render

Boost.AsIo

Christopher Kohlhoff
Copyright © 2003-2014 Christopher M. Kohlhoff

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1 0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Boost.Asio is a cross-platform C++ library for network and low-level 1/0O programming that provides developers with a consistent
asynchronous model using a modern C++ approach.

Overview

Using Boost.Asio

Tutorid

Examples
Reference
Revision History

Index

An overview of the featuresincluded in Boost.Asio, plus rationale and design information.

How to use Boost.Asio in your applications. Includesinformation on library dependencies and supported
platforms.

A tutorial that introduces the fundamental concepts required to use Boost.Asio, and shows how to use
Boost.Asio to develop ssmple client and server programs.

Examples that illustrate the use of Boost.Asio in more complex applications.
Detailed class and function reference.
Log of Boost.Asio changes made in each Boost release.

Book-style text index of Boost.Asio documentation.

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Overview

» Rationale
 Core Concepts and Functionality
» Basic Boost.Asio Anatomy
* The Proactor Design Pattern: Concurrency Without Threads
» Threads and Boost.Asio
 Strands: Use Threads Without Explicit Locking
* Buffers
 Streams, Short Reads and Short Writes
« Reactor-Style Operations
¢ Line-Based Operations
e Custom Memory Allocation
e Handler Tracking
 Stackless Coroutines
* Stackful Coroutines
* Networking
e TCP, UDPand ICMP
 Support for Other Protocols
* Socket |ostreams
* The BSD Socket APl and Boost.Asio
» Timers
* Seria Ports
 Signal Handling
e POSIX-Specific Functionality
e UNIX Domain Sockets
» Stream-Oriented File Descriptors
» Fork
» Windows-Specific Functionality
e Stream-Oriented HANDLEs
» Random-Access HANDLEs

» Object HANDLEs

render

Y httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

SSL

C++ 2011 Support

¢ Movable 1/O Objects
* Movable Handlers

e Variadic Templates
« Array Container

* Atomics

* Shared Pointers

e Chrono

» Futures

Platform-Specific Implementation Notes

Rationale

Most programs interact with the outside world in some way, whether it be via a file, a network, a serial cable, or the console.
Sometimes, asisthe case with networking, individual 1/0 operations can take along time to complete. This poses particular challenges
to application development.

Boost.Asio providesthe toolsto manage these long running operations, without requiring programsto use concurrency models based
on threads and explicit locking.

The Boost.Asio library isintended for programmers using C++ for systems programming, where access to operating system func-
tionality such as networking is often required. In particular, Boost.Asio addresses the following goals:

Portability. The library should support a range of commonly used operating systems, and provide consistent behaviour across
these operating systems.

Scalability. Thelibrary should facilitate the devel opment of network applicationsthat scale to thousands of concurrent connections.
The library implementation for each operating system should use the mechanism that best enables this scalability.

Efficiency. The library should support techniques such as scatter-gather 1/0, and allow programs to minimise data copying.

Model conceptsfrom established APIs, such asBSD sockets. The BSD socket API iswidely implemented and understood, and
iscovered in much literature. Other programming languages often use asimilar interface for networking APIs. Asfar asisreasonable,
Boost.Asio should leverage existing practice.

Ease of use. The library should provide alower entry barrier for new users by taking atoolkit, rather than framework, approach.
That is, it should try to minimise the up-front investment in time to just learning a few basic rules and guidelines. After that, a
library user should only need to understand the specific functions that are being used.

Basisfor further abstraction. Thelibrary should permit the devel opment of other librariesthat provide higher levels of abstraction.
For example, implementations of commonly used protocols such asHTTP.

Although Boost.Asio started life focused primarily on networking, its concepts of asynchronous I/O have been extended to include
other operating system resources such as serial ports, file descriptors, and so on.

Core Concepts and Functionality

Basic Boost.Asio Anatomy

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

e The Proactor Design Pattern: Concurrency Without Threads
» Threads and Boost.Asio

 Strands: Use Threads Without Explicit Locking

» Buffers

* Streams, Short Reads and Short Writes

* Reactor-Style Operations

e Line-Based Operations

* Custom Memory Allocation

» Handler Tracking

* Stackless Coroutines

» Stackful Coroutines

Basic Boost.Asio Anatomy

Boost.Asio may be used to perform both synchronous and asynchronous operations on /O objects such as sockets. Before using
Boost.Asio it may be useful to get aconceptual picture of the various parts of Boost.Asio, your program, and how they work together.

As an introductory example, let's consider what happens when you perform a connect operation on a socket. We shall start by ex-
amining synchronous operations.

Your Program

: A
H B
/!
v s
1/O Object
e.g. socket

io_service

Operating System

Your program will have at least oneio_service object. Theio_service represents your program's link to the operating system's
I/O services.

boost::asio::io_service io_service;

To perform 1/O operations your program will need an 1/0 object such as a TCP socket:

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

boost::asio::ip::tcp::socket socket(io_service);

When a synchronous connect operation is performed, the following sequence of events occurs:

1. Your program initiates the connect operation by calling the I/O object:
socket . connect (server _endpoi nt);

2. The 1/O object forwards the request to theio_service.
3. Theio_service calls on the operating system to perform the connect operation.
4. The operating system returns the result of the operation to theio_service.

5. Theio_servicetrandates any error resulting from the operation into an object of typeboost : : system : error_code.Aner -
ror _code may be compared with specific values, or tested as a boolean (where af al se result means that no error occurred). The
result is then forwarded back up to the 1/O object.

6. The 1/O object throws an exception of typeboost : : system : system error if the operation failed. If the code to initiate the
operation had instead been written as:

boost::system :error_code ec;
socket . connect (server_endpoi nt, ec);

thentheerror _code variable ec would be set to the result of the operation, and no exception would be thrown.

When an asynchronous operation is used, a different sequence of events occurs.

Your Program
1
Y
1/O Object
e Your Completion Handler
e.g. socket
io_service
T
[
g
|

Operating System

1. Your program initiates the connect operation by calling the I/O object:

socket . async_connect (server _endpoi nt, your_conpl eti on_handl er);

whereyour _conpl et i on_handl er isafunction or function object with the signature:

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

voi d your _conpl eti on_handl er (const boost::system:error_code& ec);

The exact signature required depends on the asynchronous operation being performed. The reference documentation indicates the
appropriate form for each operation.

2. The /O object forwards the request to the io_service.
3. Theio_service signals to the operating system that it should start an asynchronous connect.

Time passes. (In the synchronous case this wait would have been contained entirely within the duration of the connect operation.)

Your Program

1/O Object [
e 5 Your Completion Handler
e.g. socket I
I
\ A
' o
I
v £
io_service |- — — .
4

Operating System

4. The oper ating system indicates that the connect operation has completed by placing the result on a queue, ready to be picked up
by theio_service.

5. Your program must make acall toi o_service::run() (or to one of the similar io_service member functions) in order for
theresult to beretrieved. A call toi o_servi ce: : run() blockswhile there are unfinished asynchronous operations, so you would
typicaly call it as soon as you have started your first asynchronous operation.

6. Whileinsidethecall toi o_servi ce: : run() , theio_service dequeuesthe result of the operation, trandatesitintoaner r or _code,
and then passesiit to your completion handler.

Thisis a simplified picture of how Boost.Asio operates. You will want to delve further into the documentation if your needs are
more advanced, such as extending Boost.Asio to perform other types of asynchronous operations.

The Proactor Design Pattern: Concurrency Without Threads

TheBoost.Asio library offers side-by-side support for synchronous and asynchronous operations. The asynchronous support is based
on the Proactor design pattern [POSA2]. The advantages and disadvantages of this approach, when compared to a synchronous-only
or Reactor approach, are outlined below.

Proactor and Boost.Asio

L et us examine how the Proactor design pattern isimplemented in Boost.Asio, without reference to platform-specific details.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Initiator Proactor
1 ~ !
I S \
I uses \
/ | A |
! ! starts Asynchronous Asynchronous '
! 1 Operation Processor Event Demultiplexer | !
! ! 7 < 7 /
! 1 I At I !
N .
]creates ! ’ executes . enqueues ‘degueues ﬂ:lEﬂ"!IJlllplEJ{ES
[\ / N / ; & dispatches
/
‘1 \ L W !
\ Asynchronous Completion s
\ Operation Event Queue P <
\ 7
“ -
4 a- -
Completion
Handler

Proactor design pattern (adapted from [POSAZ2])
— Asynchronous Operation

Defines an operation that is executed asynchronously, such as an asynchronous read or write on a socket.
— Asynchronous Operation Processor

Executes asynchronous operations and queues events on a completion event queue when operations complete.
From ahigh-level point of view, serviceslikest r eam socket _ser vi ce are asynchronous operation processors.

— Completion Event Queue
Buffers completion events until they are dequeued by an asynchronous event demultiplexer.
— Completion Handler
Processes the result of an asynchronous operation. These are function objects, often created using boost : : bi nd.
— Asynchronous Event Demultiplexer
Blocks waiting for events to occur on the completion event queue, and returns a completed event to its caller.
— Proactor

Callsthe asynchronous event demultiplexer to dequeue events, and dispatches the completion handler (i.e. invokes
the function object) associated with the event. This abstraction is represented by thei o_ser vi ce class.

— Initiator

Application-specific codethat starts asynchronous operations. Theinitiator interacts with an asynchronous operation
processor via a high-level interface such as basi c_st ream socket , which in turn delegates to a service like
stream socket _servi ce.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Implementation Using Reactor

On many platforms, Boost.Asio implements the Proactor design pattern in terms of a Reactor, such assel ect, epol | or kqueue.
This implementation approach corresponds to the Proactor design pattern as follows:

— Asynchronous Operation Processor

A reactor implemented using sel ect , epol | or kqueue. When the reactor indicates that the resource is ready to
perform the operation, the processor executes the asynchronous operation and enqueues the associated completion
handler on the completion event queue.

— Completion Event Queue
A linked list of completion handlers (i.e. function objects).
— Asynchronous Event Demultiplexer

This is implemented by waiting on an event or condition variable until a completion handler is available in the
completion event queue.

Implementation Using Windows Overlapped 1/O

OnWindows NT, 2000 and X P, Boost.Asio takes advantage of overlapped /O to provide an efficient implementation of the Proactor
design pattern. This implementation approach corresponds to the Proactor design pattern as follows:

— Asynchronous Operation Processor

This is implemented by the operating system. Operations are initiated by calling an overlapped function such as
Accept EX.

— Completion Event Queue

This is implemented by the operating system, and is associated with an I/O completion port. There is one I/O
completion port for each i o_ser vi ce instance.

— Asynchronous Event Demultiplexer

Called by Boost.Asio to dequeue events and their associated completion handlers.
Advantages
— Portability.

Many operating systems offer anative asynchronous /O API (such as overlapped 1/0 on Windows) asthe preferred
option for devel oping high performance network applications. The library may be implemented in terms of native
asynchronous I/O. However, if native support isnot available, the library may al so beimplemented using synchron-
ous event demultiplexors that typify the Reactor pattern, such asPOS X sel ect () .

— Decoupling threading from concurrency.

Long-duration operations are performed asynchronously by the implementation on behalf of the application.
Consequently applications do not need to spawn many threads in order to increase concurrency.

— Performance and scalahility.

Implementation strategies such as thread-per-connection (which a synchronous-only approach would require) can
degrade system performance, due to increased context switching, synchronisation and data movement among
CPUs. With asynchronous operationsit is possible to avoid the cost of context switching by minimising the number
of operating system threads — typically alimited resource — and only activating the logical threads of control
that have eventsto process.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

— Simplified application synchronisation.

