system::error_code listen(
implementation_type & impl,
int backlog,
boost::system::error_code & ec);

socket_acceptor_service::local_endpoint

Get the local endpoint.

endpoint_type local_endpoint(
const implementation_type & impl,
boost::system::error_code & ec) const;

socket_acceptor_service::move_assign

Move-assign from another socket acceptor implementation.

void move_assign(
implementation_type & impl,
socket_acceptor_service & other_service,
implementation_type & other_impl);

socket_acceptor_service::move_construct

Move-construct a new socket acceptor implementation.

void move_construct(
implementation_type & impl,
implementation_type & other_impl);

socket_acceptor_service::native

(Deprecated: Use native_handle().) Get the native acceptor implementation.

native_type native(
implementation_type & impl);

socket_acceptor_service::native_handle

Get the native acceptor implementation.

1150

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

native_handle_type native_handle(
implementation_type & impl);

socket_acceptor_service::native_handle_type

The native acceptor type.

typedef implementation_defined native_handle_type;

Requirements

Header: boost/asio/socket_acceptor_service.hpp

Convenience header: boost/asio.hpp

socket_acceptor_service::native_non_blocking

Gets the non-blocking mode of the native acceptor implementation.

bool native_non_blocking(
const implementation_type & impl) const;

» more...

Sets the non-blocking mode of the native acceptor implementation.

boost::system::error_code native_non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

» more...

socket_acceptor_service::native_non_blocking (1 of 2 overloads)

Gets the non-blocking mode of the native acceptor implementation.

bool native_non_blocking(
const implementation_type & impl) const;

socket_acceptor_service::native_non_blocking (2 of 2 overloads)

Sets the non-blocking mode of the native acceptor implementation.

boost::system::error_code native_non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

socket_acceptor_service::native_type

(Deprecated: Use native_handle_type.) The native acceptor type.

typedef implementation_defined native_type;

1151

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/socket_acceptor_service.hpp

Convenience header: boost/asio.hpp

socket_acceptor_service::non_blocking

Gets the non-blocking mode of the acceptor.

bool non_blocking(
const implementation_type & impl) const;

» more...

Sets the non-blocking mode of the acceptor.

boost::system::error_code non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

» more...

socket_acceptor_service::non_blocking (1 of 2 overloads)

Gets the non-blocking mode of the acceptor.

bool non_blocking(
const implementation_type & impl) const;

socket_acceptor_service::non_blocking (2 of 2 overloads)

Sets the non-blocking mode of the acceptor.

boost::system::error_code non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

socket_acceptor_service::open

Open a new socket acceptor implementation.

boost::system::error_code open(
implementation_type & impl,
const protocol_type & protocol,
boost::system::error_code & ec);

socket_acceptor_service::protocol_type

The protocol type.

typedef Protocol protocol_type;

Requirements

Header: boost/asio/socket_acceptor_service.hpp

1152

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Convenience header: boost/asio.hpp

socket_acceptor_service::set_option

Set a socket option.

template<
typename SettableSocketOption>

boost::system::error_code set_option(
implementation_type & impl,
const SettableSocketOption & option,
boost::system::error_code & ec);

socket_acceptor_service::socket_acceptor_service

Construct a new socket acceptor service for the specified io_service.

socket_acceptor_service(
boost::asio::io_service & io_service);

socket_base
The socket_base class is used as a base for the basic_stream_socket and basic_datagram_socket class templates so that
we have a common place to define the shutdown_type and enum.

class socket_base

1153

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

Socket option to permit sending of broadcast messages.broadcast

IO control command to get the amount of data that can be read
without blocking.

bytes_readable

Socket option to enable socket-level debugging.debug

Socket option to prevent routing, use local interfaces only.do_not_route

Socket option to report aborted connections on accept.enable_connection_aborted

Socket option to send keep-alives.keep_alive

Socket option to specify whether the socket lingers on close if
unsent data is present.

linger

Bitmask type for flags that can be passed to send and receive
operations.

message_flags

(Deprecated: Use non_blocking().) IO control command to set
the blocking mode of the socket.

non_blocking_io

Socket option for the receive buffer size of a socket.receive_buffer_size

Socket option for the receive low watermark.receive_low_watermark

Socket option to allow the socket to be bound to an address that
is already in use.

reuse_address

Socket option for the send buffer size of a socket.send_buffer_size

Socket option for the send low watermark.send_low_watermark

Different ways a socket may be shutdown.shutdown_type

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~socket_base

1154

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Data Members

DescriptionName

The maximum length of the queue of pending incoming connec-
tions.

max_connections

Specify that the data should not be subject to routing.message_do_not_route

Specifies that the data marks the end of a record.message_end_of_record

Process out-of-band data.message_out_of_band

Peek at incoming data without removing it from the input queue.message_peek

Requirements

Header: boost/asio/socket_base.hpp

Convenience header: boost/asio.hpp

socket_base::broadcast

Socket option to permit sending of broadcast messages.

typedef implementation_defined broadcast;

Implements the SOL_SOCKET/SO_BROADCAST socket option.

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::broadcast option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/socket_base.hpp

Convenience header: boost/asio.hpp

socket_base::bytes_readable

IO control command to get the amount of data that can be read without blocking.

1155

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined bytes_readable;

Implements the FIONREAD IO control command.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::bytes_readable command(true);
socket.io_control(command);
std::size_t bytes_readable = command.get();

Requirements

Header: boost/asio/socket_base.hpp

Convenience header: boost/asio.hpp

socket_base::debug

Socket option to enable socket-level debugging.

typedef implementation_defined debug;

Implements the SOL_SOCKET/SO_DEBUG socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::debug option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/socket_base.hpp

Convenience header: boost/asio.hpp

socket_base::do_not_route

Socket option to prevent routing, use local interfaces only.

typedef implementation_defined do_not_route;

Implements the SOL_SOCKET/SO_DONTROUTE socket option.

1156

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples

Setting the option:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::udp::socket socket(io_service);
...
boost::asio::socket_base::do_not_route option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/socket_base.hpp

Convenience header: boost/asio.hpp

socket_base::enable_connection_aborted

Socket option to report aborted connections on accept.

typedef implementation_defined enable_connection_aborted;

Implements a custom socket option that determines whether or not an accept operation is permitted to fail with
boost::asio::error::connection_aborted. By default the option is false.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::enable_connection_aborted option;
acceptor.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/socket_base.hpp

Convenience header: boost/asio.hpp

1157

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

socket_base::keep_alive

Socket option to send keep-alives.

typedef implementation_defined keep_alive;

Implements the SOL_SOCKET/SO_KEEPALIVE socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option(true);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::keep_alive option;
socket.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/socket_base.hpp

Convenience header: boost/asio.hpp

socket_base::linger

Socket option to specify whether the socket lingers on close if unsent data is present.

typedef implementation_defined linger;

Implements the SOL_SOCKET/SO_LINGER socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option(true, 30);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::linger option;
socket.get_option(option);
bool is_set = option.enabled();
unsigned short timeout = option.timeout();

1158

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/socket_base.hpp

Convenience header: boost/asio.hpp

socket_base::max_connections

The maximum length of the queue of pending incoming connections.

static const int max_connections = implementation_defined;

socket_base::message_do_not_route

Specify that the data should not be subject to routing.

static const int message_do_not_route = implementation_defined;

socket_base::message_end_of_record

Specifies that the data marks the end of a record.

static const int message_end_of_record = implementation_defined;

socket_base::message_flags

Bitmask type for flags that can be passed to send and receive operations.

typedef int message_flags;

Requirements

Header: boost/asio/socket_base.hpp

Convenience header: boost/asio.hpp

socket_base::message_out_of_band

Process out-of-band data.

static const int message_out_of_band = implementation_defined;

socket_base::message_peek

Peek at incoming data without removing it from the input queue.

static const int message_peek = implementation_defined;

socket_base::non_blocking_io

(Deprecated: Use non_blocking().) IO control command to set the blocking mode of the socket.

typedef implementation_defined non_blocking_io;

1159

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Implements the FIONBIO IO control command.

Example

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::non_blocking_io command(true);
socket.io_control(command);

Requirements

Header: boost/asio/socket_base.hpp

Convenience header: boost/asio.hpp

socket_base::receive_buffer_size

Socket option for the receive buffer size of a socket.

typedef implementation_defined receive_buffer_size;

Implements the SOL_SOCKET/SO_RCVBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_buffer_size option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/socket_base.hpp

Convenience header: boost/asio.hpp

socket_base::receive_low_watermark

Socket option for the receive low watermark.

typedef implementation_defined receive_low_watermark;

Implements the SOL_SOCKET/SO_RCVLOWAT socket option.

Examples

Setting the option:

1160

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::receive_low_watermark option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/socket_base.hpp

Convenience header: boost/asio.hpp

socket_base::reuse_address

Socket option to allow the socket to be bound to an address that is already in use.

typedef implementation_defined reuse_address;

Implements the SOL_SOCKET/SO_REUSEADDR socket option.

Examples

Setting the option:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option(true);
acceptor.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::acceptor acceptor(io_service);
...
boost::asio::socket_base::reuse_address option;
acceptor.get_option(option);
bool is_set = option.value();

Requirements

Header: boost/asio/socket_base.hpp

Convenience header: boost/asio.hpp

socket_base::send_buffer_size

Socket option for the send buffer size of a socket.

typedef implementation_defined send_buffer_size;

1161

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Implements the SOL_SOCKET/SO_SNDBUF socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option(8192);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_buffer_size option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/socket_base.hpp

Convenience header: boost/asio.hpp

socket_base::send_low_watermark

Socket option for the send low watermark.

typedef implementation_defined send_low_watermark;

Implements the SOL_SOCKET/SO_SNDLOWAT socket option.

Examples

Setting the option:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option(1024);
socket.set_option(option);

Getting the current option value:

boost::asio::ip::tcp::socket socket(io_service);
...
boost::asio::socket_base::send_low_watermark option;
socket.get_option(option);
int size = option.value();

Requirements

Header: boost/asio/socket_base.hpp

Convenience header: boost/asio.hpp

1162

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

socket_base::shutdown_type

Different ways a socket may be shutdown.

enum shutdown_type

Values

shutdown_receive Shutdown the receive side of the socket.

shutdown_send Shutdown the send side of the socket.

shutdown_both Shutdown both send and receive on the socket.

socket_base::~socket_base

Protected destructor to prevent deletion through this type.

~socket_base();

spawn
Start a new stackful coroutine.

template<
typename Handler,
typename Function>

void spawn(
Handler handler,
Function function,
const boost::coroutines::attributes & attributes = boost::coroutines::attributes());

» more...

template<
typename Handler,
typename Function>

void spawn(
basic_yield_context< Handler > ctx,
Function function,
const boost::coroutines::attributes & attributes = boost::coroutines::attributes());

» more...

template<
typename Function>

void spawn(
boost::asio::io_service::strand strand,
Function function,
const boost::coroutines::attributes & attributes = boost::coroutines::attributes());

» more...

template<
typename Function>

void spawn(
boost::asio::io_service & io_service,
Function function,
const boost::coroutines::attributes & attributes = boost::coroutines::attributes());

» more...

1163

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The spawn() function is a high-level wrapper over the Boost.Coroutine library. This function enables programs to implement
asynchronous logic in a synchronous manner, as illustrated by the following example:

boost::asio::spawn(my_strand, do_echo);

// ...

void do_echo(boost::asio::yield_context yield)
{
try
{
char data[128];
for (;;)
{
std::size_t length =

my_socket.async_read_some(
boost::asio::buffer(data), yield);

boost::asio::async_write(my_socket,
boost::asio::buffer(data, length), yield);

}
}
catch (std::exception& e)
{
// ...

}
}

Requirements

Header: boost/asio/spawn.hpp

Convenience header: boost/asio.hpp

spawn (1 of 4 overloads)

Start a new stackful coroutine, calling the specified handler when it completes.

template<
typename Handler,
typename Function>

void spawn(
Handler handler,
Function function,
const boost::coroutines::attributes & attributes = boost::coroutines::attributes());

This function is used to launch a new coroutine.

Parameters

handler A handler to be called when the coroutine exits. More importantly, the handler provides an execution context (via
the the handler invocation hook) for the coroutine. The handler must have the signature:

void handler();

function The coroutine function. The function must have the signature:

void function(basic_yield_context<Handler> yield);

1164

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

attributes Boost.Coroutine attributes used to customise the coroutine.

spawn (2 of 4 overloads)

Start a new stackful coroutine, inheriting the execution context of another.

template<
typename Handler,
typename Function>

void spawn(
basic_yield_context< Handler > ctx,
Function function,
const boost::coroutines::attributes & attributes = boost::coroutines::attributes());

This function is used to launch a new coroutine.

Parameters

ctx Identifies the current coroutine as a parent of the new coroutine. This specifies that the new coroutine should inherit
the execution context of the parent. For example, if the parent coroutine is executing in a particular strand, then
the new coroutine will execute in the same strand.

function The coroutine function. The function must have the signature:

void function(basic_yield_context<Handler> yield);

attributes Boost.Coroutine attributes used to customise the coroutine.

spawn (3 of 4 overloads)

Start a new stackful coroutine that executes in the context of a strand.

template<
typename Function>

void spawn(
boost::asio::io_service::strand strand,
Function function,
const boost::coroutines::attributes & attributes = boost::coroutines::attributes());

This function is used to launch a new coroutine.

Parameters

strand Identifies a strand. By starting multiple coroutines on the same strand, the implementation ensures that none of
those coroutines can execute simultaneously.

function The coroutine function. The function must have the signature:

void function(yield_context yield);

attributes Boost.Coroutine attributes used to customise the coroutine.

spawn (4 of 4 overloads)

Start a new stackful coroutine that executes on a given io_service.

1165

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename Function>

void spawn(
boost::asio::io_service & io_service,
Function function,
const boost::coroutines::attributes & attributes = boost::coroutines::attributes());

This function is used to launch a new coroutine.

Parameters

io_service Identifies the io_service that will run the coroutine. The new coroutine is implicitly given its own strand within
this io_service.

function The coroutine function. The function must have the signature:

void function(yield_context yield);

attributes Boost.Coroutine attributes used to customise the coroutine.

ssl::context

class context :
public ssl::context_base,
noncopyable

Types

DescriptionName

File format types.file_format

(Deprecated: Use native_handle_type.) The native type of the
SSL context.

impl_type

Different methods supported by a context.method

The native handle type of the SSL context.native_handle_type

Bitmask type for SSL options.options

Purpose of PEM password.password_purpose

1166

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

1167

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Add certification authority for performing verification.add_certificate_authority

Add a directory containing certificate authority files to be used
for performing verification.

add_verify_path

Clear options on the context.clear_options

Constructor.context

Deprecated constructor taking a reference to an io_service object.

Move-construct a context from another.

(Deprecated: Use native_handle().) Get the underlying imple-
mentation in the native type.

impl

Load a certification authority file for performing verification.load_verify_file

Get the underlying implementation in the native type.native_handle

Move-assign a context from another.operator=

Configures the context to use the default directories for finding
certification authority certificates.

set_default_verify_paths

Set options on the context.set_options

Set the password callback.set_password_callback

Set the callback used to verify peer certificates.set_verify_callback

Set the peer verification depth.set_verify_depth

Set the peer verification mode.set_verify_mode

Use a certificate from a memory buffer.use_certificate

Use a certificate chain from a memory buffer.use_certificate_chain

Use a certificate chain from a file.use_certificate_chain_file

Use a certificate from a file.use_certificate_file

Use a private key from a memory buffer.use_private_key

Use a private key from a file.use_private_key_file

Use an RSA private key from a memory buffer.use_rsa_private_key

Use an RSA private key from a file.use_rsa_private_key_file

Use the specified memory buffer to obtain the temporary Diffie-
Hellman parameters.

use_tmp_dh

Use the specified file to obtain the temporary Diffie-Hellman
parameters.

use_tmp_dh_file

1168

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Destructor.~context

Data Members

DescriptionName

Implement various bug workarounds.default_workarounds

Disable compression. Compression is disabled by default.no_compression

Disable SSL v2.no_sslv2

Disable SSL v3.no_sslv3

Disable TLS v1.no_tlsv1

Always create a new key when using tmp_dh parameters.single_dh_use

Requirements

Header: boost/asio/ssl/context.hpp

Convenience header: boost/asio/ssl.hpp

ssl::context::add_certificate_authority

Add certification authority for performing verification.

void add_certificate_authority(
const const_buffer & ca);

» more...

boost::system::error_code add_certificate_authority(
const const_buffer & ca,
boost::system::error_code & ec);

» more...

ssl::context::add_certificate_authority (1 of 2 overloads)

Add certification authority for performing verification.

void add_certificate_authority(
const const_buffer & ca);

This function is used to add one trusted certification authority from a memory buffer.

Parameters

ca The buffer containing the certification authority certificate. The certificate must use the PEM format.

Exceptions

boost::system::system_error Thrown on failure.

1169

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

Calls SSL_CTX_get_cert_store and X509_STORE_add_cert.

ssl::context::add_certificate_authority (2 of 2 overloads)

Add certification authority for performing verification.

boost::system::error_code add_certificate_authority(
const const_buffer & ca,
boost::system::error_code & ec);

This function is used to add one trusted certification authority from a memory buffer.

Parameters

ca The buffer containing the certification authority certificate. The certificate must use the PEM format.

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_get_cert_store and X509_STORE_add_cert.

ssl::context::add_verify_path

Add a directory containing certificate authority files to be used for performing verification.

void add_verify_path(
const std::string & path);

» more...

boost::system::error_code add_verify_path(
const std::string & path,
boost::system::error_code & ec);

» more...

ssl::context::add_verify_path (1 of 2 overloads)

Add a directory containing certificate authority files to be used for performing verification.

void add_verify_path(
const std::string & path);

This function is used to specify the name of a directory containing certification authority certificates. Each file in the directory must
contain a single certificate. The files must be named using the subject name's hash and an extension of ".0".

Parameters

path The name of a directory containing the certificates.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_load_verify_locations.

1170

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::context::add_verify_path (2 of 2 overloads)

Add a directory containing certificate authority files to be used for performing verification.

boost::system::error_code add_verify_path(
const std::string & path,
boost::system::error_code & ec);

This function is used to specify the name of a directory containing certification authority certificates. Each file in the directory must
contain a single certificate. The files must be named using the subject name's hash and an extension of ".0".

Parameters

path The name of a directory containing the certificates.

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_load_verify_locations.

ssl::context::clear_options

Clear options on the context.

void clear_options(
options o);

» more...

boost::system::error_code clear_options(
options o,
boost::system::error_code & ec);

» more...

ssl::context::clear_options (1 of 2 overloads)

Clear options on the context.

void clear_options(
options o);

This function may be used to configure the SSL options used by the context.

Parameters

o A bitmask of options. The available option values are defined in the ssl::context_base class. The specified options, if currently
enabled on the context, are cleared.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_clear_options.

1171

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::context::clear_options (2 of 2 overloads)

Clear options on the context.

boost::system::error_code clear_options(
options o,
boost::system::error_code & ec);

This function may be used to configure the SSL options used by the context.

Parameters

o A bitmask of options. The available option values are defined in the ssl::context_base class. The specified options, if
currently enabled on the context, are cleared.

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_clear_options.

ssl::context::context

Constructor.

explicit context(
method m);

» more...

Deprecated constructor taking a reference to an io_service object.

context(
boost::asio::io_service & ,
method m);

» more...

Move-construct a context from another.

context(
context && other);

» more...

ssl::context::context (1 of 3 overloads)

Constructor.

context(
method m);

ssl::context::context (2 of 3 overloads)

Deprecated constructor taking a reference to an io_service object.

context(
boost::asio::io_service & ,
method m);

1172

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::context::context (3 of 3 overloads)

Move-construct a context from another.

context(
context && other);

This constructor moves an SSL context from one object to another.

Parameters

other The other context object from which the move will occur.

Remarks

Following the move, the following operations only are valid for the moved-from object: * Destruction.

• As a target for move-assignment.

ssl::context::default_workarounds

Implement various bug workarounds.

static const long default_workarounds = implementation_defined;

ssl::context::file_format

File format types.

enum file_format

Values

asn1 ASN.1 file.

pem PEM file.

ssl::context::impl

(Deprecated: Use native_handle().) Get the underlying implementation in the native type.

impl_type impl();

This function may be used to obtain the underlying implementation of the context. This is intended to allow access to context func-
tionality that is not otherwise provided.

ssl::context::impl_type

(Deprecated: Use native_handle_type.) The native type of the SSL context.

typedef SSL_CTX * impl_type;

Requirements

Header: boost/asio/ssl/context.hpp

1173

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Convenience header: boost/asio/ssl.hpp

ssl::context::load_verify_file

Load a certification authority file for performing verification.

void load_verify_file(
const std::string & filename);

» more...

boost::system::error_code load_verify_file(
const std::string & filename,
boost::system::error_code & ec);

» more...

ssl::context::load_verify_file (1 of 2 overloads)

Load a certification authority file for performing verification.

void load_verify_file(
const std::string & filename);

This function is used to load one or more trusted certification authorities from a file.

Parameters

filename The name of a file containing certification authority certificates in PEM format.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_load_verify_locations.

ssl::context::load_verify_file (2 of 2 overloads)

Load a certification authority file for performing verification.

boost::system::error_code load_verify_file(
const std::string & filename,
boost::system::error_code & ec);

This function is used to load the certificates for one or more trusted certification authorities from a file.

Parameters

filename The name of a file containing certification authority certificates in PEM format.

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_load_verify_locations.

1174

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::context::method

Different methods supported by a context.

enum method

Values

sslv2 Generic SSL version 2.

sslv2_client SSL version 2 client.

sslv2_server SSL version 2 server.

sslv3 Generic SSL version 3.

sslv3_client SSL version 3 client.

sslv3_server SSL version 3 server.

tlsv1 Generic TLS version 1.

tlsv1_client TLS version 1 client.

tlsv1_server TLS version 1 server.

sslv23 Generic SSL/TLS.

sslv23_client SSL/TLS client.

sslv23_server SSL/TLS server.

tlsv11 Generic TLS version 1.1.

tlsv11_client TLS version 1.1 client.

tlsv11_server TLS version 1.1 server.

tlsv12 Generic TLS version 1.2.

tlsv12_client TLS version 1.2 client.

tlsv12_server TLS version 1.2 server.

ssl::context::native_handle

Get the underlying implementation in the native type.

native_handle_type native_handle();

This function may be used to obtain the underlying implementation of the context. This is intended to allow access to context func-
tionality that is not otherwise provided.

ssl::context::native_handle_type

The native handle type of the SSL context.

typedef SSL_CTX * native_handle_type;

1175

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/ssl/context.hpp

Convenience header: boost/asio/ssl.hpp

ssl::context::no_compression

Disable compression. Compression is disabled by default.

static const long no_compression = implementation_defined;

ssl::context::no_sslv2

Disable SSL v2.

static const long no_sslv2 = implementation_defined;

ssl::context::no_sslv3

Disable SSL v3.

static const long no_sslv3 = implementation_defined;

ssl::context::no_tlsv1

Disable TLS v1.

static const long no_tlsv1 = implementation_defined;

ssl::context::operator=

Move-assign a context from another.

context & operator=(
context && other);

This assignment operator moves an SSL context from one object to another.

Parameters

other The other context object from which the move will occur.

Remarks

Following the move, the following operations only are valid for the moved-from object: * Destruction.

• As a target for move-assignment.

ssl::context::options

Bitmask type for SSL options.

typedef long options;

1176

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/ssl/context.hpp

Convenience header: boost/asio/ssl.hpp

ssl::context::password_purpose

Purpose of PEM password.

enum password_purpose

Values

for_reading The password is needed for reading/decryption.

for_writing The password is needed for writing/encryption.

ssl::context::set_default_verify_paths

Configures the context to use the default directories for finding certification authority certificates.

void set_default_verify_paths();
» more...

boost::system::error_code set_default_verify_paths(
boost::system::error_code & ec);

» more...

ssl::context::set_default_verify_paths (1 of 2 overloads)

Configures the context to use the default directories for finding certification authority certificates.

void set_default_verify_paths();

This function specifies that the context should use the default, system-dependent directories for locating certification authority certi-
ficates.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_set_default_verify_paths.

ssl::context::set_default_verify_paths (2 of 2 overloads)

Configures the context to use the default directories for finding certification authority certificates.

boost::system::error_code set_default_verify_paths(
boost::system::error_code & ec);

This function specifies that the context should use the default, system-dependent directories for locating certification authority certi-
ficates.

1177

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_set_default_verify_paths.

ssl::context::set_options

Set options on the context.

void set_options(
options o);

» more...

boost::system::error_code set_options(
options o,
boost::system::error_code & ec);

» more...

ssl::context::set_options (1 of 2 overloads)

Set options on the context.

void set_options(
options o);

This function may be used to configure the SSL options used by the context.

Parameters

o A bitmask of options. The available option values are defined in the ssl::context_base class. The options are bitwise-ored
with any existing value for the options.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_set_options.

ssl::context::set_options (2 of 2 overloads)

Set options on the context.

boost::system::error_code set_options(
options o,
boost::system::error_code & ec);

This function may be used to configure the SSL options used by the context.

Parameters

o A bitmask of options. The available option values are defined in the ssl::context_base class. The options are bitwise-ored
with any existing value for the options.

1178

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_set_options.

ssl::context::set_password_callback

Set the password callback.

template<
typename PasswordCallback>

void set_password_callback(
PasswordCallback callback);

» more...

template<
typename PasswordCallback>

boost::system::error_code set_password_callback(
PasswordCallback callback,
boost::system::error_code & ec);

» more...

ssl::context::set_password_callback (1 of 2 overloads)

Set the password callback.

template<
typename PasswordCallback>

void set_password_callback(
PasswordCallback callback);

This function is used to specify a callback function to obtain password information about an encrypted key in PEM format.

Parameters

callback The function object to be used for obtaining the password. The function signature of the handler must be:

std::string password_callback(
std::size_t max_length, // The maximum size for a password.
password_purpose purpose // Whether password is for reading or writing.

);

The return value of the callback is a string containing the password.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_set_default_passwd_cb.

ssl::context::set_password_callback (2 of 2 overloads)

Set the password callback.

1179

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename PasswordCallback>

boost::system::error_code set_password_callback(
PasswordCallback callback,
boost::system::error_code & ec);

This function is used to specify a callback function to obtain password information about an encrypted key in PEM format.

Parameters

callback The function object to be used for obtaining the password. The function signature of the handler must be:

std::string password_callback(
std::size_t max_length, // The maximum size for a password.
password_purpose purpose // Whether password is for reading or writing.

);

The return value of the callback is a string containing the password.

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_set_default_passwd_cb.

ssl::context::set_verify_callback

Set the callback used to verify peer certificates.

template<
typename VerifyCallback>

void set_verify_callback(
VerifyCallback callback);

» more...

template<
typename VerifyCallback>

boost::system::error_code set_verify_callback(
VerifyCallback callback,
boost::system::error_code & ec);

» more...

ssl::context::set_verify_callback (1 of 2 overloads)

Set the callback used to verify peer certificates.

template<
typename VerifyCallback>

void set_verify_callback(
VerifyCallback callback);

This function is used to specify a callback function that will be called by the implementation when it needs to verify a peer certificate.

Parameters

callback The function object to be used for verifying a certificate. The function signature of the handler must be:

1180

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool verify_callback(
bool preverified, // True if the certificate passed pre-verification.
verify_context& ctx // The peer certificate and other context.

);

The return value of the callback is true if the certificate has passed verification, false otherwise.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_set_verify.

ssl::context::set_verify_callback (2 of 2 overloads)

Set the callback used to verify peer certificates.

template<
typename VerifyCallback>

boost::system::error_code set_verify_callback(
VerifyCallback callback,
boost::system::error_code & ec);

This function is used to specify a callback function that will be called by the implementation when it needs to verify a peer certificate.

Parameters

callback The function object to be used for verifying a certificate. The function signature of the handler must be:

bool verify_callback(
bool preverified, // True if the certificate passed pre-verification.
verify_context& ctx // The peer certificate and other context.

);

The return value of the callback is true if the certificate has passed verification, false otherwise.

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_set_verify.

ssl::context::set_verify_depth

Set the peer verification depth.

void set_verify_depth(
int depth);

» more...

boost::system::error_code set_verify_depth(
int depth,
boost::system::error_code & ec);

» more...

1181

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::context::set_verify_depth (1 of 2 overloads)

Set the peer verification depth.

void set_verify_depth(
int depth);

This function may be used to configure the maximum verification depth allowed by the context.

Parameters

depth Maximum depth for the certificate chain verification that shall be allowed.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_set_verify_depth.

ssl::context::set_verify_depth (2 of 2 overloads)

Set the peer verification depth.

boost::system::error_code set_verify_depth(
int depth,
boost::system::error_code & ec);

This function may be used to configure the maximum verification depth allowed by the context.

Parameters

depth Maximum depth for the certificate chain verification that shall be allowed.

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_set_verify_depth.

ssl::context::set_verify_mode

Set the peer verification mode.

void set_verify_mode(
verify_mode v);

» more...

boost::system::error_code set_verify_mode(
verify_mode v,
boost::system::error_code & ec);

» more...

ssl::context::set_verify_mode (1 of 2 overloads)

Set the peer verification mode.

1182

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void set_verify_mode(
verify_mode v);

This function may be used to configure the peer verification mode used by the context.

Parameters

v A bitmask of peer verification modes. See ssl::verify_mode for available values.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_set_verify.

ssl::context::set_verify_mode (2 of 2 overloads)

Set the peer verification mode.

boost::system::error_code set_verify_mode(
verify_mode v,
boost::system::error_code & ec);

This function may be used to configure the peer verification mode used by the context.

Parameters

v A bitmask of peer verification modes. See ssl::verify_mode for available values.

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_set_verify.

ssl::context::single_dh_use

Always create a new key when using tmp_dh parameters.

static const long single_dh_use = implementation_defined;

ssl::context::use_certificate

Use a certificate from a memory buffer.

void use_certificate(
const const_buffer & certificate,
file_format format);

» more...

boost::system::error_code use_certificate(
const const_buffer & certificate,
file_format format,
boost::system::error_code & ec);

» more...

1183

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::context::use_certificate (1 of 2 overloads)

Use a certificate from a memory buffer.

void use_certificate(
const const_buffer & certificate,
file_format format);

This function is used to load a certificate into the context from a buffer.

Parameters

certificate The buffer containing the certificate.

format The certificate format (ASN.1 or PEM).

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_use_certificate or SSL_CTX_use_certificate_ASN1.

ssl::context::use_certificate (2 of 2 overloads)

Use a certificate from a memory buffer.

boost::system::error_code use_certificate(
const const_buffer & certificate,
file_format format,
boost::system::error_code & ec);

This function is used to load a certificate into the context from a buffer.

Parameters

certificate The buffer containing the certificate.

format The certificate format (ASN.1 or PEM).

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_use_certificate or SSL_CTX_use_certificate_ASN1.

ssl::context::use_certificate_chain

Use a certificate chain from a memory buffer.

void use_certificate_chain(
const const_buffer & chain);

» more...

boost::system::error_code use_certificate_chain(
const const_buffer & chain,
boost::system::error_code & ec);

» more...

1184

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::context::use_certificate_chain (1 of 2 overloads)

Use a certificate chain from a memory buffer.

void use_certificate_chain(
const const_buffer & chain);

This function is used to load a certificate chain into the context from a buffer.

Parameters

chain The buffer containing the certificate chain. The certificate chain must use the PEM format.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_use_certificate and SSL_CTX_add_extra_chain_cert.

ssl::context::use_certificate_chain (2 of 2 overloads)

Use a certificate chain from a memory buffer.

boost::system::error_code use_certificate_chain(
const const_buffer & chain,
boost::system::error_code & ec);

This function is used to load a certificate chain into the context from a buffer.

Parameters

chain The buffer containing the certificate chain. The certificate chain must use the PEM format.

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_use_certificate and SSL_CTX_add_extra_chain_cert.

ssl::context::use_certificate_chain_file

Use a certificate chain from a file.

void use_certificate_chain_file(
const std::string & filename);

» more...

boost::system::error_code use_certificate_chain_file(
const std::string & filename,
boost::system::error_code & ec);

» more...

ssl::context::use_certificate_chain_file (1 of 2 overloads)

Use a certificate chain from a file.

1185

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void use_certificate_chain_file(
const std::string & filename);

This function is used to load a certificate chain into the context from a file.

Parameters

filename The name of the file containing the certificate. The file must use the PEM format.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_use_certificate_chain_file.

ssl::context::use_certificate_chain_file (2 of 2 overloads)

Use a certificate chain from a file.

boost::system::error_code use_certificate_chain_file(
const std::string & filename,
boost::system::error_code & ec);

This function is used to load a certificate chain into the context from a file.

Parameters

filename The name of the file containing the certificate. The file must use the PEM format.

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_use_certificate_chain_file.

ssl::context::use_certificate_file

Use a certificate from a file.

void use_certificate_file(
const std::string & filename,
file_format format);

» more...

boost::system::error_code use_certificate_file(
const std::string & filename,
file_format format,
boost::system::error_code & ec);

» more...

ssl::context::use_certificate_file (1 of 2 overloads)

Use a certificate from a file.

1186

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void use_certificate_file(
const std::string & filename,
file_format format);

This function is used to load a certificate into the context from a file.

Parameters

filename The name of the file containing the certificate.

format The file format (ASN.1 or PEM).

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_use_certificate_file.

ssl::context::use_certificate_file (2 of 2 overloads)

Use a certificate from a file.

boost::system::error_code use_certificate_file(
const std::string & filename,
file_format format,
boost::system::error_code & ec);

This function is used to load a certificate into the context from a file.

Parameters

filename The name of the file containing the certificate.

format The file format (ASN.1 or PEM).

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_use_certificate_file.

ssl::context::use_private_key

Use a private key from a memory buffer.

void use_private_key(
const const_buffer & private_key,
file_format format);

» more...

boost::system::error_code use_private_key(
const const_buffer & private_key,
file_format format,
boost::system::error_code & ec);

» more...

1187

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::context::use_private_key (1 of 2 overloads)

Use a private key from a memory buffer.

void use_private_key(
const const_buffer & private_key,
file_format format);

This function is used to load a private key into the context from a buffer.

Parameters

private_key The buffer containing the private key.

format The private key format (ASN.1 or PEM).

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_use_PrivateKey or SSL_CTX_use_PrivateKey_ASN1.

ssl::context::use_private_key (2 of 2 overloads)

Use a private key from a memory buffer.

boost::system::error_code use_private_key(
const const_buffer & private_key,
file_format format,
boost::system::error_code & ec);

This function is used to load a private key into the context from a buffer.

Parameters

private_key The buffer containing the private key.

format The private key format (ASN.1 or PEM).

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_use_PrivateKey or SSL_CTX_use_PrivateKey_ASN1.

ssl::context::use_private_key_file

Use a private key from a file.

1188

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void use_private_key_file(
const std::string & filename,
file_format format);

» more...

boost::system::error_code use_private_key_file(
const std::string & filename,
file_format format,
boost::system::error_code & ec);

» more...

ssl::context::use_private_key_file (1 of 2 overloads)

Use a private key from a file.

void use_private_key_file(
const std::string & filename,
file_format format);

This function is used to load a private key into the context from a file.

Parameters

filename The name of the file containing the private key.

format The file format (ASN.1 or PEM).

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_use_PrivateKey_file.

ssl::context::use_private_key_file (2 of 2 overloads)

Use a private key from a file.

boost::system::error_code use_private_key_file(
const std::string & filename,
file_format format,
boost::system::error_code & ec);

This function is used to load a private key into the context from a file.

Parameters

filename The name of the file containing the private key.

format The file format (ASN.1 or PEM).

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_use_PrivateKey_file.

1189

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::context::use_rsa_private_key

Use an RSA private key from a memory buffer.

void use_rsa_private_key(
const const_buffer & private_key,
file_format format);

» more...

boost::system::error_code use_rsa_private_key(
const const_buffer & private_key,
file_format format,
boost::system::error_code & ec);

» more...

ssl::context::use_rsa_private_key (1 of 2 overloads)

Use an RSA private key from a memory buffer.

void use_rsa_private_key(
const const_buffer & private_key,
file_format format);

This function is used to load an RSA private key into the context from a buffer.

Parameters

private_key The buffer containing the RSA private key.

format The private key format (ASN.1 or PEM).

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_use_RSAPrivateKey or SSL_CTX_use_RSAPrivateKey_ASN1.

ssl::context::use_rsa_private_key (2 of 2 overloads)

Use an RSA private key from a memory buffer.

boost::system::error_code use_rsa_private_key(
const const_buffer & private_key,
file_format format,
boost::system::error_code & ec);

This function is used to load an RSA private key into the context from a buffer.

Parameters

private_key The buffer containing the RSA private key.

format The private key format (ASN.1 or PEM).

ec Set to indicate what error occurred, if any.

1190

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

Calls SSL_CTX_use_RSAPrivateKey or SSL_CTX_use_RSAPrivateKey_ASN1.

ssl::context::use_rsa_private_key_file

Use an RSA private key from a file.

void use_rsa_private_key_file(
const std::string & filename,
file_format format);

» more...

boost::system::error_code use_rsa_private_key_file(
const std::string & filename,
file_format format,
boost::system::error_code & ec);

» more...

ssl::context::use_rsa_private_key_file (1 of 2 overloads)

Use an RSA private key from a file.

void use_rsa_private_key_file(
const std::string & filename,
file_format format);

This function is used to load an RSA private key into the context from a file.

Parameters

filename The name of the file containing the RSA private key.

format The file format (ASN.1 or PEM).

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_use_RSAPrivateKey_file.

ssl::context::use_rsa_private_key_file (2 of 2 overloads)

Use an RSA private key from a file.

boost::system::error_code use_rsa_private_key_file(
const std::string & filename,
file_format format,
boost::system::error_code & ec);

This function is used to load an RSA private key into the context from a file.

Parameters

filename The name of the file containing the RSA private key.

format The file format (ASN.1 or PEM).

1191

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_use_RSAPrivateKey_file.

ssl::context::use_tmp_dh

Use the specified memory buffer to obtain the temporary Diffie-Hellman parameters.

void use_tmp_dh(
const const_buffer & dh);

» more...

boost::system::error_code use_tmp_dh(
const const_buffer & dh,
boost::system::error_code & ec);

» more...

ssl::context::use_tmp_dh (1 of 2 overloads)

Use the specified memory buffer to obtain the temporary Diffie-Hellman parameters.

void use_tmp_dh(
const const_buffer & dh);

This function is used to load Diffie-Hellman parameters into the context from a buffer.

Parameters

dh The memory buffer containing the Diffie-Hellman parameters. The buffer must use the PEM format.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_set_tmp_dh.

ssl::context::use_tmp_dh (2 of 2 overloads)

Use the specified memory buffer to obtain the temporary Diffie-Hellman parameters.

boost::system::error_code use_tmp_dh(
const const_buffer & dh,
boost::system::error_code & ec);

This function is used to load Diffie-Hellman parameters into the context from a buffer.

Parameters

dh The memory buffer containing the Diffie-Hellman parameters. The buffer must use the PEM format.

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_set_tmp_dh.

1192

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::context::use_tmp_dh_file

Use the specified file to obtain the temporary Diffie-Hellman parameters.

void use_tmp_dh_file(
const std::string & filename);

» more...

boost::system::error_code use_tmp_dh_file(
const std::string & filename,
boost::system::error_code & ec);

» more...

ssl::context::use_tmp_dh_file (1 of 2 overloads)

Use the specified file to obtain the temporary Diffie-Hellman parameters.

void use_tmp_dh_file(
const std::string & filename);

This function is used to load Diffie-Hellman parameters into the context from a file.

Parameters

filename The name of the file containing the Diffie-Hellman parameters. The file must use the PEM format.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_CTX_set_tmp_dh.

ssl::context::use_tmp_dh_file (2 of 2 overloads)

Use the specified file to obtain the temporary Diffie-Hellman parameters.

boost::system::error_code use_tmp_dh_file(
const std::string & filename,
boost::system::error_code & ec);

This function is used to load Diffie-Hellman parameters into the context from a file.

Parameters

filename The name of the file containing the Diffie-Hellman parameters. The file must use the PEM format.

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_CTX_set_tmp_dh.

ssl::context::~context

Destructor.

1193

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

~context();

ssl::context_base
The ssl::context_base class is used as a base for the basic_context class template so that we have a common place to define
various enums.

class context_base

Types

DescriptionName

File format types.file_format

Different methods supported by a context.method

Bitmask type for SSL options.options

Purpose of PEM password.password_purpose

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~context_base

Data Members

DescriptionName

Implement various bug workarounds.default_workarounds

Disable compression. Compression is disabled by default.no_compression

Disable SSL v2.no_sslv2

Disable SSL v3.no_sslv3

Disable TLS v1.no_tlsv1

Always create a new key when using tmp_dh parameters.single_dh_use

Requirements

Header: boost/asio/ssl/context_base.hpp

Convenience header: boost/asio/ssl.hpp

ssl::context_base::default_workarounds

Implement various bug workarounds.

1194

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

static const long default_workarounds = implementation_defined;

ssl::context_base::file_format

File format types.

enum file_format

Values

asn1 ASN.1 file.

pem PEM file.

ssl::context_base::method

Different methods supported by a context.

enum method

Values

sslv2 Generic SSL version 2.

sslv2_client SSL version 2 client.

sslv2_server SSL version 2 server.

sslv3 Generic SSL version 3.

sslv3_client SSL version 3 client.

sslv3_server SSL version 3 server.

tlsv1 Generic TLS version 1.

tlsv1_client TLS version 1 client.

tlsv1_server TLS version 1 server.

sslv23 Generic SSL/TLS.

sslv23_client SSL/TLS client.

sslv23_server SSL/TLS server.

tlsv11 Generic TLS version 1.1.

tlsv11_client TLS version 1.1 client.

tlsv11_server TLS version 1.1 server.

tlsv12 Generic TLS version 1.2.

tlsv12_client TLS version 1.2 client.

tlsv12_server TLS version 1.2 server.

1195

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::context_base::no_compression

Disable compression. Compression is disabled by default.

static const long no_compression = implementation_defined;

ssl::context_base::no_sslv2

Disable SSL v2.

static const long no_sslv2 = implementation_defined;

ssl::context_base::no_sslv3

Disable SSL v3.

static const long no_sslv3 = implementation_defined;

ssl::context_base::no_tlsv1

Disable TLS v1.

static const long no_tlsv1 = implementation_defined;

ssl::context_base::options

Bitmask type for SSL options.

typedef long options;

Requirements

Header: boost/asio/ssl/context_base.hpp

Convenience header: boost/asio/ssl.hpp

ssl::context_base::password_purpose

Purpose of PEM password.

enum password_purpose

Values

for_reading The password is needed for reading/decryption.

for_writing The password is needed for writing/encryption.

ssl::context_base::single_dh_use

Always create a new key when using tmp_dh parameters.

static const long single_dh_use = implementation_defined;

1196

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::context_base::~context_base

Protected destructor to prevent deletion through this type.

~context_base();

ssl::rfc2818_verification
Verifies a certificate against a hostname according to the rules described in RFC 2818.

class rfc2818_verification

Types

DescriptionName

The type of the function object's result.result_type

Member Functions

DescriptionName

Perform certificate verification.operator()

Constructor.rfc2818_verification

Example

The following example shows how to synchronously open a secure connection to a given host name:

using boost::asio::ip::tcp;
namespace ssl = boost::asio::ssl;
typedef ssl::stream<tcp::socket> ssl_socket;

// Create a context that uses the default paths for finding CA certificates.
ssl::context ctx(ssl::context::sslv23);
ctx.set_default_verify_paths();

// Open a socket and connect it to the remote host.
boost::asio::io_service io_service;
ssl_socket sock(io_service, ctx);
tcp::resolver resolver(io_service);
tcp::resolver::query query("host.name", "https");
boost::asio::connect(sock.lowest_layer(), resolver.resolve(query));
sock.lowest_layer().set_option(tcp::no_delay(true));

// Perform SSL handshake and verify the remote host's certificate.
sock.set_verify_mode(ssl::verify_peer);
sock.set_verify_callback(ssl::rfc2818_verification("host.name"));
sock.handshake(ssl_socket::client);

// ... read and write as normal ...

Requirements

Header: boost/asio/ssl/rfc2818_verification.hpp

1197

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Convenience header: boost/asio/ssl.hpp

ssl::rfc2818_verification::operator()

Perform certificate verification.

bool operator()(
bool preverified,
verify_context & ctx) const;

ssl::rfc2818_verification::result_type

The type of the function object's result.

typedef bool result_type;

Requirements

Header: boost/asio/ssl/rfc2818_verification.hpp

Convenience header: boost/asio/ssl.hpp

ssl::rfc2818_verification::rfc2818_verification

Constructor.

rfc2818_verification(
const std::string & host);

ssl::stream
Provides stream-oriented functionality using SSL.

template<
typename Stream>

class stream :
public ssl::stream_base,
noncopyable

Types

DescriptionName

Structure for use with deprecated impl_type.impl_struct

Different handshake types.handshake_type

(Deprecated: Use native_handle_type.) The underlying imple-
mentation type.

impl_type

The type of the lowest layer.lowest_layer_type

The native handle type of the SSL stream.native_handle_type

The type of the next layer.next_layer_type

1198

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Start an asynchronous SSL handshake.async_handshake

Start an asynchronous read.async_read_some

Asynchronously shut down SSL on the stream.async_shutdown

Start an asynchronous write.async_write_some

Get the io_service associated with the object.get_io_service

Perform SSL handshaking.handshake

(Deprecated: Use native_handle().) Get the underlying imple-
mentation in the native type.

impl

Get a reference to the lowest layer.lowest_layer

Get the underlying implementation in the native type.native_handle

Get a reference to the next layer.next_layer

Read some data from the stream.read_some

Set the callback used to verify peer certificates.set_verify_callback

Set the peer verification depth.set_verify_depth

Set the peer verification mode.set_verify_mode

Shut down SSL on the stream.shutdown

Construct a stream.stream

Write some data to the stream.write_some

Destructor.~stream

The stream class template provides asynchronous and blocking stream-oriented functionality using SSL.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe. The application must also ensure that all asynchronous operations are performed within the same implicit
or explicit strand.

Example

To use the SSL stream template with an ip::tcp::socket, you would write:

boost::asio::io_service io_service;
boost::asio::ssl::context ctx(boost::asio::ssl::context::sslv23);
boost::asio::ssl::stream<asio:ip::tcp::socket> sock(io_service, ctx);

1199

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/ssl/stream.hpp

Convenience header: boost/asio/ssl.hpp

ssl::stream::async_handshake

Start an asynchronous SSL handshake.

template<
typename HandshakeHandler>

void-or-deduced async_handshake(
handshake_type type,
HandshakeHandler handler);

» more...

template<
typename ConstBufferSequence,
typename BufferedHandshakeHandler>

void-or-deduced async_handshake(
handshake_type type,
const ConstBufferSequence & buffers,
BufferedHandshakeHandler handler);

» more...

ssl::stream::async_handshake (1 of 2 overloads)

Start an asynchronous SSL handshake.

template<
typename HandshakeHandler>

void-or-deduced async_handshake(
handshake_type type,
HandshakeHandler handler);

This function is used to asynchronously perform an SSL handshake on the stream. This function call always returns immediately.

Parameters

type The type of handshaking to be performed, i.e. as a client or as a server.

handler The handler to be called when the handshake operation completes. Copies will be made of the handler as required. The
equivalent function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation.

);

ssl::stream::async_handshake (2 of 2 overloads)

Start an asynchronous SSL handshake.

1200

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence,
typename BufferedHandshakeHandler>

void-or-deduced async_handshake(
handshake_type type,
const ConstBufferSequence & buffers,
BufferedHandshakeHandler handler);

This function is used to asynchronously perform an SSL handshake on the stream. This function call always returns immediately.

Parameters

type The type of handshaking to be performed, i.e. as a client or as a server.

buffers The buffered data to be reused for the handshake. Although the buffers object may be copied as necessary, ownership
of the underlying buffers is retained by the caller, which must guarantee that they remain valid until the handler is called.

handler The handler to be called when the handshake operation completes. Copies will be made of the handler as required. The
equivalent function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Amount of buffers used in handshake.

);

ssl::stream::async_read_some

Start an asynchronous read.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read_some(
const MutableBufferSequence & buffers,
ReadHandler handler);

This function is used to asynchronously read one or more bytes of data from the stream. The function call always returns immediately.

Parameters

buffers The buffers into which the data will be read. Although the buffers object may be copied as necessary, ownership of the
underlying buffers is retained by the caller, which must guarantee that they remain valid until the handler is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The equi-
valent function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes read.

);

Remarks

The async_read_some operation may not read all of the requested number of bytes. Consider using the async_read function if you
need to ensure that the requested amount of data is read before the asynchronous operation completes.

1201

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::stream::async_shutdown

Asynchronously shut down SSL on the stream.

template<
typename ShutdownHandler>

void-or-deduced async_shutdown(
ShutdownHandler handler);

This function is used to asynchronously shut down SSL on the stream. This function call always returns immediately.

Parameters

handler The handler to be called when the handshake operation completes. Copies will be made of the handler as required. The
equivalent function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation.

);

ssl::stream::async_write_some

Start an asynchronous write.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write_some(
const ConstBufferSequence & buffers,
WriteHandler handler);

This function is used to asynchronously write one or more bytes of data to the stream. The function call always returns immediately.

Parameters

buffers The data to be written to the stream. Although the buffers object may be copied as necessary, ownership of the under-
lying buffers is retained by the caller, which must guarantee that they remain valid until the handler is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
equivalent function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes written.

);

Remarks

The async_write_some operation may not transmit all of the data to the peer. Consider using the async_write function if you need
to ensure that all data is written before the blocking operation completes.

ssl::stream::get_io_service

Get the io_service associated with the object.

1202

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the stream uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that stream will use to dispatch handlers. Ownership is not transferred to the caller.

ssl::stream::handshake

Perform SSL handshaking.

void handshake(
handshake_type type);

» more...

boost::system::error_code handshake(
handshake_type type,
boost::system::error_code & ec);

» more...

template<
typename ConstBufferSequence>

void handshake(
handshake_type type,
const ConstBufferSequence & buffers);

» more...

template<
typename ConstBufferSequence>

boost::system::error_code handshake(
handshake_type type,
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

» more...

ssl::stream::handshake (1 of 4 overloads)

Perform SSL handshaking.

void handshake(
handshake_type type);

This function is used to perform SSL handshaking on the stream. The function call will block until handshaking is complete or an
error occurs.