Asynchronous operation completion handlers can be written asthough they exist in asingle-threaded environment,
and so application logic can be developed with little or no concern for synchronisation issues.

— Function composition.

Function composition refersto theimplementation of functionsto provide ahigher-level operation, such as sending
amessage in a particular format. Each function is implemented in terms of multiple calls to lower-level read or
write operations.

For example, consider a protocol where each message consists of a fixed-length header followed by a variable
length body, where the length of the body is specified in the header. A hypothetical read_message operation could
be implemented using two lower-level reads, the first to receive the header and, once the length is known, the
second to receive the body.

To compose functions in an asynchronous model, asynchronous operations can be chained together. That is, a
completion handler for one operation can initiate the next. Starting the first call in the chain can be encapsul ated
so that the caller need not be aware that the higher-level operation isimplemented as a chain of asynchronous op-
erations.

The ability to compose new operationsin thisway simplifiesthe development of higher levels of abstraction above
anetworking library, such as functions to support a specific protocol.

Disadvantages
— Program complexity.

It ismore difficult to devel op applications using asynchronous mechanisms due to the separation in time and space
between operation initiation and completion. Applications may also be harder to debug due to the inverted flow
of control.

— Memory usage.

Buffer space must be committed for the duration of aread or write operation, which may continue indefinitely,
and a separate buffer is required for each concurrent operation. The Reactor pattern, on the other hand, does not
require buffer space until a socket is ready for reading or writing.

References

[POSAZ2] D. Schmidt et al, Pattern Oriented Software Architecture, Volume 2. Wiley, 2000.

Threads and Boost.Asio

Thread Safety

In general, it is safe to make concurrent use of distinct objects, but unsafe to make concurrent use of a single object. However, types
suchasi o_servi ce provide astronger guarantee that it is safe to use a single object concurrently.

Thread Pools

Multiple threads may call i o_ser vi ce: : run() to set up apool of threads from which completion handlers may be invoked. This
approach may also be used withi o_ser vi ce: : post () to use ameansto perform any computational tasks across a thread pool.

Note that al threads that have joined ani o_ser vi ce's pool are considered equivalent, and thei o_ser vi ce may distribute work
across them in an arbitrary fashion.

Internal Threads

Theimplementation of thislibrary for aparticular platform may make use of one or more internal threads to emulate asynchronicity.
Asfar as possible, these threads must be invisible to the library user. In particular, the threads:

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

e must not call the user's code directly; and

e must block al signals.

This approach is complemented by the following guarantee:

 Asynchronous completion handlers will only be called from threads that are currently callingi o_servi ce: : run().
Consequently, it isthe library user's responsibility to create and manage all threads to which the notifications will be delivered.
The reasons for this approach include:

e By only calingio_service::run() from asingle thread, the user's code can avoid the development complexity associated
with synchronisation. For example, alibrary user can implement scalable servers that are single-threaded (from the user's point
of view).

» A library user may need to perform initialisation in athread shortly after the thread starts and before any other application code
is executed. For example, users of Microsoft's COM must call Col ni ti al i zeEx before any other COM operations can be called
from that thread.

» Thelibrary interfaceis decoupled from interfaces for thread creation and management, and permits implementations on platforms
where threads are not available.

See Also

i0_service.
Strands: Use Threads Without Explicit Locking

A strand is defined asastrictly sequential invocation of event handlers (i.e. no concurrent invocation). Use of strands allows execution
of code in amultithreaded program without the need for explicit locking (e.g. using mutexes).

Strands may be either implicit or explicit, asillustrated by the following alternative approaches:

» Cadling io_service::run() from only one thread means all event handlers execute in an implicit strand, due to the io_service's
guarantee that handlers are only invoked from inside run().

» Wherethereisasingle chain of asynchronous operations associated with a connection (e.g. in ahalf duplex protocol implement-
ation like HTTP) thereis no possibility of concurrent execution of the handlers. Thisis an implicit strand.

» An explicit strand is an instance of i o_service: : strand. All event handler function objects need to be wrapped using
i o_service::strand::w ap() or otherwise posted/dispatched through thei o_ser vi ce: : st rand object.

In the case of composed asynchronous operations, such asasync_r ead() orasync_read_unti |l (), if acompletion handler goes
through a strand, then all intermediate handlers should a so go through the same strand. Thisis needed to ensure thread safe access
for any objects that are shared between the caller and the composed operation (in the case of async_r ead() it'sthe socket, which
the caller can close() to cancel the operation). Thisis done by having hook functions for all intermediate handlers which forward the
callsto the customisable hook associated with the final handler:

struct my_handl er

{
void operator()() { ... }
}s

tenpl at e<cl ass F>
voi d asi o_handl er _i nvoke(F f, ny_handl er*)
{

/1 Do custominvocation here.

/'l Default inplenentation calls f();

}

10

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

Thei o_service: :strand: : w ap() function createsanew completion handler that definesasi o_handl er _i nvoke so that the
function object is executed through the strand.

See Also

io_service::strand, tutorial Timer.5, HTTP server 3 example.

Buffers

Fundamentally, 1/0 involves the transfer of data to and from contiguous regions of memory, called buffers. These buffers can be
simply expressed as a tuple consisting of a pointer and a size in bytes. However, to alow the development of efficient network ap-
plications, Boost.Asio includes support for scatter-gather operations. These operations involve one or more buffers:

A scatter-read receives datainto multiple buffers.
* A gather-write transmits multiple buffers.

Therefore we require an abstraction to represent a collection of buffers. The approach used in Boost.Asio isto define atype (actually
two types) to represent a single buffer. These can be stored in a container, which may be passed to the scatter-gather operations.

In addition to specifying buffers as a pointer and size in bytes, Boost.Asio makes a distinction between modifiable memory (called
mutable) and non-modifiable memory (where the latter is created from the storage for a const-qualified variable). These two types
could therefore be defined as follows:

typedef std::pair<void*, std::size_t> nmutable_buffer;
typedef std::pair<const void*, std::size_t> const_buffer;

Here, amutable_buffer would be convertible to a const_buffer, but conversion in the opposite direction is not valid.

However, Boost.Asio does not use the above definitions as-is, but instead definestwo classes: mut abl e_buf f er andconst _buffer.
The goal of theseis to provide an opague representation of contiguous memory, where:

» Typesbehave as std::pair would in conversions. That is, anut abl e_buf f er isconvertibleto aconst _buf f er, but the opposite
conversion is disallowed.

» Thereis protection against buffer overruns. Given a buffer instance, a user can only create another buffer representing the same
range of memory or asub-range of it. To provide further safety, thelibrary al so includes mechanismsfor automatically determining
the size of a buffer from an array, boost : : array or st d: : vect or of POD elements, or fromast d: : stri ng.

» Type safety violations must be explicitly requested using thebuf f er _cast function. In general an application should never need
to dothis, but it is required by the library implementation to pass the raw memory to the underlying operating system functions.

Finally, multiple buffers can be passed to scatter-gather operations (such as read() or write()) by putting the buffer objects into a
container. The Mut abl eBuf f er Sequence and Const Buf f er Sequence concepts have been defined so that containers such as
std::vector,std::list,std::vector orboost::array canbeused.

Streambuf for Integration with lostreams

Theclasshoost : : asi o: : basi c_st reanbuf isderivedfromst d: : basi c_st r eanbuf toassociate theinput sequence and output
seguence with one or more objects of some character array type, whose elements store arbitrary values. These character array objects
areinternal to the streambuf object, but direct accessto the array elementsis provided to permit them to be used with I/O operations,
such as the send or receive operations of a socket:

» The input sequence of the streambuf is accessible via the data() member function. The return type of this function meets the
Const Buf f er Sequence requirements.

» The output sequence of the streambuf is accessible viathe prepare() member function. The return type of this function meets the
Mut abl eBuf f er Sequence reguirements.

» Dataistransferred from thefront of the output sequenceto the back of theinput sequence by calling the commit() member function.

11

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

» Dataisremoved from the front of the input sequence by calling the consume() member function.

The streambuf constructor accepts asi ze_t argument specifying the maximum of the sum of the sizes of the input sequence and
output sequence. Any operation that would, if successful, grow theinternal databeyond thislimit will throw ast d: : | engt h_err or
exception.

Bytewise Traversal of Buffer Sequences

Thebuf f ers_i t er at or <> class template allows buffer sequences (i.e. types meeting Mut abl eBuf f er Sequence or Const Buf -
f er Sequence requirements) to be traversed asthough they were a contiguous sequence of bytes. Hel per functions called buffers be-
gin() and buffers_end() are also provided, where the buffers_iterator<> template parameter is automatically deduced.

Asan example, to read asingle line from a socket and into ast d: : st ri ng, you may write:

boost : : asi 0: : streanbuf sb;

std::size_t n = boost::asio::read_until (sock, sb, "\n");
boost::asio::streanbuf::const_buffers_type bufs = sh.data();
std::string line(

boost: :asio:: buffers_begin(bufs),

boost::asio:: buffers_begin(bufs) + n);

Buffer Debugging

Some standard library implementations, such as the one that ships with Microsoft Visual C++ 8.0 and later, provide afeature called
iterator debugging. What this means is that the validity of iterators is checked at runtime. If a program tries to use an iterator that
has been invalidated, an assertion will be triggered. For example:

std::vector<int> v(1)

std::vector<int> :iterator i = v.begin();
v.clear(); // invalidates iterators
*i = 0; /I assertion!

Boost.Asio takes advantage of this feature to add buffer debugging. Consider the following code:

voi d dont _do_this()
{

std::string nmsg = "Hello, world!";
boost: :asio::async_wite(sock, boost::asio::buffer(msg), ny_handler);

}

When you call an asynchronous read or write you need to ensure that the buffers for the operation are valid until the completion
handler is caled. In the above example, the buffer isthe st d: : st ri ng variable nsg. This variable is on the stack, and so it goes
out of scope before the asynchronous operation completes. If you're lucky then the application will crash, but random failures are
more likely.

When buffer debugging is enabled, Boost.Asio stores an iterator into the string until the asynchronous operation completes, and then
dereferencesit to check its validity. In the above example you would observe an assertion failure just before Boost.Asio triesto call
the completion handler.

Thisfeatureisautomatically made available for Microsoft Visual Studio 8.0 or later and for GCC when _GLI BCXX_DEBUGI s defined.
There is a performance cost to this checking, so buffer debugging is only enabled in debug builds. For other compilers it may be
enabled by defining BOOST_ASI O ENABLE BUFFER DEBUGAE NG. It can aso be explicitly disabled by defining
BOOST_ASI O DI SABLE_BUFFER_DEBUGG NG.

See Also

buffer, buffers_begin, buffers_end, buffers_iterator, const_buffer, const_buffers 1, mutable _buffer, mutable buffers 1, streambuf,
ConstBufferSequence, MutableBufferSequence, buffers example (C++03), buffers example (c++11).

12

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Streams, Short Reads and Short Writes

Many 1/0 objects in Boost.Asio are stream-oriented. This means that:

» There are no message boundaries. The data being transferred is a continuous sequence of bytes.

» Read or write operations may transfer fewer bytes than requested. Thisis referred to as a short read or short write.

Objects that provide stream-oriented |/O model one or more of the following type requirements:

* SyncReadSt r eam where synchronous read operations are performed using a member function called r ead_sone() .

* AsyncReadSt r eam where asynchronous read operations are performed using amember function called async_read_sone() .
* SyncW it eSt r eam where synchronous write operations are performed using a member function called wri t e_sone() .

* AsyncWi t eSt r eam where synchronouswrite operationsare performed using amember function calledasync_wri t e_sone() .

Examples of stream-oriented 1/O objects include i p: : t cp: : socket, ssl : : streanm<>, posi x: : stream descri ptor, wi n-
dows: : st ream handl e, efc.