Parameters

type The type of handshaking to be performed, i.e. as a client or as a server.

Exceptions

boost::system::system_error Thrown on failure.

ssl::stream::handshake (2 of 4 overloads)

Perform SSL handshaking.

1203

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code handshake(
handshake_type type,
boost::system::error_code & ec);

This function is used to perform SSL handshaking on the stream. The function call will block until handshaking is complete or an
error occurs.

Parameters

type The type of handshaking to be performed, i.e. as a client or as a server.

ec Set to indicate what error occurred, if any.

ssl::stream::handshake (3 of 4 overloads)

Perform SSL handshaking.

template<
typename ConstBufferSequence>

void handshake(
handshake_type type,
const ConstBufferSequence & buffers);

This function is used to perform SSL handshaking on the stream. The function call will block until handshaking is complete or an
error occurs.

Parameters

type The type of handshaking to be performed, i.e. as a client or as a server.

buffers The buffered data to be reused for the handshake.

Exceptions

boost::system::system_error Thrown on failure.

ssl::stream::handshake (4 of 4 overloads)

Perform SSL handshaking.

template<
typename ConstBufferSequence>

boost::system::error_code handshake(
handshake_type type,
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to perform SSL handshaking on the stream. The function call will block until handshaking is complete or an
error occurs.

Parameters

type The type of handshaking to be performed, i.e. as a client or as a server.

buffers The buffered data to be reused for the handshake.

ec Set to indicate what error occurred, if any.

1204

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::stream::handshake_type

Different handshake types.

enum handshake_type

Values

client Perform handshaking as a client.

server Perform handshaking as a server.

ssl::stream::impl

(Deprecated: Use native_handle().) Get the underlying implementation in the native type.

impl_type impl();

This function may be used to obtain the underlying implementation of the context. This is intended to allow access to stream func-
tionality that is not otherwise provided.

ssl::stream::impl_type

(Deprecated: Use native_handle_type.) The underlying implementation type.

typedef impl_struct * impl_type;

Requirements

Header: boost/asio/ssl/stream.hpp

Convenience header: boost/asio/ssl.hpp

ssl::stream::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();
» more...

const lowest_layer_type & lowest_layer() const;
» more...

ssl::stream::lowest_layer (1 of 2 overloads)

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of stream layers.

Return Value

A reference to the lowest layer in the stack of stream layers. Ownership is not transferred to the caller.

1205

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::stream::lowest_layer (2 of 2 overloads)

Get a reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a reference to the lowest layer in a stack of stream layers.

Return Value

A reference to the lowest layer in the stack of stream layers. Ownership is not transferred to the caller.

ssl::stream::lowest_layer_type

The type of the lowest layer.

typedef next_layer_type::lowest_layer_type lowest_layer_type;

Requirements

Header: boost/asio/ssl/stream.hpp

Convenience header: boost/asio/ssl.hpp

ssl::stream::native_handle

Get the underlying implementation in the native type.

native_handle_type native_handle();

This function may be used to obtain the underlying implementation of the context. This is intended to allow access to context func-
tionality that is not otherwise provided.

Example

The native_handle() function returns a pointer of type SSL* that is suitable for passing to functions such as SSL_get_veri-
fy_result and SSL_get_peer_certificate:

boost::asio::ssl::stream<asio:ip::tcp::socket> sock(io_service, ctx);

// ... establish connection and perform handshake ...

if (X509* cert = SSL_get_peer_certificate(sock.native_handle()))
{
if (SSL_get_verify_result(sock.native_handle()) == X509_V_OK)
{
// ...

}
}

ssl::stream::native_handle_type

The native handle type of the SSL stream.

typedef SSL * native_handle_type;

1206

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/ssl/stream.hpp

Convenience header: boost/asio/ssl.hpp

ssl::stream::next_layer

Get a reference to the next layer.

const next_layer_type & next_layer() const;
» more...

next_layer_type & next_layer();
» more...

ssl::stream::next_layer (1 of 2 overloads)

Get a reference to the next layer.

const next_layer_type & next_layer() const;

This function returns a reference to the next layer in a stack of stream layers.

Return Value

A reference to the next layer in the stack of stream layers. Ownership is not transferred to the caller.

ssl::stream::next_layer (2 of 2 overloads)

Get a reference to the next layer.

next_layer_type & next_layer();

This function returns a reference to the next layer in a stack of stream layers.

Return Value

A reference to the next layer in the stack of stream layers. Ownership is not transferred to the caller.

ssl::stream::next_layer_type

The type of the next layer.

typedef remove_reference< Stream >::type next_layer_type;

Requirements

Header: boost/asio/ssl/stream.hpp

Convenience header: boost/asio/ssl.hpp

ssl::stream::read_some

Read some data from the stream.

1207

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

» more...

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

» more...

ssl::stream::read_some (1 of 2 overloads)

Read some data from the stream.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

This function is used to read data from the stream. The function call will block until one or more bytes of data has been read success-
fully, or until an error occurs.

Parameters

buffers The buffers into which the data will be read.

Return Value

The number of bytes read.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

ssl::stream::read_some (2 of 2 overloads)

Read some data from the stream.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to read data from the stream. The function call will block until one or more bytes of data has been read success-
fully, or until an error occurs.

Parameters

buffers The buffers into which the data will be read.

1208

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. Returns 0 if an error occurred.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

ssl::stream::set_verify_callback

Set the callback used to verify peer certificates.

template<
typename VerifyCallback>

void set_verify_callback(
VerifyCallback callback);

» more...

template<
typename VerifyCallback>

boost::system::error_code set_verify_callback(
VerifyCallback callback,
boost::system::error_code & ec);

» more...

ssl::stream::set_verify_callback (1 of 2 overloads)

Set the callback used to verify peer certificates.

template<
typename VerifyCallback>

void set_verify_callback(
VerifyCallback callback);

This function is used to specify a callback function that will be called by the implementation when it needs to verify a peer certificate.

Parameters

callback The function object to be used for verifying a certificate. The function signature of the handler must be:

bool verify_callback(
bool preverified, // True if the certificate passed pre-verification.
verify_context& ctx // The peer certificate and other context.

);

The return value of the callback is true if the certificate has passed verification, false otherwise.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_set_verify.

1209

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::stream::set_verify_callback (2 of 2 overloads)

Set the callback used to verify peer certificates.

template<
typename VerifyCallback>

boost::system::error_code set_verify_callback(
VerifyCallback callback,
boost::system::error_code & ec);

This function is used to specify a callback function that will be called by the implementation when it needs to verify a peer certificate.

Parameters

callback The function object to be used for verifying a certificate. The function signature of the handler must be:

bool verify_callback(
bool preverified, // True if the certificate passed pre-verification.
verify_context& ctx // The peer certificate and other context.

);

The return value of the callback is true if the certificate has passed verification, false otherwise.

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_set_verify.

ssl::stream::set_verify_depth

Set the peer verification depth.

void set_verify_depth(
int depth);

» more...

boost::system::error_code set_verify_depth(
int depth,
boost::system::error_code & ec);

» more...

ssl::stream::set_verify_depth (1 of 2 overloads)

Set the peer verification depth.

void set_verify_depth(
int depth);

This function may be used to configure the maximum verification depth allowed by the stream.

Parameters

depth Maximum depth for the certificate chain verification that shall be allowed.

Exceptions

boost::system::system_error Thrown on failure.

1210

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

Calls SSL_set_verify_depth.

ssl::stream::set_verify_depth (2 of 2 overloads)

Set the peer verification depth.

boost::system::error_code set_verify_depth(
int depth,
boost::system::error_code & ec);

This function may be used to configure the maximum verification depth allowed by the stream.

Parameters

depth Maximum depth for the certificate chain verification that shall be allowed.

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_set_verify_depth.

ssl::stream::set_verify_mode

Set the peer verification mode.

void set_verify_mode(
verify_mode v);

» more...

boost::system::error_code set_verify_mode(
verify_mode v,
boost::system::error_code & ec);

» more...

ssl::stream::set_verify_mode (1 of 2 overloads)

Set the peer verification mode.

void set_verify_mode(
verify_mode v);

This function may be used to configure the peer verification mode used by the stream. The new mode will override the mode inherited
from the context.

Parameters

v A bitmask of peer verification modes. See ssl::verify_mode for available values.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

Calls SSL_set_verify.

1211

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::stream::set_verify_mode (2 of 2 overloads)

Set the peer verification mode.

boost::system::error_code set_verify_mode(
verify_mode v,
boost::system::error_code & ec);

This function may be used to configure the peer verification mode used by the stream. The new mode will override the mode inherited
from the context.

Parameters

v A bitmask of peer verification modes. See ssl::verify_mode for available values.

ec Set to indicate what error occurred, if any.

Remarks

Calls SSL_set_verify.

ssl::stream::shutdown

Shut down SSL on the stream.

void shutdown();
» more...

boost::system::error_code shutdown(
boost::system::error_code & ec);

» more...

ssl::stream::shutdown (1 of 2 overloads)

Shut down SSL on the stream.

void shutdown();

This function is used to shut down SSL on the stream. The function call will block until SSL has been shut down or an error occurs.

Exceptions

boost::system::system_error Thrown on failure.

ssl::stream::shutdown (2 of 2 overloads)

Shut down SSL on the stream.

boost::system::error_code shutdown(
boost::system::error_code & ec);

This function is used to shut down SSL on the stream. The function call will block until SSL has been shut down or an error occurs.

Parameters

ec Set to indicate what error occurred, if any.

1212

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::stream::stream

Construct a stream.

template<
typename Arg>

stream(
Arg & arg,
context & ctx);

This constructor creates a stream and initialises the underlying stream object.

Parameters

arg The argument to be passed to initialise the underlying stream.

ctx The SSL context to be used for the stream.

ssl::stream::write_some

Write some data to the stream.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

» more...

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

» more...

ssl::stream::write_some (1 of 2 overloads)

Write some data to the stream.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

This function is used to write data on the stream. The function call will block until one or more bytes of data has been written suc-
cessfully, or until an error occurs.

Parameters

buffers The data to be written.

Return Value

The number of bytes written.

Exceptions

boost::system::system_error Thrown on failure.

1213

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

ssl::stream::write_some (2 of 2 overloads)

Write some data to the stream.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to write data on the stream. The function call will block until one or more bytes of data has been written suc-
cessfully, or until an error occurs.

Parameters

buffers The data to be written to the stream.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. Returns 0 if an error occurred.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

ssl::stream::~stream

Destructor.

~stream();

ssl::stream::impl_struct
Structure for use with deprecated impl_type.

struct impl_struct

Data Members

DescriptionName

ssl

Requirements

Header: boost/asio/ssl/stream.hpp

Convenience header: boost/asio/ssl.hpp

1214

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::stream::impl_struct::ssl

SSL * ssl;

ssl::stream_base
The ssl::stream_base class is used as a base for the ssl::stream class template so that we have a common place to define
various enums.

class stream_base

Types

DescriptionName

Different handshake types.handshake_type

Protected Member Functions

DescriptionName

Protected destructor to prevent deletion through this type.~stream_base

Requirements

Header: boost/asio/ssl/stream_base.hpp

Convenience header: boost/asio/ssl.hpp

ssl::stream_base::handshake_type

Different handshake types.

enum handshake_type

Values

client Perform handshaking as a client.

server Perform handshaking as a server.

ssl::stream_base::~stream_base

Protected destructor to prevent deletion through this type.

~stream_base();

ssl::verify_client_once
Do not request client certificate on renegotiation. Ignored unless ssl::verify_peer is set.

const int verify_client_once = implementation_defined;

1215

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/ssl/verify_mode.hpp

Convenience header: boost/asio/ssl.hpp

ssl::verify_context
A simple wrapper around the X509_STORE_CTX type, used during verification of a peer certificate.

class verify_context :
noncopyable

Types

DescriptionName

The native handle type of the verification context.native_handle_type

Member Functions

DescriptionName

Get the underlying implementation in the native type.native_handle

Constructor.verify_context

Remarks

The ssl::verify_context does not own the underlying X509_STORE_CTX object.

Requirements

Header: boost/asio/ssl/verify_context.hpp

Convenience header: boost/asio/ssl.hpp

ssl::verify_context::native_handle

Get the underlying implementation in the native type.

native_handle_type native_handle();

This function may be used to obtain the underlying implementation of the context. This is intended to allow access to context func-
tionality that is not otherwise provided.

ssl::verify_context::native_handle_type

The native handle type of the verification context.

typedef X509_STORE_CTX * native_handle_type;

Requirements

Header: boost/asio/ssl/verify_context.hpp

1216

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Convenience header: boost/asio/ssl.hpp

ssl::verify_context::verify_context

Constructor.

verify_context(
native_handle_type handle);

ssl::verify_fail_if_no_peer_cert
Fail verification if the peer has no certificate. Ignored unless ssl::verify_peer is set.

const int verify_fail_if_no_peer_cert = implementation_defined;

Requirements

Header: boost/asio/ssl/verify_mode.hpp

Convenience header: boost/asio/ssl.hpp

ssl::verify_mode
Bitmask type for peer verification.

typedef int verify_mode;

Possible values are:

• ssl::verify_none

• ssl::verify_peer

• ssl::verify_fail_if_no_peer_cert

• ssl::verify_client_once

Requirements

Header: boost/asio/ssl/verify_mode.hpp

Convenience header: boost/asio/ssl.hpp

ssl::verify_none
No verification.

const int verify_none = implementation_defined;

Requirements

Header: boost/asio/ssl/verify_mode.hpp

Convenience header: boost/asio/ssl.hpp

1217

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::verify_peer
Verify the peer.

const int verify_peer = implementation_defined;

Requirements

Header: boost/asio/ssl/verify_mode.hpp

Convenience header: boost/asio/ssl.hpp

steady_timer
Typedef for a timer based on the steady clock.

typedef basic_waitable_timer< chrono::steady_clock > steady_timer;

Types

DescriptionName

The clock type.clock_type

The duration type of the clock.duration

The underlying implementation type of I/O object.implementation_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

The time point type of the clock.time_point

The wait traits type.traits_type

1218

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Start an asynchronous wait on the timer.async_wait

Constructor.

Constructor to set a particular expiry time as an absolute time.

Constructor to set a particular expiry time relative to now.

basic_waitable_timer

Cancel any asynchronous operations that are waiting on the
timer.

cancel

Cancels one asynchronous operation that is waiting on the timer.cancel_one

Get the timer's expiry time as an absolute time.

Set the timer's expiry time as an absolute time.

expires_at

Get the timer's expiry time relative to now.

Set the timer's expiry time relative to now.

expires_from_now

Get the io_service associated with the object.get_io_service

Perform a blocking wait on the timer.wait

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_waitable_timer class template provides the ability to perform a blocking or asynchronous wait for a timer to expire.

A waitable timer is always in one of two states: "expired" or "not expired". If the wait() or async_wait() function is called on
an expired timer, the wait operation will complete immediately.

Most applications will use one of the steady_timer, system_timer or high_resolution_timer typedefs.

Remarks

This waitable timer functionality is for use with the C++11 standard library's <chrono> facility, or with the Boost.Chrono library.

1219

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Examples

Performing a blocking wait (C++11):

// Construct a timer without setting an expiry time.
boost::asio::steady_timer timer(io_service);

// Set an expiry time relative to now.
timer.expires_from_now(std::chrono::seconds(5));

// Wait for the timer to expire.
timer.wait();

Performing an asynchronous wait (C++11):

void handler(const boost::system::error_code& error)
{
if (!error)
{
// Timer expired.

}
}

...

// Construct a timer with an absolute expiry time.
boost::asio::steady_timer timer(io_service,

std::chrono::steady_clock::now() + std::chrono::seconds(60));

// Start an asynchronous wait.
timer.async_wait(handler);

Changing an active waitable timer's expiry time

Changing the expiry time of a timer while there are pending asynchronous waits causes those wait operations to be cancelled. To
ensure that the action associated with the timer is performed only once, use something like this: used:

1220

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void on_some_event()
{
if (my_timer.expires_from_now(seconds(5)) > 0)
{
// We managed to cancel the timer. Start new asynchronous wait.
my_timer.async_wait(on_timeout);

}
else
{
// Too late, timer has already expired!

}
}

void on_timeout(const boost::system::error_code& e)
{
if (e != boost::asio::error::operation_aborted)
{
// Timer was not cancelled, take necessary action.

}
}

• The boost::asio::basic_waitable_timer::expires_from_now() function cancels any pending asynchronous waits,
and returns the number of asynchronous waits that were cancelled. If it returns 0 then you were too late and the wait handler has
already been executed, or will soon be executed. If it returns 1 then the wait handler was successfully cancelled.

• If a wait handler is cancelled, the boost::system::error_code passed to it contains the value boost::asio::error::opera-
tion_aborted.

This typedef uses the C++11 <chrono> standard library facility, if available. Otherwise, it may use the Boost.Chrono library. To
explicitly utilise Boost.Chrono, use the basic_waitable_timer template directly:

typedef basic_waitable_timer<boost::chrono::steady_clock> timer;

Requirements

Header: boost/asio/steady_timer.hpp

Convenience header: None

strand
Typedef for backwards compatibility.

typedef boost::asio::io_service::strand strand;

1221

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Request the strand to invoke the given handler.dispatch

Get the io_service associated with the strand.get_io_service

Request the strand to invoke the given handler and return imme-
diately.

post

Determine whether the strand is running in the current thread.running_in_this_thread

Constructor.strand

Create a new handler that automatically dispatches the wrapped
handler on the strand.

wrap

Destructor.~strand

The io_service::strand class provides the ability to post and dispatch handlers with the guarantee that none of those handlers
will execute concurrently.

Order of handler invocation

Given:

• a strand object s

• an object a meeting completion handler requirements

• an object a1 which is an arbitrary copy of a made by the implementation

• an object b meeting completion handler requirements

• an object b1 which is an arbitrary copy of b made by the implementation

if any of the following conditions are true:

• s.post(a) happens-before s.post(b)

• s.post(a) happens-before s.dispatch(b), where the latter is performed outside the strand

• s.dispatch(a) happens-before s.post(b), where the former is performed outside the strand

• s.dispatch(a) happens-before s.dispatch(b), where both are performed outside the strand

then asio_handler_invoke(a1, &a1) happens-before asio_handler_invoke(b1, &b1).

Note that in the following case:

async_op_1(..., s.wrap(a));
async_op_2(..., s.wrap(b));

the completion of the first async operation will perform s.dispatch(a), and the second will perform s.dispatch(b), but the
order in which those are performed is unspecified. That is, you cannot state whether one happens-before the other. Therefore none
of the above conditions are met and no ordering guarantee is made.

1222

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The implementation makes no guarantee that handlers posted or dispatched through different strand objects will be invoked con-
currently.

Thread Safety

Distinct objects: Safe.

Shared objects: Safe.

Requirements

Header: boost/asio/strand.hpp

Convenience header: boost/asio.hpp

stream_socket_service
Default service implementation for a stream socket.

template<
typename Protocol>

class stream_socket_service :
public io_service::service

Types

DescriptionName

The endpoint type.endpoint_type

The type of a stream socket implementation.implementation_type

The native socket type.native_handle_type

(Deprecated: Use native_handle_type.) The native socket type.native_type

The protocol type.protocol_type

1223

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

1224

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Assign an existing native socket to a stream socket.assign

Start an asynchronous connect.async_connect

Start an asynchronous receive.async_receive

Start an asynchronous send.async_send

Determine whether the socket is at the out-of-band data mark.at_mark

Determine the number of bytes available for reading.available

Bind the stream socket to the specified local endpoint.bind

Cancel all asynchronous operations associated with the socket.cancel

Close a stream socket implementation.close

Connect the stream socket to the specified endpoint.connect

Construct a new stream socket implementation.construct

Move-construct a new stream socket implementation from an-
other protocol type.

converting_move_construct

Destroy a stream socket implementation.destroy

Get the io_service object that owns the service.get_io_service

Get a socket option.get_option

Perform an IO control command on the socket.io_control

Determine whether the socket is open.is_open

Get the local endpoint.local_endpoint

Move-assign from another stream socket implementation.move_assign

Move-construct a new stream socket implementation.move_construct

(Deprecated: Use native_handle().) Get the native socket imple-
mentation.

native

Get the native socket implementation.native_handle

Gets the non-blocking mode of the native socket implementation.native_non_blocking

Sets the non-blocking mode of the native socket implementation.

Gets the non-blocking mode of the socket.non_blocking

Sets the non-blocking mode of the socket.

Open a stream socket.open

1225

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

DescriptionName

Receive some data from the peer.receive

Get the remote endpoint.remote_endpoint

Send the given data to the peer.send

Set a socket option.set_option

Disable sends or receives on the socket.shutdown

Construct a new stream socket service for the specified io_ser-
vice.

stream_socket_service

Data Members

DescriptionName

The unique service identifier.id

Requirements

Header: boost/asio/stream_socket_service.hpp

Convenience header: boost/asio.hpp

stream_socket_service::assign

Assign an existing native socket to a stream socket.

boost::system::error_code assign(
implementation_type & impl,
const protocol_type & protocol,
const native_handle_type & native_socket,
boost::system::error_code & ec);

stream_socket_service::async_connect

Start an asynchronous connect.

template<
typename ConnectHandler>

void-or-deduced async_connect(
implementation_type & impl,
const endpoint_type & peer_endpoint,
ConnectHandler handler);

stream_socket_service::async_receive

Start an asynchronous receive.

1226

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_receive(
implementation_type & impl,
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
ReadHandler handler);

stream_socket_service::async_send

Start an asynchronous send.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_send(
implementation_type & impl,
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
WriteHandler handler);

stream_socket_service::at_mark

Determine whether the socket is at the out-of-band data mark.

bool at_mark(
const implementation_type & impl,
boost::system::error_code & ec) const;

stream_socket_service::available

Determine the number of bytes available for reading.

std::size_t available(
const implementation_type & impl,
boost::system::error_code & ec) const;

stream_socket_service::bind

Bind the stream socket to the specified local endpoint.

boost::system::error_code bind(
implementation_type & impl,
const endpoint_type & endpoint,
boost::system::error_code & ec);

stream_socket_service::cancel

Cancel all asynchronous operations associated with the socket.

boost::system::error_code cancel(
implementation_type & impl,
boost::system::error_code & ec);

1227

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

stream_socket_service::close

Close a stream socket implementation.

boost::system::error_code close(
implementation_type & impl,
boost::system::error_code & ec);

stream_socket_service::connect

Connect the stream socket to the specified endpoint.

boost::system::error_code connect(
implementation_type & impl,
const endpoint_type & peer_endpoint,
boost::system::error_code & ec);

stream_socket_service::construct

Construct a new stream socket implementation.

void construct(
implementation_type & impl);

stream_socket_service::converting_move_construct

Move-construct a new stream socket implementation from another protocol type.

template<
typename Protocol1>

void converting_move_construct(
implementation_type & impl,
typename stream_socket_service< Protocol1 >::implementation_type & other_impl,
typename enable_if< is_convertible< Protocol1, Protocol >::value >::type * = 0);

stream_socket_service::destroy

Destroy a stream socket implementation.

void destroy(
implementation_type & impl);

stream_socket_service::endpoint_type

The endpoint type.

typedef Protocol::endpoint endpoint_type;

Requirements

Header: boost/asio/stream_socket_service.hpp

Convenience header: boost/asio.hpp

1228

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

stream_socket_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

stream_socket_service::get_option

Get a socket option.

template<
typename GettableSocketOption>

boost::system::error_code get_option(
const implementation_type & impl,
GettableSocketOption & option,
boost::system::error_code & ec) const;

stream_socket_service::id

The unique service identifier.

static boost::asio::io_service::id id;

stream_socket_service::implementation_type

The type of a stream socket implementation.

typedef implementation_defined implementation_type;

Requirements

Header: boost/asio/stream_socket_service.hpp

Convenience header: boost/asio.hpp

stream_socket_service::io_control

Perform an IO control command on the socket.

template<
typename IoControlCommand>

boost::system::error_code io_control(
implementation_type & impl,
IoControlCommand & command,
boost::system::error_code & ec);

stream_socket_service::is_open

Determine whether the socket is open.

bool is_open(
const implementation_type & impl) const;

1229

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

stream_socket_service::local_endpoint

Get the local endpoint.

endpoint_type local_endpoint(
const implementation_type & impl,
boost::system::error_code & ec) const;

stream_socket_service::move_assign

Move-assign from another stream socket implementation.

void move_assign(
implementation_type & impl,
stream_socket_service & other_service,
implementation_type & other_impl);

stream_socket_service::move_construct

Move-construct a new stream socket implementation.

void move_construct(
implementation_type & impl,
implementation_type & other_impl);

stream_socket_service::native

(Deprecated: Use native_handle().) Get the native socket implementation.

native_type native(
implementation_type & impl);

stream_socket_service::native_handle

Get the native socket implementation.

native_handle_type native_handle(
implementation_type & impl);

stream_socket_service::native_handle_type

The native socket type.

typedef implementation_defined native_handle_type;

Requirements

Header: boost/asio/stream_socket_service.hpp

Convenience header: boost/asio.hpp

stream_socket_service::native_non_blocking

Gets the non-blocking mode of the native socket implementation.

1230

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool native_non_blocking(
const implementation_type & impl) const;

» more...

Sets the non-blocking mode of the native socket implementation.

boost::system::error_code native_non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

» more...

stream_socket_service::native_non_blocking (1 of 2 overloads)

Gets the non-blocking mode of the native socket implementation.

bool native_non_blocking(
const implementation_type & impl) const;

stream_socket_service::native_non_blocking (2 of 2 overloads)

Sets the non-blocking mode of the native socket implementation.

boost::system::error_code native_non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

stream_socket_service::native_type

(Deprecated: Use native_handle_type.) The native socket type.

typedef implementation_defined native_type;

Requirements

Header: boost/asio/stream_socket_service.hpp

Convenience header: boost/asio.hpp

stream_socket_service::non_blocking

Gets the non-blocking mode of the socket.

bool non_blocking(
const implementation_type & impl) const;

» more...

Sets the non-blocking mode of the socket.

boost::system::error_code non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

» more...

1231

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

stream_socket_service::non_blocking (1 of 2 overloads)

Gets the non-blocking mode of the socket.

bool non_blocking(
const implementation_type & impl) const;

stream_socket_service::non_blocking (2 of 2 overloads)

Sets the non-blocking mode of the socket.

boost::system::error_code non_blocking(
implementation_type & impl,
bool mode,
boost::system::error_code & ec);

stream_socket_service::open

Open a stream socket.

boost::system::error_code open(
implementation_type & impl,
const protocol_type & protocol,
boost::system::error_code & ec);

stream_socket_service::protocol_type

The protocol type.

typedef Protocol protocol_type;

Requirements

Header: boost/asio/stream_socket_service.hpp

Convenience header: boost/asio.hpp

stream_socket_service::receive

Receive some data from the peer.

template<
typename MutableBufferSequence>

std::size_t receive(
implementation_type & impl,
const MutableBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

stream_socket_service::remote_endpoint

Get the remote endpoint.

1232

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

endpoint_type remote_endpoint(
const implementation_type & impl,
boost::system::error_code & ec) const;

stream_socket_service::send

Send the given data to the peer.

template<
typename ConstBufferSequence>

std::size_t send(
implementation_type & impl,
const ConstBufferSequence & buffers,
socket_base::message_flags flags,
boost::system::error_code & ec);

stream_socket_service::set_option

Set a socket option.

template<
typename SettableSocketOption>

boost::system::error_code set_option(
implementation_type & impl,
const SettableSocketOption & option,
boost::system::error_code & ec);

stream_socket_service::shutdown

Disable sends or receives on the socket.

boost::system::error_code shutdown(
implementation_type & impl,
socket_base::shutdown_type what,
boost::system::error_code & ec);

stream_socket_service::stream_socket_service

Construct a new stream socket service for the specified io_service.

stream_socket_service(
boost::asio::io_service & io_service);

streambuf
Typedef for the typical usage of basic_streambuf.

typedef basic_streambuf streambuf;

1233

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The type used to represent the input sequence as a list of buffers.const_buffers_type

The type used to represent the output sequence as a list of buf-
fers.

mutable_buffers_type

Member Functions

DescriptionName

Construct a basic_streambuf object.basic_streambuf

Move characters from the output sequence to the input sequence.commit

Remove characters from the input sequence.consume

Get a list of buffers that represents the input sequence.data

Get the maximum size of the basic_streambuf.max_size

Get a list of buffers that represents the output sequence, with
the given size.

prepare

Get the size of the input sequence.size

Protected Member Functions

DescriptionName

Override std::streambuf behaviour.overflow

reserve

Override std::streambuf behaviour.underflow

The basic_streambuf class is derived from std::streambuf to associate the streambuf's input and output sequences with one
or more character arrays. These character arrays are internal to the basic_streambuf object, but direct access to the array elements
is provided to permit them to be used efficiently with I/O operations. Characters written to the output sequence of a basic_stre-
ambuf object are appended to the input sequence of the same object.

The basic_streambuf class's public interface is intended to permit the following implementation strategies:

• A single contiguous character array, which is reallocated as necessary to accommodate changes in the size of the character sequence.
This is the implementation approach currently used in Asio.

• A sequence of one or more character arrays, where each array is of the same size. Additional character array objects are appended
to the sequence to accommodate changes in the size of the character sequence.

• A sequence of one or more character arrays of varying sizes. Additional character array objects are appended to the sequence to
accommodate changes in the size of the character sequence.

The constructor for basic_streambuf accepts a size_t argument specifying the maximum of the sum of the sizes of the input
sequence and output sequence. During the lifetime of the basic_streambuf object, the following invariant holds:

1234

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

size() <= max_size()

Any member function that would, if successful, cause the invariant to be violated shall throw an exception of class
std::length_error.

The constructor for basic_streambuf takes an Allocator argument. A copy of this argument is used for any memory allocation
performed, by the constructor and by all member functions, during the lifetime of each basic_streambuf object.

Examples

Writing directly from an streambuf to a socket:

boost::asio::streambuf b;
std::ostream os(&b);
os << "Hello, World!\n";

// try sending some data in input sequence
size_t n = sock.send(b.data());

b.consume(n); // sent data is removed from input sequence

Reading from a socket directly into a streambuf:

boost::asio::streambuf b;

// reserve 512 bytes in output sequence
boost::asio::streambuf::mutable_buffers_type bufs = b.prepare(512);

size_t n = sock.receive(bufs);

// received data is "committed" from output sequence to input sequence
b.commit(n);

std::istream is(&b);
std::string s;
is >> s;

Requirements

Header: boost/asio/streambuf.hpp

Convenience header: boost/asio.hpp

system_timer
Typedef for a timer based on the system clock.

typedef basic_waitable_timer< chrono::system_clock > system_timer;

1235

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The clock type.clock_type

The duration type of the clock.duration

The underlying implementation type of I/O object.implementation_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

The time point type of the clock.time_point

The wait traits type.traits_type

Member Functions

DescriptionName

Start an asynchronous wait on the timer.async_wait

Constructor.

Constructor to set a particular expiry time as an absolute time.

Constructor to set a particular expiry time relative to now.

basic_waitable_timer

Cancel any asynchronous operations that are waiting on the
timer.

cancel

Cancels one asynchronous operation that is waiting on the timer.cancel_one

Get the timer's expiry time as an absolute time.

Set the timer's expiry time as an absolute time.

expires_at

Get the timer's expiry time relative to now.

Set the timer's expiry time relative to now.

expires_from_now

Get the io_service associated with the object.get_io_service

Perform a blocking wait on the timer.wait

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

1236

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The basic_waitable_timer class template provides the ability to perform a blocking or asynchronous wait for a timer to expire.

A waitable timer is always in one of two states: "expired" or "not expired". If the wait() or async_wait() function is called on
an expired timer, the wait operation will complete immediately.

Most applications will use one of the steady_timer, system_timer or high_resolution_timer typedefs.

Remarks

This waitable timer functionality is for use with the C++11 standard library's <chrono> facility, or with the Boost.Chrono library.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Examples

Performing a blocking wait (C++11):

// Construct a timer without setting an expiry time.
boost::asio::steady_timer timer(io_service);

// Set an expiry time relative to now.
timer.expires_from_now(std::chrono::seconds(5));

// Wait for the timer to expire.
timer.wait();

Performing an asynchronous wait (C++11):

void handler(const boost::system::error_code& error)
{
if (!error)
{
// Timer expired.

}
}

...

// Construct a timer with an absolute expiry time.
boost::asio::steady_timer timer(io_service,

std::chrono::steady_clock::now() + std::chrono::seconds(60));

// Start an asynchronous wait.
timer.async_wait(handler);

1237

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Changing an active waitable timer's expiry time

Changing the expiry time of a timer while there are pending asynchronous waits causes those wait operations to be cancelled. To
ensure that the action associated with the timer is performed only once, use something like this: used:

void on_some_event()
{
if (my_timer.expires_from_now(seconds(5)) > 0)
{
// We managed to cancel the timer. Start new asynchronous wait.
my_timer.async_wait(on_timeout);

}
else
{
// Too late, timer has already expired!

}
}

void on_timeout(const boost::system::error_code& e)
{
if (e != boost::asio::error::operation_aborted)
{
// Timer was not cancelled, take necessary action.

}
}

• The boost::asio::basic_waitable_timer::expires_from_now() function cancels any pending asynchronous waits,
and returns the number of asynchronous waits that were cancelled. If it returns 0 then you were too late and the wait handler has
already been executed, or will soon be executed. If it returns 1 then the wait handler was successfully cancelled.

• If a wait handler is cancelled, the boost::system::error_code passed to it contains the value boost::asio::error::opera-
tion_aborted.

This typedef uses the C++11 <chrono> standard library facility, if available. Otherwise, it may use the Boost.Chrono library. To
explicitly utilise Boost.Chrono, use the basic_waitable_timer template directly:

typedef basic_waitable_timer<boost::chrono::system_clock> timer;

Requirements

Header: boost/asio/system_timer.hpp

Convenience header: None

time_traits< boost::posix_time::ptime >
Time traits specialised for posix_time.

template<>
struct time_traits< boost::posix_time::ptime >

1238

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The duration type.duration_type

The time type.time_type

Member Functions

DescriptionName

Add a duration to a time.add

Test whether one time is less than another.less_than

Get the current time.now

Subtract one time from another.subtract

Convert to POSIX duration type.to_posix_duration

Requirements

Header: boost/asio/time_traits.hpp

Convenience header: boost/asio.hpp

time_traits< boost::posix_time::ptime >::add

Add a duration to a time.

static time_type add(
const time_type & t,
const duration_type & d);

time_traits< boost::posix_time::ptime >::duration_type

The duration type.

typedef boost::posix_time::time_duration duration_type;

Requirements

Header: boost/asio/time_traits.hpp

Convenience header: boost/asio.hpp

time_traits< boost::posix_time::ptime >::less_than

Test whether one time is less than another.

static bool less_than(
const time_type & t1,
const time_type & t2);

1239

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

time_traits< boost::posix_time::ptime >::now

Get the current time.

static time_type now();

time_traits< boost::posix_time::ptime >::subtract

Subtract one time from another.

static duration_type subtract(
const time_type & t1,
const time_type & t2);

time_traits< boost::posix_time::ptime >::time_type

The time type.

typedef boost::posix_time::ptime time_type;

Requirements

Header: boost/asio/time_traits.hpp

Convenience header: boost/asio.hpp

time_traits< boost::posix_time::ptime >::to_posix_duration

Convert to POSIX duration type.

static boost::posix_time::time_duration to_posix_duration(
const duration_type & d);

transfer_all
Return a completion condition function object that indicates that a read or write operation should continue until all of the data has
been transferred, or until an error occurs.

unspecified transfer_all();

This function is used to create an object, of unspecified type, that meets CompletionCondition requirements.

Example

Reading until a buffer is full:

1240

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::array<char, 128> buf;
boost::system::error_code ec;
std::size_t n = boost::asio::read(

sock, boost::asio::buffer(buf),
boost::asio::transfer_all(), ec);

if (ec)
{
// An error occurred.

}
else
{
// n == 128

}

Requirements

Header: boost/asio/completion_condition.hpp

Convenience header: boost/asio.hpp

transfer_at_least
Return a completion condition function object that indicates that a read or write operation should continue until a minimum number
of bytes has been transferred, or until an error occurs.

unspecified transfer_at_least(
std::size_t minimum);

This function is used to create an object, of unspecified type, that meets CompletionCondition requirements.

Example

Reading until a buffer is full or contains at least 64 bytes:

boost::array<char, 128> buf;
boost::system::error_code ec;
std::size_t n = boost::asio::read(

sock, boost::asio::buffer(buf),
boost::asio::transfer_at_least(64), ec);

if (ec)
{
// An error occurred.

}
else
{
// n >= 64 && n <= 128

}

Requirements

Header: boost/asio/completion_condition.hpp

Convenience header: boost/asio.hpp

transfer_exactly
Return a completion condition function object that indicates that a read or write operation should continue until an exact number of
bytes has been transferred, or until an error occurs.

1241

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

unspecified transfer_exactly(
std::size_t size);

This function is used to create an object, of unspecified type, that meets CompletionCondition requirements.

Example

Reading until a buffer is full or contains exactly 64 bytes:

boost::array<char, 128> buf;
boost::system::error_code ec;
std::size_t n = boost::asio::read(

sock, boost::asio::buffer(buf),
boost::asio::transfer_exactly(64), ec);

if (ec)
{
// An error occurred.

}
else
{
// n == 64

}

Requirements

Header: boost/asio/completion_condition.hpp

Convenience header: boost/asio.hpp

use_future
A special value, similar to std::nothrow.

constexpr use_future_t use_future;

See the documentation for use_future_t for a usage example.

Requirements

Header: boost/asio/use_future.hpp

Convenience header: boost/asio.hpp

use_future_t
Class used to specify that an asynchronous operation should return a future.

template<
typename Allocator = std::allocator<void>>

class use_future_t

1242

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The allocator type. The allocator is used when constructing the
std::promise object for a given asynchronous operation.

allocator_type

Member Functions

DescriptionName

Obtain allocator.get_allocator

Specify an alternate allocator.operator[]

Construct using default-constructed allocator.

Construct using specified allocator.

use_future_t

The use_future_t class is used to indicate that an asynchronous operation should return a std::future object. A use_future_t
object may be passed as a handler to an asynchronous operation, typically using the special value boost::asio::use_future.
For example:

std::future<std::size_t> my_future
= my_socket.async_read_some(my_buffer, boost::asio::use_future);

The initiating function (async_read_some in the above example) returns a future that will receive the result of the operation. If the
operation completes with an error_code indicating failure, it is converted into a system_error and passed back to the caller via the
future.

Requirements

Header: boost/asio/use_future.hpp

Convenience header: boost/asio.hpp

use_future_t::allocator_type

The allocator type. The allocator is used when constructing the std::promise object for a given asynchronous operation.

typedef Allocator allocator_type;

Requirements

Header: boost/asio/use_future.hpp

Convenience header: boost/asio.hpp

use_future_t::get_allocator

Obtain allocator.

allocator_type get_allocator() const;

1243

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

use_future_t::operator[]

Specify an alternate allocator.

template<
typename OtherAllocator>

use_future_t< OtherAllocator > operator[](
const OtherAllocator & allocator) const;

use_future_t::use_future_t

Construct using default-constructed allocator.

constexpr use_future_t();
» more...

Construct using specified allocator.

explicit use_future_t(
const Allocator & allocator);

» more...

use_future_t::use_future_t (1 of 2 overloads)

Construct using default-constructed allocator.

constexpr use_future_t();

use_future_t::use_future_t (2 of 2 overloads)

Construct using specified allocator.

use_future_t(
const Allocator & allocator);

use_service

template<
typename Service>

Service & use_service(
io_service & ios);

This function is used to locate a service object that corresponds to the given service type. If there is no existing implementation of
the service, then the io_service will create a new instance of the service.

Parameters

ios The io_service object that owns the service.

Return Value

The service interface implementing the specified service type. Ownership of the service interface is not transferred to the caller.

1244

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requirements

Header: boost/asio/io_service.hpp

Convenience header: boost/asio.hpp

wait_traits
Wait traits suitable for use with the basic_waitable_timer class template.

template<
typename Clock>

struct wait_traits

Member Functions

DescriptionName

Convert a clock duration into a duration used for waiting.to_wait_duration

Requirements

Header: boost/asio/wait_traits.hpp

Convenience header: boost/asio.hpp

wait_traits::to_wait_duration

Convert a clock duration into a duration used for waiting.

static Clock::duration to_wait_duration(
const typename Clock::duration & d);

Return Value

d.

waitable_timer_service
Default service implementation for a timer.

template<
typename Clock,
typename WaitTraits = boost::asio::wait_traits<Clock>>

class waitable_timer_service :
public io_service::service

1245

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The clock type.clock_type

The duration type of the clock.duration

The implementation type of the waitable timer.implementation_type

The time point type of the clock.time_point

The wait traits type.traits_type

Member Functions

DescriptionName

async_wait

Cancel any asynchronous wait operations associated with the
timer.

cancel

Cancels one asynchronous wait operation associated with the
timer.

cancel_one

Construct a new timer implementation.construct

Destroy a timer implementation.destroy

Get the expiry time for the timer as an absolute time.

Set the expiry time for the timer as an absolute time.

expires_at

Get the expiry time for the timer relative to now.

Set the expiry time for the timer relative to now.

expires_from_now

Get the io_service object that owns the service.get_io_service

wait

Construct a new timer service for the specified io_service.waitable_timer_service

Data Members

DescriptionName

The unique service identifier.id

Requirements

Header: boost/asio/waitable_timer_service.hpp

Convenience header: boost/asio.hpp

1246

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

waitable_timer_service::async_wait

template<
typename WaitHandler>

void-or-deduced async_wait(
implementation_type & impl,
WaitHandler handler);

waitable_timer_service::cancel

Cancel any asynchronous wait operations associated with the timer.

std::size_t cancel(
implementation_type & impl,
boost::system::error_code & ec);

waitable_timer_service::cancel_one

Cancels one asynchronous wait operation associated with the timer.

std::size_t cancel_one(
implementation_type & impl,
boost::system::error_code & ec);

waitable_timer_service::clock_type

The clock type.

typedef Clock clock_type;

Requirements

Header: boost/asio/waitable_timer_service.hpp

Convenience header: boost/asio.hpp

waitable_timer_service::construct

Construct a new timer implementation.

void construct(
implementation_type & impl);

waitable_timer_service::destroy

Destroy a timer implementation.

void destroy(
implementation_type & impl);

waitable_timer_service::duration

The duration type of the clock.

1247

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef clock_type::duration duration;

Requirements

Header: boost/asio/waitable_timer_service.hpp

Convenience header: boost/asio.hpp

waitable_timer_service::expires_at

Get the expiry time for the timer as an absolute time.

time_point expires_at(
const implementation_type & impl) const;

» more...

Set the expiry time for the timer as an absolute time.

std::size_t expires_at(
implementation_type & impl,
const time_point & expiry_time,
boost::system::error_code & ec);

» more...

waitable_timer_service::expires_at (1 of 2 overloads)

Get the expiry time for the timer as an absolute time.

time_point expires_at(
const implementation_type & impl) const;

waitable_timer_service::expires_at (2 of 2 overloads)

Set the expiry time for the timer as an absolute time.

std::size_t expires_at(
implementation_type & impl,
const time_point & expiry_time,
boost::system::error_code & ec);

waitable_timer_service::expires_from_now

Get the expiry time for the timer relative to now.

duration expires_from_now(
const implementation_type & impl) const;

» more...

Set the expiry time for the timer relative to now.

std::size_t expires_from_now(
implementation_type & impl,
const duration & expiry_time,
boost::system::error_code & ec);

» more...

1248

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

waitable_timer_service::expires_from_now (1 of 2 overloads)

Get the expiry time for the timer relative to now.

duration expires_from_now(
const implementation_type & impl) const;

waitable_timer_service::expires_from_now (2 of 2 overloads)

Set the expiry time for the timer relative to now.

std::size_t expires_from_now(
implementation_type & impl,
const duration & expiry_time,
boost::system::error_code & ec);

waitable_timer_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

waitable_timer_service::id

The unique service identifier.

static boost::asio::io_service::id id;

waitable_timer_service::implementation_type

The implementation type of the waitable timer.

typedef implementation_defined implementation_type;

Requirements

Header: boost/asio/waitable_timer_service.hpp

Convenience header: boost/asio.hpp

waitable_timer_service::time_point

The time point type of the clock.

typedef clock_type::time_point time_point;

Requirements

Header: boost/asio/waitable_timer_service.hpp

Convenience header: boost/asio.hpp

1249

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

waitable_timer_service::traits_type

The wait traits type.

typedef WaitTraits traits_type;

Requirements

Header: boost/asio/waitable_timer_service.hpp

Convenience header: boost/asio.hpp

waitable_timer_service::wait

void wait(
implementation_type & impl,
boost::system::error_code & ec);

waitable_timer_service::waitable_timer_service

Construct a new timer service for the specified io_service.

waitable_timer_service(
boost::asio::io_service & io_service);

windows::basic_handle
Provides Windows handle functionality.

template<
typename HandleService>

class basic_handle :
public basic_io_object< HandleService >

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a handle.

native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

1250

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Construct a basic_handle without opening it.

Construct a basic_handle on an existing native handle.

Move-construct a basic_handle from another.

basic_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native handle repres-
entation.

native

Get the native handle representation.native_handle

Move-assign a basic_handle from another.operator=

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected destructor to prevent deletion through this type.~basic_handle

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The windows::basic_handle class template provides the ability to wrap a Windows handle.

Thread Safety

Distinct objects: Safe.

1251

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Shared objects: Unsafe.

Requirements

Header: boost/asio/windows/basic_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_handle::assign

Assign an existing native handle to the handle.

void assign(
const native_handle_type & handle);

» more...

boost::system::error_code assign(
const native_handle_type & handle,
boost::system::error_code & ec);

» more...

windows::basic_handle::assign (1 of 2 overloads)

Assign an existing native handle to the handle.

void assign(
const native_handle_type & handle);

windows::basic_handle::assign (2 of 2 overloads)

Assign an existing native handle to the handle.

boost::system::error_code assign(
const native_handle_type & handle,
boost::system::error_code & ec);

windows::basic_handle::basic_handle

Construct a windows::basic_handle without opening it.

explicit basic_handle(
boost::asio::io_service & io_service);

» more...

Construct a windows::basic_handle on an existing native handle.

basic_handle(
boost::asio::io_service & io_service,
const native_handle_type & handle);

» more...

Move-construct a windows::basic_handle from another.

basic_handle(
basic_handle && other);

» more...

1252

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_handle::basic_handle (1 of 3 overloads)

Construct a windows::basic_handle without opening it.

basic_handle(
boost::asio::io_service & io_service);

This constructor creates a handle without opening it.

Parameters

io_service The io_service object that the handle will use to dispatch handlers for any asynchronous operations performed
on the handle.

windows::basic_handle::basic_handle (2 of 3 overloads)

Construct a windows::basic_handle on an existing native handle.

basic_handle(
boost::asio::io_service & io_service,
const native_handle_type & handle);

This constructor creates a handle object to hold an existing native handle.

Parameters

io_service The io_service object that the handle will use to dispatch handlers for any asynchronous operations performed
on the handle.

handle A native handle.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_handle::basic_handle (3 of 3 overloads)

Move-construct a windows::basic_handle from another.

basic_handle(
basic_handle && other);

This constructor moves a handle from one object to another.

Parameters

other The other windows::basic_handle object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_handle(io_service&) con-

structor.

windows::basic_handle::cancel

Cancel all asynchronous operations associated with the handle.

1253

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void cancel();
» more...

boost::system::error_code cancel(
boost::system::error_code & ec);

» more...

windows::basic_handle::cancel (1 of 2 overloads)

Cancel all asynchronous operations associated with the handle.

void cancel();

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_handle::cancel (2 of 2 overloads)

Cancel all asynchronous operations associated with the handle.

boost::system::error_code cancel(
boost::system::error_code & ec);

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

windows::basic_handle::close

Close the handle.

void close();
» more...

boost::system::error_code close(
boost::system::error_code & ec);

» more...

windows::basic_handle::close (1 of 2 overloads)

Close the handle.

void close();

This function is used to close the handle. Any asynchronous read or write operations will be cancelled immediately, and will complete
with the boost::asio::error::operation_aborted error.

1254

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_handle::close (2 of 2 overloads)

Close the handle.

boost::system::error_code close(
boost::system::error_code & ec);

This function is used to close the handle. Any asynchronous read or write operations will be cancelled immediately, and will complete
with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

windows::basic_handle::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

windows::basic_handle::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

windows::basic_handle::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

windows::basic_handle::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

1255

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

windows::basic_handle::get_service

Get the service associated with the I/O object.

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

windows::basic_handle::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

service_type & get_service();

windows::basic_handle::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

windows::basic_handle::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

windows::basic_handle::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/windows/basic_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_handle::is_open

Determine whether the handle is open.

1256

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

bool is_open() const;

windows::basic_handle::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();
» more...

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;
» more...

windows::basic_handle::lowest_layer (1 of 2 overloads)

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a windows::basic_handle cannot contain any
further layers, it simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

windows::basic_handle::lowest_layer (2 of 2 overloads)

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a windows::basic_handle cannot contain
any further layers, it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

windows::basic_handle::lowest_layer_type

A windows::basic_handle is always the lowest layer.

typedef basic_handle< HandleService > lowest_layer_type;

1257

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a handle.

native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Construct a basic_handle without opening it.

Construct a basic_handle on an existing native handle.

Move-construct a basic_handle from another.

basic_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native handle repres-
entation.

native

Get the native handle representation.native_handle

Move-assign a basic_handle from another.operator=

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected destructor to prevent deletion through this type.~basic_handle

1258

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The windows::basic_handle class template provides the ability to wrap a Windows handle.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/windows/basic_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_handle::native

(Deprecated: Use native_handle().) Get the native handle representation.

native_type native();

This function may be used to obtain the underlying representation of the handle. This is intended to allow access to native handle
functionality that is not otherwise provided.

windows::basic_handle::native_handle

Get the native handle representation.

native_handle_type native_handle();

This function may be used to obtain the underlying representation of the handle. This is intended to allow access to native handle
functionality that is not otherwise provided.

windows::basic_handle::native_handle_type

The native representation of a handle.

typedef HandleService::native_handle_type native_handle_type;

Requirements

Header: boost/asio/windows/basic_handle.hpp

Convenience header: boost/asio.hpp

1259

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_handle::native_type

(Deprecated: Use native_handle_type.) The native representation of a handle.

typedef HandleService::native_handle_type native_type;

Requirements

Header: boost/asio/windows/basic_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_handle::operator=

Move-assign a windows::basic_handle from another.

basic_handle & operator=(
basic_handle && other);

This assignment operator moves a handle from one object to another.