Programs typically want to transfer an exact number of bytes. When a short read or short write occurs the program must restart the
operation, and continue to do so until the required number of bytes has been transferred. Boost.Asio provides generic functions that
do thisautomatically: read() , async_read(),wite() andasync_wite().

Why EOF is an Error

e Theend of astream can causer ead, async_read,read_until orasync_read_unti | functionsto violatetheir contract. E.g.
aread of N bytes may finish early due to EOF.

» An EOF error may be used to distinguish the end of a stream from a successful read of size 0.
See Also

async_read(), async_write(), read(), write(), AsyncReadStream, AsyncWriteStream, SyncReadStream, SyncWriteStream.

Reactor-Style Operations

Sometimes a program must be integrated with a third-party library that wants to perform the 1/0 operations itself. To facilitate this,
Boost.Asioincludesanul | _buf f er s typethat can be used with both read and write operations. A nul | _buf f er s operation doesn't
return until the I/O object is "ready" to perform the operation.

As an example, to perform a non-blocking read something like the following may be used:

i p::tcp::socket socket(my_io_service);
socket . non_bl ocki ng(true);
socket . async_read_sonme(nul | _buffers(), read_handler);

voi d read_handl er (boost::system :error_code ec)
{
if (lec)
{
std::vector<char> buf(socket.avail able());
socket . read_sone(buffer(buf));
}
}

These operations are supported for sockets on al platforms, and for the POSIX stream-oriented descriptor classes.

13

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

See Also

null_buffers, basic_socket::non_blocking(), basic_socket::native_non_blocking(), nonblocking example.

Line-Based Operations

Many commonly-used internet protocols are line-based, which means that they have protocol elements that are delimited by the
character sequence "\ r\ n". Examples include HTTP, SMTP and FTP. To more easily permit the implementation of line-based
protocols, aswell asother protocolsthat use delimiters, Boost.Asio includesthefunctionsr ead_unti | () andasync_read_until ().

Thefollowing exampleillustrates the use of async_read_unti | () inan HTTP server, to receive thefirst line of an HTTP request
from aclient:

class http_connection

{

void start()

{
boost::asio::async_read until (socket , data_, "\r\n",
boost: : bi nd(&http_connection::handl e_request _line, this, _1));
}
voi d handl e_request _|ine(boost::system:error_code ec)
{
if (lec)
{
std::string nethod, uri, version;
char spl, sp2, cr, If;
std::istreamis(&data);
is.unsetf(std::ios_base:: skipws);
is >> nethod >> spl >> uri >> sp2 >> version >> cr >> |f;
}
}

boost::asio::ip::tcp::socket socket_;
boost::asio::streanbuf data_;

The st r eanbuf data member serves as a place to store the data that has been read from the socket before it is searched for the de-
limiter. It is important to remember that there may be additional data after the delimiter. This surplus data should be I€ft in the
st reanmbuf so that it may beinspected by a subsequent call toread_unti | () orasync_read_until ().

The delimiters may be specified as a single char, a std::string or a boost::regex. The read_until () and
async_read_until () functions also include overloads that accept a user-defined function object called a match condition. For
example, to read data into a streambuf until whitespace is encountered:

14

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

typedef boost::asio::buffers_iterator<
boost::asio::streanbuf::const_buffers_type> iterator;

std::pair<iterator, bool >
mat ch_whi t espace(iterator begin, iterator end)
{

iterator i = begin;

while (i != end)

if (std::isspace(*i++))
return std::nmake_pair(i, true);
return std::nmake_pair(i, false);

}

boost: : asio::streanbuf b;
boost::asio::read_until (s, b, match_whitespace);

To read data into a streambuf until a matching character is found:

cl ass match_char
{
publi c:
explicit match_char(char ¢) : c_(c) {}

tenpl ate <typenane |terator>
std::pair<lterator, bool> operator()(
Iterator begin, lterator end) const

{
Iterator i = begin;
while (i !'= end)
if (c_ == *i++)

return std::make_pair(i, true);
return std::make_pair(i, false);

}

private:
char c_;
s
namespace boost { nanmespace asio {
template <> struct is_match_condition<match_char>
public boost::true_type {};
} } /1 namespace boost::asio
boost: : asio:: streanbuf b;
boost::asio::read until (s, b, match _char('a'));

Thei s_mat ch_condi t i on<> type trait automatically evaluates to true for functions, and for function objects with anested r es-
ul t _t ype typedef. For other types the trait must be explicitly specialised, as shown above.

See Also

async_read_until(), is_match_condition, read_until(), streambuf, HTTP client example.

Custom Memory Allocation

Many asynchronous operations need to allocate an object to store state associated with the operation. For example, aWin32 imple-
mentation needs OVERLAPPED-derived objects to pass to Win32 API functions.

Furthermore, programstypically contain easily identifiable chains of asynchronous operations. A half duplex protocol implementation
(e.g. an HTTP server) would have asingle chain of operations per client (receives followed by sends). A full duplex protocol imple-

15

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

mentation would have two chains executing in parallel. Programs should be able to leverage this knowledge to reuse memory for
all asynchronous operationsin a chain.

Given a copy of a user-defined Handl er object h, if the implementation needs to allocate memory associated with that handler it
will execute the code:

voi d* pointer = asio_handl er_allocate(size, &h);
Similarly, to deallocate the memory it will execute:

asi o_handl er _deal | ocat e(poi nter, size, &h);

These functions are located using argument-dependent lookup. The implementation provides default implementations of the above
functionsin the asi o namespace:

voi d* asio_handl er_all ocate(size_t, ...);
voi d asi o_handl er _deal | ocate(voi d*, size_t, ...);

which areimplemented interms of : : operator new() and: : operator del et e() respectively.

The implementation guarantees that the deallocation will occur before the associated handler is invoked, which means the memory
isready to be reused for any new asynchronous operations started by the handler.

The custom memory allocation functions may be called from any user-created thread that is calling a library function. The imple-
mentation guarantees that, for the asynchronous operations included the library, the implementation will not make concurrent calls
to the memory allocation functions for that handler. The implementation will insert appropriate memory barriers to ensure correct
memory visibility should allocation functions need to be called from different threads.

See Also

asio_handler_allocate, asio_handler_deallocate, custom memory allocation example (C++03), custom memory allocation example
(C++11).

Handler Tracking

To aid in debugging asynchronous programs, Boost.Asio provides support for handler tracking. When enabled by defining
BOOST_ASI O ENABLE_HANDLER TRACKI NG, Boost.Asio writes debugging output to the standard error stream. The output records
asynchronous operations and the rel ationships between their handlers.

This feature is useful when debugging and you need to know how your asynchronous operations are chained together, or what the
pending asynchronous operations are. As an illustration, here is the output when you run the HTTP Server example, handle asingle
request, then shut down via Ctrl+C:

16

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

@si
@si
@si
@si
@si
@si
@si
@si
@si
@si
@si
@si
@si
@si
@si
@si
@si
@si
@si

Each lineis of the form:

o] 1298160085.
o] 1298160085.
o| 1298160085.
0| 1298160118.
0| 1298160118.
0| 1298160118.
0| 1298160118.
0| 1298160118.
0| 1298160118.
0| 1298160118.
0| 1298160118.
o| 1298160118.
0| 1298160118.
o] 1298160122.
o] 1298160122.
o| 1298160122.
o| 1298160122.
0| 1298160122.
o] 1298160122.

070638| 0* 1| si gnal _set @x7f f f 50528f 40. async_wai t
070888| 0* 2| socket @x7f f f 50528f 60. async_accept
070913| 0| resol ver @x7f f f 50528e28. cance
075438| >2| ec=asi 0. system 0

075472| 2* 3| socket @xb39048. async_r ecei ve

075507| 2* 4| socket @x7f f f 50528f 60. async_accept
075527| <2|

075540]| >3| ec=asi 0. system 0, byt es_transferred=122
075731| 3*5| socket @xb39048. async_send

075778| <3|

075793| >5| ec=asi 0. system 0, byt es_transferred=156
075831]| 5| socket @xb39048. cl ose

075855| <5|

827317| >1| ec=asi 0. system 0, si gnal _nunber =2
827333| 1| socket @x7f f f 50528f 60. cl ose

827359| <1

827370| >4| ec=asi 0. system 125

827378| <4|

827394 0| si gnal _set @x7f f f 50528f 40. cance

<t ag>| <t i mest anp>| <act i on>| <descri pti on>

The <t ag> isaways @si o, and is used to identify and extract the handler tracking messages from the program outpui.

The <t i mest anp> is seconds and microseconds from 1 Jan 1970 UTC.

The <act i on> takes one of the following forms:

>N

<n

'n

~Nn

n*m

Wherethe<descri pt i on> showsasynchronousor asynchronous operation, theformat is<obj ect - t ype>@«poi nt er >. <oper -

The program entered the handler number n. The <descr i pt i on> shows the arguments to the handler.

The program left handler number n.

The program left handler number n due to an exception.

The handler number n was destroyed without having been invoked. Thisis usually the case for any unfinished asynchronous

operationswhen thei o_ser vi ce isdestroyed.

The handler number n created anew asynchronous operation with completion handler number m The<descri pt i on> shows

what asynchronous operation was started.

The handler number n performed some other operation. The <descr i pt i on> shows what function was called. Currently
only cl ose() andcancel () operations are logged, as these may affect the state of pending asynchronous operations.

at i on>. For handler entry, it shows a comma-separated list of arguments and their values.

As shown above, Each handler is assigned a numeric identifier. Where the handler tracking output shows a handler number of 0, it

means that the action was performed outside of any handler.

Visual Representations

The handler tracking output may be post-processed using theincluded handl er vi z. pl tool to create avisual representation of the

handlers (requires the GraphViz tool dot).

Stackless Coroutines

Thecor out i ne class provides support for stackless coroutines. Stackless coroutines enable programs to implement asynchronous

logic in a synchronous manner, with minimal overhead, as shown in the following example:

17

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

struct session : boost::asio::coroutine
{
boost: :shared_ptr<tcp::socket> socket_;
boost: :shared_ptr<std::vector<char> > buffer_;

sessi on(boost : : shared_ptr<tcp::socket> socket)
socket _(socket),
buffer_(new std::vector<char>(1024))

{
}
voi d operator()(boost::system:error_code ec = boost::system:error_code(), std::size_t n =0)
{
if (lec) reenter (this)
{
for (;7)
{
yi el d socket ->async_read_sone(boost::asio::buffer(*buffer_), *this)
yi el d boost::asio::async_wite(*socket_, boost::asio::buffer(*buffer_, n), *this)
}
}
}

I

Thecor out i ne classisused in conjunction with the pseudo-keywordsr eent er, yi el d andf or k. These are preprocessor macros,
and are implemented in terms of aswi t ch statement using atechnique similar to Duff's Device. The cor out i ne class's document-
ation provides a complete description of these pseudo-keywords.

See Also
coroutine, HTTP Server 4 example, Stackful Coroutines.
Stackful Coroutines

The spawn() function is a high-level wrapper for running stackful coroutines. It is based on the Boost.Coroutine library. The
spawn() function enables programsto implement asynchronous logic in asynchronous manner, as shown in the following example:

boost: :asio::spawn(nmy_strand, do_echo);

I
voi d do_echo(boost: :asio::yield _context yield)
{
try
{
char datal 128];
for (;7)
{
std::size_t length =
ny_socket . async_read_song(
boost::asio::buffer(data), yield);
boost::asio::async_wite(ny_socket,
boost::asio::buffer(data, length), yield);
}
}
catch (std::exception& e)
{
I
}
}

18

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

The first argument to spawn() may beastrand, i o_servi ce, or completion handler. This argument determines the context in
which the coroutine is permitted to execute. For example, aserver's per-client object may consist of multiple coroutines; they should
all run on the same st r and so that no explicit synchronisation is required.