Parameters

other The other windows::basic_handle object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_handle(io_service&) con-

structor.

windows::basic_handle::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

Remarks

Available only for services that do not support movability.

windows::basic_handle::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef HandleService service_type;

Requirements

Header: boost/asio/windows/basic_handle.hpp

Convenience header: boost/asio.hpp

1260

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_handle::~basic_handle

Protected destructor to prevent deletion through this type.

~basic_handle();

windows::basic_object_handle
Provides object-oriented handle functionality.

template<
typename ObjectHandleService = object_handle_service>

class basic_object_handle :
public windows::basic_handle< ObjectHandleService >

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a handle.

native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

1261

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Start an asynchronous wait on the object handle.async_wait

Construct a basic_object_handle without opening it.

Construct a basic_object_handle on an existing native handle.

Move-construct a basic_object_handle from another.

basic_object_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native handle repres-
entation.

native

Get the native handle representation.native_handle

Move-assign a basic_object_handle from another.operator=

Perform a blocking wait on the object handle.wait

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The windows::basic_object_handle class template provides asynchronous and blocking object-oriented handle functionality.

1262

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/windows/basic_object_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_object_handle::assign

Assign an existing native handle to the handle.

void assign(
const native_handle_type & handle);

» more...

boost::system::error_code assign(
const native_handle_type & handle,
boost::system::error_code & ec);

» more...

windows::basic_object_handle::assign (1 of 2 overloads)

Inherited from windows::basic_handle.

Assign an existing native handle to the handle.

void assign(
const native_handle_type & handle);

windows::basic_object_handle::assign (2 of 2 overloads)

Inherited from windows::basic_handle.

Assign an existing native handle to the handle.

boost::system::error_code assign(
const native_handle_type & handle,
boost::system::error_code & ec);

windows::basic_object_handle::async_wait

Start an asynchronous wait on the object handle.

template<
typename WaitHandler>

void-or-deduced async_wait(
WaitHandler handler);

This function is be used to initiate an asynchronous wait against the object handle. It always returns immediately.

1263

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

handler The handler to be called when the object handle is set to the signalled state. Copies will be made of the handler as required.
The function signature of the handler must be:

void handler(
const boost::system::error_code& error // Result of operation.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

windows::basic_object_handle::basic_object_handle

Construct a windows::basic_object_handle without opening it.

explicit basic_object_handle(
boost::asio::io_service & io_service);

» more...

Construct a windows::basic_object_handle on an existing native handle.

basic_object_handle(
boost::asio::io_service & io_service,
const native_handle_type & native_handle);

» more...

Move-construct a windows::basic_object_handle from another.

basic_object_handle(
basic_object_handle && other);

» more...

windows::basic_object_handle::basic_object_handle (1 of 3 overloads)

Construct a windows::basic_object_handle without opening it.

basic_object_handle(
boost::asio::io_service & io_service);

This constructor creates an object handle without opening it.

Parameters

io_service The io_service object that the object handle will use to dispatch handlers for any asynchronous operations per-
formed on the handle.

windows::basic_object_handle::basic_object_handle (2 of 3 overloads)

Construct a windows::basic_object_handle on an existing native handle.

basic_object_handle(
boost::asio::io_service & io_service,
const native_handle_type & native_handle);

1264

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This constructor creates an object handle object to hold an existing native handle.

Parameters

io_service The io_service object that the object handle will use to dispatch handlers for any asynchronous operations
performed on the handle.

native_handle The new underlying handle implementation.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_object_handle::basic_object_handle (3 of 3 overloads)

Move-construct a windows::basic_object_handle from another.

basic_object_handle(
basic_object_handle && other);

This constructor moves an object handle from one object to another.

Parameters

other The other windows::basic_object_handle object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_object_handle(io_service&)
constructor.

windows::basic_object_handle::cancel

Cancel all asynchronous operations associated with the handle.

void cancel();
» more...

boost::system::error_code cancel(
boost::system::error_code & ec);

» more...

windows::basic_object_handle::cancel (1 of 2 overloads)

Inherited from windows::basic_handle.

Cancel all asynchronous operations associated with the handle.

void cancel();

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

1265

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_object_handle::cancel (2 of 2 overloads)

Inherited from windows::basic_handle.

Cancel all asynchronous operations associated with the handle.

boost::system::error_code cancel(
boost::system::error_code & ec);

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

windows::basic_object_handle::close

Close the handle.

void close();
» more...

boost::system::error_code close(
boost::system::error_code & ec);

» more...

windows::basic_object_handle::close (1 of 2 overloads)

Inherited from windows::basic_handle.

Close the handle.

void close();

This function is used to close the handle. Any asynchronous read or write operations will be cancelled immediately, and will complete
with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_object_handle::close (2 of 2 overloads)

Inherited from windows::basic_handle.

Close the handle.

boost::system::error_code close(
boost::system::error_code & ec);

This function is used to close the handle. Any asynchronous read or write operations will be cancelled immediately, and will complete
with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

1266

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_object_handle::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

windows::basic_object_handle::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

windows::basic_object_handle::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

windows::basic_object_handle::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

windows::basic_object_handle::get_service

Get the service associated with the I/O object.

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

windows::basic_object_handle::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

1267

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

service_type & get_service();

windows::basic_object_handle::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

windows::basic_object_handle::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

windows::basic_object_handle::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/windows/basic_object_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_object_handle::is_open

Inherited from windows::basic_handle.

Determine whether the handle is open.

bool is_open() const;

windows::basic_object_handle::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();
» more...

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;
» more...

1268

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_object_handle::lowest_layer (1 of 2 overloads)

Inherited from windows::basic_handle.

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a windows::basic_handle cannot contain any
further layers, it simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

windows::basic_object_handle::lowest_layer (2 of 2 overloads)

Inherited from windows::basic_handle.

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a windows::basic_handle cannot contain
any further layers, it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

windows::basic_object_handle::lowest_layer_type

Inherited from windows::basic_handle.

A windows::basic_handle is always the lowest layer.

typedef basic_handle< ObjectHandleService > lowest_layer_type;

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a handle.

native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

1269

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Construct a basic_handle without opening it.

Construct a basic_handle on an existing native handle.

Move-construct a basic_handle from another.

basic_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native handle repres-
entation.

native

Get the native handle representation.native_handle

Move-assign a basic_handle from another.operator=

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected destructor to prevent deletion through this type.~basic_handle

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The windows::basic_handle class template provides the ability to wrap a Windows handle.

Thread Safety

Distinct objects: Safe.

1270

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Shared objects: Unsafe.

Requirements

Header: boost/asio/windows/basic_object_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_object_handle::native

Inherited from windows::basic_handle.

(Deprecated: Use native_handle().) Get the native handle representation.

native_type native();

This function may be used to obtain the underlying representation of the handle. This is intended to allow access to native handle
functionality that is not otherwise provided.

windows::basic_object_handle::native_handle

Inherited from windows::basic_handle.

Get the native handle representation.

native_handle_type native_handle();

This function may be used to obtain the underlying representation of the handle. This is intended to allow access to native handle
functionality that is not otherwise provided.

windows::basic_object_handle::native_handle_type

The native representation of a handle.

typedef ObjectHandleService::native_handle_type native_handle_type;

Requirements

Header: boost/asio/windows/basic_object_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_object_handle::native_type

Inherited from windows::basic_handle.

(Deprecated: Use native_handle_type.) The native representation of a handle.

typedef ObjectHandleService::native_handle_type native_type;

Requirements

Header: boost/asio/windows/basic_object_handle.hpp

Convenience header: boost/asio.hpp

1271

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_object_handle::operator=

Move-assign a windows::basic_object_handle from another.

basic_object_handle & operator=(
basic_object_handle && other);

This assignment operator moves an object handle from one object to another.

Parameters

other The other windows::basic_object_handle object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_object_handle(io_service&)
constructor.

windows::basic_object_handle::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

Remarks

Available only for services that do not support movability.

windows::basic_object_handle::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef ObjectHandleService service_type;

Requirements

Header: boost/asio/windows/basic_object_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_object_handle::wait

Perform a blocking wait on the object handle.

void wait();
» more...

void wait(
boost::system::error_code & ec);

» more...

1272

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_object_handle::wait (1 of 2 overloads)

Perform a blocking wait on the object handle.

void wait();

This function is used to wait for the object handle to be set to the signalled state. This function blocks and does not return until the
object handle has been set to the signalled state.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_object_handle::wait (2 of 2 overloads)

Perform a blocking wait on the object handle.

void wait(
boost::system::error_code & ec);

This function is used to wait for the object handle to be set to the signalled state. This function blocks and does not return until the
object handle has been set to the signalled state.

Parameters

ec Set to indicate what error occurred, if any.

windows::basic_random_access_handle
Provides random-access handle functionality.

template<
typename RandomAccessHandleService = random_access_handle_service>

class basic_random_access_handle :
public windows::basic_handle< RandomAccessHandleService >

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a handle.

native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

1273

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Start an asynchronous read at the specified offset.async_read_some_at

Start an asynchronous write at the specified offset.async_write_some_at

Construct a basic_random_access_handle without opening it.

Construct a basic_random_access_handle on an existing native
handle.

Move-construct a basic_random_access_handle from another.

basic_random_access_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native handle repres-
entation.

native

Get the native handle representation.native_handle

Move-assign a basic_random_access_handle from another.operator=

Read some data from the handle at the specified offset.read_some_at

Write some data to the handle at the specified offset.write_some_at

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

1274

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The windows::basic_random_access_handle class template provides asynchronous and blocking random-access handle
functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/windows/basic_random_access_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_random_access_handle::assign

Assign an existing native handle to the handle.

void assign(
const native_handle_type & handle);

» more...

boost::system::error_code assign(
const native_handle_type & handle,
boost::system::error_code & ec);

» more...

windows::basic_random_access_handle::assign (1 of 2 overloads)

Inherited from windows::basic_handle.

Assign an existing native handle to the handle.

void assign(
const native_handle_type & handle);

windows::basic_random_access_handle::assign (2 of 2 overloads)

Inherited from windows::basic_handle.

Assign an existing native handle to the handle.

boost::system::error_code assign(
const native_handle_type & handle,
boost::system::error_code & ec);

1275

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_random_access_handle::async_read_some_at

Start an asynchronous read at the specified offset.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read_some_at(
uint64_t offset,
const MutableBufferSequence & buffers,
ReadHandler handler);

This function is used to asynchronously read data from the random-access handle. The function call always returns immediately.

Parameters

offset The offset at which the data will be read.

buffers One or more buffers into which the data will be read. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes read.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The read operation may not read all of the requested number of bytes. Consider using the async_read_at function if you need to
ensure that the requested amount of data is read before the asynchronous operation completes.

Example

To read into a single data buffer use the buffer function as follows:

handle.async_read_some_at(42, boost::asio::buffer(data, size), handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

windows::basic_random_access_handle::async_write_some_at

Start an asynchronous write at the specified offset.

1276

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write_some_at(
uint64_t offset,
const ConstBufferSequence & buffers,
WriteHandler handler);

This function is used to asynchronously write data to the random-access handle. The function call always returns immediately.

Parameters

offset The offset at which the data will be written.

buffers One or more data buffers to be written to the handle. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes written.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The write operation may not transmit all of the data to the peer. Consider using the async_write_at function if you need to ensure
that all data is written before the asynchronous operation completes.

Example

To write a single data buffer use the buffer function as follows:

handle.async_write_some_at(42, boost::asio::buffer(data, size), handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

windows::basic_random_access_handle::basic_random_access_handle

Construct a windows::basic_random_access_handle without opening it.

explicit basic_random_access_handle(
boost::asio::io_service & io_service);

» more...

Construct a windows::basic_random_access_handle on an existing native handle.

1277

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_random_access_handle(
boost::asio::io_service & io_service,
const native_handle_type & handle);

» more...

Move-construct a windows::basic_random_access_handle from another.

basic_random_access_handle(
basic_random_access_handle && other);

» more...

windows::basic_random_access_handle::basic_random_access_handle (1 of 3 overloads)

Construct a windows::basic_random_access_handle without opening it.

basic_random_access_handle(
boost::asio::io_service & io_service);

This constructor creates a random-access handle without opening it. The handle needs to be opened before data can be written to or
read from it.

Parameters

io_service The io_service object that the random-access handle will use to dispatch handlers for any asynchronous operations
performed on the handle.

windows::basic_random_access_handle::basic_random_access_handle (2 of 3 overloads)

Construct a windows::basic_random_access_handle on an existing native handle.

basic_random_access_handle(
boost::asio::io_service & io_service,
const native_handle_type & handle);

This constructor creates a random-access handle object to hold an existing native handle.

Parameters

io_service The io_service object that the random-access handle will use to dispatch handlers for any asynchronous operations
performed on the handle.

handle The new underlying handle implementation.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_random_access_handle::basic_random_access_handle (3 of 3 overloads)

Move-construct a windows::basic_random_access_handle from another.

basic_random_access_handle(
basic_random_access_handle && other);

This constructor moves a random-access handle from one object to another.

1278

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

other The other windows::basic_random_access_handle object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_random_access_handle(io_ser-
vice&) constructor.

windows::basic_random_access_handle::cancel

Cancel all asynchronous operations associated with the handle.

void cancel();
» more...

boost::system::error_code cancel(
boost::system::error_code & ec);

» more...

windows::basic_random_access_handle::cancel (1 of 2 overloads)

Inherited from windows::basic_handle.

Cancel all asynchronous operations associated with the handle.

void cancel();

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_random_access_handle::cancel (2 of 2 overloads)

Inherited from windows::basic_handle.

Cancel all asynchronous operations associated with the handle.

boost::system::error_code cancel(
boost::system::error_code & ec);

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

windows::basic_random_access_handle::close

Close the handle.

1279

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void close();
» more...

boost::system::error_code close(
boost::system::error_code & ec);

» more...

windows::basic_random_access_handle::close (1 of 2 overloads)

Inherited from windows::basic_handle.

Close the handle.

void close();

This function is used to close the handle. Any asynchronous read or write operations will be cancelled immediately, and will complete
with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_random_access_handle::close (2 of 2 overloads)

Inherited from windows::basic_handle.

Close the handle.

boost::system::error_code close(
boost::system::error_code & ec);

This function is used to close the handle. Any asynchronous read or write operations will be cancelled immediately, and will complete
with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

windows::basic_random_access_handle::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

windows::basic_random_access_handle::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

1280

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_random_access_handle::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

windows::basic_random_access_handle::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

windows::basic_random_access_handle::get_service

Get the service associated with the I/O object.

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

windows::basic_random_access_handle::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

service_type & get_service();

windows::basic_random_access_handle::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

windows::basic_random_access_handle::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

1281

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_random_access_handle::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/windows/basic_random_access_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_random_access_handle::is_open

Inherited from windows::basic_handle.

Determine whether the handle is open.

bool is_open() const;

windows::basic_random_access_handle::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();
» more...

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;
» more...

windows::basic_random_access_handle::lowest_layer (1 of 2 overloads)

Inherited from windows::basic_handle.

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a windows::basic_handle cannot contain any
further layers, it simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

windows::basic_random_access_handle::lowest_layer (2 of 2 overloads)

Inherited from windows::basic_handle.

Get a const reference to the lowest layer.

1282

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a windows::basic_handle cannot contain
any further layers, it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

windows::basic_random_access_handle::lowest_layer_type

Inherited from windows::basic_handle.

A windows::basic_handle is always the lowest layer.

typedef basic_handle< RandomAccessHandleService > lowest_layer_type;

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a handle.

native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

1283

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Construct a basic_handle without opening it.

Construct a basic_handle on an existing native handle.

Move-construct a basic_handle from another.

basic_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native handle repres-
entation.

native

Get the native handle representation.native_handle

Move-assign a basic_handle from another.operator=

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected destructor to prevent deletion through this type.~basic_handle

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The windows::basic_handle class template provides the ability to wrap a Windows handle.

Thread Safety

Distinct objects: Safe.

1284

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Shared objects: Unsafe.

Requirements

Header: boost/asio/windows/basic_random_access_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_random_access_handle::native

Inherited from windows::basic_handle.

(Deprecated: Use native_handle().) Get the native handle representation.

native_type native();

This function may be used to obtain the underlying representation of the handle. This is intended to allow access to native handle
functionality that is not otherwise provided.

windows::basic_random_access_handle::native_handle

Inherited from windows::basic_handle.

Get the native handle representation.

native_handle_type native_handle();

This function may be used to obtain the underlying representation of the handle. This is intended to allow access to native handle
functionality that is not otherwise provided.

windows::basic_random_access_handle::native_handle_type

The native representation of a handle.

typedef RandomAccessHandleService::native_handle_type native_handle_type;

Requirements

Header: boost/asio/windows/basic_random_access_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_random_access_handle::native_type

(Deprecated: Use native_handle_type.) The native representation of a handle.

typedef RandomAccessHandleService::native_handle_type native_type;

Requirements

Header: boost/asio/windows/basic_random_access_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_random_access_handle::operator=

Move-assign a windows::basic_random_access_handle from another.

1285

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_random_access_handle & operator=(
basic_random_access_handle && other);

This assignment operator moves a random-access handle from one object to another.

Parameters

other The other windows::basic_random_access_handle object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_random_access_handle(io_ser-
vice&) constructor.

windows::basic_random_access_handle::read_some_at

Read some data from the handle at the specified offset.

template<
typename MutableBufferSequence>

std::size_t read_some_at(
uint64_t offset,
const MutableBufferSequence & buffers);

» more...

template<
typename MutableBufferSequence>

std::size_t read_some_at(
uint64_t offset,
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

» more...

windows::basic_random_access_handle::read_some_at (1 of 2 overloads)

Read some data from the handle at the specified offset.

template<
typename MutableBufferSequence>

std::size_t read_some_at(
uint64_t offset,
const MutableBufferSequence & buffers);

This function is used to read data from the random-access handle. The function call will block until one or more bytes of data has
been read successfully, or until an error occurs.

Parameters

offset The offset at which the data will be read.

buffers One or more buffers into which the data will be read.

Return Value

The number of bytes read.

1286

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection
was closed by the peer.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read_at function if you need to
ensure that the requested amount of data is read before the blocking operation completes.

Example

To read into a single data buffer use the buffer function as follows:

handle.read_some_at(42, boost::asio::buffer(data, size));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

windows::basic_random_access_handle::read_some_at (2 of 2 overloads)

Read some data from the handle at the specified offset.

template<
typename MutableBufferSequence>

std::size_t read_some_at(
uint64_t offset,
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to read data from the random-access handle. The function call will block until one or more bytes of data has
been read successfully, or until an error occurs.

Parameters

offset The offset at which the data will be read.

buffers One or more buffers into which the data will be read.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. Returns 0 if an error occurred.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read_at function if you need to
ensure that the requested amount of data is read before the blocking operation completes.

windows::basic_random_access_handle::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

1287

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

Available only for services that do not support movability.

windows::basic_random_access_handle::service_type

Inherited from basic_io_object.

The type of the service that will be used to provide I/O operations.

typedef RandomAccessHandleService service_type;

Requirements

Header: boost/asio/windows/basic_random_access_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_random_access_handle::write_some_at

Write some data to the handle at the specified offset.

template<
typename ConstBufferSequence>

std::size_t write_some_at(
uint64_t offset,
const ConstBufferSequence & buffers);

» more...

template<
typename ConstBufferSequence>

std::size_t write_some_at(
uint64_t offset,
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

» more...

windows::basic_random_access_handle::write_some_at (1 of 2 overloads)

Write some data to the handle at the specified offset.

template<
typename ConstBufferSequence>

std::size_t write_some_at(
uint64_t offset,
const ConstBufferSequence & buffers);

This function is used to write data to the random-access handle. The function call will block until one or more bytes of the data has
been written successfully, or until an error occurs.

Parameters

offset The offset at which the data will be written.

buffers One or more data buffers to be written to the handle.

Return Value

The number of bytes written.

1288

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection
was closed by the peer.

Remarks

The write_some_at operation may not write all of the data. Consider using the write_at function if you need to ensure that all data
is written before the blocking operation completes.

Example

To write a single data buffer use the buffer function as follows:

handle.write_some_at(42, boost::asio::buffer(data, size));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

windows::basic_random_access_handle::write_some_at (2 of 2 overloads)

Write some data to the handle at the specified offset.

template<
typename ConstBufferSequence>

std::size_t write_some_at(
uint64_t offset,
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to write data to the random-access handle. The function call will block until one or more bytes of the data has
been written successfully, or until an error occurs.

Parameters

offset The offset at which the data will be written.

buffers One or more data buffers to be written to the handle.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. Returns 0 if an error occurred.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write_at function if you need to ensure
that all data is written before the blocking operation completes.

windows::basic_stream_handle
Provides stream-oriented handle functionality.

template<
typename StreamHandleService = stream_handle_service>

class basic_stream_handle :
public windows::basic_handle< StreamHandleService >

1289

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a handle.

native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Construct a basic_stream_handle without opening it.

Construct a basic_stream_handle on an existing native handle.

Move-construct a basic_stream_handle from another.

basic_stream_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native handle repres-
entation.

native

Get the native handle representation.native_handle

Move-assign a basic_stream_handle from another.operator=

Read some data from the handle.read_some

Write some data to the handle.write_some

1290

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The windows::basic_stream_handle class template provides asynchronous and blocking stream-oriented handle functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/windows/basic_stream_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_stream_handle::assign

Assign an existing native handle to the handle.

void assign(
const native_handle_type & handle);

» more...

boost::system::error_code assign(
const native_handle_type & handle,
boost::system::error_code & ec);

» more...

windows::basic_stream_handle::assign (1 of 2 overloads)

Inherited from windows::basic_handle.

Assign an existing native handle to the handle.

void assign(
const native_handle_type & handle);

1291

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_stream_handle::assign (2 of 2 overloads)

Inherited from windows::basic_handle.

Assign an existing native handle to the handle.

boost::system::error_code assign(
const native_handle_type & handle,
boost::system::error_code & ec);

windows::basic_stream_handle::async_read_some

Start an asynchronous read.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read_some(
const MutableBufferSequence & buffers,
ReadHandler handler);

This function is used to asynchronously read data from the stream handle. The function call always returns immediately.

Parameters

buffers One or more buffers into which the data will be read. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the read operation completes. Copies will be made of the handler as required. The function
signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes read.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The read operation may not read all of the requested number of bytes. Consider using the async_read function if you need to ensure
that the requested amount of data is read before the asynchronous operation completes.

Example

To read into a single data buffer use the buffer function as follows:

handle.async_read_some(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

1292

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_stream_handle::async_write_some

Start an asynchronous write.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write_some(
const ConstBufferSequence & buffers,
WriteHandler handler);

This function is used to asynchronously write data to the stream handle. The function call always returns immediately.

Parameters

buffers One or more data buffers to be written to the handle. Although the buffers object may be copied as necessary, ownership
of the underlying memory blocks is retained by the caller, which must guarantee that they remain valid until the handler
is called.

handler The handler to be called when the write operation completes. Copies will be made of the handler as required. The
function signature of the handler must be:

void handler(
const boost::system::error_code& error, // Result of operation.
std::size_t bytes_transferred // Number of bytes written.

);

Regardless of whether the asynchronous operation completes immediately or not, the handler will not be invoked from
within this function. Invocation of the handler will be performed in a manner equivalent to using
boost::asio::io_service::post().

Remarks

The write operation may not transmit all of the data to the peer. Consider using the async_write function if you need to ensure
that all data is written before the asynchronous operation completes.

Example

To write a single data buffer use the buffer function as follows:

handle.async_write_some(boost::asio::buffer(data, size), handler);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

windows::basic_stream_handle::basic_stream_handle

Construct a windows::basic_stream_handle without opening it.

explicit basic_stream_handle(
boost::asio::io_service & io_service);

» more...

Construct a windows::basic_stream_handle on an existing native handle.

1293

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_handle(
boost::asio::io_service & io_service,
const native_handle_type & handle);

» more...

Move-construct a windows::basic_stream_handle from another.

basic_stream_handle(
basic_stream_handle && other);

» more...

windows::basic_stream_handle::basic_stream_handle (1 of 3 overloads)

Construct a windows::basic_stream_handle without opening it.

basic_stream_handle(
boost::asio::io_service & io_service);

This constructor creates a stream handle without opening it. The handle needs to be opened and then connected or accepted before
data can be sent or received on it.

Parameters

io_service The io_service object that the stream handle will use to dispatch handlers for any asynchronous operations
performed on the handle.

windows::basic_stream_handle::basic_stream_handle (2 of 3 overloads)

Construct a windows::basic_stream_handle on an existing native handle.

basic_stream_handle(
boost::asio::io_service & io_service,
const native_handle_type & handle);

This constructor creates a stream handle object to hold an existing native handle.

Parameters

io_service The io_service object that the stream handle will use to dispatch handlers for any asynchronous operations
performed on the handle.

handle The new underlying handle implementation.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_stream_handle::basic_stream_handle (3 of 3 overloads)

Move-construct a windows::basic_stream_handle from another.

basic_stream_handle(
basic_stream_handle && other);

This constructor moves a stream handle from one object to another.

1294

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

other The other windows::basic_stream_handle object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_stream_handle(io_service&)
constructor.

windows::basic_stream_handle::cancel

Cancel all asynchronous operations associated with the handle.

void cancel();
» more...

boost::system::error_code cancel(
boost::system::error_code & ec);

» more...

windows::basic_stream_handle::cancel (1 of 2 overloads)

Inherited from windows::basic_handle.

Cancel all asynchronous operations associated with the handle.

void cancel();

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_stream_handle::cancel (2 of 2 overloads)

Inherited from windows::basic_handle.

Cancel all asynchronous operations associated with the handle.

boost::system::error_code cancel(
boost::system::error_code & ec);

This function causes all outstanding asynchronous read or write operations to finish immediately, and the handlers for cancelled
operations will be passed the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

windows::basic_stream_handle::close

Close the handle.

1295

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void close();
» more...

boost::system::error_code close(
boost::system::error_code & ec);

» more...

windows::basic_stream_handle::close (1 of 2 overloads)

Inherited from windows::basic_handle.

Close the handle.

void close();

This function is used to close the handle. Any asynchronous read or write operations will be cancelled immediately, and will complete
with the boost::asio::error::operation_aborted error.

Exceptions

boost::system::system_error Thrown on failure.

windows::basic_stream_handle::close (2 of 2 overloads)

Inherited from windows::basic_handle.

Close the handle.

boost::system::error_code close(
boost::system::error_code & ec);

This function is used to close the handle. Any asynchronous read or write operations will be cancelled immediately, and will complete
with the boost::asio::error::operation_aborted error.

Parameters

ec Set to indicate what error occurred, if any.

windows::basic_stream_handle::get_implementation

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();
» more...

const implementation_type & get_implementation() const;
» more...

windows::basic_stream_handle::get_implementation (1 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

implementation_type & get_implementation();

1296

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_stream_handle::get_implementation (2 of 2 overloads)

Inherited from basic_io_object.

Get the underlying implementation of the I/O object.

const implementation_type & get_implementation() const;

windows::basic_stream_handle::get_io_service

Inherited from basic_io_object.

Get the io_service associated with the object.

boost::asio::io_service & get_io_service();

This function may be used to obtain the io_service object that the I/O object uses to dispatch handlers for asynchronous operations.

Return Value

A reference to the io_service object that the I/O object will use to dispatch handlers. Ownership is not transferred to the caller.

windows::basic_stream_handle::get_service

Get the service associated with the I/O object.

service_type & get_service();
» more...

const service_type & get_service() const;
» more...

windows::basic_stream_handle::get_service (1 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

service_type & get_service();

windows::basic_stream_handle::get_service (2 of 2 overloads)

Inherited from basic_io_object.

Get the service associated with the I/O object.

const service_type & get_service() const;

windows::basic_stream_handle::implementation

Inherited from basic_io_object.

(Deprecated: Use get_implementation().) The underlying implementation of the I/O object.

implementation_type implementation;

1297

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_stream_handle::implementation_type

Inherited from basic_io_object.

The underlying implementation type of I/O object.

typedef service_type::implementation_type implementation_type;

Requirements

Header: boost/asio/windows/basic_stream_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_stream_handle::is_open

Inherited from windows::basic_handle.

Determine whether the handle is open.

bool is_open() const;

windows::basic_stream_handle::lowest_layer

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();
» more...

Get a const reference to the lowest layer.

const lowest_layer_type & lowest_layer() const;
» more...

windows::basic_stream_handle::lowest_layer (1 of 2 overloads)

Inherited from windows::basic_handle.

Get a reference to the lowest layer.

lowest_layer_type & lowest_layer();

This function returns a reference to the lowest layer in a stack of layers. Since a windows::basic_handle cannot contain any
further layers, it simply returns a reference to itself.

Return Value

A reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

windows::basic_stream_handle::lowest_layer (2 of 2 overloads)

Inherited from windows::basic_handle.

Get a const reference to the lowest layer.

1298

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

const lowest_layer_type & lowest_layer() const;

This function returns a const reference to the lowest layer in a stack of layers. Since a windows::basic_handle cannot contain
any further layers, it simply returns a reference to itself.

Return Value

A const reference to the lowest layer in the stack of layers. Ownership is not transferred to the caller.

windows::basic_stream_handle::lowest_layer_type

Inherited from windows::basic_handle.

A windows::basic_handle is always the lowest layer.

typedef basic_handle< StreamHandleService > lowest_layer_type;

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a handle.

native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

1299

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Construct a basic_handle without opening it.

Construct a basic_handle on an existing native handle.

Move-construct a basic_handle from another.

basic_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native handle repres-
entation.

native

Get the native handle representation.native_handle

Move-assign a basic_handle from another.operator=

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected destructor to prevent deletion through this type.~basic_handle

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The windows::basic_handle class template provides the ability to wrap a Windows handle.

Thread Safety

Distinct objects: Safe.

1300

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Shared objects: Unsafe.

Requirements

Header: boost/asio/windows/basic_stream_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_stream_handle::native

Inherited from windows::basic_handle.

(Deprecated: Use native_handle().) Get the native handle representation.

native_type native();

This function may be used to obtain the underlying representation of the handle. This is intended to allow access to native handle
functionality that is not otherwise provided.

windows::basic_stream_handle::native_handle

Inherited from windows::basic_handle.

Get the native handle representation.

native_handle_type native_handle();

This function may be used to obtain the underlying representation of the handle. This is intended to allow access to native handle
functionality that is not otherwise provided.

windows::basic_stream_handle::native_handle_type

The native representation of a handle.

typedef StreamHandleService::native_handle_type native_handle_type;

Requirements

Header: boost/asio/windows/basic_stream_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_stream_handle::native_type

(Deprecated: Use native_handle_type.) The native representation of a handle.

typedef StreamHandleService::native_handle_type native_type;

Requirements

Header: boost/asio/windows/basic_stream_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_stream_handle::operator=

Move-assign a windows::basic_stream_handle from another.

1301

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_handle & operator=(
basic_stream_handle && other);

This assignment operator moves a stream handle from one object to another.

Parameters

other The other windows::basic_stream_handle object from which the move will occur.

Remarks

Following the move, the moved-from object is in the same state as if constructed using the basic_stream_handle(io_service&)
constructor.

windows::basic_stream_handle::read_some

Read some data from the handle.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

» more...

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

» more...

windows::basic_stream_handle::read_some (1 of 2 overloads)

Read some data from the handle.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers);

This function is used to read data from the stream handle. The function call will block until one or more bytes of data has been read
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be read.

Return Value

The number of bytes read.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection
was closed by the peer.

1302

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

Example

To read into a single data buffer use the buffer function as follows:

handle.read_some(boost::asio::buffer(data, size));

See the buffer documentation for information on reading into multiple buffers in one go, and how to use it with arrays, boost::array
or std::vector.

windows::basic_stream_handle::read_some (2 of 2 overloads)

Read some data from the handle.

template<
typename MutableBufferSequence>

std::size_t read_some(
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to read data from the stream handle. The function call will block until one or more bytes of data has been read
successfully, or until an error occurs.

Parameters

buffers One or more buffers into which the data will be read.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes read. Returns 0 if an error occurred.

Remarks

The read_some operation may not read all of the requested number of bytes. Consider using the read function if you need to ensure
that the requested amount of data is read before the blocking operation completes.

windows::basic_stream_handle::service

Inherited from basic_io_object.

(Deprecated: Use get_service().) The service associated with the I/O object.

service_type & service;

Remarks

Available only for services that do not support movability.

windows::basic_stream_handle::service_type

Inherited from basic_io_object.

1303

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The type of the service that will be used to provide I/O operations.

typedef StreamHandleService service_type;

Requirements

Header: boost/asio/windows/basic_stream_handle.hpp

Convenience header: boost/asio.hpp

windows::basic_stream_handle::write_some

Write some data to the handle.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

» more...

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

» more...

windows::basic_stream_handle::write_some (1 of 2 overloads)

Write some data to the handle.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers);

This function is used to write data to the stream handle. The function call will block until one or more bytes of the data has been
written successfully, or until an error occurs.

Parameters

buffers One or more data buffers to be written to the handle.

Return Value

The number of bytes written.

Exceptions

boost::system::system_error Thrown on failure. An error code of boost::asio::error::eof indicates that the connection
was closed by the peer.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

1304

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

To write a single data buffer use the buffer function as follows:

handle.write_some(boost::asio::buffer(data, size));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

windows::basic_stream_handle::write_some (2 of 2 overloads)

Write some data to the handle.

template<
typename ConstBufferSequence>

std::size_t write_some(
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to write data to the stream handle. The function call will block until one or more bytes of the data has been
written successfully, or until an error occurs.

Parameters

buffers One or more data buffers to be written to the handle.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. Returns 0 if an error occurred.

Remarks

The write_some operation may not transmit all of the data to the peer. Consider using the write function if you need to ensure that
all data is written before the blocking operation completes.

windows::object_handle
Typedef for the typical usage of an object handle.

typedef basic_object_handle object_handle;

1305

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a handle.

native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Start an asynchronous wait on the object handle.async_wait

Construct a basic_object_handle without opening it.

Construct a basic_object_handle on an existing native handle.

Move-construct a basic_object_handle from another.

basic_object_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native handle repres-
entation.

native

Get the native handle representation.native_handle

Move-assign a basic_object_handle from another.operator=

Perform a blocking wait on the object handle.wait

1306

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The windows::basic_object_handle class template provides asynchronous and blocking object-oriented handle functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/windows/object_handle.hpp

Convenience header: boost/asio.hpp

windows::object_handle_service
Default service implementation for an object handle.

class object_handle_service :
public io_service::service

Types

DescriptionName

The type of an object handle implementation.implementation_type

The native handle type.native_handle_type

1307

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to an object handle.assign

Start an asynchronous wait.async_wait

Cancel all asynchronous operations associated with the handle.cancel

Close an object handle implementation.close

Construct a new object handle implementation.construct

Destroy an object handle implementation.destroy

Get the io_service object that owns the service.get_io_service

Determine whether the handle is open.is_open

Move-assign from another object handle implementation.move_assign

Move-construct a new object handle implementation.move_construct

Get the native handle implementation.native_handle

Construct a new object handle service for the specified io_ser-
vice.

object_handle_service

wait

Data Members

DescriptionName

The unique service identifier.id

Requirements

Header: boost/asio/windows/object_handle_service.hpp

Convenience header: boost/asio.hpp

windows::object_handle_service::assign

Assign an existing native handle to an object handle.

boost::system::error_code assign(
implementation_type & impl,
const native_handle_type & handle,
boost::system::error_code & ec);

windows::object_handle_service::async_wait

Start an asynchronous wait.

1308

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename WaitHandler>

void-or-deduced async_wait(
implementation_type & impl,
WaitHandler handler);

windows::object_handle_service::cancel

Cancel all asynchronous operations associated with the handle.

boost::system::error_code cancel(
implementation_type & impl,
boost::system::error_code & ec);

windows::object_handle_service::close

Close an object handle implementation.

boost::system::error_code close(
implementation_type & impl,
boost::system::error_code & ec);

windows::object_handle_service::construct

Construct a new object handle implementation.

void construct(
implementation_type & impl);

windows::object_handle_service::destroy

Destroy an object handle implementation.

void destroy(
implementation_type & impl);

windows::object_handle_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

windows::object_handle_service::id

The unique service identifier.

static boost::asio::io_service::id id;

windows::object_handle_service::implementation_type

The type of an object handle implementation.

1309

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typedef implementation_defined implementation_type;

Requirements

Header: boost/asio/windows/object_handle_service.hpp

Convenience header: boost/asio.hpp

windows::object_handle_service::is_open

Determine whether the handle is open.

bool is_open(
const implementation_type & impl) const;

windows::object_handle_service::move_assign

Move-assign from another object handle implementation.

void move_assign(
implementation_type & impl,
object_handle_service & other_service,
implementation_type & other_impl);

windows::object_handle_service::move_construct

Move-construct a new object handle implementation.

void move_construct(
implementation_type & impl,
implementation_type & other_impl);

windows::object_handle_service::native_handle

Get the native handle implementation.

native_handle_type native_handle(
implementation_type & impl);

windows::object_handle_service::native_handle_type

The native handle type.

typedef implementation_defined native_handle_type;

Requirements

Header: boost/asio/windows/object_handle_service.hpp

Convenience header: boost/asio.hpp

windows::object_handle_service::object_handle_service

Construct a new object handle service for the specified io_service.

1310

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

object_handle_service(
boost::asio::io_service & io_service);

windows::object_handle_service::wait

void wait(
implementation_type & impl,
boost::system::error_code & ec);

windows::overlapped_ptr
Wraps a handler to create an OVERLAPPED object for use with overlapped I/O.

class overlapped_ptr :
noncopyable

Member Functions

DescriptionName

Post completion notification for overlapped operation. Releases
ownership.

complete

Get the contained OVERLAPPED object.get

Construct an empty overlapped_ptr.

Construct an overlapped_ptr to contain the specified handler.

overlapped_ptr

Release ownership of the OVERLAPPED object.release

Reset to empty.

Reset to contain the specified handler, freeing any current
OVERLAPPED object.

reset

Destructor automatically frees the OVERLAPPED object unless
released.

~overlapped_ptr

A special-purpose smart pointer used to wrap an application handler so that it can be passed as the LPOVERLAPPED argument to
overlapped I/O functions.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/windows/overlapped_ptr.hpp

Convenience header: boost/asio.hpp

1311

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::overlapped_ptr::complete

Post completion notification for overlapped operation. Releases ownership.

void complete(
const boost::system::error_code & ec,
std::size_t bytes_transferred);

windows::overlapped_ptr::get

Get the contained OVERLAPPED object.

OVERLAPPED * get();
» more...

const OVERLAPPED * get() const;
» more...

windows::overlapped_ptr::get (1 of 2 overloads)

Get the contained OVERLAPPED object.

OVERLAPPED * get();

windows::overlapped_ptr::get (2 of 2 overloads)

Get the contained OVERLAPPED object.

const OVERLAPPED * get() const;

windows::overlapped_ptr::overlapped_ptr

Construct an empty windows::overlapped_ptr.

overlapped_ptr();
» more...

Construct an windows::overlapped_ptr to contain the specified handler.

template<
typename Handler>

explicit overlapped_ptr(
boost::asio::io_service & io_service,
Handler handler);

» more...

windows::overlapped_ptr::overlapped_ptr (1 of 2 overloads)

Construct an empty windows::overlapped_ptr.

overlapped_ptr();

1312

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::overlapped_ptr::overlapped_ptr (2 of 2 overloads)

Construct an windows::overlapped_ptr to contain the specified handler.

template<
typename Handler>

overlapped_ptr(
boost::asio::io_service & io_service,
Handler handler);

windows::overlapped_ptr::release

Release ownership of the OVERLAPPED object.

OVERLAPPED * release();

windows::overlapped_ptr::reset

Reset to empty.

void reset();
» more...

Reset to contain the specified handler, freeing any current OVERLAPPED object.

template<
typename Handler>

void reset(
boost::asio::io_service & io_service,
Handler handler);

» more...

windows::overlapped_ptr::reset (1 of 2 overloads)

Reset to empty.

void reset();

windows::overlapped_ptr::reset (2 of 2 overloads)

Reset to contain the specified handler, freeing any current OVERLAPPED object.

template<
typename Handler>

void reset(
boost::asio::io_service & io_service,
Handler handler);

windows::overlapped_ptr::~overlapped_ptr

Destructor automatically frees the OVERLAPPED object unless released.

~overlapped_ptr();

1313

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::random_access_handle
Typedef for the typical usage of a random-access handle.

typedef basic_random_access_handle random_access_handle;

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a handle.

native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

1314

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Start an asynchronous read at the specified offset.async_read_some_at

Start an asynchronous write at the specified offset.async_write_some_at

Construct a basic_random_access_handle without opening it.

Construct a basic_random_access_handle on an existing native
handle.

Move-construct a basic_random_access_handle from another.

basic_random_access_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native handle repres-
entation.

native

Get the native handle representation.native_handle

Move-assign a basic_random_access_handle from another.operator=

Read some data from the handle at the specified offset.read_some_at

Write some data to the handle at the specified offset.write_some_at

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

1315

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

The windows::basic_random_access_handle class template provides asynchronous and blocking random-access handle
functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/windows/random_access_handle.hpp

Convenience header: boost/asio.hpp

windows::random_access_handle_service
Default service implementation for a random-access handle.

class random_access_handle_service :
public io_service::service

Types

DescriptionName

The type of a random-access handle implementation.implementation_type

The native handle type.native_handle_type

(Deprecated: Use native_handle_type.) The native handle type.native_type

1316

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to a random-access handle.assign

Start an asynchronous read at the specified offset.async_read_some_at

Start an asynchronous write at the specified offset.async_write_some_at

Cancel all asynchronous operations associated with the handle.cancel

Close a random-access handle implementation.close

Construct a new random-access handle implementation.construct

Destroy a random-access handle implementation.destroy

Get the io_service object that owns the service.get_io_service

Determine whether the handle is open.is_open

Move-assign from another random-access handle implementa-
tion.

move_assign

Move-construct a new random-access handle implementation.move_construct

(Deprecated: Use native_handle().) Get the native handle imple-
mentation.

native

Get the native handle implementation.native_handle

Construct a new random-access handle service for the specified
io_service.

random_access_handle_service

Read some data from the specified offset.read_some_at

Write the given data at the specified offset.write_some_at

Data Members

DescriptionName

The unique service identifier.id

Requirements

Header: boost/asio/windows/random_access_handle_service.hpp

Convenience header: boost/asio.hpp

windows::random_access_handle_service::assign

Assign an existing native handle to a random-access handle.

1317

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code assign(
implementation_type & impl,
const native_handle_type & handle,
boost::system::error_code & ec);

windows::random_access_handle_service::async_read_some_at

Start an asynchronous read at the specified offset.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read_some_at(
implementation_type & impl,
uint64_t offset,
const MutableBufferSequence & buffers,
ReadHandler handler);

windows::random_access_handle_service::async_write_some_at

Start an asynchronous write at the specified offset.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write_some_at(
implementation_type & impl,
uint64_t offset,
const ConstBufferSequence & buffers,
WriteHandler handler);

windows::random_access_handle_service::cancel

Cancel all asynchronous operations associated with the handle.

boost::system::error_code cancel(
implementation_type & impl,
boost::system::error_code & ec);

windows::random_access_handle_service::close

Close a random-access handle implementation.

boost::system::error_code close(
implementation_type & impl,
boost::system::error_code & ec);

windows::random_access_handle_service::construct

Construct a new random-access handle implementation.

void construct(
implementation_type & impl);

1318

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::random_access_handle_service::destroy

Destroy a random-access handle implementation.

void destroy(
implementation_type & impl);

windows::random_access_handle_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

windows::random_access_handle_service::id

The unique service identifier.

static boost::asio::io_service::id id;

windows::random_access_handle_service::implementation_type

The type of a random-access handle implementation.

typedef implementation_defined implementation_type;

Requirements

Header: boost/asio/windows/random_access_handle_service.hpp

Convenience header: boost/asio.hpp

windows::random_access_handle_service::is_open

Determine whether the handle is open.

bool is_open(
const implementation_type & impl) const;

windows::random_access_handle_service::move_assign

Move-assign from another random-access handle implementation.

void move_assign(
implementation_type & impl,
random_access_handle_service & other_service,
implementation_type & other_impl);

windows::random_access_handle_service::move_construct

Move-construct a new random-access handle implementation.

1319

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void move_construct(
implementation_type & impl,
implementation_type & other_impl);

windows::random_access_handle_service::native

(Deprecated: Use native_handle().) Get the native handle implementation.

native_type native(
implementation_type & impl);

windows::random_access_handle_service::native_handle

Get the native handle implementation.

native_handle_type native_handle(
implementation_type & impl);

windows::random_access_handle_service::native_handle_type

The native handle type.

typedef implementation_defined native_handle_type;

Requirements

Header: boost/asio/windows/random_access_handle_service.hpp

Convenience header: boost/asio.hpp

windows::random_access_handle_service::native_type

(Deprecated: Use native_handle_type.) The native handle type.

typedef implementation_defined native_type;

Requirements

Header: boost/asio/windows/random_access_handle_service.hpp

Convenience header: boost/asio.hpp

windows::random_access_handle_service::random_access_handle_service

Construct a new random-access handle service for the specified io_service.

random_access_handle_service(
boost::asio::io_service & io_service);

windows::random_access_handle_service::read_some_at

Read some data from the specified offset.

1320

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename MutableBufferSequence>

std::size_t read_some_at(
implementation_type & impl,
uint64_t offset,
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

windows::random_access_handle_service::write_some_at

Write the given data at the specified offset.

template<
typename ConstBufferSequence>

std::size_t write_some_at(
implementation_type & impl,
uint64_t offset,
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

windows::stream_handle
Typedef for the typical usage of a stream-oriented handle.

typedef basic_stream_handle stream_handle;

Types

DescriptionName

The underlying implementation type of I/O object.implementation_type

A basic_handle is always the lowest layer.lowest_layer_type

The native representation of a handle.native_handle_type

(Deprecated: Use native_handle_type.) The native representation
of a handle.

native_type

The type of the service that will be used to provide I/O opera-
tions.

service_type

1321

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to the handle.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Construct a basic_stream_handle without opening it.

Construct a basic_stream_handle on an existing native handle.

Move-construct a basic_stream_handle from another.

basic_stream_handle

Cancel all asynchronous operations associated with the handle.cancel

Close the handle.close

Get the io_service associated with the object.get_io_service

Determine whether the handle is open.is_open

Get a reference to the lowest layer.

Get a const reference to the lowest layer.

lowest_layer

(Deprecated: Use native_handle().) Get the native handle repres-
entation.

native

Get the native handle representation.native_handle

Move-assign a basic_stream_handle from another.operator=

Read some data from the handle.read_some

Write some data to the handle.write_some

Protected Member Functions

DescriptionName

Get the underlying implementation of the I/O object.get_implementation

Get the service associated with the I/O object.get_service

Protected Data Members

DescriptionName

(Deprecated: Use get_implementation().) The underlying imple-
mentation of the I/O object.

implementation

(Deprecated: Use get_service().) The service associated with
the I/O object.

service

1322

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The windows::basic_stream_handle class template provides asynchronous and blocking stream-oriented handle functionality.

Thread Safety

Distinct objects: Safe.

Shared objects: Unsafe.

Requirements

Header: boost/asio/windows/stream_handle.hpp

Convenience header: boost/asio.hpp

windows::stream_handle_service
Default service implementation for a stream handle.

class stream_handle_service :
public io_service::service

Types

DescriptionName

The type of a stream handle implementation.implementation_type

The native handle type.native_handle_type

(Deprecated: Use native_handle_type.) The native handle type.native_type

1323

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Functions

DescriptionName

Assign an existing native handle to a stream handle.assign

Start an asynchronous read.async_read_some

Start an asynchronous write.async_write_some

Cancel all asynchronous operations associated with the handle.cancel

Close a stream handle implementation.close

Construct a new stream handle implementation.construct

Destroy a stream handle implementation.destroy

Get the io_service object that owns the service.get_io_service

Determine whether the handle is open.is_open

Move-assign from another stream handle implementation.move_assign

Move-construct a new stream handle implementation.move_construct

(Deprecated: Use native_handle().) Get the native handle imple-
mentation.

native

Get the native handle implementation.native_handle

Read some data from the stream.read_some

Construct a new stream handle service for the specified io_ser-
vice.

stream_handle_service

Write the given data to the stream.write_some

Data Members

DescriptionName

The unique service identifier.id

Requirements

Header: boost/asio/windows/stream_handle_service.hpp

Convenience header: boost/asio.hpp

windows::stream_handle_service::assign

Assign an existing native handle to a stream handle.

1324

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::error_code assign(
implementation_type & impl,
const native_handle_type & handle,
boost::system::error_code & ec);

windows::stream_handle_service::async_read_some

Start an asynchronous read.

template<
typename MutableBufferSequence,
typename ReadHandler>

void-or-deduced async_read_some(
implementation_type & impl,
const MutableBufferSequence & buffers,
ReadHandler handler);

windows::stream_handle_service::async_write_some

Start an asynchronous write.

template<
typename ConstBufferSequence,
typename WriteHandler>

void-or-deduced async_write_some(
implementation_type & impl,
const ConstBufferSequence & buffers,
WriteHandler handler);

windows::stream_handle_service::cancel

Cancel all asynchronous operations associated with the handle.

boost::system::error_code cancel(
implementation_type & impl,
boost::system::error_code & ec);

windows::stream_handle_service::close

Close a stream handle implementation.

boost::system::error_code close(
implementation_type & impl,
boost::system::error_code & ec);

windows::stream_handle_service::construct

Construct a new stream handle implementation.

void construct(
implementation_type & impl);

windows::stream_handle_service::destroy

Destroy a stream handle implementation.

1325

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

void destroy(
implementation_type & impl);

windows::stream_handle_service::get_io_service

Inherited from io_service.

Get the io_service object that owns the service.

boost::asio::io_service & get_io_service();

windows::stream_handle_service::id

The unique service identifier.

static boost::asio::io_service::id id;

windows::stream_handle_service::implementation_type

The type of a stream handle implementation.

typedef implementation_defined implementation_type;

Requirements

Header: boost/asio/windows/stream_handle_service.hpp

Convenience header: boost/asio.hpp

windows::stream_handle_service::is_open

Determine whether the handle is open.

bool is_open(
const implementation_type & impl) const;

windows::stream_handle_service::move_assign

Move-assign from another stream handle implementation.

void move_assign(
implementation_type & impl,
stream_handle_service & other_service,
implementation_type & other_impl);

windows::stream_handle_service::move_construct

Move-construct a new stream handle implementation.

void move_construct(
implementation_type & impl,
implementation_type & other_impl);

1326

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::stream_handle_service::native

(Deprecated: Use native_handle().) Get the native handle implementation.

native_type native(
implementation_type & impl);

windows::stream_handle_service::native_handle

Get the native handle implementation.

native_handle_type native_handle(
implementation_type & impl);

windows::stream_handle_service::native_handle_type

The native handle type.

typedef implementation_defined native_handle_type;

Requirements

Header: boost/asio/windows/stream_handle_service.hpp

Convenience header: boost/asio.hpp

windows::stream_handle_service::native_type

(Deprecated: Use native_handle_type.) The native handle type.

typedef implementation_defined native_type;

Requirements

Header: boost/asio/windows/stream_handle_service.hpp

Convenience header: boost/asio.hpp

windows::stream_handle_service::read_some

Read some data from the stream.

template<
typename MutableBufferSequence>

std::size_t read_some(
implementation_type & impl,
const MutableBufferSequence & buffers,
boost::system::error_code & ec);

windows::stream_handle_service::stream_handle_service

Construct a new stream handle service for the specified io_service.

1327

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

stream_handle_service(
boost::asio::io_service & io_service);

windows::stream_handle_service::write_some

Write the given data to the stream.

template<
typename ConstBufferSequence>

std::size_t write_some(
implementation_type & impl,
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

write
Write a certain amount of data to a stream before returning.

template<
typename SyncWriteStream,
typename ConstBufferSequence>

std::size_t write(
SyncWriteStream & s,
const ConstBufferSequence & buffers);

» more...

template<
typename SyncWriteStream,
typename ConstBufferSequence>

std::size_t write(
SyncWriteStream & s,
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

» more...

template<
typename SyncWriteStream,
typename ConstBufferSequence,
typename CompletionCondition>

std::size_t write(
SyncWriteStream & s,
const ConstBufferSequence & buffers,
CompletionCondition completion_condition);

» more...

template<
typename SyncWriteStream,
typename ConstBufferSequence,
typename CompletionCondition>

std::size_t write(
SyncWriteStream & s,
const ConstBufferSequence & buffers,
CompletionCondition completion_condition,
boost::system::error_code & ec);

» more...

template<
typename SyncWriteStream,
typename Allocator>

std::size_t write(

1328

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

SyncWriteStream & s,
basic_streambuf< Allocator > & b);

» more...

template<
typename SyncWriteStream,
typename Allocator>

std::size_t write(
SyncWriteStream & s,
basic_streambuf< Allocator > & b,
boost::system::error_code & ec);

» more...

template<
typename SyncWriteStream,
typename Allocator,
typename CompletionCondition>

std::size_t write(
SyncWriteStream & s,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition);

» more...

template<
typename SyncWriteStream,
typename Allocator,
typename CompletionCondition>

std::size_t write(
SyncWriteStream & s,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition,
boost::system::error_code & ec);

» more...

Requirements

Header: boost/asio/write.hpp

Convenience header: boost/asio.hpp

write (1 of 8 overloads)

Write all of the supplied data to a stream before returning.

template<
typename SyncWriteStream,
typename ConstBufferSequence>

std::size_t write(
SyncWriteStream & s,
const ConstBufferSequence & buffers);

This function is used to write a certain number of bytes of data to a stream. The call will block until one of the following conditions
is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's write_some function.

1329

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

s The stream to which the data is to be written. The type must support the SyncWriteStream concept.

buffers One or more buffers containing the data to be written. The sum of the buffer sizes indicates the maximum number of
bytes to write to the stream.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Example

To write a single data buffer use the buffer function as follows:

boost::asio::write(s, boost::asio::buffer(data, size));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

Remarks

This overload is equivalent to calling:

boost::asio::write(
s, buffers,
boost::asio::transfer_all());

write (2 of 8 overloads)

Write all of the supplied data to a stream before returning.

template<
typename SyncWriteStream,
typename ConstBufferSequence>

std::size_t write(
SyncWriteStream & s,
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to write a certain number of bytes of data to a stream. The call will block until one of the following conditions
is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's write_some function.

Parameters

s The stream to which the data is to be written. The type must support the SyncWriteStream concept.

buffers One or more buffers containing the data to be written. The sum of the buffer sizes indicates the maximum number of
bytes to write to the stream.

1330

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes transferred.

Example

To write a single data buffer use the buffer function as follows:

boost::asio::write(s, boost::asio::buffer(data, size), ec);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

Remarks

This overload is equivalent to calling:

boost::asio::write(
s, buffers,
boost::asio::transfer_all(), ec);

write (3 of 8 overloads)

Write a certain amount of data to a stream before returning.

template<
typename SyncWriteStream,
typename ConstBufferSequence,
typename CompletionCondition>

std::size_t write(
SyncWriteStream & s,
const ConstBufferSequence & buffers,
CompletionCondition completion_condition);

This function is used to write a certain number of bytes of data to a stream. The call will block until one of the following conditions
is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the stream's write_some function.

Parameters

s The stream to which the data is to be written. The type must support the SyncWriteStream concept.

buffers One or more buffers containing the data to be written. The sum of the buffer sizes indicates the
maximum number of bytes to write to the stream.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

1331

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t completion_condition(
// Result of latest write_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the stream's write_some function.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Example

To write a single data buffer use the buffer function as follows:

boost::asio::write(s, boost::asio::buffer(data, size),
boost::asio::transfer_at_least(32));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

write (4 of 8 overloads)

Write a certain amount of data to a stream before returning.

template<
typename SyncWriteStream,
typename ConstBufferSequence,
typename CompletionCondition>

std::size_t write(
SyncWriteStream & s,
const ConstBufferSequence & buffers,
CompletionCondition completion_condition,
boost::system::error_code & ec);

This function is used to write a certain number of bytes of data to a stream. The call will block until one of the following conditions
is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the stream's write_some function.

Parameters

s The stream to which the data is to be written. The type must support the SyncWriteStream concept.

buffers One or more buffers containing the data to be written. The sum of the buffer sizes indicates the
maximum number of bytes to write to the stream.

1332

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest write_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the stream's write_some function.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. If an error occurs, returns the total number of bytes successfully transferred prior to the error.

write (5 of 8 overloads)

Write all of the supplied data to a stream before returning.

template<
typename SyncWriteStream,
typename Allocator>

std::size_t write(
SyncWriteStream & s,
basic_streambuf< Allocator > & b);

This function is used to write a certain number of bytes of data to a stream. The call will block until one of the following conditions
is true:

• All of the data in the supplied basic_streambuf has been written.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's write_some function.

Parameters

s The stream to which the data is to be written. The type must support the SyncWriteStream concept.

b The basic_streambuf object from which data will be written.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Remarks

This overload is equivalent to calling:

1333

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::asio::write(
s, b,
boost::asio::transfer_all());

write (6 of 8 overloads)

Write all of the supplied data to a stream before returning.

template<
typename SyncWriteStream,
typename Allocator>

std::size_t write(
SyncWriteStream & s,
basic_streambuf< Allocator > & b,
boost::system::error_code & ec);

This function is used to write a certain number of bytes of data to a stream. The call will block until one of the following conditions
is true:

• All of the data in the supplied basic_streambuf has been written.

• An error occurred.

This operation is implemented in terms of zero or more calls to the stream's write_some function.

Parameters

s The stream to which the data is to be written. The type must support the SyncWriteStream concept.

b The basic_streambuf object from which data will be written.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes transferred.

Remarks

This overload is equivalent to calling:

boost::asio::write(
s, b,
boost::asio::transfer_all(), ec);

write (7 of 8 overloads)

Write a certain amount of data to a stream before returning.

template<
typename SyncWriteStream,
typename Allocator,
typename CompletionCondition>

std::size_t write(
SyncWriteStream & s,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition);

1334

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

This function is used to write a certain number of bytes of data to a stream. The call will block until one of the following conditions
is true:

• All of the data in the supplied basic_streambuf has been written.

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the stream's write_some function.

Parameters

s The stream to which the data is to be written. The type must support the SyncWriteStream concept.

b The basic_streambuf object from which data will be written.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest write_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the stream's write_some function.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

write (8 of 8 overloads)

Write a certain amount of data to a stream before returning.

template<
typename SyncWriteStream,
typename Allocator,
typename CompletionCondition>

std::size_t write(
SyncWriteStream & s,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition,
boost::system::error_code & ec);

This function is used to write a certain number of bytes of data to a stream. The call will block until one of the following conditions
is true:

• All of the data in the supplied basic_streambuf has been written.

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the stream's write_some function.

1335

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Parameters

s The stream to which the data is to be written. The type must support the SyncWriteStream concept.

b The basic_streambuf object from which data will be written.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest write_some operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the stream's write_some function.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. If an error occurs, returns the total number of bytes successfully transferred prior to the error.

write_at
Write a certain amount of data at a specified offset before returning.

1336

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncRandomAccessWriteDevice,
typename ConstBufferSequence>

std::size_t write_at(
SyncRandomAccessWriteDevice & d,
uint64_t offset,
const ConstBufferSequence & buffers);

» more...

template<
typename SyncRandomAccessWriteDevice,
typename ConstBufferSequence>

std::size_t write_at(
SyncRandomAccessWriteDevice & d,
uint64_t offset,
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

» more...

template<
typename SyncRandomAccessWriteDevice,
typename ConstBufferSequence,
typename CompletionCondition>

std::size_t write_at(
SyncRandomAccessWriteDevice & d,
uint64_t offset,
const ConstBufferSequence & buffers,
CompletionCondition completion_condition);

» more...

template<
typename SyncRandomAccessWriteDevice,
typename ConstBufferSequence,
typename CompletionCondition>

std::size_t write_at(
SyncRandomAccessWriteDevice & d,
uint64_t offset,
const ConstBufferSequence & buffers,
CompletionCondition completion_condition,
boost::system::error_code & ec);

» more...

template<
typename SyncRandomAccessWriteDevice,
typename Allocator>

std::size_t write_at(
SyncRandomAccessWriteDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b);

» more...

template<
typename SyncRandomAccessWriteDevice,
typename Allocator>

std::size_t write_at(
SyncRandomAccessWriteDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
boost::system::error_code & ec);

» more...

template<
typename SyncRandomAccessWriteDevice,

1337

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

typename Allocator,
typename CompletionCondition>

std::size_t write_at(
SyncRandomAccessWriteDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition);

» more...

template<
typename SyncRandomAccessWriteDevice,
typename Allocator,
typename CompletionCondition>

std::size_t write_at(
SyncRandomAccessWriteDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition,
boost::system::error_code & ec);

» more...

Requirements

Header: boost/asio/write_at.hpp

Convenience header: boost/asio.hpp

write_at (1 of 8 overloads)

Write all of the supplied data at the specified offset before returning.

template<
typename SyncRandomAccessWriteDevice,
typename ConstBufferSequence>

std::size_t write_at(
SyncRandomAccessWriteDevice & d,
uint64_t offset,
const ConstBufferSequence & buffers);

This function is used to write a certain number of bytes of data to a random access device at a specified offset. The call will block
until one of the following conditions is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the SyncRandomAccessWriteDevice concept.

offset The offset at which the data will be written.

buffers One or more buffers containing the data to be written. The sum of the buffer sizes indicates the maximum number of
bytes to write to the device.

Return Value

The number of bytes transferred.

1338

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Exceptions

boost::system::system_error Thrown on failure.

Example

To write a single data buffer use the buffer function as follows:

boost::asio::write_at(d, 42, boost::asio::buffer(data, size));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

Remarks

This overload is equivalent to calling:

boost::asio::write_at(
d, offset, buffers,
boost::asio::transfer_all());

write_at (2 of 8 overloads)

Write all of the supplied data at the specified offset before returning.

template<
typename SyncRandomAccessWriteDevice,
typename ConstBufferSequence>

std::size_t write_at(
SyncRandomAccessWriteDevice & d,
uint64_t offset,
const ConstBufferSequence & buffers,
boost::system::error_code & ec);

This function is used to write a certain number of bytes of data to a random access device at a specified offset. The call will block
until one of the following conditions is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the SyncRandomAccessWriteDevice concept.

offset The offset at which the data will be written.

buffers One or more buffers containing the data to be written. The sum of the buffer sizes indicates the maximum number of
bytes to write to the device.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes transferred.

1339

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Example

To write a single data buffer use the buffer function as follows:

boost::asio::write_at(d, 42,
boost::asio::buffer(data, size), ec);

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

Remarks

This overload is equivalent to calling:

boost::asio::write_at(
d, offset, buffers,
boost::asio::transfer_all(), ec);

write_at (3 of 8 overloads)

Write a certain amount of data at a specified offset before returning.

template<
typename SyncRandomAccessWriteDevice,
typename ConstBufferSequence,
typename CompletionCondition>

std::size_t write_at(
SyncRandomAccessWriteDevice & d,
uint64_t offset,
const ConstBufferSequence & buffers,
CompletionCondition completion_condition);

This function is used to write a certain number of bytes of data to a random access device at a specified offset. The call will block
until one of the following conditions is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the device's write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the SyncRandomAccessWrite-
Device concept.

offset The offset at which the data will be written.

buffers One or more buffers containing the data to be written. The sum of the buffer sizes indicates the
maximum number of bytes to write to the device.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

1340

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::size_t completion_condition(
// Result of latest write_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the device's write_some_at function.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

Example

To write a single data buffer use the buffer function as follows:

boost::asio::write_at(d, 42, boost::asio::buffer(data, size),
boost::asio::transfer_at_least(32));

See the buffer documentation for information on writing multiple buffers in one go, and how to use it with arrays, boost::array or
std::vector.

write_at (4 of 8 overloads)

Write a certain amount of data at a specified offset before returning.

template<
typename SyncRandomAccessWriteDevice,
typename ConstBufferSequence,
typename CompletionCondition>

std::size_t write_at(
SyncRandomAccessWriteDevice & d,
uint64_t offset,
const ConstBufferSequence & buffers,
CompletionCondition completion_condition,
boost::system::error_code & ec);

This function is used to write a certain number of bytes of data to a random access device at a specified offset. The call will block
until one of the following conditions is true:

• All of the data in the supplied buffers has been written. That is, the bytes transferred is equal to the sum of the buffer sizes.

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the device's write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the SyncRandomAccessWrite-
Device concept.

offset The offset at which the data will be written.

1341

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffers One or more buffers containing the data to be written. The sum of the buffer sizes indicates the
maximum number of bytes to write to the device.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest write_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the device's write_some_at function.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. If an error occurs, returns the total number of bytes successfully transferred prior to the error.

write_at (5 of 8 overloads)

Write all of the supplied data at the specified offset before returning.

template<
typename SyncRandomAccessWriteDevice,
typename Allocator>

std::size_t write_at(
SyncRandomAccessWriteDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b);

This function is used to write a certain number of bytes of data to a random access device at a specified offset. The call will block
until one of the following conditions is true:

• All of the data in the supplied basic_streambuf has been written.

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the SyncRandomAccessWriteDevice concept.

offset The offset at which the data will be written.

b The basic_streambuf object from which data will be written.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

1342

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Remarks

This overload is equivalent to calling:

boost::asio::write_at(
d, 42, b,
boost::asio::transfer_all());

write_at (6 of 8 overloads)

Write all of the supplied data at the specified offset before returning.

template<
typename SyncRandomAccessWriteDevice,
typename Allocator>

std::size_t write_at(
SyncRandomAccessWriteDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
boost::system::error_code & ec);

This function is used to write a certain number of bytes of data to a random access device at a specified offset. The call will block
until one of the following conditions is true:

• All of the data in the supplied basic_streambuf has been written.

• An error occurred.

This operation is implemented in terms of zero or more calls to the device's write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the SyncRandomAccessWriteDevice concept.

offset The offset at which the data will be written.

b The basic_streambuf object from which data will be written.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes transferred.

Remarks

This overload is equivalent to calling:

boost::asio::write_at(
d, 42, b,
boost::asio::transfer_all(), ec);

write_at (7 of 8 overloads)

Write a certain amount of data at a specified offset before returning.

1343

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncRandomAccessWriteDevice,
typename Allocator,
typename CompletionCondition>

std::size_t write_at(
SyncRandomAccessWriteDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition);

This function is used to write a certain number of bytes of data to a random access device at a specified offset. The call will block
until one of the following conditions is true:

• All of the data in the supplied basic_streambuf has been written.

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the device's write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the SyncRandomAccessWrite-
Device concept.

offset The offset at which the data will be written.

b The basic_streambuf object from which data will be written.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest write_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the device's write_some_at function.

Return Value

The number of bytes transferred.

Exceptions

boost::system::system_error Thrown on failure.

write_at (8 of 8 overloads)

Write a certain amount of data at a specified offset before returning.

1344

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template<
typename SyncRandomAccessWriteDevice,
typename Allocator,
typename CompletionCondition>

std::size_t write_at(
SyncRandomAccessWriteDevice & d,
uint64_t offset,
basic_streambuf< Allocator > & b,
CompletionCondition completion_condition,
boost::system::error_code & ec);

This function is used to write a certain number of bytes of data to a random access device at a specified offset. The call will block
until one of the following conditions is true:

• All of the data in the supplied basic_streambuf has been written.

• The completion_condition function object returns 0.

This operation is implemented in terms of zero or more calls to the device's write_some_at function.

Parameters

d The device to which the data is to be written. The type must support the SyncRandomAccessWrite-
Device concept.

offset The offset at which the data will be written.

b The basic_streambuf object from which data will be written.

completion_condition The function object to be called to determine whether the write operation is complete. The signature
of the function object must be:

std::size_t completion_condition(
// Result of latest write_some_at operation.
const boost::system::error_code& error,

// Number of bytes transferred so far.
std::size_t bytes_transferred

);

A return value of 0 indicates that the write operation is complete. A non-zero return value indicates
the maximum number of bytes to be written on the next call to the device's write_some_at function.

ec Set to indicate what error occurred, if any.

Return Value

The number of bytes written. If an error occurs, returns the total number of bytes successfully transferred prior to the error.

yield_context
Context object that represents the currently executing coroutine.

typedef basic_yield_context< unspecified > yield_context;

1345

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Types

DescriptionName

The coroutine callee type, used by the implementation.callee_type

The coroutine caller type, used by the implementation.caller_type

Member Functions

DescriptionName

Construct a yield context to represent the specified coroutine.basic_yield_context

Return a yield context that sets the specified error_code.operator[]

The basic_yield_context class is used to represent the currently executing stackful coroutine. A basic_yield_context may
be passed as a handler to an asynchronous operation. For example:

template <typename Handler>
void my_coroutine(basic_yield_context<Handler> yield)
{
...
std::size_t n = my_socket.async_read_some(buffer, yield);
...

}

The initiating function (async_read_some in the above example) suspends the current coroutine. The coroutine is resumed when the
asynchronous operation completes, and the result of the operation is returned.

Requirements

Header: boost/asio/spawn.hpp

Convenience header: boost/asio.hpp

boost::system::is_error_code_enum< boost::asio::error::ad-
drinfo_errors >

template<>
struct boost::system::is_error_code_enum< boost::asio::error::addrinfo_errors >

Data Members

DescriptionName

value

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

1346

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::is_error_code_enum< boost::asio::error::addrinfo_errors
>::value

static const bool value = true;

boost::system::is_error_code_enum< boost::asio::error::basic_er-
rors >

template<>
struct boost::system::is_error_code_enum< boost::asio::error::basic_errors >

Data Members

DescriptionName

value

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

boost::system::is_error_code_enum< boost::asio::error::basic_errors >::value

static const bool value = true;

boost::system::is_error_code_enum< boost::asio::error::misc_er-
rors >

template<>
struct boost::system::is_error_code_enum< boost::asio::error::misc_errors >

Data Members

DescriptionName

value

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

boost::system::is_error_code_enum< boost::asio::error::misc_errors >::value

static const bool value = true;

1347

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

boost::system::is_error_code_enum< boost::asio::error::netdb_er-
rors >

template<>
struct boost::system::is_error_code_enum< boost::asio::error::netdb_errors >

Data Members

DescriptionName

value

Requirements

Header: boost/asio/error.hpp

Convenience header: boost/asio.hpp

boost::system::is_error_code_enum< boost::asio::error::netdb_errors >::value

static const bool value = true;

boost::system::is_error_code_enum< boost::asio::error::ssl_er-
rors >

template<>
struct boost::system::is_error_code_enum< boost::asio::error::ssl_errors >

Data Members

DescriptionName

value

Requirements

Header: boost/asio/ssl/error.hpp

Convenience header: boost/asio/ssl.hpp

boost::system::is_error_code_enum< boost::asio::error::ssl_errors >::value

static const bool value = true;

1348

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Revision History
Asio 1.10.4 / Boost 1.56

• Stopped using certain Winsock functions that are marked as deprecated in the latest Visual C++ and Windows SDK.

• Fixed a shadow variable warning on Windows.

• Fixed a regression in the kqueue backend that was introduced in Asio 1.10.2.

• Added a workaround for building the unit tests with gcc on AIX.

Asio 1.10.3

• Worked around a gcc problem to do with anonymous enums (#10042).

• Reverted the Windows HANDLE backend change to ignore ERROR_MORE_DATA. Instead, the error will be propagated as with any
other (i.e. in an error_code or thrown as a system_error), and the number of bytes transferred will be returned. For code that
needs to handle partial messages, the error_code overload should be used (#10034).

• Fixed an off-by-one error in the signal_set implementation's signal number check (#9324).

• Changed the Windows IOCP backend to not assume that SO_UPDATE_CONNECT_CONTEXT is defined (#10016).

• Fixed a Windows-specific issue, introduced in Asio 1.10.2, by using VerifyVersionInfo rather than GetVersionEx, as
GetVersionEx has been deprecated.

• Changed to use SSE2 intrinsics rather than inline assembly, to allow the Cray compiler to work.

Asio 1.10.2

• Fixed asio::spawn() to work correctly with new Boost.Coroutine interface (#9442, #9928).

• Ensured that incomplete asio::spawn() coroutines are correctly unwound when cleaned up by the io_service destructor
(#9731).

• Fixed delegation of continuation hook for handlers produced by io_service::wrap() and strand::wrap() (#9741).

• Changed the Windows I/O completion port backend to use ConnectEx, if available, for connection-oriented IP sockets.

• Changed the io_service backend for non-Windows (and non-IOCP Windows) platforms to use a single condition variable per
io_service instance. This addresses a potential race condition when run_one() is used from multiple threads.

• Prevented integer overflow when computing timeouts based on some boost::chrono and std::chrono clocks (#9662, #9778).

• Made further changes to EV_CLEAR handling in the kqueue backend, to address other cases where the close() system call may
hang on Mac OS X.

• Fixed infinite recursion in implementation of resolver_query_base::flags::operator~ (#9548).

• Made the select reactor more efficient on Windows for large numbers of sockets (#9528).

• Fixed a Windows-specific type-aliasing issue reported by gcc (#9550).

• Prevented execution of compile-time-only buffer test to avoid triggering an address sanitiser warning (#8295).

• Disabled the GetQueuedCompletionStatus timeout workaround on recent versions of Windows.

• Added support for string-based scope IDs when using link-local multicast addresses.

1349

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/10042
https://svn.boost.org/trac/boost/ticket/10034
https://svn.boost.org/trac/boost/ticket/9324
https://svn.boost.org/trac/boost/ticket/10016
https://svn.boost.org/trac/boost/ticket/9442
https://svn.boost.org/trac/boost/ticket/9928
https://svn.boost.org/trac/boost/ticket/9731
https://svn.boost.org/trac/boost/ticket/9741
https://svn.boost.org/trac/boost/ticket/9662
https://svn.boost.org/trac/boost/ticket/9778
https://svn.boost.org/trac/boost/ticket/9548
https://svn.boost.org/trac/boost/ticket/9528
https://svn.boost.org/trac/boost/ticket/9550
https://svn.boost.org/trac/boost/ticket/8295
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Changed IPv6 multicast group join to use the address's scope ID as the interface, if an interface is not explicitly specified.

• Fixed multicast test failure on Mac OS X and the BSDs by using a link-local multicast address.

• Various minor documentation improvements (#8295, #9605, #9771).

Asio 1.10.1 / Boost 1.55

• Implemented a limited port to Windows Runtime. This support requires that the language extensions be enabled. Due to the re-
stricted facilities exposed by the Windows Runtime API, the port also comes with the following caveats:

• The core facilities such as the io_service, strand, buffers, composed operations, timers, etc., should all work as normal.

• For sockets, only client-side TCP is supported.

• Explicit binding of a client-side TCP socket is not supported.

• The cancel() function is not supported for sockets. Asynchronous operations may only be cancelled by closing the socket.

• Operations that use null_buffers are not supported.

• Only tcp::no_delay and socket_base::keep_alive options are supported.

• Resolvers do not support service names, only numbers. I.e. you must use "80" rather than "http".

• Most resolver query flags have no effect.

• Fixed a regression (introduced in Boost 1.54) where, on some platforms, errors from async_connect were not correctly
propagated through to the completion handler (#8795).

• Fixed a Windows-specific regression (introduced in Boost 1.54) that occurs when multiple threads are running an io_service.
When the bug occurs, the result of an asynchronous operation (error and bytes tranferred) is incorrectly discarded and zero values
used instead. For TCP sockets this results in spurious end-of-file notifications (#8933).

• Fixed a bug in handler tracking, where it was not correctly printing out some handler IDs (#8808).

• Fixed the comparison used to test for successful synchronous accept operations so that it works correctly with unsigned socket
descriptors (#8752).

• Ensured the signal number is correctly passed to the completion handler when starting an async_wait on a signal that is already
raised (#8738).

• Suppressed a g++ 4.8+ warning about unused typedefs (#8980).

• Enabled the move optimisation for handlers that use the default invocation hook (#8624).

• Clarified that programs must not issue overlapping async_write_at operations (#8669).

• Changed the Windows HANDLE backend to treat ERROR_MORE_DATA as a non-fatal error when returned by GetOverlappedResult
for a synchronous read (#8722).

• Visual C++ language extensions use generic as a keyword. Added a workaround that renames the namespace to cpp_generic
when those language extensions are in effect.

• Fixed some asynchronous operations that missed out on getting async_result support in Boost 1.54. In particular, the buffered
stream templates have been updated so that they adhere to current handler patterns (#9000, #9001).

• Enabled move support for Microsoft Visual Studio 2012 (#8959).

• Added use_future support for Microsoft Visual Studio 2012.

• Removed a use of std::min in the Windows IOCP backend to avoid a dependency on the <algorithm> header (#8758).

1350

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/8295
https://svn.boost.org/trac/boost/ticket/9605
https://svn.boost.org/trac/boost/ticket/9771
https://svn.boost.org/trac/boost/ticket/8795
https://svn.boost.org/trac/boost/ticket/8933
https://svn.boost.org/trac/boost/ticket/8808
https://svn.boost.org/trac/boost/ticket/8752
https://svn.boost.org/trac/boost/ticket/8738
https://svn.boost.org/trac/boost/ticket/8980
https://svn.boost.org/trac/boost/ticket/8624
https://svn.boost.org/trac/boost/ticket/8669
https://svn.boost.org/trac/boost/ticket/8722
https://svn.boost.org/trac/boost/ticket/9000
https://svn.boost.org/trac/boost/ticket/9001
https://svn.boost.org/trac/boost/ticket/8959
https://svn.boost.org/trac/boost/ticket/8758
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Eliminated some unnecessary handler copies.

• Fixed support for older versions of OpenSSL that do not provide the SSL_CTX_clear_options function (#9273).

• Fixed various minor and cosmetic issues in code and documentation (including #8347, #8950, #8953, #8965, #8997, #9230).

Asio 1.10.0 / Boost 1.54

• Added new traits classes, handler_type and async_result, that allow the customisation of the return type of an initiating
function.

• Added the asio::spawn() function, a high-level wrapper for running stackful coroutines, based on the Boost.Coroutine library.
The spawn() function enables programs to implement asynchronous logic in a synchronous manner. For example: size_t n

= my_socket.async_read_some(my_buffer, yield);. For further information, see Stackful Coroutines.

• Added the asio::use_future special value, which provides first-class support for returning a C++11 std::future from an
asynchronous operation's initiating function. For example: future<size_t> = my_socket.async_read_some(my_buffer,

asio::use_future);. For further information, see C++ 2011 Support - Futures.

• Promoted the stackless coroutine class and macros to be part of Asio's documented interface, rather than part of the HTTP server
4 example. For further information, see Stackless Coroutines.

• Added a new handler hook called asio_handler_is_continuation. Asynchronous operations may represent a continuation
of the asynchronous control flow associated with the current executing handler. The asio_handler_is_continuation hook
can be customised to return true if this is the case, and Asio's implementation can use this knowledge to optimise scheduling of
the new handler. To cover common cases, Asio customises the hook for strands, spawn() and composed asynchronous operations.

• Added four new generic protocol classes, generic::datagram_protocol, generic::raw_protocol, generic::seq_pack-
et_protocol and generic::stream_protocol, which implement the Protocol type requirements, but allow the user to
specify the address family (e.g. AF_INET) and protocol type (e.g. IPPROTO_TCP) at runtime. For further information, see Support
for Other Protocols.

• Added C++11 move constructors that allow the conversion of a socket (or acceptor) into a more generic type. For example, an
ip::tcp::socket can be converted into a generic::stream_protocol::socket via move construction. For further inform-
ation, see Support for Other Protocols.

• Extended the basic_socket_acceptor<>'s accept() and async_accept() functions to allow a new connection to be ac-
cepted directly into a socket of a more generic type. For example, an ip::tcp::acceptor can be used to accept into a gener-
ic::stream_protocol::socket object. For further information, see Support for Other Protocols.

• Moved existing examples into a C++03-specific directory, and added a new directory for C++11-specific examples. A limited
subset of the C++03 examples have been converted to their C++11 equivalents.

• Various SSL enhancements. Thanks go to Nick Jones, on whose work these changes are based.

• Added support for SSL handshakes with re-use of data already read from the wire. New overloads of the ssl::stream<>
class's handshake() and async_handshake() functions have been added. These accept a ConstBufferSequence to be
used as initial input to the ssl engine for the handshake procedure.

• Added support for creation of TLSv1.1 and TLSv1.2 ssl::context objects.

• Added a set_verify_depth() function to the ssl::context and ssl::stream<> classes.

• Added the ability to load SSL certificate and key data from memory buffers. New functions, add_certificate_authority(),
use_certificate(), use_certificate_chain(), use_private_key(), use_rsa_private_key() and use_tmp_dh(),
have been added to the ssl::context class.

• Changed ssl::context to automatically disable SSL compression by default. To enable, use the new ssl::con-
text::clear_options() function, as in my_context.clear_options(ssl::context::no_compression).

1351

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/9273
https://svn.boost.org/trac/boost/ticket/8347
https://svn.boost.org/trac/boost/ticket/8950
https://svn.boost.org/trac/boost/ticket/8953
https://svn.boost.org/trac/boost/ticket/8965
https://svn.boost.org/trac/boost/ticket/8997
https://svn.boost.org/trac/boost/ticket/9230
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Fixed a potential deadlock in signal_set implementation.

• Fixed an error in acceptor example in documentation #8421.

• Fixed copy-paste errors in waitable timer documentation #8602.

• Added assertions to satisfy some code analysis tools #7739.

• Fixed a malformed #warning directive #7939.

• Fixed a potential data race in the Linux epoll implementation.

• Fixed a Windows-specific bug, where certain operations might generate an error_code with an invalid (i.e. NULL) error_cat-
egory #8613.

• Fixed basic_waitable_timer's underlying implementation so that it can handle any time_point value without overflowing
the intermediate duration objects.

• Fixed a problem with lost thread wakeups that can occur when making concurrent calls to run() and poll() on the same
io_service object #8354.

• Fixed implementation of asynchronous connect operation so that it can cope with spurious readiness notifications from the reactor
#7961.

• Fixed a memory leak in the ssl::rfc2818_verification class.

• Added a mechanism for disabling automatic Winsock initialisation #3605. See the header file boost/asio/detail/win-
sock_init.hpp for details.

Asio 1.8.3 / Boost 1.53

• Fixed some 64-to-32-bit conversion warnings (#7459).

• Fixed some small errors in documentation and comments (#7761).

• Fixed an error in the example embedded in basic_socket::get_option's documentation (#7562).

• Changed to use long rather than int for SSL_CTX options, to match OpenSSL (#7209).

• Changed to use _snwprintf to address a compile error due to the changed swprintf signature in recent versions of MinGW
(#7373).

• Fixed a deadlock that can occur on Windows when shutting down a pool of io_service threads due to running out of work
(#7552).

• Enabled the noexcept qualifier for error categories (#7797).

• Changed UNIX domain socket example to treat errors from accept as non-fatal (#7488).

• Added a small block recycling optimisation to improve default memory allocation behaviour.

Asio 1.8.2 / Boost 1.51

• Fixed an incompatibility between ip::tcp::iostream and C++11 (#7162).

• Decorated GCC attribute names with underscores to prevent interaction with user-defined macros (#6415).

• Added missing #include <cctype>, needed for some versions of MinGW.

• Changed to use gcc's atomic builtins on ARM CPUs, when available (#7140).

1352

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/8421
https://svn.boost.org/trac/boost/ticket/8602
https://svn.boost.org/trac/boost/ticket/7739
https://svn.boost.org/trac/boost/ticket/7939
https://svn.boost.org/trac/boost/ticket/8613
https://svn.boost.org/trac/boost/ticket/8354
https://svn.boost.org/trac/boost/ticket/7961
https://svn.boost.org/trac/boost/ticket/3605
https://svn.boost.org/trac/boost/ticket/7459
https://svn.boost.org/trac/boost/ticket/7761
https://svn.boost.org/trac/boost/ticket/7562
https://svn.boost.org/trac/boost/ticket/7209
https://svn.boost.org/trac/boost/ticket/7373
https://svn.boost.org/trac/boost/ticket/7552
https://svn.boost.org/trac/boost/ticket/7797
https://svn.boost.org/trac/boost/ticket/7488
https://svn.boost.org/trac/boost/ticket/7162
https://svn.boost.org/trac/boost/ticket/6415
https://svn.boost.org/trac/boost/ticket/7140
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Changed strand destruction to be a no-op, to allow strand objects to be destroyed after their associated io_service has been
destroyed.

• Added support for some newer versions of glibc which provide the epoll_create1() function but always fail with ENOSYS
(#7012).

• Changed the SSL implementation to throw an exception if SSL engine initialisation fails (#6303).

• Fixed another regression in buffered_write_stream (#6310).

• Implemented various minor performance improvements, primarily targeted at Linux x86 and x86-64 platforms.

Asio 1.8.1 / Boost 1.50

• Changed the epoll_reactor backend to do lazy registration for EPOLLOUT events.

• Fixed the epoll_reactor handling of out-of-band data, which was broken by an incomplete fix in the last release.

• Changed Asio's SSL wrapper to respect OpenSSL's OPENSSL_NO_ENGINE feature test #define (#6432).

• Fixed windows::object_handle so that it works with Windows compilers that support C++11 move semantics (such as g++).

• Improved the performance of strand rescheduling.

• Added support for g++ 4.7 when compiling in C++11 mode (#6620).

• Fixed a problem where signal_set handlers were not being delivered when the io_service was constructed with a concur-
rency_hint of 1 (#6657).

Asio 1.8.0 / Boost 1.49

• Added a new class template basic_waitable_timer based around the C++11 clock type requirements. It may be used with
the clocks from the C++11 <chrono> library facility or, if those are not available, Boost.Chrono. The typedefs high_resolu-
tion_timer, steady_timer and system_timer may be used to create timer objects for the standard clock types.

• Added a new windows::object_handle class for performing waits on Windows kernel objects. Thanks go to Boris Schaeling
for contributing substantially to the development of this feature.

• On Linux, connect() can return EAGAIN in certain circumstances. Remapped this to another error so that it doesn't look like
a non-blocking operation (#6048).

• Fixed a compile error on NetBSD (#6098).

• Fixed deadlock on Mac OS X (#6275).

• Fixed a regression in buffered_write_stream (#6310).

• Fixed a non-paged pool "leak" on Windows when an io_service is repeatedly run without anything to do (#6321).

• Reverted earlier change to allow some speculative operations to be performed without holding the lock, as it introduced a race
condition in some multithreaded scenarios.

• Fixed a bug where the second buffer in an array of two buffers may be ignored if the first buffer is empty.

Asio 1.6.1 / Boost 1.48

• Implemented various performance improvements, including:

• Using thread-local operation queues in single-threaded use cases (i.e. when concurrency_hint is 1) to eliminate a lock/unlock
pair.

1353

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/7012
https://svn.boost.org/trac/boost/ticket/6303
https://svn.boost.org/trac/boost/ticket/6310
https://svn.boost.org/trac/boost/ticket/6432
https://svn.boost.org/trac/boost/ticket/6620
https://svn.boost.org/trac/boost/ticket/6657
https://svn.boost.org/trac/boost/ticket/6048
https://svn.boost.org/trac/boost/ticket/6098
https://svn.boost.org/trac/boost/ticket/6275
https://svn.boost.org/trac/boost/ticket/6310
https://svn.boost.org/trac/boost/ticket/6321
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Allowing some epoll_reactor speculative operations to be performed without holding the lock.

• Improving locality of reference by performing an epoll_reactor's I/O operation immediately before the corresponding
handler is called. This also improves scalability across CPUs when multiple threads are running the io_service.

• Specialising asynchronous read and write operations for buffer sequences that are arrays (boost::array or std::array) of
exactly two buffers.

• Fixed a compile error in the regex overload of async_read_until (#5688).

• Fixed a Windows-specific compile error by explicitly specifying the signal() function from the global namespace (#5722).

• Changed the deadline_timer implementation so that it does not read the clock unless the timer heap is non-empty.

• Changed the SSL stream's buffers' sizes so that they are large enough to hold a complete TLS record (#5854).

• Fixed the behaviour of the synchronous null_buffers operations so that they obey the user's non-blocking setting (#5756).

• Changed to set the size of the select fd_set at runtime when using Windows.

• Disabled an MSVC warning due to const qualifier being applied to function type.

• Fixed a crash that occurs when using the Intel C++ compiler (#5763).

• Changed the initialisation of the OpenSSL library so that it supports all available algorithms.

• Fixed the SSL error mapping used when the session is gracefully shut down.

• Added some latency test programs.

• Clarified that a read operation ends when the buffer is full (#5999).

• Fixed an exception safety issue in epoll_reactor initialisation (#6006).

• Made the number of strand implementations configurable by defining BOOST_ASIO_STRAND_IMPLEMENTATIONS to the desired
number.

• Added support for a new BOOST_ASIO_ENABLE_SEQUENTIAL_STRAND_ALLOCATION flag which switches the allocation of
strand implementations to use a round-robin approach rather than hashing.

• Fixed potential strand starvation issue that can occur when strand.post() is used.

Asio 1.6.0 / Boost 1.47

• Added support for signal handling, using a new class called signal_set. Programs may add one or more signals to the set, and
then perform an async_wait() operation. The specified handler will be called when one of the signals occurs. The same signal
number may be registered with multiple signal_set objects, however the signal number must be used only with Asio. Addresses
#2879.

• Added handler tracking, a new debugging aid. When enabled by defining BOOST_ASIO_ENABLE_HANDLER_TRACKING, Asio
writes debugging output to the standard error stream. The output records asynchronous operations and the relationships between
their handlers. It may be post-processed using the included handlerviz.pl tool to create a visual representation of the handlers
(requires GraphViz).

• Added support for timeouts on socket iostreams, such as ip::tcp::iostream. A timeout is set by calling expires_at() or
expires_from_now() to establish a deadline. Any socket operations which occur past the deadline will put the iostream into a
bad state.

• Added a new error() member function to socket iostreams, for retrieving the error code from the most recent system call.

1354

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/5688
https://svn.boost.org/trac/boost/ticket/5722
https://svn.boost.org/trac/boost/ticket/5854
https://svn.boost.org/trac/boost/ticket/5756
https://svn.boost.org/trac/boost/ticket/5763
https://svn.boost.org/trac/boost/ticket/5999
https://svn.boost.org/trac/boost/ticket/6006
https://svn.boost.org/trac/boost/ticket/2879
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Added a new basic_deadline_timer::cancel_one() function. This function lets you cancel a single waiting handler on a
timer. Handlers are cancelled in FIFO order.

• Added a new transfer_exactly() completion condition. This can be used to send or receive a specified number of bytes even
if the total size of the buffer (or buffer sequence) is larger.

• Added new free functions connect() and async_connect(). These operations try each endpoint in a list until the socket is
successfully connected, and are useful for creating TCP clients that work with both IPv4 and IPv6.

• Extended the buffer_size() function so that it works for buffer sequences in addition to individual buffers.

• Added a new buffer_copy() function that can be used to copy the raw bytes between individual buffers and buffer sequences.

• Added new non-throwing overloads of read(), read_at(), write() and write_at() that do not require a completion condition.

• Added friendlier compiler errors for when a completion handler does not meet the necessary type requirements. When C++0x is
available (currently supported for g++ 4.5 or later, and MSVC 10), static_assert is also used to generate an informative error
message. This checking may be disabled by defining BOOST_ASIO_DISABLE_HANDLER_TYPE_REQUIREMENTS.

• Added a new, completely rewritten SSL implementation. The new implementation compiles faster, shows substantially improved
performance, and supports custom memory allocation and handler invocation. It includes new API features such as certificate
verification callbacks and has improved error reporting. The new implementation is source-compatible with the old for most uses.
However, if necessary, the old implementation may still be used by defining BOOST_ASIO_ENABLE_OLD_SSL. Addresses #3702,
#3958.

• Changed the separate compilation support such that, to use Asio's SSL capabilities, you should also include
boost/asio/ssl/impl/src.hpp in one source file in your program.

• Changed the SSL implementation to support build environments where SSL v2 is explicitly disabled (#5453).

• Made the is_loopback(), is_unspecified() and is_multicast() functions consistently available across the ip::address,
ip::address_v4 and ip::address_v6 classes (#3939).

• Added new non_blocking() functions for managing the non-blocking behaviour of a socket or descriptor. The io_control()
commands named non_blocking_io are now deprecated in favour of these new functions.

• Added new native_non_blocking() functions for managing the non-blocking mode of the underlying socket or descriptor.
These functions are intended to allow the encapsulation of arbitrary non-blocking system calls as asynchronous operations, in a
way that is transparent to the user of the socket object. The functions have no effect on the behaviour of the synchronous operations
of the socket or descriptor.

• Added the io_control() member function for socket acceptors (#3297).

• Added a release() member function to posix descriptors. This function releases ownership of the underlying native descriptor
to the caller. Addresses #3900.

• Added support for sequenced packet sockets (SOCK_SEQPACKET).

• Added a new io_service::stopped() function that can be used to determine whether the io_service has stopped (i.e. a
reset() call is needed prior to any further calls to run(), run_one(), poll() or poll_one()).

• For consistency with the C++0x standard library, deprecated the native_type typedefs in favour of native_handle_type,
and the native() member functions in favour of native_handle().

• Added support for C++0x move construction and assignment to sockets, serial ports, POSIX descriptors and Windows handles.

• Reduced the copying of handler function objects.

• Added support for C++0x move construction to further reduce (and in some cases eliminate) copying of handler objects.

1355

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/3702
https://svn.boost.org/trac/boost/ticket/3958
https://svn.boost.org/trac/boost/ticket/5453
https://svn.boost.org/trac/boost/ticket/3939
https://svn.boost.org/trac/boost/ticket/3297
https://svn.boost.org/trac/boost/ticket/3900
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Added support for the fork() system call. Programs that use fork() must call io_service.notify_fork() at the appropriate
times. Two new examples have been added showing how to use this feature. Addresses #3238, #4162.

• Cleaned up the handling of errors reported by the close() system call. In particular, assume that most operating systems won't
have close() fail with EWOULDBLOCK, but if it does then set the blocking mode and restart the call. If any other error occurs,
assume the descriptor is closed. Addresses #3307.

• Added new asio::buffer() overloads for std::array, when available.

• Changed the implementation to use the C++0x standard library templates array, shared_ptr, weak_ptr and atomic when
they are available, rather than the Boost equivalents.

• Use C++0x variadic templates when available, rather than generating function overloads using Boost.Preprocessor.

• Changed exception reporting to include the function name in exception what() messages.

• Fixed insufficient initialisers warning with MinGW.

• Changed the shutdown_service() member functions to be private.

• Added archetypes for testing socket option functions.

• Changed the Boost.Asio examples so that they don't use Boost.Thread's convenience header. Use the header file that is specifically
for the boost::thread class instead.

• Removed the dependency on OS-provided macros for the well-known IPv4 and IPv6 addresses. This should eliminate annoying
"missing braces around initializer" warnings (#3741).

• Reduced the size of ip::basic_endpoint<> objects (such as ip::tcp::endpoint and ip::udp::endpoint).

• Changed the reactor backends to assume that any descriptors or sockets added using assign() may have been dup()-ed, and
so require explicit deregistration from the reactor (#4971).

• Removed the deprecated member functions named io_service(). The get_io_service() member functions should be used
instead.

• Removed the deprecated typedefs resolver_query and resolver_iterator from the ip::tcp, ip::udp and ip::icmp
classes.

• Modified the buffers_iterator<> and ip::basic_resolver_iterator classes so that the value_type typedefs are non-
const byte types.

• Fixed warnings reported by g++'s -Wshadow compiler option (#3905).

• Added an explicit cast to convert the FIONBIO constant to int, to suppress a compiler warning on some platforms (#5128).

• Changed most examples to treat a failure by an accept operation as non-fatal (#5124).

• Fixed an error in the tick_count_timer example by making the duration type signed. Previously, a wait on an already-passed
deadline would not return for a very long time (#5418).

Asio 1.4.9 / Boost 1.46.1

• EV_ONESHOT seems to cause problems on some versions of Mac OS X, with the io_service destructor getting stuck inside the
close() system call. Changed the kqueue backend to use EV_CLEAR instead (#5021).

• Fixed compile failures with some versions of g++ due to the use of anonymous enums (#4883).

• Fixed a bug on kqueue-based platforms, where some system calls that repeatedly fail with EWOULDBLOCK are not correctly re-re-
gistered with kqueue.

1356

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/3238
https://svn.boost.org/trac/boost/ticket/4162
https://svn.boost.org/trac/boost/ticket/3307
https://svn.boost.org/trac/boost/ticket/3741
https://svn.boost.org/trac/boost/ticket/4971
https://svn.boost.org/trac/boost/ticket/3905
https://svn.boost.org/trac/boost/ticket/5128
https://svn.boost.org/trac/boost/ticket/5124
https://svn.boost.org/trac/boost/ticket/5418
https://svn.boost.org/trac/boost/ticket/5021
https://svn.boost.org/trac/boost/ticket/4883
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Changed asio::streambuf to ensure that its internal pointers are updated correctly after the data has been modified using
std::streambuf member functions.

• Fixed a bug that prevented the linger socket option from working on platforms other than Windows.

Asio 1.4.8 / Boost 1.46

• Fixed an integer overflow problem that occurs when ip::address_v4::broadcast() is used on 64-bit platforms.

• Fixed a problem on older Linux kernels (where epoll is used without timerfd support) that prevents timely delivery of deadline_timer
handlers, after the program has been running for some time (#5045).

Asio 1.4.7 / Boost 1.45

• Fixed a problem on kqueue-based platforms where a deadline_timer may never fire if the io_service is running in a background
thread (#4568).

• Fixed a const-correctness issue that prevented valid uses of has_service<> from compiling (#4638).

• Fixed MinGW cross-compilation (#4491).

• Removed dependency on deprecated Boost.System functions (#4672).

• Ensured close()/closesocket() failures are correctly propagated (#4573).

• Added a check for errors returned by InitializeCriticalSectionAndSpinCount (#4574).

• Added support for hardware flow control on QNX (#4625).

• Always use pselect() on HP-UX, if it is available (#4578).

• Ensured handler arguments are passed as lvalues (#4744).

• Fixed Windows build when thread support is disabled (#4680).

• Fixed a Windows-specific problem where deadline_timer objects with expiry times set more than 5 minutes in the future may
never expire (#4745).

• Fixed the resolver backend on BSD platforms so that an empty service name resolves to port number 0, as per the documentation
(#4690).

• Fixed read operations so that they do not accept buffer sequences of type const_buffers_1 (#4746).

• Redefined Protocol and id to avoid clashing with Objective-C++ keywords (#4191).

• Fixed a vector reallocation performance issue that can occur when there are many active deadline_timer objects (#4780).

• Fixed the kqueue backend so that it compiles on NetBSD (#4662).

• Fixed the socket io_control() implementation on 64-bit Mac OS X and BSD platforms (#4782).

• Fixed a Windows-specific problem where failures from accept() are incorrectly treated as successes (#4859).

• Deprecated the separate compilation header <boost/asio/impl/src.cpp> in favour of <boost/asio/impl/src.hpp>
(#4560).

Asio 1.4.6 / Boost 1.44

• Reduced compile times. (Note that some programs may need to add additional #includes, e.g. if the program uses
boost::array but does not explicitly include <boost/array.hpp>.)

1357

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/5045
https://svn.boost.org/trac/boost/ticket/4568
https://svn.boost.org/trac/boost/ticket/4638
https://svn.boost.org/trac/boost/ticket/4491
https://svn.boost.org/trac/boost/ticket/4672
https://svn.boost.org/trac/boost/ticket/4573
https://svn.boost.org/trac/boost/ticket/4574
https://svn.boost.org/trac/boost/ticket/4625
https://svn.boost.org/trac/boost/ticket/4578
https://svn.boost.org/trac/boost/ticket/4744
https://svn.boost.org/trac/boost/ticket/4680
https://svn.boost.org/trac/boost/ticket/4745
https://svn.boost.org/trac/boost/ticket/4690
https://svn.boost.org/trac/boost/ticket/4746
https://svn.boost.org/trac/boost/ticket/4191
https://svn.boost.org/trac/boost/ticket/4780
https://svn.boost.org/trac/boost/ticket/4662
https://svn.boost.org/trac/boost/ticket/4782
https://svn.boost.org/trac/boost/ticket/4859
https://svn.boost.org/trac/boost/ticket/4560
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Reduced the size of generated code.

• Refactored deadline_timer implementation to improve performance.

• Improved multiprocessor scalability on Windows by using a dedicated hidden thread to wait for timers.