The second argument is a function object with signature:

voi d coroutine(boost::asio::yield context yield);

that specifies the code to be run as part of the coroutine. The parameter yi el d may be passed to an asynchronous operation in place
of the completion handler, asin:

std::size_t length =
ny_socket . async_r ead_somg(
boost::asio::buffer(data), yield);

This starts the asynchronous operation and suspends the coroutine. The coroutine will be resumed automatical ly when the asynchronous
operation completes.

Where an asynchronous operation's handler signature has the form:
voi d handl er (boost::system :error_code ec, result_type result);

theinitiating function returnstheresult_type. Intheasync_r ead_sone example above, thisissi ze_t . If the asynchronous operation
fals, theerror_code isconverted into asyst em err or exception and thrown.

Where a handler signature has the form:
voi d handl er (boost: : system :error_code ec);

the initiating function returnsvoi d. As above, an error is passed back to the coroutine asasyst em err or exception.

To collect the error _code from an operation, rather than have it throw an exception, associate the output variable with the
yi el d_cont ext asfollows:

boost::system :error_code ec;
std::size_t length =
ny_socket . async_read_song(
boost::asio::buffer(data), yield[ec]);

Note: if spawn() isused with a custom completion handler of type Handl er , the function object signature is actually:
voi d coroutine(boost: :asio::basic_yield_context<Handl er> yield);

See Also
spawn, yield_context, basic_yield context, Spawn example (C++03), Spawn example (C++11), Stackless Coroutines.
Networking

* TCP, UDPand ICMP

» Support for Other Protocols

Socket lostreams

The BSD Socket APl and Boost.Asio

19

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

TCP, UDP and ICMP

Boost.Asio provides off-the-shelf support for the internet protocols TCP, UDP and ICMP.
TCP Clients

Hostname resolution is performed using aresolver, where host and service names are looked up and converted into one or more en-
dpoints:

i p::tcp::resolver resolver(my_io_service)
i p::tcp::resolver::query query("ww.boost.org", "http")
ip::tcp::resolver::iterator iter = resolver.resol ve(query)
ip::tcp::resolver::iterator end; // End marker
while (iter !'= end)
{

i p::tcp::endpoint endpoint = *iter++

std::cout << endpoint << std::endl

}

Thelist of endpoints obtained above could contain both |Pv4 and | Pv6 endpoints, so aprogram should try each of them until it finds
one that works. This keeps the client program independent of a specific IP version.

To simplify the development of protocol-independent programs, TCP clients may establish connections using the free functions
connect() and async_connect(). These operations try each endpoint in alist until the socket is successfully connected. For example,
asingle cal:

i p::tcp::socket socket(my_io_service);
boost: : asi o:: connect (socket, resolver.resolve(query));

will synchronously try all endpoints until one is successfully connected. Similarly, an asynchronous connect may be performed by
writing:

boost: : asi o::async_connect (socket _, iter,
boost: : bi nd(&client:: handl e_connect, this,
boost::asio::placeholders::error));

I
voi d handl e_connect (const error_code& error)
{
if (lerror)
{
/1 Start read or write operations.
}
el se
{
/1 Handle error.
}
}

When a specific endpoint is available, a socket can be created and connected:

i p::tcp::socket socket(my_io_service);
socket . connect (endpoi nt) ;

Data may be read from or written to a connected TCP socket using the receive(), async_receive(), send() or async_send() member
functions. However, as these could result in short writes or reads, an application will typically use the following operations instead:
read(), async_read(), write() and async_write().

20

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

TCP Servers

A program uses an acceptor to accept incoming TCP connections:

i p::tcp::acceptor acceptor(my_io_service, ny_endpoint);

i p::tcp::socket socket(my_io_service);
acceptor. accept (socket) ;

After a socket has been successfully accepted, it may be read from or written to asillustrated for TCP clients above.
UDP

UDP hostname resolution is also performed using aresolver:

i p::udp::resol ver resolver(my_io_service);
i p::udp::resolver::query query("local host", "daytine");
ip::udp::resolver::iterator iter = resolver.resol ve(query);

A UDP socket is typically bound to alocal endpoint. The following code will create an IP version 4 UDP socket and bind it to the
"any" address on port 12345:

i p::udp:: endpoint endpoint (ip::udp::v4(), 12345);
i p::udp::socket socket(my_io_service, endpoint);

Data may be read from or written to an unconnected UDP socket using the receive from(), async_receive from(), send_to() or
async_send_to() member functions. For aconnected UDP socket, use the receive(), async_receive(), send() or async_send() member
functions.

ICMP

Aswith TCP and UDP, ICMP hostname resolution is performed using a resolver:

i p::icnp::resolver resolver(ny_io_service);
i p::icnp::resolver::query query("local host", "");
ip::icnp::resolver::iterator iter = resolver.resol ve(query);

An ICMP socket may be bound to alocal endpoint. The following code will create an IP version 6 ICMP socket and bind it to the
"any" address:

i p::icnp::endpoint endpoint(ip::icnmp::v6(), 0);
i p::icnp::socket socket(ny_io_service, endpoint);

The port number is not used for ICMP.

Data may be read from or written to an unconnected ICMP socket using the receive from(), async_receive from(), send_to() or
async_send_to() member functions.

See Also

ip::tep, ip::udp, ip::icmp, daytime protocol tutorials, ICMP ping example.

21

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

Support for Other Protocols

Support for other socket protocols (such as Bluetooth or IRCOMM sockets) can be added by implementing the protocol type require-
ments. However, in many cases these protocols may also be used with Boost.Asio's generic protocol support. For this, Boost.Asio
provides the following four classes:

* generic::datagram protoco

* generic::raw_protoco

* generi c::seq_packet _protocol
* generic::stream protoco

These classesimplement the protocol type requirements, but allow the user to specify the addressfamily (e.g. AF_I NET) and protocol
type (e.g. | PPROTO_TCP) at runtime. For example:

boost::asio::generic::streamprotocol::socket ny_socket(ny_io_service);
ny_socket . open(boost: : asi o:: generic::stream protocol (AF_I NET, | PPROTO TCP))

An endpoint classtemplate, boost : : asi o: : generi c: : basi c_endpoi nt, isincluded to support these protocol classes. Thisen-
dpoint can hold any other endpoint type, provided its native representation fits into a sockaddr _st or age object. This class will
also convert from other types that implement the endpoint type requirements:

boost::asio::ip::tcp::endpoint ny_endpointl = ... ;
boost : : asi 0::generic::streamprotocol::endpoint my_endpoi nt 2(my_endpointl);

The conversion isimplicit, so as to support the following use cases:

boost: :asio::generic::streamprotocol::socket ny_socket(ny_io_service);
boost::asio::ip::tcp::endpoint ny_endpoint = ...
ny_socket . connect (ny_endpoi nt) ;

C++11 Move Construction

When using C++11, it is possible to perform move construction from a socket (or acceptor) object to convert to the more generic
protocol's socket (or acceptor) type. If the protocol conversion isvalid:

Protocol 1 pl =
Protocol 2 p2(pl)

then the corresponding socket conversion is allowed:

Protocol 1: : socket ny_socket 1(my_i o_service);

Prot ocol 2: : socket mny_socket 2(std:: move(mnmy_socketl));
For example, one possible conversion is from a TCP socket to a generic stream-oriented socket:

boost::asio::ip::tcp::socket ny_socket1l(my_io_service);

boost: : asi 0::generic::streamprotocol::socket nmy_socket?2(std::nmove(mnmy_socketl));

These conversions are also available for move-assignment.

22

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

These conversions are not limited to the above generic protocol classes. User-defined protocols may take advantage of this feature
by similarly ensuring the conversion from Pr ot ocol 1 to Pr ot ocol 2 isvalid, as above.

Accepting Generic Sockets

As a convenience, a socket acceptor's accept () and async_accept () functions can directly accept into a different protocol's
socket type, provided the corresponding protocol conversion isvalid. For example, the following is supported because the protocol
boost : : asi o: ;i p::tcpisconvertibleto boost : : asi o: : generi c: : stream protocol :

boost::asio::ip::tcp::acceptor my_acceptor(ny_io_service);

boost::asio::generic::streamprotocol::socket ny_socket(ny_io_service);
ny_accept or. accept (my_socket);

See Also

generic: : datagram protocol ,generic::raw_protocol ,generic::seq_packet _protocol ,generic::stream pro-
t ocol , protocol type requirements.

Socket lostreams

Boost.Asio includes classes that implement iostreams on top of sockets. These hide away the complexities associated with endpoint
resolution, protocol independence, etc. To create a connection one might simply write:

i p::tcp::iostream strean("ww. boost.org", "http");
if (!stream
{

// Can't connect.

}
Theiostream class can aso be used in conjunction with an acceptor to create simple servers. For example:

i o_service ios;

i p::tcp:: endpoint endpoint (tcp::v4(), 80);
i p::tcp::acceptor acceptor(ios, endpoint);

for (57)

{
ip::tcp::iostream stream
acceptor. accept (*stream rdbuf());

Timeouts may be set by calling expi res_at () orexpires_from now() toestablish adeadline. Any socket operationsthat occur
past the deadline will put the iostream into a"bad" state.

For example, asimple client program like this:

ip::tcp::iostream stream

stream expires_from now boost: : posix_tine::seconds(60));
stream connect ("wwv. boost. org", "http");

stream << "CGET /LICENSE 1 _0.txt HTTP/1.0\r\n";

stream << "Host: www. boost.org\r\n";

stream << "Accept: */*\r\n";

stream << "Connection: close\r\n\r\n";

stream fl ush();

std::cout << stream rdbuf();

23

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

will fail if al the socket operations combined take longer than 60 seconds.

If an error does occur, theiostream'ser r or () member function may be used to retrieve the error code from the most recent system
cal:

if (!stream
{

}

std::cout << "Error: " << streamerror().nessage() << "\n";

See Also
ip::tcp::iostream, basic_socket_iostream, iostreams examples.
Notes

These iostream templates only support char , not wehar _t , and do not perform any code conversion.

The BSD Socket APl and Boost.Asio

The Boost.Asio library includes alow-level socket interface based on the BSD socket API, which is widely implemented and sup-
ported by extensive literature. It is also used as the basis for networking APIsin other languages, like Java. This low-level interface
is designed to support the development of efficient and scalable applications. For example, it permits programmers to exert finer
control over the number of system calls, avoid redundant data copying, minimise the use of resources like threads, and so on.

Unsafe and error prone aspects of the BSD socket API not included. For example, the use of i nt to represent all sockets lackstype
safety. The socket representation in Boost.Asio uses a distinct type for each protocol, eg. for TCP one would use
i p::tcp::socket,andfor UDPoneusesi p: : udp: : socket .