• Improved performance of asio::streambuf with async_read() and async_read_until(). These read operations now use
the existing capacity of the streambuf when reading, rather than limiting the read to 512 bytes.

• Added optional separate compilation. To enable, add #include <boost/asio/impl/src.cpp> to one source file in a program,
then build the program with BOOST_ASIO_SEPARATE_COMPILATION defined in the project/compiler settings. Alternatively,
BOOST_ASIO_DYN_LINK may be defined to build a separately-compiled Asio as part of a shared library.

• Added new macro BOOST_ASIO_DISABLE_FENCED_BLOCK to permit the disabling of memory fences around completion handlers,
even if thread support is enabled.

• Reworked timeout examples to better illustrate typical use cases.

• Ensured that handler arguments are passed as const types.

• Fixed incorrect parameter order in null_buffers variant of async_send_to (#4170).

• Ensured unsigned char is used with isdigit in getaddrinfo emulation (#4201).

• Fixed handling of very small but non-zero timeouts (#4205).

• Fixed crash that occurred when an empty buffer sequence was passed to a composed read or write operation.

• Added missing operator+ overload in buffers_iterator (#4382).

• Implemented cancellation of null_buffers operations on Windows.

Asio 1.4.5 / Boost 1.43

• Improved performance.

• Reduced compile times.

• Reduced the size of generated code.

• Extended the guarantee that background threads don't call user code to all asynchronous operations (#3923).

• Changed to use edge-triggered epoll on Linux.

• Changed to use timerfd for dispatching timers on Linux, when available.

• Changed to use one-shot notifications with kqueue on Mac OS X and BSD platforms.

• Added a bitmask type ip::resolver_query_base::flags as per the TR2 proposal. This type prevents implicit conversion
from int to flags, allowing the compiler to catch cases where users incorrectly pass a numeric port number as the service name.

• Added #define NOMINMAX for all Windows compilers. Users can define BOOST_ASIO_NO_NOMINMAX to suppress this definition
(#3901).

• Fixed a bug where 0-byte asynchronous reads were incorrectly passing an error::eof result to the completion handler (#4023).

• Changed the io_control() member functions to always call ioctl on the underlying descriptor when modifying blocking
mode (#3307).

• Changed the resolver implementation to longer require the typedefs InternetProtocol::resolver_query and Internet-
Protocol::resolver_iterator, as neither typedef is part of the documented InternetProtocol requirements. The corres-
ponding typedefs in the ip::tcp, ip::udp and ip::icmp classes have been deprecated.

1358

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/4170
https://svn.boost.org/trac/boost/ticket/4201
https://svn.boost.org/trac/boost/ticket/4205
https://svn.boost.org/trac/boost/ticket/4382
https://svn.boost.org/trac/boost/ticket/3923
https://svn.boost.org/trac/boost/ticket/3901
https://svn.boost.org/trac/boost/ticket/4023
https://svn.boost.org/trac/boost/ticket/3307
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Fixed out-of-band handling for reactors not based on select().

• Added new BOOST_ASIO_DISABLE_THREADS macro that allows Asio's threading support to be independently disabled.

• Minor documentation improvements.

Asio 1.4.4 / Boost 1.42

• Added a new HTTP Server 4 example illustrating the use of stackless coroutines with Asio.

• Changed handler allocation and invocation to use boost::addressof to get the address of handler objects, rather than applying
operator& directly (#2977).

• Restricted MSVC buffer debugging workaround to 2008, as it causes a crash with 2010 beta 2 (#3796, #3822).

• Fixed a problem with the lifetime of handler memory, where Windows needs the OVERLAPPED structure to be valid until both the
initiating function call has returned and the completion packet has been delivered.

• Don't block signals while performing system calls, but instead restart the calls if they are interrupted.

• Documented the guarantee made by strand objects with respect to order of handler invocation.

• Changed strands to use a pool of implementations, to make copying of strands cheaper.

• Ensured that kqueue support is enabled for BSD platforms (#3626).

• Added a boost_ prefix to the extern "C" thread entry point function (#3809).

• In getaddrinfo emulation, only check the socket type (SOCK_STREAM or SOCK_DGRAM) if a service name has been specified.
This should allow the emulation to work with raw sockets.

• Added a workaround for some broken Windows firewalls that make a socket appear bound to 0.0.0.0 when it is in fact bound to
127.0.0.1.

• Applied a fix for reported excessive CPU usage under Solaris (#3670).

• Added some support for platforms that use older compilers such as g++ 2.95 (#3743).

Asio 1.4.3 / Boost 1.40

• Added a new ping example to illustrate the use of ICMP sockets.

• Changed the buffered*_stream<> templates to treat 0-byte reads and writes as no-ops, to comply with the documented type
requirements for SyncReadStream, AsyncReadStream, SyncWriteStream and AsyncWriteStream.

• Changed some instances of the throw keyword to boost::throw_exception() to allow Asio to be used when exception
support is disabled. Note that the SSL wrappers still require exception support (#2754).

• Made Asio compatible with the OpenSSL 1.0 beta (#3256).

• Eliminated a redundant system call in the Solaris /dev/poll backend.

• Fixed a bug in resizing of the bucket array in the internal hash maps (#3095).

• Ensured correct propagation of the error code when a synchronous accept fails (#3216).

• Ensured correct propagation of the error code when a synchronous read or write on a Windows HANDLE fails.

• Fixed failures reported when _GLIBCXX_DEBUG is defined (#3098).

• Fixed custom memory allocation support for timers (#3107).

1359

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/2977
https://svn.boost.org/trac/boost/ticket/3796
https://svn.boost.org/trac/boost/ticket/3822
https://svn.boost.org/trac/boost/ticket/3626
https://svn.boost.org/trac/boost/ticket/3809
https://svn.boost.org/trac/boost/ticket/3670
https://svn.boost.org/trac/boost/ticket/3743
https://svn.boost.org/trac/boost/ticket/2754
https://svn.boost.org/trac/boost/ticket/3256
https://svn.boost.org/trac/boost/ticket/3095
https://svn.boost.org/trac/boost/ticket/3216
https://svn.boost.org/trac/boost/ticket/3098
https://svn.boost.org/trac/boost/ticket/3107
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Tidied up various warnings reported by g++ (#1341, #2618).

• Various documentation improvements, including more obvious hyperlinks to function overloads, header file information, examples
for the handler type requirements, and adding enum values to the index (#3157, #2620).

Asio 1.4.2 / Boost 1.39

• Implement automatic resizing of the bucket array in the internal hash maps. This is to improve performance for very large numbers
of asynchronous operations and also to reduce memory usage for very small numbers. A new macro
BOOST_ASIO_HASH_MAP_BUCKETS may be used to tweak the sizes used for the bucket arrays. (N.B. this feature introduced a
bug which was fixed in Asio 1.4.3 / Boost 1.40.)

• Add performance optimisation for the Windows IOCP backend for when no timers are used.

• Prevent locale settings from affecting formatting of TCP and UDP endpoints (#2682).

• Fix a memory leak that occurred when an asynchronous SSL operation's completion handler threw an exception (#2910).

• Fix the implementation of io_control() so that it adheres to the documented type requirements for IoControlCommand (#2820).

• Fix incompatibility between Asio and ncurses.h (#2156).

• On Windows, specifically handle the case when an overlapped ReadFile call fails with ERROR_MORE_DATA. This enables a hack
where a windows::stream_handle can be used with a message-oriented named pipe (#2936).

• Fix system call wrappers to always clear the error on success, as POSIX allows successful system calls to modify errno (#2953).

• Don't include termios.h if BOOST_ASIO_DISABLE_SERIAL_PORT is defined (#2917).

• Cleaned up some more MSVC level 4 warnings (#2828).

• Various documentation fixes (#2871).

Asio 1.4.1 / Boost 1.38

• Improved compatibility with some Windows firewall software.

• Ensured arguments to windows::overlapped_ptr::complete() are correctly passed to the completion handler (#2614).

• Fixed a link problem and multicast failure on QNX (#2504, #2530).

• Fixed a compile error in SSL support on MinGW / g++ 3.4.5.

• Drop back to using a pipe for notification if eventfd is not available at runtime on Linux (#2683).

• Various minor bug and documentation fixes (#2534, #2541, #2607, #2617, #2619).

Asio 1.4.0 / Boost 1.37

• Enhanced CompletionCondition concept with the signature size_t CompletionCondition(error_code ec, size_t

total), where the return value indicates the maximum number of bytes to be transferred on the next read or write operation.
(The old CompletionCondition signature is still supported for backwards compatibility).

• New windows::overlapped_ptr class to allow arbitrary overlapped I/O functions (such as TransmitFile) to be used with Asio.

• On recent versions of Linux, an eventfd descriptor is now used (rather than a pipe) to interrupt a blocked select/epoll reactor.

• Added const overloads of lowest_layer().

• Synchronous read, write, accept and connect operations are now thread safe (meaning that it is now permitted to perform concurrent
synchronous operations on an individual socket, if supported by the OS).

1360

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/1341
https://svn.boost.org/trac/boost/ticket/2618
https://svn.boost.org/trac/boost/ticket/3157
https://svn.boost.org/trac/boost/ticket/2620
https://svn.boost.org/trac/boost/ticket/2682
https://svn.boost.org/trac/boost/ticket/2910
https://svn.boost.org/trac/boost/ticket/2820
https://svn.boost.org/trac/boost/ticket/2156
https://svn.boost.org/trac/boost/ticket/2936
https://svn.boost.org/trac/boost/ticket/2953
https://svn.boost.org/trac/boost/ticket/2917
https://svn.boost.org/trac/boost/ticket/2828
https://svn.boost.org/trac/boost/ticket/2871
https://svn.boost.org/trac/boost/ticket/2614
https://svn.boost.org/trac/boost/ticket/2504
https://svn.boost.org/trac/boost/ticket/2530
https://svn.boost.org/trac/boost/ticket/2683
https://svn.boost.org/trac/boost/ticket/2534
https://svn.boost.org/trac/boost/ticket/2541
https://svn.boost.org/trac/boost/ticket/2607
https://svn.boost.org/trac/boost/ticket/2617
https://svn.boost.org/trac/boost/ticket/2619
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Reactor-based io_service implementations now use lazy initialisation to reduce the memory usage of an io_service object used
only as a message queue.

Asio 1.2.0 / Boost 1.36

• Added support for serial ports.

• Added support for UNIX domain sockets.

• Added support for raw sockets and ICMP.

• Added wrappers for POSIX stream-oriented file descriptors (excluding regular files).

• Added wrappers for Windows stream-oriented HANDLEs such as named pipes (requires HANDLEs that work with I/O completion
ports).

• Added wrappers for Windows random-access HANDLEs such as files (requires HANDLEs that work with I/O completion ports).

• Added support for reactor-style operations (i.e. they report readiness but perform no I/O) using a new null_buffers type.

• Added an iterator type for bytewise traversal of buffer sequences.

• Added new read_until() and async_read_until() overloads that take a user-defined function object for locating message
boundaries.

• Added an experimental two-lock queue (enabled by defining BOOST_ASIO_ENABLE_TWO_LOCK_QUEUE) that may provide better
io_service scalability across many processors.

• Various fixes, performance improvements, and more complete coverage of the custom memory allocation support.

Asio 1.0.0 / Boost 1.35

First release of Asio as part of Boost.

1361

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Index

Symbols
~basic_descriptor

posix::basic_descriptor, 1042
~basic_handle

windows::basic_handle, 1261
~basic_io_object

basic_io_object, 299
~basic_socket

basic_socket, 507
~basic_socket_streambuf

basic_socket_streambuf, 603
~context

ssl::context, 1193
~context_base

ssl::context_base, 1197
~descriptor_base

posix::descriptor_base, 1065
~io_service

io_service, 868
~overlapped_ptr

windows::overlapped_ptr, 1313
~resolver_query_base

ip::resolver_query_base, 951
~serial_port_base

serial_port_base, 1128
~service

io_service::service, 870
~socket_base

socket_base, 1163
~strand

io_service::strand, 875
~stream

ssl::stream, 1214
~stream_base

ssl::stream_base, 1215
~work

io_service::work, 876

A
accept

basic_socket_acceptor, 513
socket_acceptor_service, 1147

acceptor
ip::tcp, 959
local::stream_protocol, 1004

access_denied
error::basic_errors, 802

add
basic_signal_set, 448
signal_set_service, 1142
time_traits< boost::posix_time::ptime >, 1239

address
ip::address, 878
ip::basic_endpoint, 904

1362

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

address_configured
ip::basic_resolver_query, 931
ip::resolver_query_base, 950

address_family_not_supported
error::basic_errors, 802

address_in_use
error::basic_errors, 802

address_v4
ip::address_v4, 886

address_v6
ip::address_v6, 895

add_certificate_authority
ssl::context, 1169

add_service, 169
io_service, 859

add_verify_path
ssl::context, 1170

allocator_type
use_future_t, 1243

all_matching
ip::basic_resolver_query, 931
ip::resolver_query_base, 950

already_connected
error::basic_errors, 802

already_open
error::misc_errors, 806

already_started
error::basic_errors, 802

any
ip::address_v4, 887
ip::address_v6, 896

asio_handler_allocate, 170
asio_handler_deallocate, 170
asio_handler_invoke, 171
asio_handler_is_continuation, 172
asn1

ssl::context, 1173
ssl::context_base, 1195

assign
basic_datagram_socket, 218
basic_raw_socket, 304
basic_seq_packet_socket, 372
basic_serial_port, 428
basic_socket, 462
basic_socket_acceptor, 516
basic_socket_streambuf, 558
basic_stream_socket, 609
datagram_socket_service, 786
posix::basic_descriptor, 1027
posix::basic_stream_descriptor, 1044
posix::stream_descriptor_service, 1070
raw_socket_service, 1078
seq_packet_socket_service, 1117
serial_port_service, 1135
socket_acceptor_service, 1147
stream_socket_service, 1226
windows::basic_handle, 1252
windows::basic_object_handle, 1263

1363

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_random_access_handle, 1275
windows::basic_stream_handle, 1291
windows::object_handle_service, 1308
windows::random_access_handle_service, 1317
windows::stream_handle_service, 1324

async_accept
basic_socket_acceptor, 516
socket_acceptor_service, 1147

async_connect, 173
basic_datagram_socket, 219
basic_raw_socket, 305
basic_seq_packet_socket, 373
basic_socket, 462
basic_socket_streambuf, 559
basic_stream_socket, 610
datagram_socket_service, 786
raw_socket_service, 1078
seq_packet_socket_service, 1117
stream_socket_service, 1226

async_fill
buffered_read_stream, 730
buffered_stream, 739

async_flush
buffered_stream, 739
buffered_write_stream, 748

async_handshake
ssl::stream, 1200

async_read, 180
async_read_at, 186
async_read_some

basic_serial_port, 428
basic_stream_socket, 610
buffered_read_stream, 730
buffered_stream, 739
buffered_write_stream, 748
posix::basic_stream_descriptor, 1045
posix::stream_descriptor_service, 1070
serial_port_service, 1135
ssl::stream, 1201
windows::basic_stream_handle, 1292
windows::stream_handle_service, 1325

async_read_some_at
windows::basic_random_access_handle, 1276
windows::random_access_handle_service, 1318

async_read_until, 192
async_receive

basic_datagram_socket, 219
basic_raw_socket, 305
basic_seq_packet_socket, 373
basic_stream_socket, 611
datagram_socket_service, 787
raw_socket_service, 1079
seq_packet_socket_service, 1117
stream_socket_service, 1226

async_receive_from
basic_datagram_socket, 221
basic_raw_socket, 307
datagram_socket_service, 787

1364

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

raw_socket_service, 1079
async_resolve

ip::basic_resolver, 911
ip::resolver_service, 952

async_result
async_result, 201

async_send
basic_datagram_socket, 223
basic_raw_socket, 309
basic_seq_packet_socket, 375
basic_stream_socket, 613
datagram_socket_service, 787
raw_socket_service, 1079
seq_packet_socket_service, 1118
stream_socket_service, 1227

async_send_to
basic_datagram_socket, 225
basic_raw_socket, 311
datagram_socket_service, 787
raw_socket_service, 1079

async_shutdown
ssl::stream, 1202

async_wait
basic_deadline_timer, 284
basic_signal_set, 449
basic_waitable_timer, 677
deadline_timer_service, 799
signal_set_service, 1143
waitable_timer_service, 1247
windows::basic_object_handle, 1263
windows::object_handle_service, 1308

async_write, 201
async_write_at, 207
async_write_some

basic_serial_port, 429
basic_stream_socket, 615
buffered_read_stream, 730
buffered_stream, 739
buffered_write_stream, 748
posix::basic_stream_descriptor, 1046
posix::stream_descriptor_service, 1070
serial_port_service, 1135
ssl::stream, 1202
windows::basic_stream_handle, 1293
windows::stream_handle_service, 1325

async_write_some_at
windows::basic_random_access_handle, 1276
windows::random_access_handle_service, 1318

at_mark
basic_datagram_socket, 227
basic_raw_socket, 313
basic_seq_packet_socket, 376
basic_socket, 463
basic_socket_streambuf, 559
basic_stream_socket, 616
datagram_socket_service, 788
raw_socket_service, 1079
seq_packet_socket_service, 1118

1365

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

stream_socket_service, 1227
available

basic_datagram_socket, 228
basic_raw_socket, 314
basic_seq_packet_socket, 377
basic_socket, 464
basic_socket_streambuf, 560
basic_stream_socket, 617
datagram_socket_service, 788
raw_socket_service, 1080
seq_packet_socket_service, 1118
stream_socket_service, 1227

B
bad_descriptor

error::basic_errors, 802
basic_datagram_socket

basic_datagram_socket, 229
basic_deadline_timer

basic_deadline_timer, 285
basic_descriptor

posix::basic_descriptor, 1027
basic_endpoint

generic::basic_endpoint, 809
ip::basic_endpoint, 905
local::basic_endpoint, 990

basic_handle
windows::basic_handle, 1252

basic_io_object
basic_io_object, 296

basic_object_handle
windows::basic_object_handle, 1264

basic_random_access_handle
windows::basic_random_access_handle, 1277

basic_raw_socket
basic_raw_socket, 315

basic_resolver
ip::basic_resolver, 913

basic_resolver_entry
ip::basic_resolver_entry, 922

basic_resolver_iterator
ip::basic_resolver_iterator, 925

basic_resolver_query
ip::basic_resolver_query, 931

basic_seq_packet_socket
basic_seq_packet_socket, 378

basic_serial_port
basic_serial_port, 430

basic_signal_set
basic_signal_set, 450

basic_socket
basic_socket, 465

basic_socket_acceptor
basic_socket_acceptor, 518

basic_socket_iostream
basic_socket_iostream, 548

basic_socket_streambuf

1366

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_streambuf, 561
basic_streambuf

basic_streambuf, 671
basic_stream_descriptor

posix::basic_stream_descriptor, 1046
basic_stream_handle

windows::basic_stream_handle, 1293
basic_stream_socket

basic_stream_socket, 618
basic_waitable_timer

basic_waitable_timer, 678
basic_yield_context

basic_yield_context, 689
baud_rate

serial_port_base::baud_rate, 1128
begin

buffers_iterator, 756
const_buffers_1, 776
mutable_buffers_1, 1019
null_buffers, 1022

bind
basic_datagram_socket, 232
basic_raw_socket, 318
basic_seq_packet_socket, 381
basic_socket, 468
basic_socket_acceptor, 522
basic_socket_streambuf, 561
basic_stream_socket, 621
datagram_socket_service, 788
raw_socket_service, 1080
seq_packet_socket_service, 1118
socket_acceptor_service, 1148
stream_socket_service, 1227

broadcast
basic_datagram_socket, 233
basic_raw_socket, 319
basic_seq_packet_socket, 382
basic_socket, 469
basic_socket_acceptor, 523
basic_socket_streambuf, 562
basic_stream_socket, 622
ip::address_v4, 887
socket_base, 1155

broken_pipe
error::basic_errors, 802

buffer, 690
buffered_read_stream

buffered_read_stream, 730
buffered_stream

buffered_stream, 740
buffered_write_stream

buffered_write_stream, 748
buffers_begin, 754
buffers_end, 754
buffers_iterator

buffers_iterator, 756
buffer_cast, 705
buffer_copy, 706

1367

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffer_size, 726
bytes_readable

basic_datagram_socket, 234
basic_raw_socket, 320
basic_seq_packet_socket, 383
basic_socket, 469
basic_socket_acceptor, 523
basic_socket_streambuf, 563
basic_stream_socket, 623
posix::basic_descriptor, 1029
posix::basic_stream_descriptor, 1048
posix::descriptor_base, 1065
socket_base, 1155

bytes_type
ip::address_v4, 888
ip::address_v6, 896

C
callee_type

basic_yield_context, 689
caller_type

basic_yield_context, 690
cancel

basic_datagram_socket, 234
basic_deadline_timer, 286
basic_raw_socket, 320
basic_seq_packet_socket, 383
basic_serial_port, 432
basic_signal_set, 452
basic_socket, 470
basic_socket_acceptor, 524
basic_socket_streambuf, 563
basic_stream_socket, 623
basic_waitable_timer, 679
datagram_socket_service, 788
deadline_timer_service, 799
ip::basic_resolver, 913
ip::resolver_service, 953
posix::basic_descriptor, 1029
posix::basic_stream_descriptor, 1048
posix::stream_descriptor_service, 1070
raw_socket_service, 1080
seq_packet_socket_service, 1118
serial_port_service, 1135
signal_set_service, 1143
socket_acceptor_service, 1148
stream_socket_service, 1227
waitable_timer_service, 1247
windows::basic_handle, 1253
windows::basic_object_handle, 1265
windows::basic_random_access_handle, 1279
windows::basic_stream_handle, 1295
windows::object_handle_service, 1309
windows::random_access_handle_service, 1318
windows::stream_handle_service, 1325

cancel_one
basic_deadline_timer, 287

1368

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_waitable_timer, 680
deadline_timer_service, 799
waitable_timer_service, 1247

canonical_name
ip::basic_resolver_query, 934
ip::resolver_query_base, 950

capacity
generic::basic_endpoint, 810
ip::basic_endpoint, 906
local::basic_endpoint, 991

character_size
serial_port_base::character_size, 1129

clear
basic_signal_set, 453
signal_set_service, 1143

clear_options
ssl::context, 1171

client
ssl::stream, 1205
ssl::stream_base, 1215

clock_type
basic_waitable_timer, 681
waitable_timer_service, 1247

close
basic_datagram_socket, 236
basic_raw_socket, 322
basic_seq_packet_socket, 384
basic_serial_port, 433
basic_socket, 471
basic_socket_acceptor, 524
basic_socket_iostream, 549
basic_socket_streambuf, 565
basic_stream_socket, 625
buffered_read_stream, 731
buffered_stream, 740
buffered_write_stream, 749
datagram_socket_service, 788
posix::basic_descriptor, 1030
posix::basic_stream_descriptor, 1049
posix::stream_descriptor_service, 1071
raw_socket_service, 1080
seq_packet_socket_service, 1119
serial_port_service, 1136
socket_acceptor_service, 1148
stream_socket_service, 1228
windows::basic_handle, 1254
windows::basic_object_handle, 1266
windows::basic_random_access_handle, 1279
windows::basic_stream_handle, 1295
windows::object_handle_service, 1309
windows::random_access_handle_service, 1318
windows::stream_handle_service, 1325

commit
basic_streambuf, 671

complete
windows::overlapped_ptr, 1312

connect, 762
basic_datagram_socket, 237

1369

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket, 323
basic_seq_packet_socket, 386
basic_socket, 472
basic_socket_iostream, 549
basic_socket_streambuf, 566
basic_stream_socket, 626
datagram_socket_service, 788
raw_socket_service, 1080
seq_packet_socket_service, 1119
stream_socket_service, 1228

connection_aborted
error::basic_errors, 802

connection_refused
error::basic_errors, 802

connection_reset
error::basic_errors, 802

construct
datagram_socket_service, 789
deadline_timer_service, 799
ip::resolver_service, 953
posix::stream_descriptor_service, 1071
raw_socket_service, 1080
seq_packet_socket_service, 1119
serial_port_service, 1136
signal_set_service, 1143
socket_acceptor_service, 1148
stream_socket_service, 1228
waitable_timer_service, 1247
windows::object_handle_service, 1309
windows::random_access_handle_service, 1318
windows::stream_handle_service, 1325

const_buffer
const_buffer, 774

const_buffers_1
const_buffers_1, 776

const_buffers_type
basic_streambuf, 672

const_iterator
const_buffers_1, 776
mutable_buffers_1, 1019
null_buffers, 1022

consume
basic_streambuf, 672

context
ssl::context, 1172

converting_move_construct
datagram_socket_service, 789
raw_socket_service, 1081
seq_packet_socket_service, 1119
socket_acceptor_service, 1148
stream_socket_service, 1228

coroutine
coroutine, 782

create
ip::basic_resolver_iterator, 925

1370

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

D
data

basic_streambuf, 672
generic::basic_endpoint, 810
ip::basic_endpoint, 906
local::basic_endpoint, 991

datagram_protocol
generic::datagram_protocol, 814

datagram_socket_service
datagram_socket_service, 789

data_type
generic::basic_endpoint, 810
ip::basic_endpoint, 906
local::basic_endpoint, 991

deadline_timer, 795
deadline_timer_service

deadline_timer_service, 799
debug

basic_datagram_socket, 238
basic_raw_socket, 324
basic_seq_packet_socket, 387
basic_socket, 473
basic_socket_acceptor, 525
basic_socket_streambuf, 567
basic_stream_socket, 627
socket_base, 1156

default_buffer_size
buffered_read_stream, 732
buffered_write_stream, 750

default_workarounds
ssl::context, 1173
ssl::context_base, 1194

destroy
datagram_socket_service, 789
deadline_timer_service, 799
ip::resolver_service, 954
posix::stream_descriptor_service, 1071
raw_socket_service, 1081
seq_packet_socket_service, 1119
serial_port_service, 1136
signal_set_service, 1143
socket_acceptor_service, 1148
stream_socket_service, 1228
waitable_timer_service, 1247
windows::object_handle_service, 1309
windows::random_access_handle_service, 1319
windows::stream_handle_service, 1325

difference_type
buffers_iterator, 756
ip::basic_resolver_iterator, 926

dispatch
io_service, 860
io_service::strand, 872

do_not_route
basic_datagram_socket, 239
basic_raw_socket, 325
basic_seq_packet_socket, 387

1371

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket, 474
basic_socket_acceptor, 526
basic_socket_streambuf, 568
basic_stream_socket, 628
socket_base, 1156

duration
basic_waitable_timer, 682
waitable_timer_service, 1247

duration_type
basic_deadline_timer, 288
basic_socket_iostream, 550
basic_socket_streambuf, 569
deadline_timer_service, 799
time_traits< boost::posix_time::ptime >, 1239

E
enable_connection_aborted

basic_datagram_socket, 239
basic_raw_socket, 325
basic_seq_packet_socket, 388
basic_socket, 475
basic_socket_acceptor, 527
basic_socket_streambuf, 569
basic_stream_socket, 628
socket_base, 1157

end
buffers_iterator, 756
const_buffers_1, 777
mutable_buffers_1, 1019
null_buffers, 1022

endpoint
generic::datagram_protocol, 815
generic::raw_protocol, 823
generic::seq_packet_protocol, 832
generic::stream_protocol, 841
ip::basic_resolver_entry, 922
ip::icmp, 937
ip::tcp, 964
ip::udp, 976
local::datagram_protocol, 996
local::stream_protocol, 1009

endpoint_type
basic_datagram_socket, 240
basic_raw_socket, 326
basic_seq_packet_socket, 389
basic_socket, 475
basic_socket_acceptor, 527
basic_socket_iostream, 550
basic_socket_streambuf, 569
basic_stream_socket, 629
datagram_socket_service, 789
ip::basic_resolver, 914
ip::basic_resolver_entry, 922
ip::resolver_service, 954
raw_socket_service, 1081
seq_packet_socket_service, 1119
socket_acceptor_service, 1148

1372

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

stream_socket_service, 1228
eof

error::misc_errors, 806
error

basic_socket_iostream, 550
basic_socket_streambuf, 570

error::addrinfo_category, 802
error::addrinfo_errors, 802
error::basic_errors, 802
error::get_addrinfo_category, 804
error::get_misc_category, 804
error::get_netdb_category, 804
error::get_ssl_category, 804
error::get_system_category, 804
error::make_error_code, 805
error::misc_category, 806
error::misc_errors, 806
error::netdb_category, 806
error::netdb_errors, 806
error::ssl_category, 807
error::ssl_errors, 807
error::system_category, 807
even

serial_port_base::parity, 1132
expires_at

basic_deadline_timer, 289
basic_socket_iostream, 550
basic_socket_streambuf, 570
basic_waitable_timer, 682
deadline_timer_service, 800
waitable_timer_service, 1248

expires_from_now
basic_deadline_timer, 290
basic_socket_iostream, 551
basic_socket_streambuf, 570
basic_waitable_timer, 683
deadline_timer_service, 800
waitable_timer_service, 1248

F
family

generic::datagram_protocol, 816
generic::raw_protocol, 825
generic::seq_packet_protocol, 834
generic::stream_protocol, 843
ip::icmp, 939
ip::tcp, 966
ip::udp, 978
local::datagram_protocol, 998
local::stream_protocol, 1010

fault
error::basic_errors, 802

fd_set_failure
error::misc_errors, 806

file_format
ssl::context, 1173
ssl::context_base, 1195

1373

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

fill
buffered_read_stream, 732
buffered_stream, 741

flags
ip::basic_resolver_query, 934
ip::resolver_query_base, 950

flow_control
serial_port_base::flow_control, 1130

flush
buffered_stream, 741
buffered_write_stream, 750

fork_child
io_service, 860

fork_event
io_service, 860

fork_parent
io_service, 860

fork_prepare
io_service, 860

fork_service
io_service::service, 871

for_reading
ssl::context, 1177
ssl::context_base, 1196

for_writing
ssl::context, 1177
ssl::context_base, 1196

from_string
ip::address, 879
ip::address_v4, 888
ip::address_v6, 896

G
get

async_result, 201
windows::overlapped_ptr, 1312

get_allocator
use_future_t, 1243

get_implementation
basic_datagram_socket, 240
basic_deadline_timer, 292
basic_io_object, 297
basic_raw_socket, 326
basic_seq_packet_socket, 389
basic_serial_port, 434
basic_signal_set, 454
basic_socket, 475
basic_socket_acceptor, 527
basic_socket_streambuf, 571
basic_stream_socket, 629
basic_waitable_timer, 685
ip::basic_resolver, 914
posix::basic_descriptor, 1031
posix::basic_stream_descriptor, 1050
windows::basic_handle, 1255
windows::basic_object_handle, 1267
windows::basic_random_access_handle, 1280

1374

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::basic_stream_handle, 1296
get_io_service

basic_datagram_socket, 240
basic_deadline_timer, 292
basic_io_object, 297
basic_raw_socket, 326
basic_seq_packet_socket, 389
basic_serial_port, 434
basic_signal_set, 454
basic_socket, 476
basic_socket_acceptor, 528
basic_socket_streambuf, 572
basic_stream_socket, 629
basic_waitable_timer, 685
buffered_read_stream, 732
buffered_stream, 742
buffered_write_stream, 750
datagram_socket_service, 789
deadline_timer_service, 801
io_service::service, 870
io_service::strand, 873
io_service::work, 875
ip::basic_resolver, 914
ip::resolver_service, 954
posix::basic_descriptor, 1031
posix::basic_stream_descriptor, 1050
posix::stream_descriptor_service, 1071
raw_socket_service, 1081
seq_packet_socket_service, 1120
serial_port_service, 1136
signal_set_service, 1143
socket_acceptor_service, 1149
ssl::stream, 1202
stream_socket_service, 1229
waitable_timer_service, 1249
windows::basic_handle, 1255
windows::basic_object_handle, 1267
windows::basic_random_access_handle, 1281
windows::basic_stream_handle, 1297
windows::object_handle_service, 1309
windows::random_access_handle_service, 1319
windows::stream_handle_service, 1326

get_option
basic_datagram_socket, 241
basic_raw_socket, 327
basic_seq_packet_socket, 390
basic_serial_port, 434
basic_socket, 476
basic_socket_acceptor, 528
basic_socket_streambuf, 572
basic_stream_socket, 630
datagram_socket_service, 790
raw_socket_service, 1081
seq_packet_socket_service, 1120
serial_port_service, 1136
socket_acceptor_service, 1149
stream_socket_service, 1229

get_service

1375

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_datagram_socket, 242
basic_deadline_timer, 292
basic_io_object, 297
basic_raw_socket, 328
basic_seq_packet_socket, 391
basic_serial_port, 435
basic_signal_set, 455
basic_socket, 477
basic_socket_acceptor, 529
basic_socket_streambuf, 573
basic_stream_socket, 631
basic_waitable_timer, 686
ip::basic_resolver, 914
posix::basic_descriptor, 1031
posix::basic_stream_descriptor, 1050
windows::basic_handle, 1256
windows::basic_object_handle, 1267
windows::basic_random_access_handle, 1281
windows::basic_stream_handle, 1297

H
handshake

ssl::stream, 1203
handshake_type

ssl::stream, 1205
ssl::stream_base, 1215

hardware
serial_port_base::flow_control, 1131

has_service, 851
io_service, 861

high_resolution_timer, 852
hints

ip::basic_resolver_query, 934
host_name

ip::basic_resolver_entry, 923
ip::basic_resolver_query, 934

host_not_found
error::netdb_errors, 807

host_not_found_try_again
error::netdb_errors, 807

host_unreachable
error::basic_errors, 802

I
id

datagram_socket_service, 790
deadline_timer_service, 801
io_service::id, 869
ip::resolver_service, 954
posix::stream_descriptor_service, 1071
raw_socket_service, 1081
seq_packet_socket_service, 1120
serial_port_service, 1136
signal_set_service, 1143
socket_acceptor_service, 1149
stream_socket_service, 1229
waitable_timer_service, 1249

1376

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::object_handle_service, 1309
windows::random_access_handle_service, 1319
windows::stream_handle_service, 1326

impl
ssl::context, 1173
ssl::stream, 1205

implementation
basic_datagram_socket, 243
basic_deadline_timer, 293
basic_io_object, 298
basic_raw_socket, 329
basic_seq_packet_socket, 392
basic_serial_port, 436
basic_signal_set, 455
basic_socket, 478
basic_socket_acceptor, 530
basic_socket_streambuf, 574
basic_stream_socket, 632
basic_waitable_timer, 686
ip::basic_resolver, 915
posix::basic_descriptor, 1032
posix::basic_stream_descriptor, 1051
windows::basic_handle, 1256
windows::basic_object_handle, 1268
windows::basic_random_access_handle, 1281
windows::basic_stream_handle, 1297

implementation_type
basic_datagram_socket, 243
basic_deadline_timer, 293
basic_io_object, 298
basic_raw_socket, 329
basic_seq_packet_socket, 392
basic_serial_port, 436
basic_signal_set, 455
basic_socket, 478
basic_socket_acceptor, 530
basic_socket_streambuf, 574
basic_stream_socket, 632
basic_waitable_timer, 686
datagram_socket_service, 790
deadline_timer_service, 801
ip::basic_resolver, 915
ip::resolver_service, 954
posix::basic_descriptor, 1032
posix::basic_stream_descriptor, 1051
posix::stream_descriptor_service, 1071
raw_socket_service, 1082
seq_packet_socket_service, 1120
serial_port_service, 1136
signal_set_service, 1144
socket_acceptor_service, 1149
stream_socket_service, 1229
waitable_timer_service, 1249
windows::basic_handle, 1256
windows::basic_object_handle, 1268
windows::basic_random_access_handle, 1282
windows::basic_stream_handle, 1298
windows::object_handle_service, 1309

1377

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::random_access_handle_service, 1319
windows::stream_handle_service, 1326

impl_type
ssl::context, 1173
ssl::stream, 1205

interrupted
error::basic_errors, 802

invalid_argument
error::basic_errors, 802

invalid_service_owner
invalid_service_owner, 856

in_avail
buffered_read_stream, 732
buffered_stream, 742
buffered_write_stream, 750

in_progress
error::basic_errors, 802

iostream
generic::stream_protocol, 843
ip::tcp, 966
local::stream_protocol, 1010

io_control
basic_datagram_socket, 243
basic_raw_socket, 329
basic_seq_packet_socket, 392
basic_socket, 478
basic_socket_acceptor, 530
basic_socket_streambuf, 574
basic_stream_socket, 632
datagram_socket_service, 790
posix::basic_descriptor, 1032
posix::basic_stream_descriptor, 1051
posix::stream_descriptor_service, 1071
raw_socket_service, 1082
seq_packet_socket_service, 1120
socket_acceptor_service, 1149
stream_socket_service, 1229

io_handler
basic_socket_streambuf, 575

io_service
io_service, 861

ip::host_name, 935
ip::multicast::enable_loopback, 946
ip::multicast::hops, 947
ip::multicast::join_group, 947
ip::multicast::leave_group, 948
ip::multicast::outbound_interface, 948
ip::unicast::hops, 985
ip::v6_only, 986
is_child

coroutine, 782
is_class_a

ip::address_v4, 889
is_class_b

ip::address_v4, 889
is_class_c

ip::address_v4, 889
is_complete

1378

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

coroutine, 783
is_link_local

ip::address_v6, 897
is_loopback

ip::address, 880
ip::address_v4, 889
ip::address_v6, 898

is_multicast
ip::address, 880
ip::address_v4, 890
ip::address_v6, 898

is_multicast_global
ip::address_v6, 898

is_multicast_link_local
ip::address_v6, 898

is_multicast_node_local
ip::address_v6, 898

is_multicast_org_local
ip::address_v6, 898

is_multicast_site_local
ip::address_v6, 898

is_open
basic_datagram_socket, 244
basic_raw_socket, 330
basic_seq_packet_socket, 393
basic_serial_port, 436
basic_socket, 480
basic_socket_acceptor, 532
basic_socket_streambuf, 576
basic_stream_socket, 633
datagram_socket_service, 790
posix::basic_descriptor, 1034
posix::basic_stream_descriptor, 1053
posix::stream_descriptor_service, 1072
raw_socket_service, 1082
seq_packet_socket_service, 1120
serial_port_service, 1137
socket_acceptor_service, 1150
stream_socket_service, 1229
windows::basic_handle, 1256
windows::basic_object_handle, 1268
windows::basic_random_access_handle, 1282
windows::basic_stream_handle, 1298
windows::object_handle_service, 1310
windows::random_access_handle_service, 1319
windows::stream_handle_service, 1326

is_parent
coroutine, 783

is_site_local
ip::address_v6, 898

is_unspecified
ip::address, 880
ip::address_v4, 890
ip::address_v6, 898

is_v4
ip::address, 880

is_v4_compatible
ip::address_v6, 899

1379

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

is_v4_mapped
ip::address_v6, 899

is_v6
ip::address, 880

iterator
ip::basic_resolver, 915

iterator_category
buffers_iterator, 757
ip::basic_resolver_iterator, 926

iterator_type
ip::resolver_service, 954

K
keep_alive

basic_datagram_socket, 244
basic_raw_socket, 330
basic_seq_packet_socket, 393
basic_socket, 480
basic_socket_acceptor, 532
basic_socket_streambuf, 576
basic_stream_socket, 633
socket_base, 1158

L
less_than

time_traits< boost::posix_time::ptime >, 1239
linger

basic_datagram_socket, 245
basic_raw_socket, 331
basic_seq_packet_socket, 394
basic_socket, 481
basic_socket_acceptor, 533
basic_socket_streambuf, 576
basic_stream_socket, 634
socket_base, 1158

listen
basic_socket_acceptor, 533
socket_acceptor_service, 1150

load
serial_port_base::baud_rate, 1128
serial_port_base::character_size, 1129
serial_port_base::flow_control, 1130
serial_port_base::parity, 1131
serial_port_base::stop_bits, 1133

load_verify_file
ssl::context, 1174

local::connect_pair, 995
local_endpoint

basic_datagram_socket, 246
basic_raw_socket, 332
basic_seq_packet_socket, 395
basic_socket, 481
basic_socket_acceptor, 534
basic_socket_streambuf, 577
basic_stream_socket, 635
datagram_socket_service, 790
raw_socket_service, 1082

1380

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

seq_packet_socket_service, 1121
socket_acceptor_service, 1150
stream_socket_service, 1230

loopback
ip::address_v4, 890
ip::address_v6, 899

lowest_layer
basic_datagram_socket, 247
basic_raw_socket, 333
basic_seq_packet_socket, 396
basic_serial_port, 436
basic_socket, 482
basic_socket_streambuf, 578
basic_stream_socket, 636
buffered_read_stream, 733
buffered_stream, 742
buffered_write_stream, 751
posix::basic_descriptor, 1034
posix::basic_stream_descriptor, 1053
ssl::stream, 1205
windows::basic_handle, 1257
windows::basic_object_handle, 1268
windows::basic_random_access_handle, 1282
windows::basic_stream_handle, 1298

lowest_layer_type
basic_datagram_socket, 248
basic_raw_socket, 334
basic_seq_packet_socket, 397
basic_serial_port, 437
basic_socket, 483
basic_socket_streambuf, 579
basic_stream_socket, 637
buffered_read_stream, 733
buffered_stream, 743
buffered_write_stream, 751
posix::basic_descriptor, 1034
posix::basic_stream_descriptor, 1053
ssl::stream, 1206
windows::basic_handle, 1257
windows::basic_object_handle, 1269
windows::basic_random_access_handle, 1283
windows::basic_stream_handle, 1299

M
max_connections

basic_datagram_socket, 253
basic_raw_socket, 339
basic_seq_packet_socket, 402
basic_socket, 488
basic_socket_acceptor, 535
basic_socket_streambuf, 584
basic_stream_socket, 642
socket_base, 1159

max_size
basic_streambuf, 672

message_do_not_route
basic_datagram_socket, 253

1381

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_raw_socket, 339
basic_seq_packet_socket, 402
basic_socket, 488
basic_socket_acceptor, 535
basic_socket_streambuf, 584
basic_stream_socket, 642
socket_base, 1159

message_end_of_record
basic_datagram_socket, 253
basic_raw_socket, 339
basic_seq_packet_socket, 402
basic_socket, 488
basic_socket_acceptor, 535
basic_socket_streambuf, 584
basic_stream_socket, 642
socket_base, 1159

message_flags
basic_datagram_socket, 253
basic_raw_socket, 339
basic_seq_packet_socket, 402
basic_socket, 488
basic_socket_acceptor, 536
basic_socket_streambuf, 584
basic_stream_socket, 642
socket_base, 1159

message_out_of_band
basic_datagram_socket, 253
basic_raw_socket, 339
basic_seq_packet_socket, 402
basic_socket, 488
basic_socket_acceptor, 536
basic_socket_streambuf, 584
basic_stream_socket, 642
socket_base, 1159

message_peek
basic_datagram_socket, 254
basic_raw_socket, 340
basic_seq_packet_socket, 403
basic_socket, 489
basic_socket_acceptor, 536
basic_socket_streambuf, 585
basic_stream_socket, 643
socket_base, 1159

message_size
error::basic_errors, 802

method
ssl::context, 1175
ssl::context_base, 1195

move_assign
datagram_socket_service, 791
posix::stream_descriptor_service, 1072
raw_socket_service, 1082
seq_packet_socket_service, 1121
serial_port_service, 1137
socket_acceptor_service, 1150
stream_socket_service, 1230
windows::object_handle_service, 1310
windows::random_access_handle_service, 1319

1382

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows::stream_handle_service, 1326
move_construct

datagram_socket_service, 791
posix::stream_descriptor_service, 1072
raw_socket_service, 1082
seq_packet_socket_service, 1121
serial_port_service, 1137
socket_acceptor_service, 1150
stream_socket_service, 1230
windows::object_handle_service, 1310
windows::random_access_handle_service, 1319
windows::stream_handle_service, 1326

mutable_buffer
mutable_buffer, 1017

mutable_buffers_1
mutable_buffers_1, 1019

mutable_buffers_type
basic_streambuf, 672

N
name_too_long

error::basic_errors, 802
native

basic_datagram_socket, 254
basic_raw_socket, 340
basic_seq_packet_socket, 403
basic_serial_port, 439
basic_socket, 489
basic_socket_acceptor, 536
basic_socket_streambuf, 585
basic_stream_socket, 643
datagram_socket_service, 791
posix::basic_descriptor, 1037
posix::basic_stream_descriptor, 1056
posix::stream_descriptor_service, 1072
raw_socket_service, 1083
seq_packet_socket_service, 1121
serial_port_service, 1137
socket_acceptor_service, 1150
stream_socket_service, 1230
windows::basic_handle, 1259
windows::basic_object_handle, 1271
windows::basic_random_access_handle, 1285
windows::basic_stream_handle, 1301
windows::random_access_handle_service, 1320
windows::stream_handle_service, 1327

native_handle
basic_datagram_socket, 254
basic_raw_socket, 340
basic_seq_packet_socket, 403
basic_serial_port, 439
basic_socket, 489
basic_socket_acceptor, 536
basic_socket_streambuf, 585
basic_stream_socket, 643
datagram_socket_service, 791
posix::basic_descriptor, 1037

1383

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_stream_descriptor, 1056
posix::stream_descriptor_service, 1072
raw_socket_service, 1083
seq_packet_socket_service, 1121
serial_port_service, 1137
socket_acceptor_service, 1150
ssl::context, 1175
ssl::stream, 1206
ssl::verify_context, 1216
stream_socket_service, 1230
windows::basic_handle, 1259
windows::basic_object_handle, 1271
windows::basic_random_access_handle, 1285
windows::basic_stream_handle, 1301
windows::object_handle_service, 1310
windows::random_access_handle_service, 1320
windows::stream_handle_service, 1327

native_handle_type
basic_datagram_socket, 254
basic_raw_socket, 340
basic_seq_packet_socket, 403
basic_serial_port, 439
basic_socket, 489
basic_socket_acceptor, 536
basic_socket_streambuf, 585
basic_stream_socket, 643
datagram_socket_service, 791
posix::basic_descriptor, 1037
posix::basic_stream_descriptor, 1056
posix::stream_descriptor_service, 1072
raw_socket_service, 1083
seq_packet_socket_service, 1121
serial_port_service, 1137
socket_acceptor_service, 1151
ssl::context, 1175
ssl::stream, 1206
ssl::verify_context, 1216
stream_socket_service, 1230
windows::basic_handle, 1259
windows::basic_object_handle, 1271
windows::basic_random_access_handle, 1285
windows::basic_stream_handle, 1301
windows::object_handle_service, 1310
windows::random_access_handle_service, 1320
windows::stream_handle_service, 1327

native_non_blocking
basic_datagram_socket, 254
basic_raw_socket, 340
basic_seq_packet_socket, 403
basic_socket, 489
basic_socket_acceptor, 537
basic_socket_streambuf, 585
basic_stream_socket, 643
datagram_socket_service, 791
posix::basic_descriptor, 1038
posix::basic_stream_descriptor, 1057
posix::stream_descriptor_service, 1073
raw_socket_service, 1083

1384

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

seq_packet_socket_service, 1121
socket_acceptor_service, 1151
stream_socket_service, 1230

native_type
basic_datagram_socket, 261
basic_raw_socket, 347
basic_seq_packet_socket, 410
basic_serial_port, 440
basic_socket, 496
basic_socket_acceptor, 538
basic_socket_streambuf, 592
basic_stream_socket, 650
datagram_socket_service, 792
posix::basic_descriptor, 1039
posix::basic_stream_descriptor, 1058
posix::stream_descriptor_service, 1073
raw_socket_service, 1084
seq_packet_socket_service, 1122
serial_port_service, 1138
socket_acceptor_service, 1151
stream_socket_service, 1231
windows::basic_handle, 1260
windows::basic_object_handle, 1271
windows::basic_random_access_handle, 1285
windows::basic_stream_handle, 1301
windows::random_access_handle_service, 1320
windows::stream_handle_service, 1327

netmask
ip::address_v4, 890

network_down
error::basic_errors, 802

network_reset
error::basic_errors, 802

network_unreachable
error::basic_errors, 802

next_layer
buffered_read_stream, 733
buffered_stream, 743
buffered_write_stream, 751
ssl::stream, 1207

next_layer_type
buffered_read_stream, 734
buffered_stream, 743
buffered_write_stream, 752
ssl::stream, 1207

none
serial_port_base::flow_control, 1131
serial_port_base::parity, 1132

non_blocking
basic_datagram_socket, 261
basic_raw_socket, 347
basic_seq_packet_socket, 410
basic_socket, 496
basic_socket_acceptor, 538
basic_socket_streambuf, 592
basic_stream_socket, 650
datagram_socket_service, 792
posix::basic_descriptor, 1039