The following table shows the mapping between the BSD socket APl and Boost.Asio:

24

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

BSD Socket API Elements Equivalentsin Boost.Asio
socket descriptor - i nt (POSIX) or SOCKET (Windows) For TCP: ip::tcp::socket, ip::tcp::acceptor
For UDP: ip::udp::socket

basic_socket, basic_stream socket, basic_datagram socket,
basic_raw_socket

i n_addr,in6_addr ip::address, ip::address v4, ip::address v6

sockaddr _i n,sockaddr _i n6 For TCP: ip::tcp::endpoint
For UDP: ip::udp::endpoint
ip::basic_endpoint

accept () For TCP: ip::tcp::acceptor::accept()
basic_socket acceptor::accept()

bi nd() For TCP: ip::tcp::acceptor::bind(), ip::tcp::socket::bind()
For UDP: ip::udp::socket::bind()
basic_socket::bind()

cl ose() For TCP: ip::tcp::acceptor::close(), ip::tcp::socket::close()
For UDP: ip::udp::socket::close()
basic_socket::close()

connect () For TCP: ip::tcp::socket::connect()
For UDP: ip::udp::socket::connect()
basic_socket::connect()

get addri nfo(), get hostbyaddr (), get host byname(), ForTCP:ip::tcp::resolver::resolve(), ip::tcp::resolver::async re-
get namei nf o(), get ser vbyname() , get ser vbyport () solve()

For UDP: ip::udp::resolver::resolve(), ip::udp::resolver::async_re-

solve()

ip::basic_resolver::resolve(), ip::basic_resolver::async resolve()
get host name() ip::host_name()
get peer name() For TCP: ip::tcp::socket::remote_endpoint()

For UDP: ip::udp::socket::remote_endpoint()

basic_socket::remote_endpoint()

25

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

BSD Socket APl Elements

get socknane()

get sockopt ()

i net _addr(),inet_aton(),inet_pton()

i net_ntoa(),inet_ntop()

ioctl()

listen()

pol I (),select(),psel ect()

readv(),recv(),read()

recvfrom()

Equivalentsin Boost.Asio

For TCP: ip::tcp::acceptor::loca_endpoaint(), ip::tcp::socket::loc-
al_endpoint()

For UDP: ip::udp::socket::local _endpoint()
basic_socket::local_endpoint()

For TCP: ip::tcp::acceptor::get_option(), ip::tcp::socket::get_op-
tion()

For UDP: ip::udp::socket::get_option()
basic_socket::get_option()

ip::address::from_string(), ip::address v4::from_string(),
ip_address v6::from_string()

ip::address;:to_string(), ip::address v4::to_string(), ip_ad-
dress v6::to_string()

For TCP: ip::tcp::socket::io_control()
For UDP: ip::udp::socket::io_control()
basic_socket::io_control()

For TCP: ip::tcp::acceptor::listen()
basic_socket acceptor::listen()

io_service:rrun(), io_service::run_one(), io_service:poll(),
io_service::poll_one()

Note: in conjunction with asynchronous operations.

For TCP: ip::tcp::socket::read some(), ip::tcp::sock-
et::async_read_some(), ip::tcp::socket::receive(), ip::tcp::sock-
et::async_receive()

For UDP: ip::udp::socket::receive(), ip::udp::socket::async_re-
ceive()

basic_stream_socket::read some(), basic_stream_sock-
et::async read some(), basic stream socket::receive(), ba-
sic_stream_socket::async_receive(), basic_datagram_socket::re-
ceive(), basic_datagram_socket::async_receive()

For UDP: ip::udp::socket::receive from(), ip::udp::sock-
et:;:async_receive_from()

basic_datagram_socket::receive from(), basic_datagram sock-
et::async_receive_from()

26

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

BSD Socket APl Elements

send(),wite(),witev()

sendt o()

set sockopt ()

shut down()

sockat mar k()

socket ()

socket pair ()

Timers

Equivalentsin Boost.Asio

For TCP: ip:tcp::socket::write_some(), ip::tcp::sock-
et::async_write_some(), ip::tcp::socket::send(), ip::tcp::sock-
et:;:async_send()

For UDP: ip::udp::socket::send(), ip::udp::socket::async_send()

basic_stream_socket::write_some(), basic_stream_sock-
et::async_write_some(), basic_stream_socket::send(), ba-
sic_stream_socket::async_send(), basic_datagram_sock-

et::send(), basic_datagram_socket::async_send()

For UDP: ip:udp::socket::send to(), ip::udp::sock-
et::async_send_to()

basic_datagram_socket::send_to(), basic_datagram_sock-
et::async_send_to()

For TCP: ip::tcp::acceptor::set_option(), ip::tcp::socket::set_op-
tion()

For UDP: ip::udp::socket::set_option()
basic_socket::set_option()

For TCP: ip::tcp::socket::shutdown()
For UDP: ip::udp::socket::shutdown()
basic_socket::shutdown()

For TCP: ip::tcp::socket::at_mark()
basic_socket::at_mark()

For TCP: ip::tcp::acceptor::open(), ip::tcp::socket::open()
For UDP: ip::udp::socket::open()
basic_socket::open()
local::connect_pair()

Note: POSIX operating systems only.

Long running 1/0 operations will often have a deadline by which they must have completed. These deadlines may be expressed as
absolute times, but are often calculated relative to the current time.

As asimple example, to perform a synchronous wait operation on atimer using arelative time one may write;

io_service i;

deadline_tinmer t(i);

t . expi res_from now boost: : posix_tine::seconds(5));

t.wait():

27

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

More commonly, a program will perform an asynchronous wait operation on atimer:

voi d handl er (boost: :system:error_code ec) { ... }
io_service i;

deadline_timer t(i);

t. expires_fromnow boost::posix_time::mlliseconds(400));
t.async_wait (handl er);

i.run();

The deadline associated with atimer may also be obtained as arelative time:

boost: : posix_tine::tine_duration time_until _expiry
= t.expires_fromnow);

or as an absolute time to allow composition of timers:

deadline_timer t2(i);
t2.expires_at(t.expires_at() + boost::posix_tinme::seconds(30));

See Also

basic_deadline timer, deadline_timer, deadline_timer_service, timer tutorials.

Serial Ports

Boost.Asioincludes classesfor creating and manipulating serial portsin aportable manner. For example, aserial port may be opened
using:

serial _port port(my_io_service, nane);

where name is something like " coML" onWindows, and "/ dev/ tt yS0" on POSIX platforms.

Once opened, the serial port may be used as a stream. This meansthe objects can be used with any of theread(), async_read(), write(),
async_write(), read_until() or async_read_until() free functions.

The serial port implementation also includes option classes for configuring the port's baud rate, flow control type, parity, stop bits
and character size.

See Also

seria_port, serial_port_base, basic serial_port, serial_port_service, seria_port_base::baud rate, serial_port_base::flow_control,
seria_port_base::parity, serial_port_base::stop_bits, serial_port_base::character_size.

Notes
Serial ports are available on all POSIX platforms. For Windows, serial ports are only available at compile time when the 1/O com-

pletion port backend isused (which isthe default). A program may test for the macro BOOST_ASI O HAS SERI AL_PORT to determine
whether they are supported.

28

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

Signal Handling

Boost.Asio supportssignal handling using aclass called signal _set. Programs may add one or more signa sto the set, and then perform
anasync_wai t () operation. The specified handler will be called when one of the signal's occurs. The same signal number may be
registered with multiple signal_set objects, however the signal number must be used only with Boost.Asio.

voi d handl er(
const boost::system :error_code& error,
i nt signal _number)

{

if (lerror)

/1 A signal occurred.

}
}

/1 Construct a signal set registered for process term nation.
boost::asio::signal _set signals(io_service, SIANT, SIGIERM ;

/1 Start an asynchronous wait for one of the signals to occur.
signal s. async_wai t (handl er);

Signal handling also works on Windows, as the Microsoft Visual C++ runtime library maps console events like Ctrl+C to the equi-
valent signal.

See Also

signal_set, HTTP server example (C++03), HTTP server example (C++11).

POSIX-Specific Functionality

UNIX Domain Sockets
Stream-Oriented File Descriptors

Fork

UNIX Domain Sockets

Boost.Asio provides basic support UNIX domain sockets (also known as local sockets). The simplest use involves creating a pair
of connected sockets. The following code:

| ocal : : stream protocol :: socket socket1(ny_io_service);
| ocal : : stream protocol : : socket socket2(ny_io_service);
| ocal : : connect _pair(socketl, socket2);

will create apair of stream-oriented sockets. To do the same for datagram-oriented sockets, use:

| ocal : : dat agram prot ocol : : socket socket1l(my_io_service);
| ocal : : dat agram prot ocol : : socket socket2(my_i o_service);
| ocal : : connect _pair(socketl, socket2);

A UNIX domain socket server may be created by binding an acceptor to an endpoint, in much the same way as one does for aTCP
server:

29

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

counlink("/tnp/foobar"); // Renobve previous binding.

| ocal : : stream protocol :: endpoint ep("/tnp/foobar");

| ocal :: stream protocol ::acceptor acceptor(ny_io_service, ep);
| ocal : : stream protocol :: socket socket(ny_io_service);
acceptor. accept (socket) ;

A client that connectsto this server might look like:

| ocal : : stream protocol :: endpoi nt ep("/tnp/foobar");
| ocal : : stream protocol :: socket socket(ny_io_service);
socket . connect (ep) ;

Transmission of file descriptors or credentials across UNIX domain socketsis not directly supported within Boost.Asio, but may be
achieved by accessing the socket's underlying descriptor using the native_handle() member function.

See Also

local::connect_pair, local::datagram_protocol, local::datagram_protocol::endpoint, local::datagram_protocol::socket, local::stream_pro-
tocol, local::stream_protocol::acceptor, local::stream_protocol::endpoint, locdl ::stream_protocol::iostream, local::stream_protocol::sock-
et, UNIX domain sockets examples.

Notes

UNIX domain sockets are only available at compile time if supported by the target operating system. A program may test for the
macro BOOST_ASI O HAS LOCAL_SOCKETS to determine whether they are supported.

Stream-Oriented File Descriptors

Boost.Asio includes classes added to permit synchronous and asynchronous read and write operations to be performed on POSIX
file descriptors, such as pipes, standard input and output, and various devices (but not regular files).

For example, to perform read and write operations on standard input and output, the following objects may be created:

posi x: : stream descriptor in(ny_io_service, ::dup(STD N_FILENO));
posi x: : stream descriptor out(mny_io_service, ::dup(STDOUT_FILENO));

These are then used as synchronous or asynchronous read and write streams. This means the objects can be used with any of the
read(), async_read(), write(), async_write(), read_until() or async_read_until() free functions.

See Also

posix::stream_descriptor, posix::basic_stream_descriptor, posix::stream_descriptor_service, Chat example (C++03), Chat example
(C++11).

Notes

POSIX stream descriptors are only available at compile time if supported by the target operating system. A program may test for
the macro BOOST_ASI O HAS POSI X_STREAM DESCRI PTOR to determine whether they are supported.

Fork

Boost.Asio supports programs that utilise the f or k() system call. Provided the program callsi o_servi ce. notify_fork() at
the appropriate times, Boost.Asio will recreate any internal file descriptors (such as the "self-pipe trick" descriptor used for waking
up areactor). The notification is usually performed as follows:

30

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

io_service_.notify fork(boost::asio::io_service::fork_prepare);

if (fork() == 0)
{

io_service_.notify fork(boost::asio::io_service::fork_child);
}
el se
{

io_service_.notify fork(boost::asio::io_service::fork_parent);
}

User-defined services can also be madefork-aware by overridingthei o_ser vi ce: : servi ce: : fork_servi ce() virtua function.

Note that any file descriptors accessible via Boost.Asio's public APl (e.g. the descriptors underlying basi c_socket <>,
posi x: : stream descri pt or, etc.) are not altered during afork. It is the program's responsibility to manage these as required.

See Also

io_service::notify_fork(), io_service::fork_event, io_service::service::fork_service(), Fork examples.

Windows-Specific Functionality

Stream-Oriented HANDLEs
Random-Access HANDLEs

Object HANDLEs

Stream-Oriented HANDLES

Boost.Asio contains classes to allow asynchronous read and write operations to be performed on Windows HANDL ES, such as named
pipes.

For example, to perform asynchronous operations on a named pipe, the following object may be created:

HANDLE handle = ::CreateFile(...);
wi ndows: : stream handl e pi pe(ny_i o_service, handle);

These are then used as synchronous or asynchronous read and write streams. This means the objects can be used with any of the
read(), async_read(), write(), async_write(), read_until() or async_read_until() free functions.

Thekernel object referred to by the HANDL E must support use with 1/0 compl etion ports (which means that named pi pes are supported,
but anonymous pipes and consol e streams are not).

See Also
windows::stream_handle, windows::basic_stream_handle, windows::stream_handle_service.
Notes

Windows stream HANDLES are only available at compile time when targeting Windows and only when the I/O completion port
backend isused (whichisthe default). A program may test for the macro BOOST_ASI O HAS W NDOWS_STREAM HANDL E to determine
whether they are supported.

Random-Access HANDLEs

Boost.Asio provides Windows-specific classes that permit asynchronous read and write operations to be performed on HANDLES
that refer to regular files.

31

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

For example, to perform asynchronous operations on afile the following object may be created:

HANDLE handle = ::CreateFile(...);
wi ndows: : random access_handl e file(ny_io_service, handle);

Datamay beread from or written to the handle using one of ther ead_somne_at () ,async_read_sone_at (),wite_sone_at ()

or async_write_some_at () member functions. However, like the equivalent functions (r ead_sone(), etc.) on streams, these
functionsare only required to transfer one or more bytesin asingle operation. Thereforefreefunctionscaledread at(), async read at(),
write_at() and async_write_at() have been created to repeatedly call the corresponding * _some_at () function until all data has
been transferred.

See Also
windows:.:random_access handle, windows::basic_random_access _handle, windows::random_access handle_service.
Notes

Windows random-access HANDLES are only available at compile time when targeting Windows and only when the 1/0O completion
port backend is used (which isthe default). A program may test for the macro BOOST_ASI O HAS W NDOAS_RANDOM ACCESS HANDLE
to determine whether they are supported.

Object HANDLES

Boost.Asio provides Windows-specific classes that permit asynchronous wait operations to be performed on HANDLES to kernel
objects of the following types:

» Change notification

» Console input

» Event

* Memory resource notification
* Process

* Semaphore

* Thread

» Waitable timer

For example, to perform asynchronous operations on an event, the following object may be created:

HANDLE handle = ::CreateEvent(...);
wi ndows: : obj ect _handle file(ny_io_service, handle);

Thewai t () andasync_wai t () member functions may then be used to wait until the kernel object is signalled.
See Also

windows::object_handle, windows::basic_object_handle, windows::object_handle service.

Notes

Windows object HANDLES are only available at compile time when targeting Windows. Programs may test for the macro
BOOST_ASI O HAS_ W NDOWS_OBJECT_HANDLE to determine whether they are supported.

32

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

SSL

Boost.Asio contains classes and class templates for basic SSL support. These classes allow encrypted communication to be layered
on top of an existing stream, such as a TCP socket.

Before creating an encrypted stream, an application must construct an SSL context object. This object is used to set SSL options
such as verification mode, certificate files, and so on. As an illustration, client-side initialisation may look something like:

ssl::context ctx(ssl::context::sslv23);
ctx.set_verify_node(ssl::verify_peer);
ctx.load_verify file("ca.peni);

To use SSL with a TCP socket, one may write:
ssl::streanxip::tcp::socket> ssl_sock(my_io_service, ctx);

To perform socket-specific operations, such as establishing an outbound connection or accepting an incoming one, the underlying
socket must first be obtained using the ssl : : st r eamtemplate's| owest _| ayer () member function:

i p::tcp::socket::lowest_|ayer _type& sock = ssl_sock. | owest |ayer();
sock. connect (my_endpoi nt) ;

In some use cases the underlying stream object will need to have alonger lifetime than the SSL stream, in which case the template
parameter should be a reference to the stream type:

i p::tcp::socket sock(ny_io_service);
ssl::streanxip::tcp::socket & ssl_sock(sock, ctx);

SSL handshaking must be performed prior to transmitting or receiving dataover an encrypted connection. Thisisaccomplished using
thessl : : st r eamtemplate's handshake() or async_handshake() member functions.

Once connected, SSL stream objects are used as synchronous or asynchronous read and write streams. This means the objects can
be used with any of the read(), async_read(), write(), async_write(), read_until() or async_read_until() free functions.

Certificate Verification

Boost.Asio provides various methods for configuring the way SSL certificates are verified:
o sdl::context::set_default verify paths()

sdl::context::set_verify _mode()
sdl::context::set_verify callback()
sdl::context::load verify_file()
ssl::stream::set_verify_mode()

o sdlistream::set verify callback()

To simplify use cases where certificates are verified according to the rules in RFC 2818 (certificate verification for HTTPS),
Boost.Asio provides a reusabl e verification callback as a function object:

» sdl::rfc2818 verification

The following example shows verification of aremote host's certificate according to the rules used by HTTPS:

33

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

usi ng boost::asio::ip::tcp;
nanespace ssl = boost::asio::ssl;
typedef ssl::streanxtcp::socket> ssl_socket;

/1l Create a context that uses the default paths for
/1 finding CA certificates.

ssl::context ctx(ssl::context::sslv23);
ctx.set_default_verify_paths();

/1 Open a socket and connect it to the renpte host.
boost::asio::io_service io_service;

ssl _socket sock(io_service, ctx);

tcp::resolver resol ver(io_service)

tcp::resolver::query query("host.nane", "https")

boost: :asi0::connect(sock. | owest | ayer(), resolver.resolve(query))
sock. | owest | ayer().set_option(tcp::no_delay(true));

/1 Perform SSL handshake and verify the renote host's

/1 certificate.

sock. set _verify_node(ssl::verify_peer);

sock. set _verify_cal |l back(ssl::rfc2818 verification("host.nane"));
sock. handshake(ssl _socket::client);

/1 ... read and wite as nor mal

SSL and Threads

SSL stream objects perform no locking of their own. Therefore, it is essential that all asynchronous SSL operations are performed
inan implicit or explicit strand. Note that this means that no synchronisation is required (and so no locking overhead isincurred) in

single threaded programs.
See Also
sdl::context, s3l::rfc2818_verification, sdl::stream, SSL example.

Notes

OpenSSL isrequired to make use of Boost.Asio's SSL support. When an application needs to use OpenSSL functionality that is not
wrapped by Boost.Asio, the underlying OpenSSL types may be obtained by calling ssl : : cont ext: : native_handl e() or

ssl::stream:native_handl e().

C++ 2011 Support

Movable 1/0 Objects
Movable Handlers
Variadic Templates
Array Container
Atomics

Shared Pointers
Chrono

Futures

httpo://www.renderx.com/

http://www.openssl.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

Movable 1/0 Objects

When move support is available (via rvalue references), Boost.Asio allows move construction and assignment of sockets, serial
ports, POSIX descriptors and Windows handles.

Move support allows you to write code like:

tcp: : socket nake_socket (io_service& i)

{

tcp: : socket s(i)

éid::nvve(s);

}
or:

cl ass connection : public enabl e_shared_fromthi s<connection>

{
private:
tcp: : socket socket_;

public:
connection(tcp::socket&& s) : socket_(std::nmove(s)) {}

cl ass server

{

private:
tcp: :acceptor acceptor_;
tcp: : socket socket_;

voi d handl e_accept (error_code ec)

{
if (lec)
std: : make_shar ed<connecti on>(std: : nove(socket_))->go()
acceptor_. async_accept (socket _, ...);
}
s
aswell as:

std::vector<tcp::socket> sockets
socket s. push_back(tcp::socket(...));

A word of warning: Thereis nothing stopping you from moving these objects while there are pending asynchronous operations, but
itisunlikely to be agood ideato do so. In particular, composed operations like async_read() store a reference to the stream object.
Moving during the composed operation means that the composed operation may attempt to access a moved-from object.

Move support is automatically enabled for g++ 4.5 and later, when the - st d=c++0x or - st d=gnu++0x compiler options are used.
It may be disabled by defining BOOST_ASI O DI SABLE_MOVE, or explicitly enabled for other compilers by defining
BOOST_ASI O HAS MOVE. Note that these macros also affect the availability of movable handlers.

35

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Movable Handlers

As an optimisation, user-defined completion handlers may provide move constructors, and Boost.Asio's implementation will use a
handler's move constructor in preference to its copy constructor. In certain circumstances, Boost.Asio may be able to eliminate all
callsto ahandler's copy constructor. However, handler types are till required to be copy constructible.

When move support is enabled, asynchronous that are documented as follows:

tenpl ate <typenane Handl er>
void async_XYZ(..., Handler handler);

are actually declared as:

tenpl at e <typenane Handl er >
voi d async_XYZ(..., Handl er&& handl er);

The handler argument is perfectly forwarded and the move construction occurs within the body of async_XYZ() . This ensures that
all other function arguments are evaluated prior to the move. Thisiscritical when the other argumentstoasync_XYZ() aremembers
of the handler. For example:

struct my_operation

{
shared_ptr<tcp::socket> socket;
shared_ptr<vect or <char>> buffer;
voi d operator(error_code ec, size_t |ength)
{
socket - >async_r ead_sone(boost: :asio::buffer(*buffer), std::nmove(*this));
}
b

Move support is automatically enabled for g++ 4.5 and later, when the - st d=c++0x or - st d=gnu++0x compiler options are used.
It may be disabled by defining BOOST_ASI O DI SABLE_MOVE, or explicitly enabled for other compilers by defining
BOOST_ASI O HAS MOVE. Note that these macros also affect the availability of movable I/O objects.

Variadic Templates

When supported by a compiler, Boost.Asio can use variadic templates to implement the basic_socket streambuf::connect() and ba-
sic_socket_iostream::connect() functions.

Support for variadic templates is automatically enabled for g++ 4.3 and later, when the - st d=c++0x or - st d=gnu++0x compiler
options are used. It may be disabled by defining BOOST_ASI O DI SABLE_VARI ADI C_TEMPLATES, or explicitly enabled for other
compilers by defining BOOST_ASI O HAS_VARI ADI C_TEMPLATES.

Array Container

Where the standard library provides st d: : ar r ay<>, Boost.Asio:

* Provides overloads for the buffer() function.

» Usesitin preferenceto boost : : arr ay<> for theip::address v4::bytes type and ip::address v6::bytes type types.

e Usesitinpreferenceto boost : : ar r ay<> where afixed size array typeis needed in the implementation.

36

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

Support for st d: : array<> is automatically enabled for g++ 4.3 and later, when the - st d=c++0x or - st d=gnu++0x compiler
options are used, as well as for Microsoft Visual C++ 10. It may be disabled by defining BOOST_ASI O DI SABLE_STD_ARRAY, or
explicitly enabled for other compilers by defining BOOST_ASI O HAS _STD ARRAY.

Atomics
Boost.Asio's implementation can use st d: : at oni ¢c<> in preferenceto boost : : det ai | : : at omi c_count .

Support for the standard atomic integer template is automatically enabled for g++ 4.5 and later, when the - st d=c++0x or
- st d=gnu++0x compiler optionsare used. It may be disabled by defining BOOST_ASI O DI SABLE_STD _ATOM C, or explicitly enabled
for other compilers by defining BOOST_ASI O HAS STD ATOM C.

Shared Pointers
Boost.Asio'simplementation can use st d: : shar ed_pt r <> and st d: : weak_pt r <> in preference to the Boost equivalents.

Support for the standard smart pointers is automatically enabled for g++ 4.3 and later, when the - st d=c++0x or - st d=gnu++0x
compiler options are used, as well as for Microsoft Visual C++ 10. It may be disabled by defining BOOST_ASI O DI S-
ABLE_STD_SHARED PTR, or explicitly enabled for other compilers by defining BOOST_ASI O HAS STD SHARED PTR.