1385

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

posix::basic_stream_descriptor, 1058
posix::stream_descriptor_service, 1073
raw_socket_service, 1084
seq_packet_socket_service, 1122
socket_acceptor_service, 1152
stream_socket_service, 1231

non_blocking_io
basic_datagram_socket, 262
basic_raw_socket, 348
basic_seq_packet_socket, 411
basic_socket, 497
basic_socket_acceptor, 540
basic_socket_streambuf, 593
basic_stream_socket, 651
posix::basic_descriptor, 1040
posix::basic_stream_descriptor, 1060
posix::descriptor_base, 1065
socket_base, 1159

notify_fork
io_service, 862

not_connected
error::basic_errors, 802

not_found
error::misc_errors, 806

not_socket
error::basic_errors, 802

now
time_traits< boost::posix_time::ptime >, 1240

no_buffer_space
error::basic_errors, 802

no_compression
ssl::context, 1176
ssl::context_base, 1196

no_data
error::netdb_errors, 807

no_delay
ip::tcp, 967

no_descriptors
error::basic_errors, 802

no_memory
error::basic_errors, 802

no_permission
error::basic_errors, 802

no_protocol_option
error::basic_errors, 802

no_recovery
error::netdb_errors, 807

no_sslv2
ssl::context, 1176
ssl::context_base, 1196

no_sslv3
ssl::context, 1176
ssl::context_base, 1196

no_tlsv1
ssl::context, 1176
ssl::context_base, 1196

numeric_host
ip::basic_resolver_query, 934

1386

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::resolver_query_base, 951
numeric_service

ip::basic_resolver_query, 935
ip::resolver_query_base, 951

O
object_handle_service

windows::object_handle_service, 1310
odd

serial_port_base::parity, 1132
one

serial_port_base::stop_bits, 1133
onepointfive

serial_port_base::stop_bits, 1133
open

basic_datagram_socket, 263
basic_raw_socket, 349
basic_seq_packet_socket, 412
basic_serial_port, 440
basic_socket, 498
basic_socket_acceptor, 540
basic_socket_streambuf, 594
basic_stream_socket, 652
datagram_socket_service, 793
raw_socket_service, 1084
seq_packet_socket_service, 1123
serial_port_service, 1138
socket_acceptor_service, 1152
stream_socket_service, 1232

operation_aborted
error::basic_errors, 802

operation_not_supported
error::basic_errors, 802

operator *
buffers_iterator, 757
ip::basic_resolver_iterator, 926

operator endpoint_type
ip::basic_resolver_entry, 923

operator!=
buffers_iterator, 757
generic::basic_endpoint, 811
generic::datagram_protocol, 816
generic::raw_protocol, 825
generic::seq_packet_protocol, 834
generic::stream_protocol, 844
ip::address, 880
ip::address_v4, 890
ip::address_v6, 899
ip::basic_endpoint, 907
ip::basic_resolver_iterator, 926
ip::icmp, 939
ip::tcp, 968
ip::udp, 978
local::basic_endpoint, 991

operator()
ssl::rfc2818_verification, 1198

operator+

1387

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

buffers_iterator, 757
const_buffer, 774
const_buffers_1, 777
mutable_buffer, 1017
mutable_buffers_1, 1020

operator++
buffers_iterator, 758
ip::basic_resolver_iterator, 927

operator+=
buffers_iterator, 758

operator-
buffers_iterator, 759

operator--
buffers_iterator, 759

operator-=
buffers_iterator, 760

operator->
buffers_iterator, 760
ip::basic_resolver_iterator, 927

operator<
buffers_iterator, 760
generic::basic_endpoint, 811
ip::address, 881
ip::address_v4, 890
ip::address_v6, 899
ip::basic_endpoint, 907
local::basic_endpoint, 992

operator<<
ip::address, 881
ip::address_v4, 891
ip::address_v6, 899
ip::basic_endpoint, 907
local::basic_endpoint, 992

operator<=
buffers_iterator, 760
generic::basic_endpoint, 811
ip::address, 881
ip::address_v4, 891
ip::address_v6, 900
ip::basic_endpoint, 908
local::basic_endpoint, 992

operator=
basic_datagram_socket, 264
basic_io_object, 298
basic_raw_socket, 350
basic_seq_packet_socket, 413
basic_serial_port, 441
basic_socket, 499
basic_socket_acceptor, 541
basic_stream_socket, 653
generic::basic_endpoint, 811
ip::address, 882
ip::address_v4, 891
ip::address_v6, 900
ip::basic_endpoint, 908
local::basic_endpoint, 992
posix::basic_descriptor, 1041
posix::basic_stream_descriptor, 1060

1388

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::context, 1176
windows::basic_handle, 1260
windows::basic_object_handle, 1272
windows::basic_random_access_handle, 1285
windows::basic_stream_handle, 1301

operator==
buffers_iterator, 761
generic::basic_endpoint, 812
generic::datagram_protocol, 816
generic::raw_protocol, 825
generic::seq_packet_protocol, 834
generic::stream_protocol, 844
ip::address, 882
ip::address_v4, 891
ip::address_v6, 900
ip::basic_endpoint, 908
ip::basic_resolver_iterator, 927
ip::icmp, 939
ip::tcp, 968
ip::udp, 979
local::basic_endpoint, 993

operator>
buffers_iterator, 761
generic::basic_endpoint, 812
ip::address, 883
ip::address_v4, 892
ip::address_v6, 900
ip::basic_endpoint, 908
local::basic_endpoint, 993

operator>=
buffers_iterator, 761
generic::basic_endpoint, 812
ip::address, 883
ip::address_v4, 892
ip::address_v6, 901
ip::basic_endpoint, 908
local::basic_endpoint, 993

operator[]
basic_yield_context, 690
buffers_iterator, 761
use_future_t, 1244

options
ssl::context, 1176
ssl::context_base, 1196

overflow
basic_socket_streambuf, 595
basic_streambuf, 673

overlapped_ptr
windows::overlapped_ptr, 1312

P
parity

serial_port_base::parity, 1132
passive

ip::basic_resolver_query, 935
ip::resolver_query_base, 951

password_purpose

1389

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::context, 1177
ssl::context_base, 1196

path
local::basic_endpoint, 993

peek
buffered_read_stream, 734
buffered_stream, 743
buffered_write_stream, 752

pem
ssl::context, 1173
ssl::context_base, 1195

placeholders::bytes_transferred, 1023
placeholders::error, 1023
placeholders::iterator, 1024
placeholders::signal_number, 1024
pointer

buffers_iterator, 762
ip::basic_resolver_iterator, 927

poll
io_service, 862

poll_one
io_service, 863

port
ip::basic_endpoint, 909

posix::stream_descriptor, 1066
post

io_service, 864
io_service::strand, 873

prepare
basic_streambuf, 673

protocol
generic::basic_endpoint, 812
generic::datagram_protocol, 817
generic::raw_protocol, 825
generic::seq_packet_protocol, 834
generic::stream_protocol, 845
ip::basic_endpoint, 909
ip::icmp, 939
ip::tcp, 968
ip::udp, 979
local::basic_endpoint, 994
local::datagram_protocol, 998
local::stream_protocol, 1011

protocol_type
basic_datagram_socket, 265
basic_raw_socket, 351
basic_seq_packet_socket, 414
basic_socket, 500
basic_socket_acceptor, 542
basic_socket_streambuf, 595
basic_stream_socket, 654
datagram_socket_service, 793
generic::basic_endpoint, 812
ip::basic_endpoint, 909
ip::basic_resolver, 917
ip::basic_resolver_entry, 923
ip::basic_resolver_query, 935
ip::resolver_service, 956

1390

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

local::basic_endpoint, 994
raw_socket_service, 1085
seq_packet_socket_service, 1123
socket_acceptor_service, 1152
stream_socket_service, 1232

puberror
basic_socket_streambuf, 595

Q
query

ip::basic_resolver, 917
query_type

ip::resolver_service, 956

R
random_access_handle_service

windows::random_access_handle_service, 1320
raw_protocol

generic::raw_protocol, 825
raw_socket_service

raw_socket_service, 1085
rdbuf

basic_socket_iostream, 552
read, 1086
read_at, 1095
read_some

basic_serial_port, 441
basic_stream_socket, 654
buffered_read_stream, 734
buffered_stream, 744
buffered_write_stream, 752
posix::basic_stream_descriptor, 1060
posix::stream_descriptor_service, 1074
serial_port_service, 1138
ssl::stream, 1207
windows::basic_stream_handle, 1302
windows::stream_handle_service, 1327

read_some_at
windows::basic_random_access_handle, 1286
windows::random_access_handle_service, 1320

read_until, 1103
receive

basic_datagram_socket, 265
basic_raw_socket, 351
basic_seq_packet_socket, 414
basic_stream_socket, 656
datagram_socket_service, 793
raw_socket_service, 1085
seq_packet_socket_service, 1123
stream_socket_service, 1232

receive_buffer_size
basic_datagram_socket, 267
basic_raw_socket, 353
basic_seq_packet_socket, 417
basic_socket, 500
basic_socket_acceptor, 542
basic_socket_streambuf, 595

1391

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_stream_socket, 658
socket_base, 1160

receive_from
basic_datagram_socket, 268
basic_raw_socket, 354
datagram_socket_service, 793
raw_socket_service, 1085

receive_low_watermark
basic_datagram_socket, 270
basic_raw_socket, 356
basic_seq_packet_socket, 417
basic_socket, 501
basic_socket_acceptor, 543
basic_socket_streambuf, 596
basic_stream_socket, 659
socket_base, 1160

reference
buffers_iterator, 762
ip::basic_resolver_iterator, 928

release
posix::basic_descriptor, 1041
posix::basic_stream_descriptor, 1062
posix::stream_descriptor_service, 1074
windows::overlapped_ptr, 1313

remote_endpoint
basic_datagram_socket, 271
basic_raw_socket, 357
basic_seq_packet_socket, 418
basic_socket, 501
basic_socket_streambuf, 597
basic_stream_socket, 659
datagram_socket_service, 794
raw_socket_service, 1085
seq_packet_socket_service, 1123
stream_socket_service, 1232

remove
basic_signal_set, 455
signal_set_service, 1144

reserve
basic_streambuf, 673

reset
io_service, 864
windows::overlapped_ptr, 1313

resize
generic::basic_endpoint, 813
ip::basic_endpoint, 909
local::basic_endpoint, 994

resolve
ip::basic_resolver, 918
ip::resolver_service, 957

resolver
ip::icmp, 940
ip::tcp, 968
ip::udp, 979

resolver_service
ip::resolver_service, 958

result_type
ssl::rfc2818_verification, 1198

1392

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

reuse_address
basic_datagram_socket, 272
basic_raw_socket, 358
basic_seq_packet_socket, 419
basic_socket, 502
basic_socket_acceptor, 544
basic_socket_streambuf, 598
basic_stream_socket, 660
socket_base, 1161

rfc2818_verification
ssl::rfc2818_verification, 1198

run
io_service, 865

running_in_this_thread
io_service::strand, 873

run_one
io_service, 866

S
scope_id

ip::address_v6, 901
send

basic_datagram_socket, 272
basic_raw_socket, 358
basic_seq_packet_socket, 420
basic_stream_socket, 661
datagram_socket_service, 794
raw_socket_service, 1085
seq_packet_socket_service, 1124
stream_socket_service, 1233

send_break
basic_serial_port, 442
serial_port_service, 1138

send_buffer_size
basic_datagram_socket, 275
basic_raw_socket, 361
basic_seq_packet_socket, 421
basic_socket, 503
basic_socket_acceptor, 544
basic_socket_streambuf, 598
basic_stream_socket, 663
socket_base, 1161

send_low_watermark
basic_datagram_socket, 275
basic_raw_socket, 361
basic_seq_packet_socket, 422
basic_socket, 503
basic_socket_acceptor, 545
basic_socket_streambuf, 599
basic_stream_socket, 664
socket_base, 1162

send_to
basic_datagram_socket, 276
basic_raw_socket, 362
datagram_socket_service, 794
raw_socket_service, 1086

seq_packet_protocol

1393

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

generic::seq_packet_protocol, 834
seq_packet_socket_service

seq_packet_socket_service, 1124
serial_port, 1124
serial_port_service

serial_port_service, 1138
server

ssl::stream, 1205
ssl::stream_base, 1215

service
basic_datagram_socket, 278
basic_deadline_timer, 293
basic_io_object, 298
basic_raw_socket, 364
basic_seq_packet_socket, 422
basic_serial_port, 443
basic_signal_set, 456
basic_socket, 504
basic_socket_acceptor, 545
basic_socket_streambuf, 599
basic_stream_socket, 664
basic_waitable_timer, 687
io_service::service, 870
ip::basic_resolver, 920
posix::basic_descriptor, 1041
posix::basic_stream_descriptor, 1062
windows::basic_handle, 1260
windows::basic_object_handle, 1272
windows::basic_random_access_handle, 1287
windows::basic_stream_handle, 1303

service_already_exists
service_already_exists, 1139

service_name
ip::basic_resolver_entry, 923
ip::basic_resolver_query, 935

service_not_found
error::addrinfo_errors, 802

service_type
basic_datagram_socket, 278
basic_deadline_timer, 293
basic_io_object, 299
basic_raw_socket, 364
basic_seq_packet_socket, 422
basic_serial_port, 443
basic_signal_set, 457
basic_socket, 504
basic_socket_acceptor, 546
basic_socket_streambuf, 600
basic_stream_socket, 665
basic_waitable_timer, 687
ip::basic_resolver, 921
posix::basic_descriptor, 1042
posix::basic_stream_descriptor, 1062
windows::basic_handle, 1260
windows::basic_object_handle, 1272
windows::basic_random_access_handle, 1288
windows::basic_stream_handle, 1304

setbuf

1394

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_streambuf, 601
set_default_verify_paths

ssl::context, 1177
set_option

basic_datagram_socket, 278
basic_raw_socket, 364
basic_seq_packet_socket, 423
basic_serial_port, 443
basic_socket, 504
basic_socket_acceptor, 546
basic_socket_streambuf, 600
basic_stream_socket, 665
datagram_socket_service, 794
raw_socket_service, 1086
seq_packet_socket_service, 1124
serial_port_service, 1138
socket_acceptor_service, 1153
stream_socket_service, 1233

set_options
ssl::context, 1178

set_password_callback
ssl::context, 1179

set_verify_callback
ssl::context, 1180
ssl::stream, 1209

set_verify_depth
ssl::context, 1181
ssl::stream, 1210

set_verify_mode
ssl::context, 1182
ssl::stream, 1211

shutdown
basic_datagram_socket, 280
basic_raw_socket, 366
basic_seq_packet_socket, 424
basic_socket, 506
basic_socket_streambuf, 601
basic_stream_socket, 666
datagram_socket_service, 794
raw_socket_service, 1086
seq_packet_socket_service, 1124
ssl::stream, 1212
stream_socket_service, 1233

shutdown_both
basic_datagram_socket, 281
basic_raw_socket, 367
basic_seq_packet_socket, 425
basic_socket, 507
basic_socket_acceptor, 547
basic_socket_streambuf, 603
basic_stream_socket, 667
socket_base, 1163

shutdown_receive
basic_datagram_socket, 281
basic_raw_socket, 367
basic_seq_packet_socket, 425
basic_socket, 507
basic_socket_acceptor, 547

1395

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_streambuf, 603
basic_stream_socket, 667
socket_base, 1163

shutdown_send
basic_datagram_socket, 281
basic_raw_socket, 367
basic_seq_packet_socket, 425
basic_socket, 507
basic_socket_acceptor, 547
basic_socket_streambuf, 603
basic_stream_socket, 667
socket_base, 1163

shutdown_service
io_service::service, 871

shutdown_type
basic_datagram_socket, 281
basic_raw_socket, 367
basic_seq_packet_socket, 425
basic_socket, 507
basic_socket_acceptor, 547
basic_socket_streambuf, 603
basic_stream_socket, 667
socket_base, 1163

shut_down
error::basic_errors, 802

signal_set, 1139
signal_set_service

signal_set_service, 1144
single_dh_use

ssl::context, 1183
ssl::context_base, 1196

size
basic_streambuf, 673
generic::basic_endpoint, 813
ip::basic_endpoint, 910
local::basic_endpoint, 995

socket
generic::datagram_protocol, 817
generic::raw_protocol, 826
generic::seq_packet_protocol, 835
generic::stream_protocol, 845
ip::icmp, 941
ip::tcp, 970
ip::udp, 980
local::datagram_protocol, 998
local::stream_protocol, 1011

socket_acceptor_service
socket_acceptor_service, 1153

socket_type_not_supported
error::addrinfo_errors, 802

software
serial_port_base::flow_control, 1131

spawn, 1163
ssl

ssl::stream::impl_struct, 1215
ssl::verify_client_once, 1215
ssl::verify_fail_if_no_peer_cert, 1217
ssl::verify_mode, 1217

1396

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ssl::verify_none, 1217
ssl::verify_peer, 1218
sslv2

ssl::context, 1175
ssl::context_base, 1195

sslv23
ssl::context, 1175
ssl::context_base, 1195

sslv23_client
ssl::context, 1175
ssl::context_base, 1195

sslv23_server
ssl::context, 1175
ssl::context_base, 1195

sslv2_client
ssl::context, 1175
ssl::context_base, 1195

sslv2_server
ssl::context, 1175
ssl::context_base, 1195

sslv3
ssl::context, 1175
ssl::context_base, 1195

sslv3_client
ssl::context, 1175
ssl::context_base, 1195

sslv3_server
ssl::context, 1175
ssl::context_base, 1195

steady_timer, 1218
stop

io_service, 867
stopped

io_service, 867
stop_bits

serial_port_base::stop_bits, 1133
store

serial_port_base::baud_rate, 1128
serial_port_base::character_size, 1129
serial_port_base::flow_control, 1130
serial_port_base::parity, 1132
serial_port_base::stop_bits, 1133

strand, 1221
io_service::strand, 874

stream
ssl::stream, 1213

streambuf, 1233
stream_descriptor_service

posix::stream_descriptor_service, 1074
stream_handle_service

windows::stream_handle_service, 1327
stream_protocol

generic::stream_protocol, 850
stream_socket_service

stream_socket_service, 1233
subtract

time_traits< boost::posix_time::ptime >, 1240
sync

1397

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

basic_socket_streambuf, 603
system_timer, 1235

T
timed_out

error::basic_errors, 802
timer_handler

basic_socket_streambuf, 603
time_point

basic_waitable_timer, 687
waitable_timer_service, 1249

time_type
basic_deadline_timer, 294
basic_socket_iostream, 552
basic_socket_streambuf, 603
deadline_timer_service, 801
time_traits< boost::posix_time::ptime >, 1240

tlsv1
ssl::context, 1175
ssl::context_base, 1195

tlsv11
ssl::context, 1175
ssl::context_base, 1195

tlsv11_client
ssl::context, 1175
ssl::context_base, 1195

tlsv11_server
ssl::context, 1175
ssl::context_base, 1195

tlsv12
ssl::context, 1175
ssl::context_base, 1195

tlsv12_client
ssl::context, 1175
ssl::context_base, 1195

tlsv12_server
ssl::context, 1175
ssl::context_base, 1195

tlsv1_client
ssl::context, 1175
ssl::context_base, 1195

tlsv1_server
ssl::context, 1175
ssl::context_base, 1195

to_bytes
ip::address_v4, 892
ip::address_v6, 901

to_posix_duration
time_traits< boost::posix_time::ptime >, 1240

to_string
ip::address, 883
ip::address_v4, 892
ip::address_v6, 902

to_ulong
ip::address_v4, 893

to_v4
ip::address, 883

1398

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

ip::address_v6, 902
to_v6

ip::address, 884
to_wait_duration

wait_traits, 1245
traits_type

basic_deadline_timer, 294
basic_waitable_timer, 687
deadline_timer_service, 802
waitable_timer_service, 1250

transfer_all, 1240
transfer_at_least, 1241
transfer_exactly, 1241
try_again

error::basic_errors, 802
two

serial_port_base::stop_bits, 1133
type

async_result, 201
generic::datagram_protocol, 822
generic::raw_protocol, 831
generic::seq_packet_protocol, 840
generic::stream_protocol, 851
handler_type, 851
ip::icmp, 946
ip::tcp, 975
ip::udp, 985
local::datagram_protocol, 1003
local::stream_protocol, 1016
serial_port_base::flow_control, 1130
serial_port_base::parity, 1132
serial_port_base::stop_bits, 1133

U
underflow

basic_socket_streambuf, 603
basic_streambuf, 674

use_certificate
ssl::context, 1183

use_certificate_chain
ssl::context, 1184

use_certificate_chain_file
ssl::context, 1185

use_certificate_file
ssl::context, 1186

use_future, 1242
use_future_t

use_future_t, 1244
use_private_key

ssl::context, 1187
use_private_key_file

ssl::context, 1188
use_rsa_private_key

ssl::context, 1190
use_rsa_private_key_file

ssl::context, 1191
use_service, 1244

1399

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

io_service, 867
use_tmp_dh

ssl::context, 1192
use_tmp_dh_file

ssl::context, 1193

V
v4

ip::icmp, 946
ip::tcp, 975
ip::udp, 985

v4_compatible
ip::address_v6, 902

v4_mapped
ip::address_v6, 902
ip::basic_resolver_query, 935
ip::resolver_query_base, 951

v6
ip::icmp, 946
ip::tcp, 975
ip::udp, 985

value
boost::system::is_error_code_enum< boost::asio::error::addrinfo_errors >, 1347
boost::system::is_error_code_enum< boost::asio::error::basic_errors >, 1347
boost::system::is_error_code_enum< boost::asio::error::misc_errors >, 1347
boost::system::is_error_code_enum< boost::asio::error::netdb_errors >, 1348
boost::system::is_error_code_enum< boost::asio::error::ssl_errors >, 1348
is_match_condition, 987
is_read_buffered, 987
is_write_buffered, 988
serial_port_base::baud_rate, 1129
serial_port_base::character_size, 1129
serial_port_base::flow_control, 1131
serial_port_base::parity, 1132
serial_port_base::stop_bits, 1133

value_type
buffers_iterator, 762
const_buffers_1, 777
ip::basic_resolver_iterator, 928
mutable_buffers_1, 1020
null_buffers, 1022

verify_context
ssl::verify_context, 1217

W
wait

basic_deadline_timer, 294
basic_waitable_timer, 687
deadline_timer_service, 802
waitable_timer_service, 1250
windows::basic_object_handle, 1272
windows::object_handle_service, 1311

waitable_timer_service
waitable_timer_service, 1250

windows::object_handle, 1305
windows::random_access_handle, 1314
windows::stream_handle, 1321

1400

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

work
io_service::work, 875

would_block
error::basic_errors, 802

wrap
io_service, 868
io_service::strand, 874

write, 1328
write_at, 1336
write_some

basic_serial_port, 444
basic_stream_socket, 668
buffered_read_stream, 735
buffered_stream, 745
buffered_write_stream, 753
posix::basic_stream_descriptor, 1063
posix::stream_descriptor_service, 1074
serial_port_service, 1139
ssl::stream, 1213
windows::basic_stream_handle, 1304
windows::stream_handle_service, 1328

write_some_at
windows::basic_random_access_handle, 1288
windows::random_access_handle_service, 1321

Y
yield_context, 1345

1401

Boost.Asio

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Asio
	Overview
	Rationale
	Core Concepts and Functionality
	Basic Boost.Asio Anatomy
	The Proactor Design Pattern: Concurrency Without Threads
	Threads and Boost.Asio
	Strands: Use Threads Without Explicit Locking
	Buffers
	Streams, Short Reads and Short Writes
	Reactor-Style Operations
	Line-Based Operations
	Custom Memory Allocation
	Handler Tracking
	Stackless Coroutines
	Stackful Coroutines

	Networking
	TCP, UDP and ICMP
	Support for Other Protocols
	Socket Iostreams
	The BSD Socket API and Boost.Asio

	Timers
	Serial Ports
	Signal Handling
	POSIX-Specific Functionality
	UNIX Domain Sockets
	Stream-Oriented File Descriptors
	Fork

	Windows-Specific Functionality
	Stream-Oriented HANDLEs
	Random-Access HANDLEs
	Object HANDLEs

	SSL
	C++ 2011 Support
	Movable I/O Objects
	Movable Handlers
	Variadic Templates
	Array Container
	Atomics
	Shared Pointers
	Chrono
	Futures

	Platform-Specific Implementation Notes

	Using Boost.Asio
	Tutorial
	Timer.1 - Using a timer synchronously
	Source listing for Timer.1

	Timer.2 - Using a timer asynchronously
	Source listing for Timer.2

	Timer.3 - Binding arguments to a handler
	Source listing for Timer.3

	Timer.4 - Using a member function as a handler
	Source listing for Timer.4

	Timer.5 - Synchronising handlers in multithreaded programs
	Source listing for Timer.5

	Daytime.1 - A synchronous TCP daytime client
	Source listing for Daytime.1

	Daytime.2 - A synchronous TCP daytime server
	Source listing for Daytime.2

	Daytime.3 - An asynchronous TCP daytime server
	Source listing for Daytime.3

	Daytime.4 - A synchronous UDP daytime client
	Source listing for Daytime.4

	Daytime.5 - A synchronous UDP daytime server
	Source listing for Daytime.5

	Daytime.6 - An asynchronous UDP daytime server
	Source listing for Daytime.6

	Daytime.7 - A combined TCP/UDP asynchronous server
	Source listing for Daytime.7

	Examples
	C++03 Examples
	C++11 Examples

	Reference
	Requirements on asynchronous operations
	Accept handler requirements
	Buffer-oriented asynchronous random-access read device requirements
	Buffer-oriented asynchronous random-access write device requirements
	Buffer-oriented asynchronous read stream requirements
	Buffer-oriented asynchronous write stream requirements
	Buffered handshake handler requirements
	Completion handler requirements
	Composed connect handler requirements
	Connect handler requirements
	Constant buffer sequence requirements
	Convertible to const buffer requirements
	Convertible to mutable buffer requirements
	Datagram socket service requirements
	Descriptor service requirements
	Endpoint requirements
	Gettable serial port option requirements
	Gettable socket option requirements
	Handlers
	Handle service requirements
	SSL handshake handler requirements
	Internet protocol requirements
	I/O control command requirements
	I/O object service requirements
	Mutable buffer sequence requirements
	Object handle service requirements
	Protocol requirements
	Random access handle service requirements
	Raw socket service requirements
	Read handler requirements
	Resolve handler requirements
	Resolver service requirements
	Sequenced packet socket service requirements
	Serial port service requirements
	Service requirements
	Settable serial port option requirements
	Settable socket option requirements
	SSL shutdown handler requirements
	Signal handler requirements
	Signal set service requirements
	Socket acceptor service requirements
	Socket service requirements
	Stream descriptor service requirements
	Stream handle service requirements
	Stream socket service requirements
	Buffer-oriented synchronous random-access read device requirements
	Buffer-oriented synchronous random-access write device requirements
	Buffer-oriented synchronous read stream requirements
	Buffer-oriented synchronous write stream requirements
	Time traits requirements
	Timer service requirements
	Waitable timer service requirements
	Wait handler requirements
	Wait traits requirements
	Write handler requirements
	add_service
	asio_handler_allocate
	asio_handler_deallocate
	asio_handler_invoke
	asio_handler_invoke (1 of 2 overloads)
	asio_handler_invoke (2 of 2 overloads)

	asio_handler_is_continuation
	async_connect
	async_connect (1 of 4 overloads)
	async_connect (2 of 4 overloads)
	async_connect (3 of 4 overloads)
	async_connect (4 of 4 overloads)

	async_read
	async_read (1 of 4 overloads)
	async_read (2 of 4 overloads)
	async_read (3 of 4 overloads)
	async_read (4 of 4 overloads)

	async_read_at
	async_read_at (1 of 4 overloads)
	async_read_at (2 of 4 overloads)
	async_read_at (3 of 4 overloads)
	async_read_at (4 of 4 overloads)

	async_read_until
	async_read_until (1 of 4 overloads)
	async_read_until (2 of 4 overloads)
	async_read_until (3 of 4 overloads)
	async_read_until (4 of 4 overloads)

	async_result
	async_result::async_result
	async_result::get
	async_result::type

	async_write
	async_write (1 of 4 overloads)
	async_write (2 of 4 overloads)
	async_write (3 of 4 overloads)
	async_write (4 of 4 overloads)

	async_write_at
	async_write_at (1 of 4 overloads)
	async_write_at (2 of 4 overloads)
	async_write_at (3 of 4 overloads)
	async_write_at (4 of 4 overloads)

	basic_datagram_socket
	basic_datagram_socket::assign
	basic_datagram_socket::assign (1 of 2 overloads)
	basic_datagram_socket::assign (2 of 2 overloads)

	basic_datagram_socket::async_connect
	basic_datagram_socket::async_receive
	basic_datagram_socket::async_receive (1 of 2 overloads)
	basic_datagram_socket::async_receive (2 of 2 overloads)

	basic_datagram_socket::async_receive_from
	basic_datagram_socket::async_receive_from (1 of 2 overloads)
	basic_datagram_socket::async_receive_from (2 of 2 overloads)

	basic_datagram_socket::async_send
	basic_datagram_socket::async_send (1 of 2 overloads)
	basic_datagram_socket::async_send (2 of 2 overloads)

	basic_datagram_socket::async_send_to
	basic_datagram_socket::async_send_to (1 of 2 overloads)
	basic_datagram_socket::async_send_to (2 of 2 overloads)

	basic_datagram_socket::at_mark
	basic_datagram_socket::at_mark (1 of 2 overloads)
	basic_datagram_socket::at_mark (2 of 2 overloads)

	basic_datagram_socket::available
	basic_datagram_socket::available (1 of 2 overloads)
	basic_datagram_socket::available (2 of 2 overloads)

	basic_datagram_socket::basic_datagram_socket
	basic_datagram_socket::basic_datagram_socket (1 of 6 overloads)
	basic_datagram_socket::basic_datagram_socket (2 of 6 overloads)
	basic_datagram_socket::basic_datagram_socket (3 of 6 overloads)
	basic_datagram_socket::basic_datagram_socket (4 of 6 overloads)
	basic_datagram_socket::basic_datagram_socket (5 of 6 overloads)
	basic_datagram_socket::basic_datagram_socket (6 of 6 overloads)

	basic_datagram_socket::bind
	basic_datagram_socket::bind (1 of 2 overloads)
	basic_datagram_socket::bind (2 of 2 overloads)

	basic_datagram_socket::broadcast
	basic_datagram_socket::bytes_readable
	basic_datagram_socket::cancel
	basic_datagram_socket::cancel (1 of 2 overloads)
	basic_datagram_socket::cancel (2 of 2 overloads)

	basic_datagram_socket::close
	basic_datagram_socket::close (1 of 2 overloads)
	basic_datagram_socket::close (2 of 2 overloads)

	basic_datagram_socket::connect
	basic_datagram_socket::connect (1 of 2 overloads)
	basic_datagram_socket::connect (2 of 2 overloads)

	basic_datagram_socket::debug
	basic_datagram_socket::do_not_route
	basic_datagram_socket::enable_connection_aborted
	basic_datagram_socket::endpoint_type
	basic_datagram_socket::get_implementation
	basic_datagram_socket::get_implementation (1 of 2 overloads)
	basic_datagram_socket::get_implementation (2 of 2 overloads)

	basic_datagram_socket::get_io_service
	basic_datagram_socket::get_option
	basic_datagram_socket::get_option (1 of 2 overloads)
	basic_datagram_socket::get_option (2 of 2 overloads)

	basic_datagram_socket::get_service
	basic_datagram_socket::get_service (1 of 2 overloads)
	basic_datagram_socket::get_service (2 of 2 overloads)

	basic_datagram_socket::implementation
	basic_datagram_socket::implementation_type
	basic_datagram_socket::io_control
	basic_datagram_socket::io_control (1 of 2 overloads)
	basic_datagram_socket::io_control (2 of 2 overloads)

	basic_datagram_socket::is_open
	basic_datagram_socket::keep_alive
	basic_datagram_socket::linger
	basic_datagram_socket::local_endpoint
	basic_datagram_socket::local_endpoint (1 of 2 overloads)
	basic_datagram_socket::local_endpoint (2 of 2 overloads)

	basic_datagram_socket::lowest_layer
	basic_datagram_socket::lowest_layer (1 of 2 overloads)
	basic_datagram_socket::lowest_layer (2 of 2 overloads)

	basic_datagram_socket::lowest_layer_type
	basic_datagram_socket::max_connections
	basic_datagram_socket::message_do_not_route
	basic_datagram_socket::message_end_of_record
	basic_datagram_socket::message_flags
	basic_datagram_socket::message_out_of_band
	basic_datagram_socket::message_peek
	basic_datagram_socket::native
	basic_datagram_socket::native_handle
	basic_datagram_socket::native_handle_type
	basic_datagram_socket::native_non_blocking
	basic_datagram_socket::native_non_blocking (1 of 3 overloads)
	basic_datagram_socket::native_non_blocking (2 of 3 overloads)
	basic_datagram_socket::native_non_blocking (3 of 3 overloads)

	basic_datagram_socket::native_type
	basic_datagram_socket::non_blocking
	basic_datagram_socket::non_blocking (1 of 3 overloads)
	basic_datagram_socket::non_blocking (2 of 3 overloads)
	basic_datagram_socket::non_blocking (3 of 3 overloads)

	basic_datagram_socket::non_blocking_io
	basic_datagram_socket::open
	basic_datagram_socket::open (1 of 2 overloads)
	basic_datagram_socket::open (2 of 2 overloads)

	basic_datagram_socket::operator=
	basic_datagram_socket::operator= (1 of 2 overloads)
	basic_datagram_socket::operator= (2 of 2 overloads)

	basic_datagram_socket::protocol_type
	basic_datagram_socket::receive
	basic_datagram_socket::receive (1 of 3 overloads)
	basic_datagram_socket::receive (2 of 3 overloads)
	basic_datagram_socket::receive (3 of 3 overloads)

	basic_datagram_socket::receive_buffer_size
	basic_datagram_socket::receive_from
	basic_datagram_socket::receive_from (1 of 3 overloads)
	basic_datagram_socket::receive_from (2 of 3 overloads)
	basic_datagram_socket::receive_from (3 of 3 overloads)

	basic_datagram_socket::receive_low_watermark
	basic_datagram_socket::remote_endpoint
	basic_datagram_socket::remote_endpoint (1 of 2 overloads)
	basic_datagram_socket::remote_endpoint (2 of 2 overloads)

	basic_datagram_socket::reuse_address
	basic_datagram_socket::send
	basic_datagram_socket::send (1 of 3 overloads)
	basic_datagram_socket::send (2 of 3 overloads)
	basic_datagram_socket::send (3 of 3 overloads)

	basic_datagram_socket::send_buffer_size
	basic_datagram_socket::send_low_watermark
	basic_datagram_socket::send_to
	basic_datagram_socket::send_to (1 of 3 overloads)
	basic_datagram_socket::send_to (2 of 3 overloads)
	basic_datagram_socket::send_to (3 of 3 overloads)

	basic_datagram_socket::service
	basic_datagram_socket::service_type
	basic_datagram_socket::set_option
	basic_datagram_socket::set_option (1 of 2 overloads)
	basic_datagram_socket::set_option (2 of 2 overloads)

	basic_datagram_socket::shutdown
	basic_datagram_socket::shutdown (1 of 2 overloads)
	basic_datagram_socket::shutdown (2 of 2 overloads)

	basic_datagram_socket::shutdown_type

	basic_deadline_timer
	basic_deadline_timer::async_wait
	basic_deadline_timer::basic_deadline_timer
	basic_deadline_timer::basic_deadline_timer (1 of 3 overloads)
	basic_deadline_timer::basic_deadline_timer (2 of 3 overloads)
	basic_deadline_timer::basic_deadline_timer (3 of 3 overloads)

	basic_deadline_timer::cancel
	basic_deadline_timer::cancel (1 of 2 overloads)
	basic_deadline_timer::cancel (2 of 2 overloads)

	basic_deadline_timer::cancel_one
	basic_deadline_timer::cancel_one (1 of 2 overloads)
	basic_deadline_timer::cancel_one (2 of 2 overloads)

	basic_deadline_timer::duration_type
	basic_deadline_timer::expires_at
	basic_deadline_timer::expires_at (1 of 3 overloads)
	basic_deadline_timer::expires_at (2 of 3 overloads)
	basic_deadline_timer::expires_at (3 of 3 overloads)

	basic_deadline_timer::expires_from_now
	basic_deadline_timer::expires_from_now (1 of 3 overloads)
	basic_deadline_timer::expires_from_now (2 of 3 overloads)
	basic_deadline_timer::expires_from_now (3 of 3 overloads)

	basic_deadline_timer::get_implementation
	basic_deadline_timer::get_implementation (1 of 2 overloads)
	basic_deadline_timer::get_implementation (2 of 2 overloads)

	basic_deadline_timer::get_io_service
	basic_deadline_timer::get_service
	basic_deadline_timer::get_service (1 of 2 overloads)
	basic_deadline_timer::get_service (2 of 2 overloads)

	basic_deadline_timer::implementation
	basic_deadline_timer::implementation_type
	basic_deadline_timer::service
	basic_deadline_timer::service_type
	basic_deadline_timer::time_type
	basic_deadline_timer::traits_type
	basic_deadline_timer::wait
	basic_deadline_timer::wait (1 of 2 overloads)
	basic_deadline_timer::wait (2 of 2 overloads)

	basic_io_object
	basic_io_object::basic_io_object
	basic_io_object::basic_io_object (1 of 2 overloads)
	basic_io_object::basic_io_object (2 of 2 overloads)

	basic_io_object::get_implementation
	basic_io_object::get_implementation (1 of 2 overloads)
	basic_io_object::get_implementation (2 of 2 overloads)

	basic_io_object::get_io_service
	basic_io_object::get_service
	basic_io_object::get_service (1 of 2 overloads)
	basic_io_object::get_service (2 of 2 overloads)

	basic_io_object::implementation
	basic_io_object::implementation_type
	basic_io_object::operator=
	basic_io_object::service
	basic_io_object::service_type
	basic_io_object::~basic_io_object

	basic_raw_socket
	basic_raw_socket::assign
	basic_raw_socket::assign (1 of 2 overloads)
	basic_raw_socket::assign (2 of 2 overloads)

	basic_raw_socket::async_connect
	basic_raw_socket::async_receive
	basic_raw_socket::async_receive (1 of 2 overloads)
	basic_raw_socket::async_receive (2 of 2 overloads)

	basic_raw_socket::async_receive_from
	basic_raw_socket::async_receive_from (1 of 2 overloads)
	basic_raw_socket::async_receive_from (2 of 2 overloads)

	basic_raw_socket::async_send
	basic_raw_socket::async_send (1 of 2 overloads)
	basic_raw_socket::async_send (2 of 2 overloads)

	basic_raw_socket::async_send_to
	basic_raw_socket::async_send_to (1 of 2 overloads)
	basic_raw_socket::async_send_to (2 of 2 overloads)

	basic_raw_socket::at_mark
	basic_raw_socket::at_mark (1 of 2 overloads)
	basic_raw_socket::at_mark (2 of 2 overloads)

	basic_raw_socket::available
	basic_raw_socket::available (1 of 2 overloads)
	basic_raw_socket::available (2 of 2 overloads)

	basic_raw_socket::basic_raw_socket
	basic_raw_socket::basic_raw_socket (1 of 6 overloads)
	basic_raw_socket::basic_raw_socket (2 of 6 overloads)
	basic_raw_socket::basic_raw_socket (3 of 6 overloads)
	basic_raw_socket::basic_raw_socket (4 of 6 overloads)
	basic_raw_socket::basic_raw_socket (5 of 6 overloads)
	basic_raw_socket::basic_raw_socket (6 of 6 overloads)

	basic_raw_socket::bind
	basic_raw_socket::bind (1 of 2 overloads)
	basic_raw_socket::bind (2 of 2 overloads)

	basic_raw_socket::broadcast
	basic_raw_socket::bytes_readable
	basic_raw_socket::cancel
	basic_raw_socket::cancel (1 of 2 overloads)
	basic_raw_socket::cancel (2 of 2 overloads)

	basic_raw_socket::close
	basic_raw_socket::close (1 of 2 overloads)
	basic_raw_socket::close (2 of 2 overloads)

	basic_raw_socket::connect
	basic_raw_socket::connect (1 of 2 overloads)
	basic_raw_socket::connect (2 of 2 overloads)

	basic_raw_socket::debug
	basic_raw_socket::do_not_route
	basic_raw_socket::enable_connection_aborted
	basic_raw_socket::endpoint_type
	basic_raw_socket::get_implementation
	basic_raw_socket::get_implementation (1 of 2 overloads)
	basic_raw_socket::get_implementation (2 of 2 overloads)

	basic_raw_socket::get_io_service
	basic_raw_socket::get_option
	basic_raw_socket::get_option (1 of 2 overloads)
	basic_raw_socket::get_option (2 of 2 overloads)

	basic_raw_socket::get_service
	basic_raw_socket::get_service (1 of 2 overloads)
	basic_raw_socket::get_service (2 of 2 overloads)

	basic_raw_socket::implementation
	basic_raw_socket::implementation_type
	basic_raw_socket::io_control
	basic_raw_socket::io_control (1 of 2 overloads)
	basic_raw_socket::io_control (2 of 2 overloads)

	basic_raw_socket::is_open
	basic_raw_socket::keep_alive
	basic_raw_socket::linger
	basic_raw_socket::local_endpoint
	basic_raw_socket::local_endpoint (1 of 2 overloads)
	basic_raw_socket::local_endpoint (2 of 2 overloads)

	basic_raw_socket::lowest_layer
	basic_raw_socket::lowest_layer (1 of 2 overloads)
	basic_raw_socket::lowest_layer (2 of 2 overloads)

	basic_raw_socket::lowest_layer_type
	basic_raw_socket::max_connections
	basic_raw_socket::message_do_not_route
	basic_raw_socket::message_end_of_record
	basic_raw_socket::message_flags
	basic_raw_socket::message_out_of_band
	basic_raw_socket::message_peek
	basic_raw_socket::native
	basic_raw_socket::native_handle
	basic_raw_socket::native_handle_type
	basic_raw_socket::native_non_blocking
	basic_raw_socket::native_non_blocking (1 of 3 overloads)
	basic_raw_socket::native_non_blocking (2 of 3 overloads)
	basic_raw_socket::native_non_blocking (3 of 3 overloads)

	basic_raw_socket::native_type
	basic_raw_socket::non_blocking
	basic_raw_socket::non_blocking (1 of 3 overloads)
	basic_raw_socket::non_blocking (2 of 3 overloads)
	basic_raw_socket::non_blocking (3 of 3 overloads)

	basic_raw_socket::non_blocking_io
	basic_raw_socket::open
	basic_raw_socket::open (1 of 2 overloads)
	basic_raw_socket::open (2 of 2 overloads)

	basic_raw_socket::operator=
	basic_raw_socket::operator= (1 of 2 overloads)
	basic_raw_socket::operator= (2 of 2 overloads)

	basic_raw_socket::protocol_type
	basic_raw_socket::receive
	basic_raw_socket::receive (1 of 3 overloads)
	basic_raw_socket::receive (2 of 3 overloads)
	basic_raw_socket::receive (3 of 3 overloads)

	basic_raw_socket::receive_buffer_size
	basic_raw_socket::receive_from
	basic_raw_socket::receive_from (1 of 3 overloads)
	basic_raw_socket::receive_from (2 of 3 overloads)
	basic_raw_socket::receive_from (3 of 3 overloads)

	basic_raw_socket::receive_low_watermark
	basic_raw_socket::remote_endpoint
	basic_raw_socket::remote_endpoint (1 of 2 overloads)
	basic_raw_socket::remote_endpoint (2 of 2 overloads)

	basic_raw_socket::reuse_address
	basic_raw_socket::send
	basic_raw_socket::send (1 of 3 overloads)
	basic_raw_socket::send (2 of 3 overloads)
	basic_raw_socket::send (3 of 3 overloads)

	basic_raw_socket::send_buffer_size
	basic_raw_socket::send_low_watermark
	basic_raw_socket::send_to
	basic_raw_socket::send_to (1 of 3 overloads)
	basic_raw_socket::send_to (2 of 3 overloads)
	basic_raw_socket::send_to (3 of 3 overloads)

	basic_raw_socket::service
	basic_raw_socket::service_type
	basic_raw_socket::set_option
	basic_raw_socket::set_option (1 of 2 overloads)
	basic_raw_socket::set_option (2 of 2 overloads)

	basic_raw_socket::shutdown
	basic_raw_socket::shutdown (1 of 2 overloads)
	basic_raw_socket::shutdown (2 of 2 overloads)

	basic_raw_socket::shutdown_type

	basic_seq_packet_socket
	basic_seq_packet_socket::assign
	basic_seq_packet_socket::assign (1 of 2 overloads)
	basic_seq_packet_socket::assign (2 of 2 overloads)

	basic_seq_packet_socket::async_connect
	basic_seq_packet_socket::async_receive
	basic_seq_packet_socket::async_receive (1 of 2 overloads)
	basic_seq_packet_socket::async_receive (2 of 2 overloads)

	basic_seq_packet_socket::async_send
	basic_seq_packet_socket::at_mark
	basic_seq_packet_socket::at_mark (1 of 2 overloads)
	basic_seq_packet_socket::at_mark (2 of 2 overloads)

	basic_seq_packet_socket::available
	basic_seq_packet_socket::available (1 of 2 overloads)
	basic_seq_packet_socket::available (2 of 2 overloads)

	basic_seq_packet_socket::basic_seq_packet_socket
	basic_seq_packet_socket::basic_seq_packet_socket (1 of 6 overloads)
	basic_seq_packet_socket::basic_seq_packet_socket (2 of 6 overloads)
	basic_seq_packet_socket::basic_seq_packet_socket (3 of 6 overloads)
	basic_seq_packet_socket::basic_seq_packet_socket (4 of 6 overloads)
	basic_seq_packet_socket::basic_seq_packet_socket (5 of 6 overloads)
	basic_seq_packet_socket::basic_seq_packet_socket (6 of 6 overloads)

	basic_seq_packet_socket::bind
	basic_seq_packet_socket::bind (1 of 2 overloads)
	basic_seq_packet_socket::bind (2 of 2 overloads)

	basic_seq_packet_socket::broadcast
	basic_seq_packet_socket::bytes_readable
	basic_seq_packet_socket::cancel
	basic_seq_packet_socket::cancel (1 of 2 overloads)
	basic_seq_packet_socket::cancel (2 of 2 overloads)

	basic_seq_packet_socket::close
	basic_seq_packet_socket::close (1 of 2 overloads)
	basic_seq_packet_socket::close (2 of 2 overloads)

	basic_seq_packet_socket::connect
	basic_seq_packet_socket::connect (1 of 2 overloads)
	basic_seq_packet_socket::connect (2 of 2 overloads)

	basic_seq_packet_socket::debug
	basic_seq_packet_socket::do_not_route
	basic_seq_packet_socket::enable_connection_aborted
	basic_seq_packet_socket::endpoint_type
	basic_seq_packet_socket::get_implementation
	basic_seq_packet_socket::get_implementation (1 of 2 overloads)
	basic_seq_packet_socket::get_implementation (2 of 2 overloads)

	basic_seq_packet_socket::get_io_service
	basic_seq_packet_socket::get_option
	basic_seq_packet_socket::get_option (1 of 2 overloads)
	basic_seq_packet_socket::get_option (2 of 2 overloads)

	basic_seq_packet_socket::get_service
	basic_seq_packet_socket::get_service (1 of 2 overloads)
	basic_seq_packet_socket::get_service (2 of 2 overloads)

	basic_seq_packet_socket::implementation
	basic_seq_packet_socket::implementation_type
	basic_seq_packet_socket::io_control
	basic_seq_packet_socket::io_control (1 of 2 overloads)
	basic_seq_packet_socket::io_control (2 of 2 overloads)

	basic_seq_packet_socket::is_open
	basic_seq_packet_socket::keep_alive
	basic_seq_packet_socket::linger
	basic_seq_packet_socket::local_endpoint
	basic_seq_packet_socket::local_endpoint (1 of 2 overloads)
	basic_seq_packet_socket::local_endpoint (2 of 2 overloads)

	basic_seq_packet_socket::lowest_layer
	basic_seq_packet_socket::lowest_layer (1 of 2 overloads)
	basic_seq_packet_socket::lowest_layer (2 of 2 overloads)

	basic_seq_packet_socket::lowest_layer_type
	basic_seq_packet_socket::max_connections
	basic_seq_packet_socket::message_do_not_route
	basic_seq_packet_socket::message_end_of_record
	basic_seq_packet_socket::message_flags
	basic_seq_packet_socket::message_out_of_band
	basic_seq_packet_socket::message_peek
	basic_seq_packet_socket::native
	basic_seq_packet_socket::native_handle
	basic_seq_packet_socket::native_handle_type
	basic_seq_packet_socket::native_non_blocking
	basic_seq_packet_socket::native_non_blocking (1 of 3 overloads)
	basic_seq_packet_socket::native_non_blocking (2 of 3 overloads)
	basic_seq_packet_socket::native_non_blocking (3 of 3 overloads)

	basic_seq_packet_socket::native_type
	basic_seq_packet_socket::non_blocking
	basic_seq_packet_socket::non_blocking (1 of 3 overloads)
	basic_seq_packet_socket::non_blocking (2 of 3 overloads)
	basic_seq_packet_socket::non_blocking (3 of 3 overloads)

	basic_seq_packet_socket::non_blocking_io
	basic_seq_packet_socket::open
	basic_seq_packet_socket::open (1 of 2 overloads)
	basic_seq_packet_socket::open (2 of 2 overloads)

	basic_seq_packet_socket::operator=
	basic_seq_packet_socket::operator= (1 of 2 overloads)
	basic_seq_packet_socket::operator= (2 of 2 overloads)

	basic_seq_packet_socket::protocol_type
	basic_seq_packet_socket::receive
	basic_seq_packet_socket::receive (1 of 3 overloads)
	basic_seq_packet_socket::receive (2 of 3 overloads)
	basic_seq_packet_socket::receive (3 of 3 overloads)

	basic_seq_packet_socket::receive_buffer_size
	basic_seq_packet_socket::receive_low_watermark
	basic_seq_packet_socket::remote_endpoint
	basic_seq_packet_socket::remote_endpoint (1 of 2 overloads)
	basic_seq_packet_socket::remote_endpoint (2 of 2 overloads)

	basic_seq_packet_socket::reuse_address
	basic_seq_packet_socket::send
	basic_seq_packet_socket::send (1 of 2 overloads)
	basic_seq_packet_socket::send (2 of 2 overloads)

	basic_seq_packet_socket::send_buffer_size
	basic_seq_packet_socket::send_low_watermark
	basic_seq_packet_socket::service
	basic_seq_packet_socket::service_type
	basic_seq_packet_socket::set_option
	basic_seq_packet_socket::set_option (1 of 2 overloads)
	basic_seq_packet_socket::set_option (2 of 2 overloads)

	basic_seq_packet_socket::shutdown
	basic_seq_packet_socket::shutdown (1 of 2 overloads)
	basic_seq_packet_socket::shutdown (2 of 2 overloads)

	basic_seq_packet_socket::shutdown_type

	basic_serial_port
	basic_serial_port::assign
	basic_serial_port::assign (1 of 2 overloads)
	basic_serial_port::assign (2 of 2 overloads)

	basic_serial_port::async_read_some
	basic_serial_port::async_write_some
	basic_serial_port::basic_serial_port
	basic_serial_port::basic_serial_port (1 of 5 overloads)
	basic_serial_port::basic_serial_port (2 of 5 overloads)
	basic_serial_port::basic_serial_port (3 of 5 overloads)
	basic_serial_port::basic_serial_port (4 of 5 overloads)
	basic_serial_port::basic_serial_port (5 of 5 overloads)

	basic_serial_port::cancel
	basic_serial_port::cancel (1 of 2 overloads)
	basic_serial_port::cancel (2 of 2 overloads)

	basic_serial_port::close
	basic_serial_port::close (1 of 2 overloads)
	basic_serial_port::close (2 of 2 overloads)

	basic_serial_port::get_implementation
	basic_serial_port::get_implementation (1 of 2 overloads)
	basic_serial_port::get_implementation (2 of 2 overloads)

	basic_serial_port::get_io_service
	basic_serial_port::get_option
	basic_serial_port::get_option (1 of 2 overloads)
	basic_serial_port::get_option (2 of 2 overloads)

	basic_serial_port::get_service
	basic_serial_port::get_service (1 of 2 overloads)
	basic_serial_port::get_service (2 of 2 overloads)

	basic_serial_port::implementation
	basic_serial_port::implementation_type
	basic_serial_port::is_open
	basic_serial_port::lowest_layer
	basic_serial_port::lowest_layer (1 of 2 overloads)
	basic_serial_port::lowest_layer (2 of 2 overloads)

	basic_serial_port::lowest_layer_type
	basic_serial_port::native
	basic_serial_port::native_handle
	basic_serial_port::native_handle_type
	basic_serial_port::native_type
	basic_serial_port::open
	basic_serial_port::open (1 of 2 overloads)
	basic_serial_port::open (2 of 2 overloads)

	basic_serial_port::operator=
	basic_serial_port::read_some
	basic_serial_port::read_some (1 of 2 overloads)
	basic_serial_port::read_some (2 of 2 overloads)

	basic_serial_port::send_break
	basic_serial_port::send_break (1 of 2 overloads)
	basic_serial_port::send_break (2 of 2 overloads)

	basic_serial_port::service
	basic_serial_port::service_type
	basic_serial_port::set_option
	basic_serial_port::set_option (1 of 2 overloads)
	basic_serial_port::set_option (2 of 2 overloads)

	basic_serial_port::write_some
	basic_serial_port::write_some (1 of 2 overloads)
	basic_serial_port::write_some (2 of 2 overloads)

	basic_signal_set
	basic_signal_set::add
	basic_signal_set::add (1 of 2 overloads)
	basic_signal_set::add (2 of 2 overloads)

	basic_signal_set::async_wait
	basic_signal_set::basic_signal_set
	basic_signal_set::basic_signal_set (1 of 4 overloads)
	basic_signal_set::basic_signal_set (2 of 4 overloads)
	basic_signal_set::basic_signal_set (3 of 4 overloads)
	basic_signal_set::basic_signal_set (4 of 4 overloads)

	basic_signal_set::cancel
	basic_signal_set::cancel (1 of 2 overloads)
	basic_signal_set::cancel (2 of 2 overloads)

	basic_signal_set::clear
	basic_signal_set::clear (1 of 2 overloads)
	basic_signal_set::clear (2 of 2 overloads)

	basic_signal_set::get_implementation
	basic_signal_set::get_implementation (1 of 2 overloads)
	basic_signal_set::get_implementation (2 of 2 overloads)

	basic_signal_set::get_io_service
	basic_signal_set::get_service
	basic_signal_set::get_service (1 of 2 overloads)
	basic_signal_set::get_service (2 of 2 overloads)

	basic_signal_set::implementation
	basic_signal_set::implementation_type
	basic_signal_set::remove
	basic_signal_set::remove (1 of 2 overloads)
	basic_signal_set::remove (2 of 2 overloads)

	basic_signal_set::service
	basic_signal_set::service_type

	basic_socket
	basic_socket::assign
	basic_socket::assign (1 of 2 overloads)
	basic_socket::assign (2 of 2 overloads)

	basic_socket::async_connect
	basic_socket::at_mark
	basic_socket::at_mark (1 of 2 overloads)
	basic_socket::at_mark (2 of 2 overloads)

	basic_socket::available
	basic_socket::available (1 of 2 overloads)
	basic_socket::available (2 of 2 overloads)

	basic_socket::basic_socket
	basic_socket::basic_socket (1 of 6 overloads)
	basic_socket::basic_socket (2 of 6 overloads)
	basic_socket::basic_socket (3 of 6 overloads)
	basic_socket::basic_socket (4 of 6 overloads)
	basic_socket::basic_socket (5 of 6 overloads)
	basic_socket::basic_socket (6 of 6 overloads)

	basic_socket::bind
	basic_socket::bind (1 of 2 overloads)
	basic_socket::bind (2 of 2 overloads)

	basic_socket::broadcast
	basic_socket::bytes_readable
	basic_socket::cancel
	basic_socket::cancel (1 of 2 overloads)
	basic_socket::cancel (2 of 2 overloads)

	basic_socket::close
	basic_socket::close (1 of 2 overloads)
	basic_socket::close (2 of 2 overloads)

	basic_socket::connect
	basic_socket::connect (1 of 2 overloads)
	basic_socket::connect (2 of 2 overloads)

	basic_socket::debug
	basic_socket::do_not_route
	basic_socket::enable_connection_aborted
	basic_socket::endpoint_type
	basic_socket::get_implementation
	basic_socket::get_implementation (1 of 2 overloads)
	basic_socket::get_implementation (2 of 2 overloads)

	basic_socket::get_io_service
	basic_socket::get_option
	basic_socket::get_option (1 of 2 overloads)
	basic_socket::get_option (2 of 2 overloads)

	basic_socket::get_service
	basic_socket::get_service (1 of 2 overloads)
	basic_socket::get_service (2 of 2 overloads)

	basic_socket::implementation
	basic_socket::implementation_type
	basic_socket::io_control
	basic_socket::io_control (1 of 2 overloads)
	basic_socket::io_control (2 of 2 overloads)

	basic_socket::is_open
	basic_socket::keep_alive
	basic_socket::linger
	basic_socket::local_endpoint
	basic_socket::local_endpoint (1 of 2 overloads)
	basic_socket::local_endpoint (2 of 2 overloads)

	basic_socket::lowest_layer
	basic_socket::lowest_layer (1 of 2 overloads)
	basic_socket::lowest_layer (2 of 2 overloads)

	basic_socket::lowest_layer_type
	basic_socket::max_connections
	basic_socket::message_do_not_route
	basic_socket::message_end_of_record
	basic_socket::message_flags
	basic_socket::message_out_of_band
	basic_socket::message_peek
	basic_socket::native
	basic_socket::native_handle
	basic_socket::native_handle_type
	basic_socket::native_non_blocking
	basic_socket::native_non_blocking (1 of 3 overloads)
	basic_socket::native_non_blocking (2 of 3 overloads)
	basic_socket::native_non_blocking (3 of 3 overloads)

	basic_socket::native_type
	basic_socket::non_blocking
	basic_socket::non_blocking (1 of 3 overloads)
	basic_socket::non_blocking (2 of 3 overloads)
	basic_socket::non_blocking (3 of 3 overloads)

	basic_socket::non_blocking_io
	basic_socket::open
	basic_socket::open (1 of 2 overloads)
	basic_socket::open (2 of 2 overloads)

	basic_socket::operator=
	basic_socket::operator= (1 of 2 overloads)
	basic_socket::operator= (2 of 2 overloads)

	basic_socket::protocol_type
	basic_socket::receive_buffer_size
	basic_socket::receive_low_watermark
	basic_socket::remote_endpoint
	basic_socket::remote_endpoint (1 of 2 overloads)
	basic_socket::remote_endpoint (2 of 2 overloads)

	basic_socket::reuse_address
	basic_socket::send_buffer_size
	basic_socket::send_low_watermark
	basic_socket::service
	basic_socket::service_type
	basic_socket::set_option
	basic_socket::set_option (1 of 2 overloads)
	basic_socket::set_option (2 of 2 overloads)

	basic_socket::shutdown
	basic_socket::shutdown (1 of 2 overloads)
	basic_socket::shutdown (2 of 2 overloads)

	basic_socket::shutdown_type
	basic_socket::~basic_socket

	basic_socket_acceptor
	basic_socket_acceptor::accept
	basic_socket_acceptor::accept (1 of 4 overloads)
	basic_socket_acceptor::accept (2 of 4 overloads)
	basic_socket_acceptor::accept (3 of 4 overloads)
	basic_socket_acceptor::accept (4 of 4 overloads)

	basic_socket_acceptor::assign
	basic_socket_acceptor::assign (1 of 2 overloads)
	basic_socket_acceptor::assign (2 of 2 overloads)

	basic_socket_acceptor::async_accept
	basic_socket_acceptor::async_accept (1 of 2 overloads)
	basic_socket_acceptor::async_accept (2 of 2 overloads)

	basic_socket_acceptor::basic_socket_acceptor
	basic_socket_acceptor::basic_socket_acceptor (1 of 6 overloads)
	basic_socket_acceptor::basic_socket_acceptor (2 of 6 overloads)
	basic_socket_acceptor::basic_socket_acceptor (3 of 6 overloads)
	basic_socket_acceptor::basic_socket_acceptor (4 of 6 overloads)
	basic_socket_acceptor::basic_socket_acceptor (5 of 6 overloads)
	basic_socket_acceptor::basic_socket_acceptor (6 of 6 overloads)

	basic_socket_acceptor::bind
	basic_socket_acceptor::bind (1 of 2 overloads)
	basic_socket_acceptor::bind (2 of 2 overloads)

	basic_socket_acceptor::broadcast
	basic_socket_acceptor::bytes_readable
	basic_socket_acceptor::cancel
	basic_socket_acceptor::cancel (1 of 2 overloads)
	basic_socket_acceptor::cancel (2 of 2 overloads)

	basic_socket_acceptor::close
	basic_socket_acceptor::close (1 of 2 overloads)
	basic_socket_acceptor::close (2 of 2 overloads)

	basic_socket_acceptor::debug
	basic_socket_acceptor::do_not_route
	basic_socket_acceptor::enable_connection_aborted
	basic_socket_acceptor::endpoint_type
	basic_socket_acceptor::get_implementation
	basic_socket_acceptor::get_implementation (1 of 2 overloads)
	basic_socket_acceptor::get_implementation (2 of 2 overloads)

	basic_socket_acceptor::get_io_service
	basic_socket_acceptor::get_option
	basic_socket_acceptor::get_option (1 of 2 overloads)
	basic_socket_acceptor::get_option (2 of 2 overloads)

	basic_socket_acceptor::get_service
	basic_socket_acceptor::get_service (1 of 2 overloads)
	basic_socket_acceptor::get_service (2 of 2 overloads)

	basic_socket_acceptor::implementation
	basic_socket_acceptor::implementation_type
	basic_socket_acceptor::io_control
	basic_socket_acceptor::io_control (1 of 2 overloads)
	basic_socket_acceptor::io_control (2 of 2 overloads)

	basic_socket_acceptor::is_open
	basic_socket_acceptor::keep_alive
	basic_socket_acceptor::linger
	basic_socket_acceptor::listen
	basic_socket_acceptor::listen (1 of 2 overloads)
	basic_socket_acceptor::listen (2 of 2 overloads)

	basic_socket_acceptor::local_endpoint
	basic_socket_acceptor::local_endpoint (1 of 2 overloads)
	basic_socket_acceptor::local_endpoint (2 of 2 overloads)

	basic_socket_acceptor::max_connections
	basic_socket_acceptor::message_do_not_route
	basic_socket_acceptor::message_end_of_record
	basic_socket_acceptor::message_flags
	basic_socket_acceptor::message_out_of_band
	basic_socket_acceptor::message_peek
	basic_socket_acceptor::native
	basic_socket_acceptor::native_handle
	basic_socket_acceptor::native_handle_type
	basic_socket_acceptor::native_non_blocking
	basic_socket_acceptor::native_non_blocking (1 of 3 overloads)
	basic_socket_acceptor::native_non_blocking (2 of 3 overloads)
	basic_socket_acceptor::native_non_blocking (3 of 3 overloads)

	basic_socket_acceptor::native_type
	basic_socket_acceptor::non_blocking
	basic_socket_acceptor::non_blocking (1 of 3 overloads)
	basic_socket_acceptor::non_blocking (2 of 3 overloads)
	basic_socket_acceptor::non_blocking (3 of 3 overloads)

	basic_socket_acceptor::non_blocking_io
	basic_socket_acceptor::open
	basic_socket_acceptor::open (1 of 2 overloads)
	basic_socket_acceptor::open (2 of 2 overloads)

	basic_socket_acceptor::operator=
	basic_socket_acceptor::operator= (1 of 2 overloads)
	basic_socket_acceptor::operator= (2 of 2 overloads)

	basic_socket_acceptor::protocol_type
	basic_socket_acceptor::receive_buffer_size
	basic_socket_acceptor::receive_low_watermark
	basic_socket_acceptor::reuse_address
	basic_socket_acceptor::send_buffer_size
	basic_socket_acceptor::send_low_watermark
	basic_socket_acceptor::service
	basic_socket_acceptor::service_type
	basic_socket_acceptor::set_option
	basic_socket_acceptor::set_option (1 of 2 overloads)
	basic_socket_acceptor::set_option (2 of 2 overloads)

	basic_socket_acceptor::shutdown_type

	basic_socket_iostream
	basic_socket_iostream::basic_socket_iostream
	basic_socket_iostream::basic_socket_iostream (1 of 2 overloads)
	basic_socket_iostream::basic_socket_iostream (2 of 2 overloads)

	basic_socket_iostream::close
	basic_socket_iostream::connect
	basic_socket_iostream::duration_type
	basic_socket_iostream::endpoint_type
	basic_socket_iostream::error
	basic_socket_iostream::expires_at
	basic_socket_iostream::expires_at (1 of 2 overloads)
	basic_socket_iostream::expires_at (2 of 2 overloads)

	basic_socket_iostream::expires_from_now
	basic_socket_iostream::expires_from_now (1 of 2 overloads)
	basic_socket_iostream::expires_from_now (2 of 2 overloads)

	basic_socket_iostream::rdbuf
	basic_socket_iostream::time_type

	basic_socket_streambuf
	basic_socket_streambuf::assign
	basic_socket_streambuf::assign (1 of 2 overloads)
	basic_socket_streambuf::assign (2 of 2 overloads)

	basic_socket_streambuf::async_connect
	basic_socket_streambuf::at_mark
	basic_socket_streambuf::at_mark (1 of 2 overloads)
	basic_socket_streambuf::at_mark (2 of 2 overloads)

	basic_socket_streambuf::available
	basic_socket_streambuf::available (1 of 2 overloads)
	basic_socket_streambuf::available (2 of 2 overloads)

	basic_socket_streambuf::basic_socket_streambuf
	basic_socket_streambuf::bind
	basic_socket_streambuf::bind (1 of 2 overloads)
	basic_socket_streambuf::bind (2 of 2 overloads)

	basic_socket_streambuf::broadcast
	basic_socket_streambuf::bytes_readable
	basic_socket_streambuf::cancel
	basic_socket_streambuf::cancel (1 of 2 overloads)
	basic_socket_streambuf::cancel (2 of 2 overloads)

	basic_socket_streambuf::close
	basic_socket_streambuf::close (1 of 2 overloads)
	basic_socket_streambuf::close (2 of 2 overloads)

	basic_socket_streambuf::connect
	basic_socket_streambuf::connect (1 of 3 overloads)
	basic_socket_streambuf::connect (2 of 3 overloads)
	basic_socket_streambuf::connect (3 of 3 overloads)

	basic_socket_streambuf::debug
	basic_socket_streambuf::do_not_route
	basic_socket_streambuf::duration_type
	basic_socket_streambuf::enable_connection_aborted
	basic_socket_streambuf::endpoint_type
	basic_socket_streambuf::error
	basic_socket_streambuf::expires_at
	basic_socket_streambuf::expires_at (1 of 2 overloads)
	basic_socket_streambuf::expires_at (2 of 2 overloads)

	basic_socket_streambuf::expires_from_now
	basic_socket_streambuf::expires_from_now (1 of 2 overloads)
	basic_socket_streambuf::expires_from_now (2 of 2 overloads)

	basic_socket_streambuf::get_implementation
	basic_socket_streambuf::get_implementation (1 of 2 overloads)
	basic_socket_streambuf::get_implementation (2 of 2 overloads)

	basic_socket_streambuf::get_io_service
	basic_socket_streambuf::get_option
	basic_socket_streambuf::get_option (1 of 2 overloads)
	basic_socket_streambuf::get_option (2 of 2 overloads)

	basic_socket_streambuf::get_service
	basic_socket_streambuf::get_service (1 of 2 overloads)
	basic_socket_streambuf::get_service (2 of 2 overloads)

	basic_socket_streambuf::implementation
	basic_socket_streambuf::implementation_type
	basic_socket_streambuf::io_control
	basic_socket_streambuf::io_control (1 of 2 overloads)
	basic_socket_streambuf::io_control (2 of 2 overloads)

	basic_socket_streambuf::io_handler
	basic_socket_streambuf::is_open
	basic_socket_streambuf::keep_alive
	basic_socket_streambuf::linger
	basic_socket_streambuf::local_endpoint
	basic_socket_streambuf::local_endpoint (1 of 2 overloads)
	basic_socket_streambuf::local_endpoint (2 of 2 overloads)

	basic_socket_streambuf::lowest_layer
	basic_socket_streambuf::lowest_layer (1 of 2 overloads)
	basic_socket_streambuf::lowest_layer (2 of 2 overloads)

	basic_socket_streambuf::lowest_layer_type
	basic_socket_streambuf::max_connections
	basic_socket_streambuf::message_do_not_route
	basic_socket_streambuf::message_end_of_record
	basic_socket_streambuf::message_flags
	basic_socket_streambuf::message_out_of_band
	basic_socket_streambuf::message_peek
	basic_socket_streambuf::native
	basic_socket_streambuf::native_handle
	basic_socket_streambuf::native_handle_type
	basic_socket_streambuf::native_non_blocking
	basic_socket_streambuf::native_non_blocking (1 of 3 overloads)
	basic_socket_streambuf::native_non_blocking (2 of 3 overloads)
	basic_socket_streambuf::native_non_blocking (3 of 3 overloads)

	basic_socket_streambuf::native_type
	basic_socket_streambuf::non_blocking
	basic_socket_streambuf::non_blocking (1 of 3 overloads)
	basic_socket_streambuf::non_blocking (2 of 3 overloads)
	basic_socket_streambuf::non_blocking (3 of 3 overloads)

	basic_socket_streambuf::non_blocking_io
	basic_socket_streambuf::open
	basic_socket_streambuf::open (1 of 2 overloads)
	basic_socket_streambuf::open (2 of 2 overloads)

	basic_socket_streambuf::overflow
	basic_socket_streambuf::protocol_type
	basic_socket_streambuf::puberror
	basic_socket_streambuf::receive_buffer_size
	basic_socket_streambuf::receive_low_watermark
	basic_socket_streambuf::remote_endpoint
	basic_socket_streambuf::remote_endpoint (1 of 2 overloads)
	basic_socket_streambuf::remote_endpoint (2 of 2 overloads)

	basic_socket_streambuf::reuse_address
	basic_socket_streambuf::send_buffer_size
	basic_socket_streambuf::send_low_watermark
	basic_socket_streambuf::service
	basic_socket_streambuf::service_type
	basic_socket_streambuf::set_option
	basic_socket_streambuf::set_option (1 of 2 overloads)
	basic_socket_streambuf::set_option (2 of 2 overloads)

	basic_socket_streambuf::setbuf
	basic_socket_streambuf::shutdown
	basic_socket_streambuf::shutdown (1 of 2 overloads)
	basic_socket_streambuf::shutdown (2 of 2 overloads)

	basic_socket_streambuf::shutdown_type
	basic_socket_streambuf::sync
	basic_socket_streambuf::time_type
	basic_socket_streambuf::timer_handler
	basic_socket_streambuf::underflow
	basic_socket_streambuf::~basic_socket_streambuf

	basic_stream_socket
	basic_stream_socket::assign
	basic_stream_socket::assign (1 of 2 overloads)
	basic_stream_socket::assign (2 of 2 overloads)

	basic_stream_socket::async_connect
	basic_stream_socket::async_read_some
	basic_stream_socket::async_receive
	basic_stream_socket::async_receive (1 of 2 overloads)
	basic_stream_socket::async_receive (2 of 2 overloads)

	basic_stream_socket::async_send
	basic_stream_socket::async_send (1 of 2 overloads)
	basic_stream_socket::async_send (2 of 2 overloads)

	basic_stream_socket::async_write_some
	basic_stream_socket::at_mark
	basic_stream_socket::at_mark (1 of 2 overloads)
	basic_stream_socket::at_mark (2 of 2 overloads)

	basic_stream_socket::available
	basic_stream_socket::available (1 of 2 overloads)
	basic_stream_socket::available (2 of 2 overloads)

	basic_stream_socket::basic_stream_socket
	basic_stream_socket::basic_stream_socket (1 of 6 overloads)
	basic_stream_socket::basic_stream_socket (2 of 6 overloads)
	basic_stream_socket::basic_stream_socket (3 of 6 overloads)
	basic_stream_socket::basic_stream_socket (4 of 6 overloads)
	basic_stream_socket::basic_stream_socket (5 of 6 overloads)
	basic_stream_socket::basic_stream_socket (6 of 6 overloads)

	basic_stream_socket::bind
	basic_stream_socket::bind (1 of 2 overloads)
	basic_stream_socket::bind (2 of 2 overloads)

	basic_stream_socket::broadcast
	basic_stream_socket::bytes_readable
	basic_stream_socket::cancel
	basic_stream_socket::cancel (1 of 2 overloads)
	basic_stream_socket::cancel (2 of 2 overloads)

	basic_stream_socket::close
	basic_stream_socket::close (1 of 2 overloads)
	basic_stream_socket::close (2 of 2 overloads)

	basic_stream_socket::connect
	basic_stream_socket::connect (1 of 2 overloads)
	basic_stream_socket::connect (2 of 2 overloads)

	basic_stream_socket::debug
	basic_stream_socket::do_not_route
	basic_stream_socket::enable_connection_aborted
	basic_stream_socket::endpoint_type
	basic_stream_socket::get_implementation
	basic_stream_socket::get_implementation (1 of 2 overloads)
	basic_stream_socket::get_implementation (2 of 2 overloads)

	basic_stream_socket::get_io_service
	basic_stream_socket::get_option
	basic_stream_socket::get_option (1 of 2 overloads)
	basic_stream_socket::get_option (2 of 2 overloads)

	basic_stream_socket::get_service
	basic_stream_socket::get_service (1 of 2 overloads)
	basic_stream_socket::get_service (2 of 2 overloads)

	basic_stream_socket::implementation
	basic_stream_socket::implementation_type
	basic_stream_socket::io_control
	basic_stream_socket::io_control (1 of 2 overloads)
	basic_stream_socket::io_control (2 of 2 overloads)

	basic_stream_socket::is_open
	basic_stream_socket::keep_alive
	basic_stream_socket::linger
	basic_stream_socket::local_endpoint
	basic_stream_socket::local_endpoint (1 of 2 overloads)
	basic_stream_socket::local_endpoint (2 of 2 overloads)

	basic_stream_socket::lowest_layer
	basic_stream_socket::lowest_layer (1 of 2 overloads)
	basic_stream_socket::lowest_layer (2 of 2 overloads)

	basic_stream_socket::lowest_layer_type
	basic_stream_socket::max_connections
	basic_stream_socket::message_do_not_route
	basic_stream_socket::message_end_of_record
	basic_stream_socket::message_flags
	basic_stream_socket::message_out_of_band
	basic_stream_socket::message_peek
	basic_stream_socket::native
	basic_stream_socket::native_handle
	basic_stream_socket::native_handle_type
	basic_stream_socket::native_non_blocking
	basic_stream_socket::native_non_blocking (1 of 3 overloads)
	basic_stream_socket::native_non_blocking (2 of 3 overloads)
	basic_stream_socket::native_non_blocking (3 of 3 overloads)

	basic_stream_socket::native_type
	basic_stream_socket::non_blocking
	basic_stream_socket::non_blocking (1 of 3 overloads)
	basic_stream_socket::non_blocking (2 of 3 overloads)
	basic_stream_socket::non_blocking (3 of 3 overloads)

	basic_stream_socket::non_blocking_io
	basic_stream_socket::open
	basic_stream_socket::open (1 of 2 overloads)
	basic_stream_socket::open (2 of 2 overloads)

	basic_stream_socket::operator=
	basic_stream_socket::operator= (1 of 2 overloads)
	basic_stream_socket::operator= (2 of 2 overloads)

	basic_stream_socket::protocol_type
	basic_stream_socket::read_some
	basic_stream_socket::read_some (1 of 2 overloads)
	basic_stream_socket::read_some (2 of 2 overloads)

	basic_stream_socket::receive
	basic_stream_socket::receive (1 of 3 overloads)
	basic_stream_socket::receive (2 of 3 overloads)
	basic_stream_socket::receive (3 of 3 overloads)

	basic_stream_socket::receive_buffer_size
	basic_stream_socket::receive_low_watermark
	basic_stream_socket::remote_endpoint
	basic_stream_socket::remote_endpoint (1 of 2 overloads)
	basic_stream_socket::remote_endpoint (2 of 2 overloads)

	basic_stream_socket::reuse_address
	basic_stream_socket::send
	basic_stream_socket::send (1 of 3 overloads)
	basic_stream_socket::send (2 of 3 overloads)
	basic_stream_socket::send (3 of 3 overloads)

	basic_stream_socket::send_buffer_size
	basic_stream_socket::send_low_watermark
	basic_stream_socket::service
	basic_stream_socket::service_type
	basic_stream_socket::set_option
	basic_stream_socket::set_option (1 of 2 overloads)
	basic_stream_socket::set_option (2 of 2 overloads)

	basic_stream_socket::shutdown
	basic_stream_socket::shutdown (1 of 2 overloads)
	basic_stream_socket::shutdown (2 of 2 overloads)

	basic_stream_socket::shutdown_type
	basic_stream_socket::write_some
	basic_stream_socket::write_some (1 of 2 overloads)
	basic_stream_socket::write_some (2 of 2 overloads)

	basic_streambuf
	basic_streambuf::basic_streambuf
	basic_streambuf::commit
	basic_streambuf::const_buffers_type
	basic_streambuf::consume
	basic_streambuf::data
	basic_streambuf::max_size
	basic_streambuf::mutable_buffers_type
	basic_streambuf::overflow
	basic_streambuf::prepare
	basic_streambuf::reserve
	basic_streambuf::size
	basic_streambuf::underflow

	basic_waitable_timer
	basic_waitable_timer::async_wait
	basic_waitable_timer::basic_waitable_timer
	basic_waitable_timer::basic_waitable_timer (1 of 3 overloads)
	basic_waitable_timer::basic_waitable_timer (2 of 3 overloads)
	basic_waitable_timer::basic_waitable_timer (3 of 3 overloads)

	basic_waitable_timer::cancel
	basic_waitable_timer::cancel (1 of 2 overloads)
	basic_waitable_timer::cancel (2 of 2 overloads)

	basic_waitable_timer::cancel_one
	basic_waitable_timer::cancel_one (1 of 2 overloads)
	basic_waitable_timer::cancel_one (2 of 2 overloads)

	basic_waitable_timer::clock_type
	basic_waitable_timer::duration
	basic_waitable_timer::expires_at
	basic_waitable_timer::expires_at (1 of 3 overloads)
	basic_waitable_timer::expires_at (2 of 3 overloads)
	basic_waitable_timer::expires_at (3 of 3 overloads)

	basic_waitable_timer::expires_from_now
	basic_waitable_timer::expires_from_now (1 of 3 overloads)
	basic_waitable_timer::expires_from_now (2 of 3 overloads)
	basic_waitable_timer::expires_from_now (3 of 3 overloads)

	basic_waitable_timer::get_implementation
	basic_waitable_timer::get_implementation (1 of 2 overloads)
	basic_waitable_timer::get_implementation (2 of 2 overloads)

	basic_waitable_timer::get_io_service
	basic_waitable_timer::get_service
	basic_waitable_timer::get_service (1 of 2 overloads)
	basic_waitable_timer::get_service (2 of 2 overloads)

	basic_waitable_timer::implementation
	basic_waitable_timer::implementation_type
	basic_waitable_timer::service
	basic_waitable_timer::service_type
	basic_waitable_timer::time_point
	basic_waitable_timer::traits_type
	basic_waitable_timer::wait
	basic_waitable_timer::wait (1 of 2 overloads)
	basic_waitable_timer::wait (2 of 2 overloads)

	basic_yield_context
	basic_yield_context::basic_yield_context
	basic_yield_context::callee_type
	basic_yield_context::caller_type
	basic_yield_context::operator[]

	buffer
	buffer (1 of 28 overloads)
	buffer (2 of 28 overloads)
	buffer (3 of 28 overloads)
	buffer (4 of 28 overloads)
	buffer (5 of 28 overloads)
	buffer (6 of 28 overloads)
	buffer (7 of 28 overloads)
	buffer (8 of 28 overloads)
	buffer (9 of 28 overloads)
	buffer (10 of 28 overloads)
	buffer (11 of 28 overloads)
	buffer (12 of 28 overloads)
	buffer (13 of 28 overloads)
	buffer (14 of 28 overloads)
	buffer (15 of 28 overloads)
	buffer (16 of 28 overloads)
	buffer (17 of 28 overloads)
	buffer (18 of 28 overloads)
	buffer (19 of 28 overloads)
	buffer (20 of 28 overloads)
	buffer (21 of 28 overloads)
	buffer (22 of 28 overloads)
	buffer (23 of 28 overloads)
	buffer (24 of 28 overloads)
	buffer (25 of 28 overloads)
	buffer (26 of 28 overloads)
	buffer (27 of 28 overloads)
	buffer (28 of 28 overloads)

	buffer_cast
	buffer_cast (1 of 2 overloads)
	buffer_cast (2 of 2 overloads)

	buffer_copy
	buffer_copy (1 of 30 overloads)
	buffer_copy (2 of 30 overloads)
	buffer_copy (3 of 30 overloads)
	buffer_copy (4 of 30 overloads)
	buffer_copy (5 of 30 overloads)
	buffer_copy (6 of 30 overloads)
	buffer_copy (7 of 30 overloads)
	buffer_copy (8 of 30 overloads)
	buffer_copy (9 of 30 overloads)
	buffer_copy (10 of 30 overloads)
	buffer_copy (11 of 30 overloads)
	buffer_copy (12 of 30 overloads)
	buffer_copy (13 of 30 overloads)
	buffer_copy (14 of 30 overloads)
	buffer_copy (15 of 30 overloads)
	buffer_copy (16 of 30 overloads)
	buffer_copy (17 of 30 overloads)
	buffer_copy (18 of 30 overloads)
	buffer_copy (19 of 30 overloads)
	buffer_copy (20 of 30 overloads)
	buffer_copy (21 of 30 overloads)
	buffer_copy (22 of 30 overloads)
	buffer_copy (23 of 30 overloads)
	buffer_copy (24 of 30 overloads)
	buffer_copy (25 of 30 overloads)
	buffer_copy (26 of 30 overloads)
	buffer_copy (27 of 30 overloads)
	buffer_copy (28 of 30 overloads)
	buffer_copy (29 of 30 overloads)
	buffer_copy (30 of 30 overloads)

	buffer_size
	buffer_size (1 of 5 overloads)
	buffer_size (2 of 5 overloads)
	buffer_size (3 of 5 overloads)
	buffer_size (4 of 5 overloads)
	buffer_size (5 of 5 overloads)

	buffered_read_stream
	buffered_read_stream::async_fill
	buffered_read_stream::async_read_some
	buffered_read_stream::async_write_some
	buffered_read_stream::buffered_read_stream
	buffered_read_stream::buffered_read_stream (1 of 2 overloads)
	buffered_read_stream::buffered_read_stream (2 of 2 overloads)

	buffered_read_stream::close
	buffered_read_stream::close (1 of 2 overloads)
	buffered_read_stream::close (2 of 2 overloads)

	buffered_read_stream::default_buffer_size
	buffered_read_stream::fill
	buffered_read_stream::fill (1 of 2 overloads)
	buffered_read_stream::fill (2 of 2 overloads)

	buffered_read_stream::get_io_service
	buffered_read_stream::in_avail
	buffered_read_stream::in_avail (1 of 2 overloads)
	buffered_read_stream::in_avail (2 of 2 overloads)

	buffered_read_stream::lowest_layer
	buffered_read_stream::lowest_layer (1 of 2 overloads)
	buffered_read_stream::lowest_layer (2 of 2 overloads)

	buffered_read_stream::lowest_layer_type
	buffered_read_stream::next_layer
	buffered_read_stream::next_layer_type
	buffered_read_stream::peek
	buffered_read_stream::peek (1 of 2 overloads)
	buffered_read_stream::peek (2 of 2 overloads)

	buffered_read_stream::read_some
	buffered_read_stream::read_some (1 of 2 overloads)
	buffered_read_stream::read_some (2 of 2 overloads)

	buffered_read_stream::write_some
	buffered_read_stream::write_some (1 of 2 overloads)
	buffered_read_stream::write_some (2 of 2 overloads)

	buffered_stream
	buffered_stream::async_fill
	buffered_stream::async_flush
	buffered_stream::async_read_some
	buffered_stream::async_write_some
	buffered_stream::buffered_stream
	buffered_stream::buffered_stream (1 of 2 overloads)
	buffered_stream::buffered_stream (2 of 2 overloads)

	buffered_stream::close
	buffered_stream::close (1 of 2 overloads)
	buffered_stream::close (2 of 2 overloads)

	buffered_stream::fill
	buffered_stream::fill (1 of 2 overloads)
	buffered_stream::fill (2 of 2 overloads)

	buffered_stream::flush
	buffered_stream::flush (1 of 2 overloads)
	buffered_stream::flush (2 of 2 overloads)

	buffered_stream::get_io_service
	buffered_stream::in_avail
	buffered_stream::in_avail (1 of 2 overloads)
	buffered_stream::in_avail (2 of 2 overloads)

	buffered_stream::lowest_layer
	buffered_stream::lowest_layer (1 of 2 overloads)
	buffered_stream::lowest_layer (2 of 2 overloads)

	buffered_stream::lowest_layer_type
	buffered_stream::next_layer
	buffered_stream::next_layer_type
	buffered_stream::peek
	buffered_stream::peek (1 of 2 overloads)
	buffered_stream::peek (2 of 2 overloads)

	buffered_stream::read_some
	buffered_stream::read_some (1 of 2 overloads)
	buffered_stream::read_some (2 of 2 overloads)

	buffered_stream::write_some
	buffered_stream::write_some (1 of 2 overloads)
	buffered_stream::write_some (2 of 2 overloads)

	buffered_write_stream
	buffered_write_stream::async_flush
	buffered_write_stream::async_read_some
	buffered_write_stream::async_write_some
	buffered_write_stream::buffered_write_stream
	buffered_write_stream::buffered_write_stream (1 of 2 overloads)
	buffered_write_stream::buffered_write_stream (2 of 2 overloads)

	buffered_write_stream::close
	buffered_write_stream::close (1 of 2 overloads)
	buffered_write_stream::close (2 of 2 overloads)

	buffered_write_stream::default_buffer_size
	buffered_write_stream::flush
	buffered_write_stream::flush (1 of 2 overloads)
	buffered_write_stream::flush (2 of 2 overloads)

	buffered_write_stream::get_io_service
	buffered_write_stream::in_avail
	buffered_write_stream::in_avail (1 of 2 overloads)
	buffered_write_stream::in_avail (2 of 2 overloads)

	buffered_write_stream::lowest_layer
	buffered_write_stream::lowest_layer (1 of 2 overloads)
	buffered_write_stream::lowest_layer (2 of 2 overloads)

	buffered_write_stream::lowest_layer_type
	buffered_write_stream::next_layer
	buffered_write_stream::next_layer_type
	buffered_write_stream::peek
	buffered_write_stream::peek (1 of 2 overloads)
	buffered_write_stream::peek (2 of 2 overloads)

	buffered_write_stream::read_some
	buffered_write_stream::read_some (1 of 2 overloads)
	buffered_write_stream::read_some (2 of 2 overloads)

	buffered_write_stream::write_some
	buffered_write_stream::write_some (1 of 2 overloads)
	buffered_write_stream::write_some (2 of 2 overloads)

	buffers_begin
	buffers_end
	buffers_iterator
	buffers_iterator::begin
	buffers_iterator::buffers_iterator
	buffers_iterator::difference_type
	buffers_iterator::end
	buffers_iterator::iterator_category
	buffers_iterator::operator *
	buffers_iterator::operator!=
	buffers_iterator::operator+
	buffers_iterator::operator+ (1 of 2 overloads)
	buffers_iterator::operator+ (2 of 2 overloads)

	buffers_iterator::operator++
	buffers_iterator::operator++ (1 of 2 overloads)
	buffers_iterator::operator++ (2 of 2 overloads)

	buffers_iterator::operator+=
	buffers_iterator::operator-
	buffers_iterator::operator- (1 of 2 overloads)
	buffers_iterator::operator- (2 of 2 overloads)

	buffers_iterator::operator--
	buffers_iterator::operator-- (1 of 2 overloads)
	buffers_iterator::operator-- (2 of 2 overloads)

	buffers_iterator::operator-=
	buffers_iterator::operator->
	buffers_iterator::operator<
	buffers_iterator::operator<=
	buffers_iterator::operator==
	buffers_iterator::operator>
	buffers_iterator::operator>=
	buffers_iterator::operator[]
	buffers_iterator::pointer
	buffers_iterator::reference
	buffers_iterator::value_type

	connect
	connect (1 of 8 overloads)
	connect (2 of 8 overloads)
	connect (3 of 8 overloads)
	connect (4 of 8 overloads)
	connect (5 of 8 overloads)
	connect (6 of 8 overloads)
	connect (7 of 8 overloads)
	connect (8 of 8 overloads)

	const_buffer
	const_buffer::const_buffer
	const_buffer::const_buffer (1 of 3 overloads)
	const_buffer::const_buffer (2 of 3 overloads)
	const_buffer::const_buffer (3 of 3 overloads)

	const_buffer::operator+
	const_buffer::operator+ (1 of 2 overloads)
	const_buffer::operator+ (2 of 2 overloads)

	const_buffers_1
	const_buffers_1::begin
	const_buffers_1::const_buffers_1
	const_buffers_1::const_buffers_1 (1 of 2 overloads)
	const_buffers_1::const_buffers_1 (2 of 2 overloads)

	const_buffers_1::const_iterator
	const_buffers_1::end
	const_buffers_1::operator+
	const_buffers_1::operator+ (1 of 2 overloads)
	const_buffers_1::operator+ (2 of 2 overloads)

	const_buffers_1::value_type

	coroutine
	coroutine::coroutine
	coroutine::is_child
	coroutine::is_complete
	coroutine::is_parent

	datagram_socket_service
	datagram_socket_service::assign
	datagram_socket_service::async_connect
	datagram_socket_service::async_receive
	datagram_socket_service::async_receive_from
	datagram_socket_service::async_send
	datagram_socket_service::async_send_to
	datagram_socket_service::at_mark
	datagram_socket_service::available
	datagram_socket_service::bind
	datagram_socket_service::cancel
	datagram_socket_service::close
	datagram_socket_service::connect
	datagram_socket_service::construct
	datagram_socket_service::converting_move_construct
	datagram_socket_service::datagram_socket_service
	datagram_socket_service::destroy
	datagram_socket_service::endpoint_type
	datagram_socket_service::get_io_service
	datagram_socket_service::get_option
	datagram_socket_service::id
	datagram_socket_service::implementation_type
	datagram_socket_service::io_control
	datagram_socket_service::is_open
	datagram_socket_service::local_endpoint
	datagram_socket_service::move_assign
	datagram_socket_service::move_construct
	datagram_socket_service::native
	datagram_socket_service::native_handle
	datagram_socket_service::native_handle_type
	datagram_socket_service::native_non_blocking
	datagram_socket_service::native_non_blocking (1 of 2 overloads)
	datagram_socket_service::native_non_blocking (2 of 2 overloads)

	datagram_socket_service::native_type
	datagram_socket_service::non_blocking
	datagram_socket_service::non_blocking (1 of 2 overloads)
	datagram_socket_service::non_blocking (2 of 2 overloads)

	datagram_socket_service::open
	datagram_socket_service::protocol_type
	datagram_socket_service::receive
	datagram_socket_service::receive_from
	datagram_socket_service::remote_endpoint
	datagram_socket_service::send
	datagram_socket_service::send_to
	datagram_socket_service::set_option
	datagram_socket_service::shutdown

	deadline_timer
	deadline_timer_service
	deadline_timer_service::async_wait
	deadline_timer_service::cancel
	deadline_timer_service::cancel_one
	deadline_timer_service::construct
	deadline_timer_service::deadline_timer_service
	deadline_timer_service::destroy
	deadline_timer_service::duration_type
	deadline_timer_service::expires_at
	deadline_timer_service::expires_at (1 of 2 overloads)
	deadline_timer_service::expires_at (2 of 2 overloads)

	deadline_timer_service::expires_from_now
	deadline_timer_service::expires_from_now (1 of 2 overloads)
	deadline_timer_service::expires_from_now (2 of 2 overloads)

	deadline_timer_service::get_io_service
	deadline_timer_service::id
	deadline_timer_service::implementation_type
	deadline_timer_service::time_type
	deadline_timer_service::traits_type
	deadline_timer_service::wait

	error::addrinfo_category
	error::addrinfo_errors
	error::basic_errors
	error::get_addrinfo_category
	error::get_misc_category
	error::get_netdb_category
	error::get_ssl_category
	error::get_system_category
	error::make_error_code
	error::make_error_code (1 of 5 overloads)
	error::make_error_code (2 of 5 overloads)
	error::make_error_code (3 of 5 overloads)
	error::make_error_code (4 of 5 overloads)
	error::make_error_code (5 of 5 overloads)

	error::misc_category
	error::misc_errors
	error::netdb_category
	error::netdb_errors
	error::ssl_category
	error::ssl_errors
	error::system_category
	generic::basic_endpoint
	generic::basic_endpoint::basic_endpoint
	generic::basic_endpoint::basic_endpoint (1 of 4 overloads)
	generic::basic_endpoint::basic_endpoint (2 of 4 overloads)
	generic::basic_endpoint::basic_endpoint (3 of 4 overloads)
	generic::basic_endpoint::basic_endpoint (4 of 4 overloads)

	generic::basic_endpoint::capacity
	generic::basic_endpoint::data
	generic::basic_endpoint::data (1 of 2 overloads)
	generic::basic_endpoint::data (2 of 2 overloads)

	generic::basic_endpoint::data_type
	generic::basic_endpoint::operator!=
	generic::basic_endpoint::operator<
	generic::basic_endpoint::operator<=
	generic::basic_endpoint::operator=
	generic::basic_endpoint::operator==
	generic::basic_endpoint::operator>
	generic::basic_endpoint::operator>=
	generic::basic_endpoint::protocol
	generic::basic_endpoint::protocol_type
	generic::basic_endpoint::resize
	generic::basic_endpoint::size

	generic::datagram_protocol
	generic::datagram_protocol::datagram_protocol
	generic::datagram_protocol::datagram_protocol (1 of 2 overloads)
	generic::datagram_protocol::datagram_protocol (2 of 2 overloads)

	generic::datagram_protocol::endpoint
	generic::datagram_protocol::family
	generic::datagram_protocol::operator!=
	generic::datagram_protocol::operator==
	generic::datagram_protocol::protocol
	generic::datagram_protocol::socket
	generic::datagram_protocol::type

	generic::raw_protocol
	generic::raw_protocol::endpoint
	generic::raw_protocol::family
	generic::raw_protocol::operator!=
	generic::raw_protocol::operator==
	generic::raw_protocol::protocol
	generic::raw_protocol::raw_protocol
	generic::raw_protocol::raw_protocol (1 of 2 overloads)
	generic::raw_protocol::raw_protocol (2 of 2 overloads)

	generic::raw_protocol::socket
	generic::raw_protocol::type

	generic::seq_packet_protocol
	generic::seq_packet_protocol::endpoint
	generic::seq_packet_protocol::family
	generic::seq_packet_protocol::operator!=
	generic::seq_packet_protocol::operator==
	generic::seq_packet_protocol::protocol
	generic::seq_packet_protocol::seq_packet_protocol
	generic::seq_packet_protocol::seq_packet_protocol (1 of 2 overloads)
	generic::seq_packet_protocol::seq_packet_protocol (2 of 2 overloads)

	generic::seq_packet_protocol::socket
	generic::seq_packet_protocol::type

	generic::stream_protocol
	generic::stream_protocol::endpoint
	generic::stream_protocol::family
	generic::stream_protocol::iostream
	generic::stream_protocol::operator!=
	generic::stream_protocol::operator==
	generic::stream_protocol::protocol
	generic::stream_protocol::socket
	generic::stream_protocol::stream_protocol
	generic::stream_protocol::stream_protocol (1 of 2 overloads)
	generic::stream_protocol::stream_protocol (2 of 2 overloads)

	generic::stream_protocol::type

	handler_type
	handler_type::type

	has_service
	high_resolution_timer
	invalid_service_owner
	invalid_service_owner::invalid_service_owner

	io_service
	io_service::add_service
	io_service::dispatch
	io_service::fork_event
	io_service::has_service
	io_service::io_service
	io_service::io_service (1 of 2 overloads)
	io_service::io_service (2 of 2 overloads)

	io_service::notify_fork
	io_service::poll
	io_service::poll (1 of 2 overloads)
	io_service::poll (2 of 2 overloads)

	io_service::poll_one
	io_service::poll_one (1 of 2 overloads)
	io_service::poll_one (2 of 2 overloads)

	io_service::post
	io_service::reset
	io_service::run
	io_service::run (1 of 2 overloads)
	io_service::run (2 of 2 overloads)

	io_service::run_one
	io_service::run_one (1 of 2 overloads)
	io_service::run_one (2 of 2 overloads)

	io_service::stop
	io_service::stopped
	io_service::use_service
	io_service::wrap
	io_service::~io_service

	io_service::id
	io_service::id::id

	io_service::service
	io_service::service::get_io_service
	io_service::service::service
	io_service::service::~service
	io_service::service::fork_service
	io_service::service::shutdown_service

	io_service::strand
	io_service::strand::dispatch
	io_service::strand::get_io_service
	io_service::strand::post
	io_service::strand::running_in_this_thread
	io_service::strand::strand
	io_service::strand::wrap
	io_service::strand::~strand

	io_service::work
	io_service::work::get_io_service
	io_service::work::work
	io_service::work::work (1 of 2 overloads)
	io_service::work::work (2 of 2 overloads)

	io_service::work::~work

	ip::address
	ip::address::address
	ip::address::address (1 of 4 overloads)
	ip::address::address (2 of 4 overloads)
	ip::address::address (3 of 4 overloads)
	ip::address::address (4 of 4 overloads)

	ip::address::from_string
	ip::address::from_string (1 of 4 overloads)
	ip::address::from_string (2 of 4 overloads)
	ip::address::from_string (3 of 4 overloads)
	ip::address::from_string (4 of 4 overloads)

	ip::address::is_loopback
	ip::address::is_multicast
	ip::address::is_unspecified
	ip::address::is_v4
	ip::address::is_v6
	ip::address::operator!=
	ip::address::operator<
	ip::address::operator<<
	ip::address::operator<=
	ip::address::operator=
	ip::address::operator= (1 of 3 overloads)
	ip::address::operator= (2 of 3 overloads)
	ip::address::operator= (3 of 3 overloads)

	ip::address::operator==
	ip::address::operator>
	ip::address::operator>=
	ip::address::to_string
	ip::address::to_string (1 of 2 overloads)
	ip::address::to_string (2 of 2 overloads)

	ip::address::to_v4
	ip::address::to_v6

	ip::address_v4
	ip::address_v4::address_v4
	ip::address_v4::address_v4 (1 of 4 overloads)
	ip::address_v4::address_v4 (2 of 4 overloads)
	ip::address_v4::address_v4 (3 of 4 overloads)
	ip::address_v4::address_v4 (4 of 4 overloads)

	ip::address_v4::any
	ip::address_v4::broadcast
	ip::address_v4::broadcast (1 of 2 overloads)
	ip::address_v4::broadcast (2 of 2 overloads)

	ip::address_v4::bytes_type
	ip::address_v4::from_string
	ip::address_v4::from_string (1 of 4 overloads)
	ip::address_v4::from_string (2 of 4 overloads)
	ip::address_v4::from_string (3 of 4 overloads)
	ip::address_v4::from_string (4 of 4 overloads)

	ip::address_v4::is_class_a
	ip::address_v4::is_class_b
	ip::address_v4::is_class_c
	ip::address_v4::is_loopback
	ip::address_v4::is_multicast
	ip::address_v4::is_unspecified
	ip::address_v4::loopback
	ip::address_v4::netmask
	ip::address_v4::operator!=
	ip::address_v4::operator<
	ip::address_v4::operator<<
	ip::address_v4::operator<=
	ip::address_v4::operator=
	ip::address_v4::operator==
	ip::address_v4::operator>
	ip::address_v4::operator>=
	ip::address_v4::to_bytes
	ip::address_v4::to_string
	ip::address_v4::to_string (1 of 2 overloads)
	ip::address_v4::to_string (2 of 2 overloads)

	ip::address_v4::to_ulong

	ip::address_v6
	ip::address_v6::address_v6
	ip::address_v6::address_v6 (1 of 3 overloads)
	ip::address_v6::address_v6 (2 of 3 overloads)
	ip::address_v6::address_v6 (3 of 3 overloads)

	ip::address_v6::any
	ip::address_v6::bytes_type
	ip::address_v6::from_string
	ip::address_v6::from_string (1 of 4 overloads)
	ip::address_v6::from_string (2 of 4 overloads)
	ip::address_v6::from_string (3 of 4 overloads)
	ip::address_v6::from_string (4 of 4 overloads)

	ip::address_v6::is_link_local
	ip::address_v6::is_loopback
	ip::address_v6::is_multicast
	ip::address_v6::is_multicast_global
	ip::address_v6::is_multicast_link_local
	ip::address_v6::is_multicast_node_local
	ip::address_v6::is_multicast_org_local
	ip::address_v6::is_multicast_site_local
	ip::address_v6::is_site_local
	ip::address_v6::is_unspecified
	ip::address_v6::is_v4_compatible
	ip::address_v6::is_v4_mapped
	ip::address_v6::loopback
	ip::address_v6::operator!=
	ip::address_v6::operator<
	ip::address_v6::operator<<
	ip::address_v6::operator<=
	ip::address_v6::operator=
	ip::address_v6::operator==
	ip::address_v6::operator>
	ip::address_v6::operator>=
	ip::address_v6::scope_id
	ip::address_v6::scope_id (1 of 2 overloads)
	ip::address_v6::scope_id (2 of 2 overloads)

	ip::address_v6::to_bytes
	ip::address_v6::to_string
	ip::address_v6::to_string (1 of 2 overloads)
	ip::address_v6::to_string (2 of 2 overloads)

	ip::address_v6::to_v4
	ip::address_v6::v4_compatible
	ip::address_v6::v4_mapped

	ip::basic_endpoint
	ip::basic_endpoint::address
	ip::basic_endpoint::address (1 of 2 overloads)
	ip::basic_endpoint::address (2 of 2 overloads)