Chrono

Boost.Asio provides timers based on the st d: : chr ono facilities via the basic_waitable _timer class template. The typedefs sys-
tem_timer, steady timer and high_resolution_timer utilise the standard clockssyst em cl ock, st eady_cl ock and hi gh_r esol -
uti on_cl ock respectively.

Support for the st d: : chr ono facilities is automatically enabled for g++ 4.6 and later, when the - st d=c++0x or - st d=gnu++0x
compiler options are used. (Note that, for g++, the draft-standard nonot oni ¢c_cl ock isused in place of st eady_cl ock.) Support
may be disabled by defining BOOST_ASI O DI SABLE_STD CHRONO, or explicitly enabled for other compilers by defining
BOOST_ASI O HAS_STD_CHRONO.

When standard chr ono is unavailable, Boost.Asio will otherwise use the Boost.Chrono library. The basic_waitable timer class
template may be used with either.

Futures

The boost : : asi o: : use_f ut ur e special value provides first-class support for returning a C++11 st d: : f ut ur e from an asyn-
chronous operation's initiating function.

Touseboost : : asi o:: use_f ut ur e, passit to an asynchronous operation instead of anormal completion handler. For example:

std::future<std::size t> length =
ny_socket . async_read_sone(ny_buffer, boost::asio::use future);

Where a handler signature has the form:
voi d handl er (boost: :system :error_code ec, result_type result);

the initiating function returns a st d: : f ut ur e templated on resul t _t ype. In the above example, thisisstd: : si ze_t . If the
asynchronous operation fails, the er r or _code isconverted into asyst em er r or exception and passed back to the caller through
the future.

Where a handler signature has the form:
voi d handl er (boost: : system :error_code ec);

theinitiating function returnsst d: : f ut ur e<voi d>. Asabove, an error is passed back in thefutureasasyst em err or exception.

37

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

use future, use future t, Futures example (C++11).

Platform-Specific Implementation Notes

This section lists platform-specific implementation details, such as the default demultiplexing mechanism, the number of threads
created internally, and when threads are created.

Linux Kernel 2.4
Demultiplexing mechanism:

» Usessel ect for demultiplexing. This means that the number of file descriptors in the process cannot be permitted to exceed
FD_SETSI ZE.

Threads:

» Demultiplexing using sel ect is performed in one of the threadsthat callsi o_servi ce: :run(),i o_service::run_one(),
io_service::poll () orio_service::poll_one().

» An additional thread peri o_ser vi ce isused to emulate asynchronous host resolution. Thisthread is created on thefirst call to
eitherip: :tcp::resol ver::async_resol ve() orip::udp::resolver::async_resol ve().

Scatter-Gather:

e Atmost ni n(64, | OV_MAX) buffers may be transferred in asingle operation.

Linux Kernel 2.6
Demultiplexing mechanism:

» Usesepol | for demultiplexing.
Threads:

» Demultiplexing using epol | is performed in one of the threads that callsi o_servi ce: :run(), i o_service::run_one(),
io_service::poll () orio_service::poll_one().

» An additional thread peri o_ser vi ce is used to emulate asynchronous host resolution. This thread is created on thefirst call to
eitheri p: :tcp::resol ver::async_resol ve() orip::udp::resol ver::async_resol ve().

Scatter-Gather:

» Atmost m n(64, | OV_MAX) buffers may be transferred in a single operation.
Solaris

Demultiplexing mechanism:

* Uses/ dev/ pol | for demultiplexing.

Threads:

» Demultiplexingusing/ dev/ pol | isperformedin oneof thethreadsthat callsi o_servi ce: : run(),i o_service: :run_one(),
io_service::poll() orio_service::poll_one().

» An additional thread peri o_ser vi ce is used to emulate asynchronous host resolution. This thread is created on the first call to
eitheri p::tcp::resol ver::async_resol ve() orip::udp::resolver::async_resol ve().

Scatter-Gather:

» Atmost m n(64, | OV_MAX) buffers may be transferred in a single operation.

38

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

QNX Neutrino
Demultiplexing mechanism:

» Usessel ect for demultiplexing. This means that the number of file descriptors in the process cannot be permitted to exceed
FD_SETSI ZE.

Threads:

» Demultiplexing using sel ect isperformed in one of the threads that callsi o_servi ce::run(),i o_service::run_one(),
io_service::poll () orio_service::poll_one().

» An additional thread per i o_ser vi ce isused to emulate asynchronous host resolution. This thread is created on thefirst call to
eitherip: :tcp::resol ver::async_resol ve() orip::udp::resol ver::async_resol ve().

Scatter-Gather:

» Atmost m n(64, | OV_MAX) buffers may be transferred in a single operation.

Mac OS X

Demultiplexing mechanism:

» Useskqueue for demultiplexing.
Threads:

» Demultiplexing using kqueue is performed in one of the threads that callsi o_servi ce::run(),i o_service::run_one(),
io_service::poll () orio_service::poll_one().

» An additional thread peri o_ser vi ce isused to emulate asynchronous host resolution. Thisthread is created on thefirst call to
eitherip::tcp::resol ver::async_resol ve() orip::udp::resolver::async_resol ve().

Scatter-Gather:

e Atmost m n(64, 1 OV_MAX) buffers may be transferred in a single operation.
FreeBSD

Demultiplexing mechanism:

e Useskqueue for demultiplexing.

Threads:

» Demultiplexing using kqueue is performed in one of the threads that callsi o_servi ce: : run(),i o_service::run_one(),
io_service::poll () orio_service::poll_one().

» An additional thread peri o_ser vi ce isused to emulate asynchronous host resolution. This thread is created on thefirst call to
eitherip::tcp::resolver::async_resol ve() orip::udp::resolver::async_resolve().

Scatter-Gather:

* Atmost m n(64, | OV_MAX) buffers may be transferred in a single operation.
AIX

Demultiplexing mechanism:

» Usessel ect for demultiplexing. This means that the number of file descriptors in the process cannot be permitted to exceed
FD_SETSI ZE.

39

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Threads:

» Demultiplexing using sel ect isperformed in one of the threads that callsi o_servi ce::run(),i o_service::run_one(),
io_service::poll () orio_service::poll_one().

» An additional thread per i o_ser vi ce is used to emulate asynchronous host resolution. This thread is created on thefirst call to
eitheri p: :tcp::resol ver::async_resol ve() orip::udp::resol ver::async_resol ve().

Scatter-Gather:

e Atmost m n(64, | OV_MAX) buffers may be transferred in a single operation.
HP-UX

Demultiplexing mechanism:

» Usessel ect for demultiplexing. This means that the number of file descriptors in the process cannot be permitted to exceed
FD_SETSI ZE.

Threads:

» Demultiplexing using sel ect isperformed in one of the threads that callsi o_servi ce::run(),i o_service::run_one(),
io_service::poll () orio_service::poll_one().

» An additional thread peri o_ser vi ce isused to emulate asynchronous host resolution. Thisthread is created on thefirst call to
eitherip::tcp::resol ver::async_resol ve() orip::udp::resolver::async_resol ve().

Scatter-Gather:

e Atmost m n(64, 1 OV_MAX) buffers may be transferred in a single operation.
Tru64

Demultiplexing mechanism:

e Usessel ect for demultiplexing. This means that the number of file descriptors in the process cannot be permitted to exceed
FD_SETSI ZE.

Threads:

» Demultiplexing using sel ect is performed in one of the threads that callsi o_servi ce: : run(),i o_service::run_one(),
io_service::poll () orio_service::poll_one().

» An additional thread per i o_ser vi ce isused to emulate asynchronous host resolution. This thread is created on thefirst call to
eitherip::tcp::resolver::async_resol ve() orip::udp::resolver::async_resol ve().

Scatter-Gather:

* Atmost m n(64, | OV_MAX) buffers may be transferred in a single operation.
Windows 95, 98 and Me

Demultiplexing mechanism:

» Usessel ect for demultiplexing.

Threads:

» Demultiplexing using sel ect isperformed in one of the threads that callsi o_servi ce::run(),i o_service::run_one(),
io_service::poll () orio_service::poll_one().

40

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

» An additional thread peri o_ser vi ce isused to emulate asynchronous host resolution. This thread is created on thefirst call to
eitherip::tcp::resolver::async_resol ve() orip::udp::resolver::async_resol ve().

Scatter-Gather:

 For sockets, at most 16 buffers may be transferred in a single operation.

Windows NT, 2000, XP, 2003, Vista, 7 and 8

Demultiplexing mechanism:

» Uses overlapped 1/0 and 1/O completion ports for all asynchronous socket operations except for asynchronous connect.
e Usessel ect for emulating asynchronous connect.

Threads:

» Demultiplexing using I/0O completion portsisperformed in al threadsthat call i o_servi ce: : run(),i o_servi ce: : run_one(),
io_service::poll () orio_service::poll_one().

» Anadditional thread peri o_ser vi ce isused totrigger timers. Thisthread is created on construction of thefirst deadl i ne_t i mer
or deadl i ne_ti mer_servi ce objects.

» An additional thread per i o_service is used for the sel ect demultiplexing. This thread is created on the first call to
async_connect ().

» An additional thread peri o_ser vi ce isused to emulate asynchronous host resolution. This thread is created on thefirst call to
eitherip: :tcp::resol ver::async_resol ve() orip::udp::resol ver::async_resol ve().

Scatter-Gather:
* For sockets, at most 64 buffers may be transferred in a single operation.

* For stream-oriented handles, only one buffer may be transferred in a single operation.

Windows Runtime

Boost.Asio provides limited support for the Windows Runtime. It requires that the language extensions be enabled. Due to the re-
stricted facilities exposed by the Windows Runtime API, the support comes with the following caveats:

» Thecorefecilitiessuch asthei o_ser vi ce, st r and, buffers, composed operations, timers, etc., should all work as normal.
* For sockets, only client-side TCP is supported.

» Explicit binding of a client-side TCP socket is not supported.

» Thecancel () functionisnot supported for sockets. Asynchronous operations may only be cancelled by closing the socket.
e Operationsthat use nul | _buf f er s are not supported.

* Onlytcp::no_del ay and socket _base: : keep_al i ve options are supported.

» Resolvers do not support service names, only numbers. |.e. you must use "80" rather than "http".

» Most resolver query flags have no effect.

Demultiplexing mechanism:

» Usesthe W ndows: : Net wor ki ng: : Socket s: : St r eanSocket classto implement asynchronous TCP socket operations.

Threads:

41

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

» Event completions are delivered to the Windows thread pool and posted to thei o_ser vi ce for the handler to be executed.
» An additional thread peri o_ser vi ce isused to trigger timers. Thisthread is created on construction of the first timer objects.
Scatter-Gather:

* For sockets, at most one buffer may be transferred in a single operation.

42

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Using Boost.Asio

Supported Platforms

The following platforms and compilers have been tested:

* Win32 and Win64 using Visual C++ 7.1 and Visua C++ 8.0.

* Win32 using MinGW.

e Win32 using Cygwin. (__USE_WB2_SOCKETS must be defined.)
* Linux (2.4 or 2.6 kernels) using g++ 3.3 or later.

» Solarisusing g++ 3.3 or later.

e Mac OS X 10.4 using g++ 3.3 or later.

The following platforms may also work:

* AIX 53 using XL C/C++ V9.

HP-UX 11i v3 using patched aC++ A.06.14.
* QNX Neutrino 6.3 using g++ 3.3 or later.

» Solarisusing Sun Studio 11 or later.

Tru64 v5.1 using Compag C++ v7.1.