	ip::basic_endpoint::basic_endpoint
	ip::basic_endpoint::basic_endpoint (1 of 4 overloads)
	ip::basic_endpoint::basic_endpoint (2 of 4 overloads)
	ip::basic_endpoint::basic_endpoint (3 of 4 overloads)
	ip::basic_endpoint::basic_endpoint (4 of 4 overloads)

	ip::basic_endpoint::capacity
	ip::basic_endpoint::data
	ip::basic_endpoint::data (1 of 2 overloads)
	ip::basic_endpoint::data (2 of 2 overloads)

	ip::basic_endpoint::data_type
	ip::basic_endpoint::operator!=
	ip::basic_endpoint::operator<
	ip::basic_endpoint::operator<<
	ip::basic_endpoint::operator<=
	ip::basic_endpoint::operator=
	ip::basic_endpoint::operator==
	ip::basic_endpoint::operator>
	ip::basic_endpoint::operator>=
	ip::basic_endpoint::port
	ip::basic_endpoint::port (1 of 2 overloads)
	ip::basic_endpoint::port (2 of 2 overloads)

	ip::basic_endpoint::protocol
	ip::basic_endpoint::protocol_type
	ip::basic_endpoint::resize
	ip::basic_endpoint::size

	ip::basic_resolver
	ip::basic_resolver::async_resolve
	ip::basic_resolver::async_resolve (1 of 2 overloads)
	ip::basic_resolver::async_resolve (2 of 2 overloads)

	ip::basic_resolver::basic_resolver
	ip::basic_resolver::cancel
	ip::basic_resolver::endpoint_type
	ip::basic_resolver::get_implementation
	ip::basic_resolver::get_implementation (1 of 2 overloads)
	ip::basic_resolver::get_implementation (2 of 2 overloads)

	ip::basic_resolver::get_io_service
	ip::basic_resolver::get_service
	ip::basic_resolver::get_service (1 of 2 overloads)
	ip::basic_resolver::get_service (2 of 2 overloads)

	ip::basic_resolver::implementation
	ip::basic_resolver::implementation_type
	ip::basic_resolver::iterator
	ip::basic_resolver::protocol_type
	ip::basic_resolver::query
	ip::basic_resolver::resolve
	ip::basic_resolver::resolve (1 of 4 overloads)
	ip::basic_resolver::resolve (2 of 4 overloads)
	ip::basic_resolver::resolve (3 of 4 overloads)
	ip::basic_resolver::resolve (4 of 4 overloads)

	ip::basic_resolver::service
	ip::basic_resolver::service_type

	ip::basic_resolver_entry
	ip::basic_resolver_entry::basic_resolver_entry
	ip::basic_resolver_entry::basic_resolver_entry (1 of 2 overloads)
	ip::basic_resolver_entry::basic_resolver_entry (2 of 2 overloads)

	ip::basic_resolver_entry::endpoint
	ip::basic_resolver_entry::endpoint_type
	ip::basic_resolver_entry::host_name
	ip::basic_resolver_entry::operator endpoint_type
	ip::basic_resolver_entry::protocol_type
	ip::basic_resolver_entry::service_name

	ip::basic_resolver_iterator
	ip::basic_resolver_iterator::basic_resolver_iterator
	ip::basic_resolver_iterator::create
	ip::basic_resolver_iterator::create (1 of 3 overloads)
	ip::basic_resolver_iterator::create (2 of 3 overloads)
	ip::basic_resolver_iterator::create (3 of 3 overloads)

	ip::basic_resolver_iterator::difference_type
	ip::basic_resolver_iterator::iterator_category
	ip::basic_resolver_iterator::operator *
	ip::basic_resolver_iterator::operator!=
	ip::basic_resolver_iterator::operator++
	ip::basic_resolver_iterator::operator++ (1 of 2 overloads)
	ip::basic_resolver_iterator::operator++ (2 of 2 overloads)

	ip::basic_resolver_iterator::operator->
	ip::basic_resolver_iterator::operator==
	ip::basic_resolver_iterator::pointer
	ip::basic_resolver_iterator::reference
	ip::basic_resolver_iterator::value_type

	ip::basic_resolver_query
	ip::basic_resolver_query::address_configured
	ip::basic_resolver_query::all_matching
	ip::basic_resolver_query::basic_resolver_query
	ip::basic_resolver_query::basic_resolver_query (1 of 4 overloads)
	ip::basic_resolver_query::basic_resolver_query (2 of 4 overloads)
	ip::basic_resolver_query::basic_resolver_query (3 of 4 overloads)
	ip::basic_resolver_query::basic_resolver_query (4 of 4 overloads)

	ip::basic_resolver_query::canonical_name
	ip::basic_resolver_query::flags
	ip::basic_resolver_query::hints
	ip::basic_resolver_query::host_name
	ip::basic_resolver_query::numeric_host
	ip::basic_resolver_query::numeric_service
	ip::basic_resolver_query::passive
	ip::basic_resolver_query::protocol_type
	ip::basic_resolver_query::service_name
	ip::basic_resolver_query::v4_mapped

	ip::host_name
	ip::host_name (1 of 2 overloads)
	ip::host_name (2 of 2 overloads)

	ip::icmp
	ip::icmp::endpoint
	ip::icmp::family
	ip::icmp::operator!=
	ip::icmp::operator==
	ip::icmp::protocol
	ip::icmp::resolver
	ip::icmp::socket
	ip::icmp::type
	ip::icmp::v4
	ip::icmp::v6

	ip::multicast::enable_loopback
	ip::multicast::hops
	ip::multicast::join_group
	ip::multicast::leave_group
	ip::multicast::outbound_interface
	ip::resolver_query_base
	ip::resolver_query_base::address_configured
	ip::resolver_query_base::all_matching
	ip::resolver_query_base::canonical_name
	ip::resolver_query_base::flags
	ip::resolver_query_base::numeric_host
	ip::resolver_query_base::numeric_service
	ip::resolver_query_base::passive
	ip::resolver_query_base::v4_mapped
	ip::resolver_query_base::~resolver_query_base

	ip::resolver_service
	ip::resolver_service::async_resolve
	ip::resolver_service::async_resolve (1 of 2 overloads)
	ip::resolver_service::async_resolve (2 of 2 overloads)

	ip::resolver_service::cancel
	ip::resolver_service::construct
	ip::resolver_service::destroy
	ip::resolver_service::endpoint_type
	ip::resolver_service::get_io_service
	ip::resolver_service::id
	ip::resolver_service::implementation_type
	ip::resolver_service::iterator_type
	ip::resolver_service::protocol_type
	ip::resolver_service::query_type
	ip::resolver_service::resolve
	ip::resolver_service::resolve (1 of 2 overloads)
	ip::resolver_service::resolve (2 of 2 overloads)

	ip::resolver_service::resolver_service

	ip::tcp
	ip::tcp::acceptor
	ip::tcp::endpoint
	ip::tcp::family
	ip::tcp::iostream
	ip::tcp::no_delay
	ip::tcp::operator!=
	ip::tcp::operator==
	ip::tcp::protocol
	ip::tcp::resolver
	ip::tcp::socket
	ip::tcp::type
	ip::tcp::v4
	ip::tcp::v6

	ip::udp
	ip::udp::endpoint
	ip::udp::family
	ip::udp::operator!=
	ip::udp::operator==
	ip::udp::protocol
	ip::udp::resolver
	ip::udp::socket
	ip::udp::type
	ip::udp::v4
	ip::udp::v6

	ip::unicast::hops
	ip::v6_only
	is_match_condition
	is_match_condition::value

	is_read_buffered
	is_read_buffered::value

	is_write_buffered
	is_write_buffered::value

	local::basic_endpoint
	local::basic_endpoint::basic_endpoint
	local::basic_endpoint::basic_endpoint (1 of 4 overloads)
	local::basic_endpoint::basic_endpoint (2 of 4 overloads)
	local::basic_endpoint::basic_endpoint (3 of 4 overloads)
	local::basic_endpoint::basic_endpoint (4 of 4 overloads)

	local::basic_endpoint::capacity
	local::basic_endpoint::data
	local::basic_endpoint::data (1 of 2 overloads)
	local::basic_endpoint::data (2 of 2 overloads)

	local::basic_endpoint::data_type
	local::basic_endpoint::operator!=
	local::basic_endpoint::operator<
	local::basic_endpoint::operator<<
	local::basic_endpoint::operator<=
	local::basic_endpoint::operator=
	local::basic_endpoint::operator==
	local::basic_endpoint::operator>
	local::basic_endpoint::operator>=
	local::basic_endpoint::path
	local::basic_endpoint::path (1 of 3 overloads)
	local::basic_endpoint::path (2 of 3 overloads)
	local::basic_endpoint::path (3 of 3 overloads)

	local::basic_endpoint::protocol
	local::basic_endpoint::protocol_type
	local::basic_endpoint::resize
	local::basic_endpoint::size

	local::connect_pair
	local::connect_pair (1 of 2 overloads)
	local::connect_pair (2 of 2 overloads)

	local::datagram_protocol
	local::datagram_protocol::endpoint
	local::datagram_protocol::family
	local::datagram_protocol::protocol
	local::datagram_protocol::socket
	local::datagram_protocol::type

	local::stream_protocol
	local::stream_protocol::acceptor
	local::stream_protocol::endpoint
	local::stream_protocol::family
	local::stream_protocol::iostream
	local::stream_protocol::protocol
	local::stream_protocol::socket
	local::stream_protocol::type

	mutable_buffer
	mutable_buffer::mutable_buffer
	mutable_buffer::mutable_buffer (1 of 2 overloads)
	mutable_buffer::mutable_buffer (2 of 2 overloads)

	mutable_buffer::operator+
	mutable_buffer::operator+ (1 of 2 overloads)
	mutable_buffer::operator+ (2 of 2 overloads)

	mutable_buffers_1
	mutable_buffers_1::begin
	mutable_buffers_1::const_iterator
	mutable_buffers_1::end
	mutable_buffers_1::mutable_buffers_1
	mutable_buffers_1::mutable_buffers_1 (1 of 2 overloads)
	mutable_buffers_1::mutable_buffers_1 (2 of 2 overloads)

	mutable_buffers_1::operator+
	mutable_buffers_1::operator+ (1 of 2 overloads)
	mutable_buffers_1::operator+ (2 of 2 overloads)

	mutable_buffers_1::value_type

	null_buffers
	null_buffers::begin
	null_buffers::const_iterator
	null_buffers::end
	null_buffers::value_type

	placeholders::bytes_transferred
	placeholders::error
	placeholders::iterator
	placeholders::signal_number
	posix::basic_descriptor
	posix::basic_descriptor::assign
	posix::basic_descriptor::assign (1 of 2 overloads)
	posix::basic_descriptor::assign (2 of 2 overloads)

	posix::basic_descriptor::basic_descriptor
	posix::basic_descriptor::basic_descriptor (1 of 3 overloads)
	posix::basic_descriptor::basic_descriptor (2 of 3 overloads)
	posix::basic_descriptor::basic_descriptor (3 of 3 overloads)

	posix::basic_descriptor::bytes_readable
	posix::basic_descriptor::cancel
	posix::basic_descriptor::cancel (1 of 2 overloads)
	posix::basic_descriptor::cancel (2 of 2 overloads)

	posix::basic_descriptor::close
	posix::basic_descriptor::close (1 of 2 overloads)
	posix::basic_descriptor::close (2 of 2 overloads)

	posix::basic_descriptor::get_implementation
	posix::basic_descriptor::get_implementation (1 of 2 overloads)
	posix::basic_descriptor::get_implementation (2 of 2 overloads)

	posix::basic_descriptor::get_io_service
	posix::basic_descriptor::get_service
	posix::basic_descriptor::get_service (1 of 2 overloads)
	posix::basic_descriptor::get_service (2 of 2 overloads)

	posix::basic_descriptor::implementation
	posix::basic_descriptor::implementation_type
	posix::basic_descriptor::io_control
	posix::basic_descriptor::io_control (1 of 2 overloads)
	posix::basic_descriptor::io_control (2 of 2 overloads)

	posix::basic_descriptor::is_open
	posix::basic_descriptor::lowest_layer
	posix::basic_descriptor::lowest_layer (1 of 2 overloads)
	posix::basic_descriptor::lowest_layer (2 of 2 overloads)

	posix::basic_descriptor::lowest_layer_type
	posix::basic_descriptor::native
	posix::basic_descriptor::native_handle
	posix::basic_descriptor::native_handle_type
	posix::basic_descriptor::native_non_blocking
	posix::basic_descriptor::native_non_blocking (1 of 3 overloads)
	posix::basic_descriptor::native_non_blocking (2 of 3 overloads)
	posix::basic_descriptor::native_non_blocking (3 of 3 overloads)

	posix::basic_descriptor::native_type
	posix::basic_descriptor::non_blocking
	posix::basic_descriptor::non_blocking (1 of 3 overloads)
	posix::basic_descriptor::non_blocking (2 of 3 overloads)
	posix::basic_descriptor::non_blocking (3 of 3 overloads)

	posix::basic_descriptor::non_blocking_io
	posix::basic_descriptor::operator=
	posix::basic_descriptor::release
	posix::basic_descriptor::service
	posix::basic_descriptor::service_type
	posix::basic_descriptor::~basic_descriptor

	posix::basic_stream_descriptor
	posix::basic_stream_descriptor::assign
	posix::basic_stream_descriptor::assign (1 of 2 overloads)
	posix::basic_stream_descriptor::assign (2 of 2 overloads)

	posix::basic_stream_descriptor::async_read_some
	posix::basic_stream_descriptor::async_write_some
	posix::basic_stream_descriptor::basic_stream_descriptor
	posix::basic_stream_descriptor::basic_stream_descriptor (1 of 3 overloads)
	posix::basic_stream_descriptor::basic_stream_descriptor (2 of 3 overloads)
	posix::basic_stream_descriptor::basic_stream_descriptor (3 of 3 overloads)

	posix::basic_stream_descriptor::bytes_readable
	posix::basic_stream_descriptor::cancel
	posix::basic_stream_descriptor::cancel (1 of 2 overloads)
	posix::basic_stream_descriptor::cancel (2 of 2 overloads)

	posix::basic_stream_descriptor::close
	posix::basic_stream_descriptor::close (1 of 2 overloads)
	posix::basic_stream_descriptor::close (2 of 2 overloads)

	posix::basic_stream_descriptor::get_implementation
	posix::basic_stream_descriptor::get_implementation (1 of 2 overloads)
	posix::basic_stream_descriptor::get_implementation (2 of 2 overloads)

	posix::basic_stream_descriptor::get_io_service
	posix::basic_stream_descriptor::get_service
	posix::basic_stream_descriptor::get_service (1 of 2 overloads)
	posix::basic_stream_descriptor::get_service (2 of 2 overloads)

	posix::basic_stream_descriptor::implementation
	posix::basic_stream_descriptor::implementation_type
	posix::basic_stream_descriptor::io_control
	posix::basic_stream_descriptor::io_control (1 of 2 overloads)
	posix::basic_stream_descriptor::io_control (2 of 2 overloads)

	posix::basic_stream_descriptor::is_open
	posix::basic_stream_descriptor::lowest_layer
	posix::basic_stream_descriptor::lowest_layer (1 of 2 overloads)
	posix::basic_stream_descriptor::lowest_layer (2 of 2 overloads)

	posix::basic_stream_descriptor::lowest_layer_type
	posix::basic_stream_descriptor::native
	posix::basic_stream_descriptor::native_handle
	posix::basic_stream_descriptor::native_handle_type
	posix::basic_stream_descriptor::native_non_blocking
	posix::basic_stream_descriptor::native_non_blocking (1 of 3 overloads)
	posix::basic_stream_descriptor::native_non_blocking (2 of 3 overloads)
	posix::basic_stream_descriptor::native_non_blocking (3 of 3 overloads)

	posix::basic_stream_descriptor::native_type
	posix::basic_stream_descriptor::non_blocking
	posix::basic_stream_descriptor::non_blocking (1 of 3 overloads)
	posix::basic_stream_descriptor::non_blocking (2 of 3 overloads)
	posix::basic_stream_descriptor::non_blocking (3 of 3 overloads)

	posix::basic_stream_descriptor::non_blocking_io
	posix::basic_stream_descriptor::operator=
	posix::basic_stream_descriptor::read_some
	posix::basic_stream_descriptor::read_some (1 of 2 overloads)
	posix::basic_stream_descriptor::read_some (2 of 2 overloads)

	posix::basic_stream_descriptor::release
	posix::basic_stream_descriptor::service
	posix::basic_stream_descriptor::service_type
	posix::basic_stream_descriptor::write_some
	posix::basic_stream_descriptor::write_some (1 of 2 overloads)
	posix::basic_stream_descriptor::write_some (2 of 2 overloads)

	posix::descriptor_base
	posix::descriptor_base::bytes_readable
	posix::descriptor_base::non_blocking_io
	posix::descriptor_base::~descriptor_base

	posix::stream_descriptor
	posix::stream_descriptor_service
	posix::stream_descriptor_service::assign
	posix::stream_descriptor_service::async_read_some
	posix::stream_descriptor_service::async_write_some
	posix::stream_descriptor_service::cancel
	posix::stream_descriptor_service::close
	posix::stream_descriptor_service::construct
	posix::stream_descriptor_service::destroy
	posix::stream_descriptor_service::get_io_service
	posix::stream_descriptor_service::id
	posix::stream_descriptor_service::implementation_type
	posix::stream_descriptor_service::io_control
	posix::stream_descriptor_service::is_open
	posix::stream_descriptor_service::move_assign
	posix::stream_descriptor_service::move_construct
	posix::stream_descriptor_service::native
	posix::stream_descriptor_service::native_handle
	posix::stream_descriptor_service::native_handle_type
	posix::stream_descriptor_service::native_non_blocking
	posix::stream_descriptor_service::native_non_blocking (1 of 2 overloads)
	posix::stream_descriptor_service::native_non_blocking (2 of 2 overloads)

	posix::stream_descriptor_service::native_type
	posix::stream_descriptor_service::non_blocking
	posix::stream_descriptor_service::non_blocking (1 of 2 overloads)
	posix::stream_descriptor_service::non_blocking (2 of 2 overloads)

	posix::stream_descriptor_service::read_some
	posix::stream_descriptor_service::release
	posix::stream_descriptor_service::stream_descriptor_service
	posix::stream_descriptor_service::write_some

	raw_socket_service
	raw_socket_service::assign
	raw_socket_service::async_connect
	raw_socket_service::async_receive
	raw_socket_service::async_receive_from
	raw_socket_service::async_send
	raw_socket_service::async_send_to
	raw_socket_service::at_mark
	raw_socket_service::available
	raw_socket_service::bind
	raw_socket_service::cancel
	raw_socket_service::close
	raw_socket_service::connect
	raw_socket_service::construct
	raw_socket_service::converting_move_construct
	raw_socket_service::destroy
	raw_socket_service::endpoint_type
	raw_socket_service::get_io_service
	raw_socket_service::get_option
	raw_socket_service::id
	raw_socket_service::implementation_type
	raw_socket_service::io_control
	raw_socket_service::is_open
	raw_socket_service::local_endpoint
	raw_socket_service::move_assign
	raw_socket_service::move_construct
	raw_socket_service::native
	raw_socket_service::native_handle
	raw_socket_service::native_handle_type
	raw_socket_service::native_non_blocking
	raw_socket_service::native_non_blocking (1 of 2 overloads)
	raw_socket_service::native_non_blocking (2 of 2 overloads)

	raw_socket_service::native_type
	raw_socket_service::non_blocking
	raw_socket_service::non_blocking (1 of 2 overloads)
	raw_socket_service::non_blocking (2 of 2 overloads)

	raw_socket_service::open
	raw_socket_service::protocol_type
	raw_socket_service::raw_socket_service
	raw_socket_service::receive
	raw_socket_service::receive_from
	raw_socket_service::remote_endpoint
	raw_socket_service::send
	raw_socket_service::send_to
	raw_socket_service::set_option
	raw_socket_service::shutdown

	read
	read (1 of 8 overloads)
	read (2 of 8 overloads)
	read (3 of 8 overloads)
	read (4 of 8 overloads)
	read (5 of 8 overloads)
	read (6 of 8 overloads)
	read (7 of 8 overloads)
	read (8 of 8 overloads)

	read_at
	read_at (1 of 8 overloads)
	read_at (2 of 8 overloads)
	read_at (3 of 8 overloads)
	read_at (4 of 8 overloads)
	read_at (5 of 8 overloads)
	read_at (6 of 8 overloads)
	read_at (7 of 8 overloads)
	read_at (8 of 8 overloads)

	read_until
	read_until (1 of 8 overloads)
	read_until (2 of 8 overloads)
	read_until (3 of 8 overloads)
	read_until (4 of 8 overloads)
	read_until (5 of 8 overloads)
	read_until (6 of 8 overloads)
	read_until (7 of 8 overloads)
	read_until (8 of 8 overloads)

	seq_packet_socket_service
	seq_packet_socket_service::assign
	seq_packet_socket_service::async_connect
	seq_packet_socket_service::async_receive
	seq_packet_socket_service::async_send
	seq_packet_socket_service::at_mark
	seq_packet_socket_service::available
	seq_packet_socket_service::bind
	seq_packet_socket_service::cancel
	seq_packet_socket_service::close
	seq_packet_socket_service::connect
	seq_packet_socket_service::construct
	seq_packet_socket_service::converting_move_construct
	seq_packet_socket_service::destroy
	seq_packet_socket_service::endpoint_type
	seq_packet_socket_service::get_io_service
	seq_packet_socket_service::get_option
	seq_packet_socket_service::id
	seq_packet_socket_service::implementation_type
	seq_packet_socket_service::io_control
	seq_packet_socket_service::is_open
	seq_packet_socket_service::local_endpoint
	seq_packet_socket_service::move_assign
	seq_packet_socket_service::move_construct
	seq_packet_socket_service::native
	seq_packet_socket_service::native_handle
	seq_packet_socket_service::native_handle_type
	seq_packet_socket_service::native_non_blocking
	seq_packet_socket_service::native_non_blocking (1 of 2 overloads)
	seq_packet_socket_service::native_non_blocking (2 of 2 overloads)

	seq_packet_socket_service::native_type
	seq_packet_socket_service::non_blocking
	seq_packet_socket_service::non_blocking (1 of 2 overloads)
	seq_packet_socket_service::non_blocking (2 of 2 overloads)

	seq_packet_socket_service::open
	seq_packet_socket_service::protocol_type
	seq_packet_socket_service::receive
	seq_packet_socket_service::remote_endpoint
	seq_packet_socket_service::send
	seq_packet_socket_service::seq_packet_socket_service
	seq_packet_socket_service::set_option
	seq_packet_socket_service::shutdown

	serial_port
	serial_port_base
	serial_port_base::~serial_port_base

	serial_port_base::baud_rate
	serial_port_base::baud_rate::baud_rate
	serial_port_base::baud_rate::load
	serial_port_base::baud_rate::store
	serial_port_base::baud_rate::value

	serial_port_base::character_size
	serial_port_base::character_size::character_size
	serial_port_base::character_size::load
	serial_port_base::character_size::store
	serial_port_base::character_size::value

	serial_port_base::flow_control
	serial_port_base::flow_control::flow_control
	serial_port_base::flow_control::load
	serial_port_base::flow_control::store
	serial_port_base::flow_control::type
	serial_port_base::flow_control::value

	serial_port_base::parity
	serial_port_base::parity::load
	serial_port_base::parity::parity
	serial_port_base::parity::store
	serial_port_base::parity::type
	serial_port_base::parity::value

	serial_port_base::stop_bits
	serial_port_base::stop_bits::load
	serial_port_base::stop_bits::stop_bits
	serial_port_base::stop_bits::store
	serial_port_base::stop_bits::type
	serial_port_base::stop_bits::value

	serial_port_service
	serial_port_service::assign
	serial_port_service::async_read_some
	serial_port_service::async_write_some
	serial_port_service::cancel
	serial_port_service::close
	serial_port_service::construct
	serial_port_service::destroy
	serial_port_service::get_io_service
	serial_port_service::get_option
	serial_port_service::id
	serial_port_service::implementation_type
	serial_port_service::is_open
	serial_port_service::move_assign
	serial_port_service::move_construct
	serial_port_service::native
	serial_port_service::native_handle
	serial_port_service::native_handle_type
	serial_port_service::native_type
	serial_port_service::open
	serial_port_service::read_some
	serial_port_service::send_break
	serial_port_service::serial_port_service
	serial_port_service::set_option
	serial_port_service::write_some

	service_already_exists
	service_already_exists::service_already_exists

	signal_set
	signal_set_service
	signal_set_service::add
	signal_set_service::async_wait
	signal_set_service::cancel
	signal_set_service::clear
	signal_set_service::construct
	signal_set_service::destroy
	signal_set_service::get_io_service
	signal_set_service::id
	signal_set_service::implementation_type
	signal_set_service::remove
	signal_set_service::signal_set_service

	socket_acceptor_service
	socket_acceptor_service::accept
	socket_acceptor_service::assign
	socket_acceptor_service::async_accept
	socket_acceptor_service::bind
	socket_acceptor_service::cancel
	socket_acceptor_service::close
	socket_acceptor_service::construct
	socket_acceptor_service::converting_move_construct
	socket_acceptor_service::destroy
	socket_acceptor_service::endpoint_type
	socket_acceptor_service::get_io_service
	socket_acceptor_service::get_option
	socket_acceptor_service::id
	socket_acceptor_service::implementation_type
	socket_acceptor_service::io_control
	socket_acceptor_service::is_open
	socket_acceptor_service::listen
	socket_acceptor_service::local_endpoint
	socket_acceptor_service::move_assign
	socket_acceptor_service::move_construct
	socket_acceptor_service::native
	socket_acceptor_service::native_handle
	socket_acceptor_service::native_handle_type
	socket_acceptor_service::native_non_blocking
	socket_acceptor_service::native_non_blocking (1 of 2 overloads)
	socket_acceptor_service::native_non_blocking (2 of 2 overloads)

	socket_acceptor_service::native_type
	socket_acceptor_service::non_blocking
	socket_acceptor_service::non_blocking (1 of 2 overloads)
	socket_acceptor_service::non_blocking (2 of 2 overloads)

	socket_acceptor_service::open
	socket_acceptor_service::protocol_type
	socket_acceptor_service::set_option
	socket_acceptor_service::socket_acceptor_service

	socket_base
	socket_base::broadcast
	socket_base::bytes_readable
	socket_base::debug
	socket_base::do_not_route
	socket_base::enable_connection_aborted
	socket_base::keep_alive
	socket_base::linger
	socket_base::max_connections
	socket_base::message_do_not_route
	socket_base::message_end_of_record
	socket_base::message_flags
	socket_base::message_out_of_band
	socket_base::message_peek
	socket_base::non_blocking_io
	socket_base::receive_buffer_size
	socket_base::receive_low_watermark
	socket_base::reuse_address
	socket_base::send_buffer_size
	socket_base::send_low_watermark
	socket_base::shutdown_type
	socket_base::~socket_base

	spawn
	spawn (1 of 4 overloads)
	spawn (2 of 4 overloads)
	spawn (3 of 4 overloads)
	spawn (4 of 4 overloads)

	ssl::context
	ssl::context::add_certificate_authority
	ssl::context::add_certificate_authority (1 of 2 overloads)
	ssl::context::add_certificate_authority (2 of 2 overloads)

	ssl::context::add_verify_path
	ssl::context::add_verify_path (1 of 2 overloads)
	ssl::context::add_verify_path (2 of 2 overloads)

	ssl::context::clear_options
	ssl::context::clear_options (1 of 2 overloads)
	ssl::context::clear_options (2 of 2 overloads)

	ssl::context::context
	ssl::context::context (1 of 3 overloads)
	ssl::context::context (2 of 3 overloads)
	ssl::context::context (3 of 3 overloads)

	ssl::context::default_workarounds
	ssl::context::file_format
	ssl::context::impl
	ssl::context::impl_type
	ssl::context::load_verify_file
	ssl::context::load_verify_file (1 of 2 overloads)
	ssl::context::load_verify_file (2 of 2 overloads)

	ssl::context::method
	ssl::context::native_handle
	ssl::context::native_handle_type
	ssl::context::no_compression
	ssl::context::no_sslv2
	ssl::context::no_sslv3
	ssl::context::no_tlsv1
	ssl::context::operator=
	ssl::context::options
	ssl::context::password_purpose
	ssl::context::set_default_verify_paths
	ssl::context::set_default_verify_paths (1 of 2 overloads)
	ssl::context::set_default_verify_paths (2 of 2 overloads)

	ssl::context::set_options
	ssl::context::set_options (1 of 2 overloads)
	ssl::context::set_options (2 of 2 overloads)

	ssl::context::set_password_callback
	ssl::context::set_password_callback (1 of 2 overloads)
	ssl::context::set_password_callback (2 of 2 overloads)

	ssl::context::set_verify_callback
	ssl::context::set_verify_callback (1 of 2 overloads)
	ssl::context::set_verify_callback (2 of 2 overloads)

	ssl::context::set_verify_depth
	ssl::context::set_verify_depth (1 of 2 overloads)
	ssl::context::set_verify_depth (2 of 2 overloads)

	ssl::context::set_verify_mode
	ssl::context::set_verify_mode (1 of 2 overloads)
	ssl::context::set_verify_mode (2 of 2 overloads)

	ssl::context::single_dh_use
	ssl::context::use_certificate
	ssl::context::use_certificate (1 of 2 overloads)
	ssl::context::use_certificate (2 of 2 overloads)

	ssl::context::use_certificate_chain
	ssl::context::use_certificate_chain (1 of 2 overloads)
	ssl::context::use_certificate_chain (2 of 2 overloads)

	ssl::context::use_certificate_chain_file
	ssl::context::use_certificate_chain_file (1 of 2 overloads)
	ssl::context::use_certificate_chain_file (2 of 2 overloads)

	ssl::context::use_certificate_file
	ssl::context::use_certificate_file (1 of 2 overloads)
	ssl::context::use_certificate_file (2 of 2 overloads)

	ssl::context::use_private_key
	ssl::context::use_private_key (1 of 2 overloads)
	ssl::context::use_private_key (2 of 2 overloads)

	ssl::context::use_private_key_file
	ssl::context::use_private_key_file (1 of 2 overloads)
	ssl::context::use_private_key_file (2 of 2 overloads)

	ssl::context::use_rsa_private_key
	ssl::context::use_rsa_private_key (1 of 2 overloads)
	ssl::context::use_rsa_private_key (2 of 2 overloads)

	ssl::context::use_rsa_private_key_file
	ssl::context::use_rsa_private_key_file (1 of 2 overloads)
	ssl::context::use_rsa_private_key_file (2 of 2 overloads)

	ssl::context::use_tmp_dh
	ssl::context::use_tmp_dh (1 of 2 overloads)
	ssl::context::use_tmp_dh (2 of 2 overloads)

	ssl::context::use_tmp_dh_file
	ssl::context::use_tmp_dh_file (1 of 2 overloads)
	ssl::context::use_tmp_dh_file (2 of 2 overloads)

	ssl::context::~context

	ssl::context_base
	ssl::context_base::default_workarounds
	ssl::context_base::file_format
	ssl::context_base::method
	ssl::context_base::no_compression
	ssl::context_base::no_sslv2
	ssl::context_base::no_sslv3
	ssl::context_base::no_tlsv1
	ssl::context_base::options
	ssl::context_base::password_purpose
	ssl::context_base::single_dh_use
	ssl::context_base::~context_base

	ssl::rfc2818_verification
	ssl::rfc2818_verification::operator()
	ssl::rfc2818_verification::result_type
	ssl::rfc2818_verification::rfc2818_verification

	ssl::stream
	ssl::stream::async_handshake
	ssl::stream::async_handshake (1 of 2 overloads)
	ssl::stream::async_handshake (2 of 2 overloads)

	ssl::stream::async_read_some
	ssl::stream::async_shutdown
	ssl::stream::async_write_some
	ssl::stream::get_io_service
	ssl::stream::handshake
	ssl::stream::handshake (1 of 4 overloads)
	ssl::stream::handshake (2 of 4 overloads)
	ssl::stream::handshake (3 of 4 overloads)
	ssl::stream::handshake (4 of 4 overloads)

	ssl::stream::handshake_type
	ssl::stream::impl
	ssl::stream::impl_type
	ssl::stream::lowest_layer
	ssl::stream::lowest_layer (1 of 2 overloads)
	ssl::stream::lowest_layer (2 of 2 overloads)

	ssl::stream::lowest_layer_type
	ssl::stream::native_handle
	ssl::stream::native_handle_type
	ssl::stream::next_layer
	ssl::stream::next_layer (1 of 2 overloads)
	ssl::stream::next_layer (2 of 2 overloads)

	ssl::stream::next_layer_type
	ssl::stream::read_some
	ssl::stream::read_some (1 of 2 overloads)
	ssl::stream::read_some (2 of 2 overloads)

	ssl::stream::set_verify_callback
	ssl::stream::set_verify_callback (1 of 2 overloads)
	ssl::stream::set_verify_callback (2 of 2 overloads)

	ssl::stream::set_verify_depth
	ssl::stream::set_verify_depth (1 of 2 overloads)
	ssl::stream::set_verify_depth (2 of 2 overloads)

	ssl::stream::set_verify_mode
	ssl::stream::set_verify_mode (1 of 2 overloads)
	ssl::stream::set_verify_mode (2 of 2 overloads)

	ssl::stream::shutdown
	ssl::stream::shutdown (1 of 2 overloads)
	ssl::stream::shutdown (2 of 2 overloads)

	ssl::stream::stream
	ssl::stream::write_some
	ssl::stream::write_some (1 of 2 overloads)
	ssl::stream::write_some (2 of 2 overloads)

	ssl::stream::~stream

	ssl::stream::impl_struct
	ssl::stream::impl_struct::ssl

	ssl::stream_base
	ssl::stream_base::handshake_type
	ssl::stream_base::~stream_base

	ssl::verify_client_once
	ssl::verify_context
	ssl::verify_context::native_handle
	ssl::verify_context::native_handle_type
	ssl::verify_context::verify_context

	ssl::verify_fail_if_no_peer_cert
	ssl::verify_mode
	ssl::verify_none
	ssl::verify_peer
	steady_timer
	strand
	stream_socket_service
	stream_socket_service::assign
	stream_socket_service::async_connect
	stream_socket_service::async_receive
	stream_socket_service::async_send
	stream_socket_service::at_mark
	stream_socket_service::available
	stream_socket_service::bind
	stream_socket_service::cancel
	stream_socket_service::close
	stream_socket_service::connect
	stream_socket_service::construct
	stream_socket_service::converting_move_construct
	stream_socket_service::destroy
	stream_socket_service::endpoint_type
	stream_socket_service::get_io_service
	stream_socket_service::get_option
	stream_socket_service::id
	stream_socket_service::implementation_type
	stream_socket_service::io_control
	stream_socket_service::is_open
	stream_socket_service::local_endpoint
	stream_socket_service::move_assign
	stream_socket_service::move_construct
	stream_socket_service::native
	stream_socket_service::native_handle
	stream_socket_service::native_handle_type
	stream_socket_service::native_non_blocking
	stream_socket_service::native_non_blocking (1 of 2 overloads)
	stream_socket_service::native_non_blocking (2 of 2 overloads)

	stream_socket_service::native_type
	stream_socket_service::non_blocking
	stream_socket_service::non_blocking (1 of 2 overloads)
	stream_socket_service::non_blocking (2 of 2 overloads)

	stream_socket_service::open
	stream_socket_service::protocol_type
	stream_socket_service::receive
	stream_socket_service::remote_endpoint
	stream_socket_service::send
	stream_socket_service::set_option
	stream_socket_service::shutdown
	stream_socket_service::stream_socket_service

	streambuf
	system_timer
	time_traits< boost::posix_time::ptime >
	time_traits< boost::posix_time::ptime >::add
	time_traits< boost::posix_time::ptime >::duration_type
	time_traits< boost::posix_time::ptime >::less_than
	time_traits< boost::posix_time::ptime >::now
	time_traits< boost::posix_time::ptime >::subtract
	time_traits< boost::posix_time::ptime >::time_type
	time_traits< boost::posix_time::ptime >::to_posix_duration

	transfer_all
	transfer_at_least
	transfer_exactly
	use_future
	use_future_t
	use_future_t::allocator_type
	use_future_t::get_allocator
	use_future_t::operator[]
	use_future_t::use_future_t
	use_future_t::use_future_t (1 of 2 overloads)
	use_future_t::use_future_t (2 of 2 overloads)

	use_service
	wait_traits
	wait_traits::to_wait_duration

	waitable_timer_service
	waitable_timer_service::async_wait
	waitable_timer_service::cancel
	waitable_timer_service::cancel_one
	waitable_timer_service::clock_type
	waitable_timer_service::construct
	waitable_timer_service::destroy
	waitable_timer_service::duration
	waitable_timer_service::expires_at
	waitable_timer_service::expires_at (1 of 2 overloads)
	waitable_timer_service::expires_at (2 of 2 overloads)

	waitable_timer_service::expires_from_now
	waitable_timer_service::expires_from_now (1 of 2 overloads)
	waitable_timer_service::expires_from_now (2 of 2 overloads)

	waitable_timer_service::get_io_service
	waitable_timer_service::id
	waitable_timer_service::implementation_type
	waitable_timer_service::time_point
	waitable_timer_service::traits_type
	waitable_timer_service::wait
	waitable_timer_service::waitable_timer_service

	windows::basic_handle
	windows::basic_handle::assign
	windows::basic_handle::assign (1 of 2 overloads)
	windows::basic_handle::assign (2 of 2 overloads)

	windows::basic_handle::basic_handle
	windows::basic_handle::basic_handle (1 of 3 overloads)
	windows::basic_handle::basic_handle (2 of 3 overloads)
	windows::basic_handle::basic_handle (3 of 3 overloads)

	windows::basic_handle::cancel
	windows::basic_handle::cancel (1 of 2 overloads)
	windows::basic_handle::cancel (2 of 2 overloads)

	windows::basic_handle::close
	windows::basic_handle::close (1 of 2 overloads)
	windows::basic_handle::close (2 of 2 overloads)

	windows::basic_handle::get_implementation
	windows::basic_handle::get_implementation (1 of 2 overloads)
	windows::basic_handle::get_implementation (2 of 2 overloads)

	windows::basic_handle::get_io_service
	windows::basic_handle::get_service
	windows::basic_handle::get_service (1 of 2 overloads)
	windows::basic_handle::get_service (2 of 2 overloads)

	windows::basic_handle::implementation
	windows::basic_handle::implementation_type
	windows::basic_handle::is_open
	windows::basic_handle::lowest_layer
	windows::basic_handle::lowest_layer (1 of 2 overloads)
	windows::basic_handle::lowest_layer (2 of 2 overloads)

	windows::basic_handle::lowest_layer_type
	windows::basic_handle::native
	windows::basic_handle::native_handle
	windows::basic_handle::native_handle_type
	windows::basic_handle::native_type
	windows::basic_handle::operator=
	windows::basic_handle::service
	windows::basic_handle::service_type
	windows::basic_handle::~basic_handle

	windows::basic_object_handle
	windows::basic_object_handle::assign
	windows::basic_object_handle::assign (1 of 2 overloads)
	windows::basic_object_handle::assign (2 of 2 overloads)

	windows::basic_object_handle::async_wait
	windows::basic_object_handle::basic_object_handle
	windows::basic_object_handle::basic_object_handle (1 of 3 overloads)
	windows::basic_object_handle::basic_object_handle (2 of 3 overloads)
	windows::basic_object_handle::basic_object_handle (3 of 3 overloads)

	windows::basic_object_handle::cancel
	windows::basic_object_handle::cancel (1 of 2 overloads)
	windows::basic_object_handle::cancel (2 of 2 overloads)

	windows::basic_object_handle::close
	windows::basic_object_handle::close (1 of 2 overloads)
	windows::basic_object_handle::close (2 of 2 overloads)

	windows::basic_object_handle::get_implementation
	windows::basic_object_handle::get_implementation (1 of 2 overloads)
	windows::basic_object_handle::get_implementation (2 of 2 overloads)

	windows::basic_object_handle::get_io_service
	windows::basic_object_handle::get_service
	windows::basic_object_handle::get_service (1 of 2 overloads)
	windows::basic_object_handle::get_service (2 of 2 overloads)

	windows::basic_object_handle::implementation
	windows::basic_object_handle::implementation_type
	windows::basic_object_handle::is_open
	windows::basic_object_handle::lowest_layer
	windows::basic_object_handle::lowest_layer (1 of 2 overloads)
	windows::basic_object_handle::lowest_layer (2 of 2 overloads)

	windows::basic_object_handle::lowest_layer_type
	windows::basic_object_handle::native
	windows::basic_object_handle::native_handle
	windows::basic_object_handle::native_handle_type
	windows::basic_object_handle::native_type
	windows::basic_object_handle::operator=
	windows::basic_object_handle::service
	windows::basic_object_handle::service_type
	windows::basic_object_handle::wait
	windows::basic_object_handle::wait (1 of 2 overloads)
	windows::basic_object_handle::wait (2 of 2 overloads)

	windows::basic_random_access_handle
	windows::basic_random_access_handle::assign
	windows::basic_random_access_handle::assign (1 of 2 overloads)
	windows::basic_random_access_handle::assign (2 of 2 overloads)

	windows::basic_random_access_handle::async_read_some_at
	windows::basic_random_access_handle::async_write_some_at
	windows::basic_random_access_handle::basic_random_access_handle
	windows::basic_random_access_handle::basic_random_access_handle (1 of 3 overloads)
	windows::basic_random_access_handle::basic_random_access_handle (2 of 3 overloads)
	windows::basic_random_access_handle::basic_random_access_handle (3 of 3 overloads)

	windows::basic_random_access_handle::cancel
	windows::basic_random_access_handle::cancel (1 of 2 overloads)
	windows::basic_random_access_handle::cancel (2 of 2 overloads)

	windows::basic_random_access_handle::close
	windows::basic_random_access_handle::close (1 of 2 overloads)
	windows::basic_random_access_handle::close (2 of 2 overloads)

	windows::basic_random_access_handle::get_implementation
	windows::basic_random_access_handle::get_implementation (1 of 2 overloads)
	windows::basic_random_access_handle::get_implementation (2 of 2 overloads)

	windows::basic_random_access_handle::get_io_service
	windows::basic_random_access_handle::get_service
	windows::basic_random_access_handle::get_service (1 of 2 overloads)
	windows::basic_random_access_handle::get_service (2 of 2 overloads)

	windows::basic_random_access_handle::implementation
	windows::basic_random_access_handle::implementation_type
	windows::basic_random_access_handle::is_open
	windows::basic_random_access_handle::lowest_layer
	windows::basic_random_access_handle::lowest_layer (1 of 2 overloads)
	windows::basic_random_access_handle::lowest_layer (2 of 2 overloads)

	windows::basic_random_access_handle::lowest_layer_type
	windows::basic_random_access_handle::native
	windows::basic_random_access_handle::native_handle
	windows::basic_random_access_handle::native_handle_type
	windows::basic_random_access_handle::native_type
	windows::basic_random_access_handle::operator=
	windows::basic_random_access_handle::read_some_at
	windows::basic_random_access_handle::read_some_at (1 of 2 overloads)
	windows::basic_random_access_handle::read_some_at (2 of 2 overloads)

	windows::basic_random_access_handle::service
	windows::basic_random_access_handle::service_type
	windows::basic_random_access_handle::write_some_at
	windows::basic_random_access_handle::write_some_at (1 of 2 overloads)
	windows::basic_random_access_handle::write_some_at (2 of 2 overloads)

	windows::basic_stream_handle
	windows::basic_stream_handle::assign
	windows::basic_stream_handle::assign (1 of 2 overloads)
	windows::basic_stream_handle::assign (2 of 2 overloads)

	windows::basic_stream_handle::async_read_some
	windows::basic_stream_handle::async_write_some
	windows::basic_stream_handle::basic_stream_handle
	windows::basic_stream_handle::basic_stream_handle (1 of 3 overloads)
	windows::basic_stream_handle::basic_stream_handle (2 of 3 overloads)
	windows::basic_stream_handle::basic_stream_handle (3 of 3 overloads)

	windows::basic_stream_handle::cancel
	windows::basic_stream_handle::cancel (1 of 2 overloads)
	windows::basic_stream_handle::cancel (2 of 2 overloads)

	windows::basic_stream_handle::close
	windows::basic_stream_handle::close (1 of 2 overloads)
	windows::basic_stream_handle::close (2 of 2 overloads)

	windows::basic_stream_handle::get_implementation
	windows::basic_stream_handle::get_implementation (1 of 2 overloads)
	windows::basic_stream_handle::get_implementation (2 of 2 overloads)

	windows::basic_stream_handle::get_io_service
	windows::basic_stream_handle::get_service
	windows::basic_stream_handle::get_service (1 of 2 overloads)
	windows::basic_stream_handle::get_service (2 of 2 overloads)

	windows::basic_stream_handle::implementation
	windows::basic_stream_handle::implementation_type
	windows::basic_stream_handle::is_open
	windows::basic_stream_handle::lowest_layer
	windows::basic_stream_handle::lowest_layer (1 of 2 overloads)
	windows::basic_stream_handle::lowest_layer (2 of 2 overloads)

	windows::basic_stream_handle::lowest_layer_type
	windows::basic_stream_handle::native
	windows::basic_stream_handle::native_handle
	windows::basic_stream_handle::native_handle_type
	windows::basic_stream_handle::native_type
	windows::basic_stream_handle::operator=
	windows::basic_stream_handle::read_some
	windows::basic_stream_handle::read_some (1 of 2 overloads)
	windows::basic_stream_handle::read_some (2 of 2 overloads)

	windows::basic_stream_handle::service
	windows::basic_stream_handle::service_type
	windows::basic_stream_handle::write_some
	windows::basic_stream_handle::write_some (1 of 2 overloads)
	windows::basic_stream_handle::write_some (2 of 2 overloads)

	windows::object_handle
	windows::object_handle_service
	windows::object_handle_service::assign
	windows::object_handle_service::async_wait
	windows::object_handle_service::cancel
	windows::object_handle_service::close
	windows::object_handle_service::construct
	windows::object_handle_service::destroy
	windows::object_handle_service::get_io_service
	windows::object_handle_service::id
	windows::object_handle_service::implementation_type
	windows::object_handle_service::is_open
	windows::object_handle_service::move_assign
	windows::object_handle_service::move_construct
	windows::object_handle_service::native_handle
	windows::object_handle_service::native_handle_type
	windows::object_handle_service::object_handle_service
	windows::object_handle_service::wait

	windows::overlapped_ptr
	windows::overlapped_ptr::complete
	windows::overlapped_ptr::get
	windows::overlapped_ptr::get (1 of 2 overloads)
	windows::overlapped_ptr::get (2 of 2 overloads)

	windows::overlapped_ptr::overlapped_ptr
	windows::overlapped_ptr::overlapped_ptr (1 of 2 overloads)
	windows::overlapped_ptr::overlapped_ptr (2 of 2 overloads)

	windows::overlapped_ptr::release
	windows::overlapped_ptr::reset
	windows::overlapped_ptr::reset (1 of 2 overloads)
	windows::overlapped_ptr::reset (2 of 2 overloads)

	windows::overlapped_ptr::~overlapped_ptr

	windows::random_access_handle
	windows::random_access_handle_service
	windows::random_access_handle_service::assign
	windows::random_access_handle_service::async_read_some_at
	windows::random_access_handle_service::async_write_some_at
	windows::random_access_handle_service::cancel
	windows::random_access_handle_service::close
	windows::random_access_handle_service::construct
	windows::random_access_handle_service::destroy
	windows::random_access_handle_service::get_io_service
	windows::random_access_handle_service::id
	windows::random_access_handle_service::implementation_type
	windows::random_access_handle_service::is_open
	windows::random_access_handle_service::move_assign
	windows::random_access_handle_service::move_construct
	windows::random_access_handle_service::native
	windows::random_access_handle_service::native_handle
	windows::random_access_handle_service::native_handle_type
	windows::random_access_handle_service::native_type
	windows::random_access_handle_service::random_access_handle_service
	windows::random_access_handle_service::read_some_at
	windows::random_access_handle_service::write_some_at

	windows::stream_handle
	windows::stream_handle_service
	windows::stream_handle_service::assign
	windows::stream_handle_service::async_read_some
	windows::stream_handle_service::async_write_some
	windows::stream_handle_service::cancel
	windows::stream_handle_service::close
	windows::stream_handle_service::construct
	windows::stream_handle_service::destroy
	windows::stream_handle_service::get_io_service
	windows::stream_handle_service::id
	windows::stream_handle_service::implementation_type
	windows::stream_handle_service::is_open
	windows::stream_handle_service::move_assign
	windows::stream_handle_service::move_construct
	windows::stream_handle_service::native
	windows::stream_handle_service::native_handle
	windows::stream_handle_service::native_handle_type
	windows::stream_handle_service::native_type
	windows::stream_handle_service::read_some
	windows::stream_handle_service::stream_handle_service
	windows::stream_handle_service::write_some

	write
	write (1 of 8 overloads)
	write (2 of 8 overloads)
	write (3 of 8 overloads)
	write (4 of 8 overloads)
	write (5 of 8 overloads)
	write (6 of 8 overloads)
	write (7 of 8 overloads)
	write (8 of 8 overloads)

	write_at
	write_at (1 of 8 overloads)
	write_at (2 of 8 overloads)
	write_at (3 of 8 overloads)
	write_at (4 of 8 overloads)
	write_at (5 of 8 overloads)
	write_at (6 of 8 overloads)
	write_at (7 of 8 overloads)
	write_at (8 of 8 overloads)

	yield_context
	boost::system::is_error_code_enum< boost::asio::error::addrinfo_errors >
	boost::system::is_error_code_enum< boost::asio::error::addrinfo_errors >::value

	boost::system::is_error_code_enum< boost::asio::error::basic_errors >
	boost::system::is_error_code_enum< boost::asio::error::basic_errors >::value

	boost::system::is_error_code_enum< boost::asio::error::misc_errors >
	boost::system::is_error_code_enum< boost::asio::error::misc_errors >::value

	boost::system::is_error_code_enum< boost::asio::error::netdb_errors >
	boost::system::is_error_code_enum< boost::asio::error::netdb_errors >::value

	boost::system::is_error_code_enum< boost::asio::error::ssl_errors >
	boost::system::is_error_code_enum< boost::asio::error::ssl_errors >::value

	Revision History
	
	Index