* Win32 using Borland C++ 5.9.2

Dependencies
The following libraries must be available in order to link programs that use Boost.Asio:
» Boost.System for theboost : : system : error _code and boost : : system : syst em error classes.

» Boost.Regex (optional) if you use any of theread_until () orasync_read_until () overloads that take aboost : : r egex
parameter.

» OpenSSL (optional) if you use Boost.Asio's SSL support.

Furthermore, some of the examples a so require the Boost. Thread, Boost.Date Time or Boost.Serialization libraries.

S Note
With MSVC or Borland C++ you may want to add - DBOOST_DATE_TI ME_NO LI Band - DBOCST_REGEX_NO LI B
to your project settings to disable autolinking of the Boost.Date Time and Boost.Regex libraries respectively. Al-
ternatively, you may choose to build these libraries and link to them.

Building Boost Libraries

You may build the subset of Boost libraries required to use Boost.Asio and its examples by running the following command from
the root of the Boost download package:

bjam--with-system--with-thread --with-date_time --with-regex --with-serialization stage

43

render

httpo://www.renderx.com/

http://www.openssl.org
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

This assumes that you have already built bj am Consult the Boost.Build documentation for more details.

Optional separate compilation

By default, Boost.Asio isaheader-only library. However, some devel opers may prefer to build Boost.Asio using separately compiled
source code. To do this, add #i ncl ude <boost/ asi o/ i npl / src. hpp> to one (and only one) sourcefilein aprogram, then build

the program with BOOST_ASI O SEPARATE_COWPI LATI ON defined in the project/compiler settings. Alternatively,
BOOST_ASI O _DYN_LI NK may be defined to build a separatel y-compiled Boost.Asio as part of a shared library.

If using Boost.Asio's SSL support, you will also need to add #i ncl ude <boost/ asi o/ ssl/inmpl/src. hpp>.
Macros

The macros listed in the table below may be used to control the behaviour of Boost.Asio.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

Macro

BOOST_ASI O ENABLE_BUFFER_DEBUGG NG

BOOST_ASI O_DI SABLE_BUFFER_DEBUGAE NG

BOOST_ASI O DI SABLE_DEV_POLL

BOOST_ASI O DI SABLE_EPOLL

BOOST_AS| O DI SABLE_EVENTFD

BOOST_ASI O_DI SABLE_KQUEUE

BOOST_ASI O DI SABLE_| OCP

BOCST_ASI O_DI SABLE_THREADS

BOOST_AS| O NO W N32_LEAN_AND_NMEAN

BOOST_ASI O_NO_NOM NVAX

BOOST_ASI O NO DEFAULT_LI NKED LI BS

Description

Enables Boost.Asio's buffer debugging support, which can help
identify wheninvalid buffersare used in read or write operations
(e.g. if astd::string object being written is destroyed before the
write operation compl etes).

When using Microsoft Visual C++, this macro is defined auto-
matically if the compiler'siterator debugging support isenabled,
unlessBOOST_ASI O _DI SABLE_BUFFER_DEBUGG NGhasbeen
defined.

When using g++, thismacro is defined automatically if standard
library debugging is enabled (_GLI BCXX_DEBUG is defined),
unlessBOOST_ASI O DI SABLE_BUFFER_DEBUGG NGhasbeen
defined.

Explictly disables Boost.Asio's buffer debugging support.

Explicitly disables/ dev/ pol | support on Solaris, forcing the
use of asel ect -based implementation.

Explicitly disablesepol | support on Linux, forcing the use of
asel ect -based implementation.

Explicitly disablesevent f d support on Linux, forcing the use
of apipe to interrupt blocked epoll/select system calls.

Explicitly disables kqueue support on Mac OS X and BSD
variants, forcing the use of asel ect -based implementation.

Explicitly disables I/0 completion ports support on Windows,
forcing the use of asel ect -based implementation.

Explicitly disables Boost.Asio's threading support, independent
of whether or not Boost as a whole supports threads.

By default, Boost.Asio will automatically define
W N32_LEAN_AND_MEAN when compiling for Windows, to
minimise the number of Windows SDK header filesand features
that are included. The presence of
BOOST_ASI O NO W N32_LEAN_AND_NEAN prevents
W N32_LEAN_AND_MEAN from being defined.

By default, Boost.Asio will automatically define NOM NVAX
when compiling for Windows, to suppress the definition of the
mn() and max() macros. The presence of
BOOST_ASI O NO_NOM NMVAX prevents NOM NVAX from being
defined.

When compiling for Windows using Microsoft Visual C++ or
Borland C++, Boost.Asiowill automatically link in the necessary
Windows SDK libraries for sockets support (i.e. ws2_32.1i b
and mswsock. i b, or ws2. i b when building for Windows
CE). The BOOST_ASI O NO DEFAULT_LI NKED_LI BS macro
prevents these libraries from being linked.

45

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

Macro

BOOST_ASI O_SOCKET_STREAMBUF_MAX_ARI TY

BOOST_ASI O_SOCKET _| OSTREAM MAX_ARI TY

BOOST_ASI O_ ENABLE_CANCELI O

BOOST_ASI O NO_TYPEI D

BOOST_ASI O HASH MAP_BUCKETS

Description

Determines the maximum number of arguments that may be
passed to the basi c_socket _streanbuf class template's
connect member function. Defaultsto 5.

Determines the maximum number of arguments that may be
passed to thebasi c_socket _i ost r eamclasstemplate's con-
structor and connect member function. Defaultsto 5.

Enables use of the Cancel | o function on older versions of
Windows. If not enabled, callsto cancel () on asocket object
will alwaysfail withasi o: : error:: operation_not_sup-
por t ed when run on Windows X P, Windows Server 2003, and
earlier versions of Windows. When running on Windows Vista,
Windows Server 2008, and later, the Cancel | oEx function is
always used.

ThecCancel | o function hastwo issuesthat should be considered
before enabling its use:

* |t will only cancel asynchronous operationsthat wereinitiated
in the current thread.

* |t can appear to complete without error, but the request to
cancel the unfinished operations may be silently ignored by the
operating system. Whether it works or not seems to depend on
the driversthat areinstalled.

For portable cancellation, consider using one of the following
aternatives:

* Disable asio's 1/0 completion port backend by defining
BOOST_ASIO_DISABLE_IOCP.

* Use the socket object's close() function to simultaneously
cancel the outstanding operations and close the socket.

Disables uses of thet ypei d operator in Boost.Asio. Defined
automatically if BOOST_NO _TYPEI Dis defined.

Determines the number of buckets in Boost.Asio's internal
hash_map objects. The value should be acomma separated list
of prime numbers, in ascending order. The hash_map imple-
mentation will automatically increase the number of buckets as
the number of elementsin the map increases.

Some examples:

* Defining BOOST_ASI O HASH MAP_BUCKETS 01021 means
that the hash_nap objects will aways contain 1021 buckets,
irrespective of the number of elementsin the map.

* Defining ~ BOOST_ASI O HASH MAP_BUCKETS to
53, 389, 1543 means that the hash_map objects will initially
contain 53 buckets. The number of buckets will be increased to
389 and then 1543 as elements are added to the map.

46

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Mailing List
A mailing list specifically for Boost.Asio may be found on SourceForge.net. Newsgroup access is provided via Gmane.
Wiki

Users are encouraged to share examples, tips and FAQs on the Boost.Asio wiki, which islocated at http://think-async.com/Asiol.

47

httpo://www.renderx.com/

http://sourceforge.net/mail/?group_id=122478
http://dir.gmane.org/gmane.comp.lib.boost.asio.user
http://think-async.com/Asio/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Tutorial
Basic Skills

Thetutorial programs in this first section introduce the fundamental concepts required to use the asio toolkit. Before plunging into
the complex world of network programming, these tutorial programsillustrate the basic skills using simple asynchronous timers.

e Timer.1 - Using atimer synchronously

» Timer.2 - Using atimer asynchronously

e Timer.3 - Binding arguments to a handler

* Timer.4 - Using amember function as a handler

» Timer.5 - Synchronising handlers in multithreaded programs

Introduction to Sockets

The tutorial programs in this section show how to use asio to develop simple client and server programs. These tutorial programs
are based around the daytime protocol, which supports both TCP and UDP.

The first three tutorial programs implement the daytime protocol using TCP.
e Daytime.1 - A synchronous TCP daytime client

» Daytime.2 - A synchronous TCP daytime server

» Daytime.3 - An asynchronous TCP daytime server

The next three tutorial programs implement the daytime protocol using UDP.
» Daytime.4 - A synchronous UDP daytime client

» Daytime.5 - A synchronous UDP daytime server

» Daytime.6 - An asynchronous UDP daytime server

The last tutorial program in this section demonstrates how asio allows the TCP and UDP serversto be easily combined into asingle
program.

» Daytime.7 - A combined TCP/UDP asynchronous server

Timer.1 - Using a timer synchronously

Thistutorial program introduces asio by showing how to perform a blocking wait on atimer.
We start by including the necessary header files.

All of the asio classes can be used by simply including the " asi o. hpp" header file.

#i ncl ude <i ostreanr
#i ncl ude <boost/ asi 0. hpp>

Since this example uses timers, we need to include the appropriate Boost.Date Time header file for manipulating times.

#i ncl ude <boost/date_ti nme/ posi x_time/ posix_time. hpp>

48

render
httpo://www.renderx.com/

http://www.ietf.org/rfc/rfc867.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

All programs that use asio need to have at least oneio_service object. This class provides access to I/O functionality. We declare an
object of thistype first thing in the main function.

int main()
{

boost::asio::io_service io;

Next we declare an object of type boost::asio::deadline_timer. The core asio classes that provide 1/O functionality (or asin this case
timer functionality) alwaystake areferenceto anio_serviceastheir first constructor argument. The second argument to the constructor
sets the timer to expire 5 seconds from now.

boost::asio::deadline_tiner t(io, boost::posix_tine::seconds(5));

In this simple example we perform a blocking wait on the timer. That is, the call to deadline_timer::wait() will not return until the
timer has expired, 5 seconds after it was created (i.e. not from when the wait starts).

A deadlinetimer isalwaysin one of two states: "expired" or "not expired". If the deadline_timer::wait() functioniscalled on an expired
timer, it will return immediately.

t.wait();
Finally we print the obligatory " Hel | o, wor | d! " message to show when the timer has expired.

std::cout << "Hello, world!'\n";

return O;

}

See the full sourcelisting
Return to the tutorial index

Next: Timer.2 - Using atimer asynchronously

49

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Source listing for Timer.1

I

/1 timer.cpp

[~~~

I

/1 Copyright (c) 2003-2014 Christopher M Kohl hoff (chris at kohl hoff dot com
I

/1 Distributed under the Boost Software License, Version 1.0. (See acconpanying
/1 file LICENSE_1_0.txt or copy at http://ww. boost.org/LICENSE 1 O.txt)

I

#i ncl ude <i ostreanv

#i ncl ude <boost/ asi 0. hpp>

#i ncl ude <boost/date_ti nme/ posi x_time/ posix_time. hpp>
int main()

{

boost::asio::io_service io;

boost::asio::deadline_tiner t(io, boost::posix_tine::seconds(5));
t.wait();

std::cout << "Hello, world!'\n";

return O;

Return to Timer.1 - Using atimer synchronously

Timer.2 - Using a timer asynchronously

This tutorial program demonstrates how to use asio's asynchronous callback functionality by modifying the program from tutorial
Timer.1 to perform an asynchronous wait on the timer.

#i ncl ude <i ostreanr
#i ncl ude <boost/ asi o. hpp>
#i ncl ude <boost/date_ti ne/ posi x_time/ posix_time. hpp>

Using asio's asynchronous functionality means having acallback function that will be called when an asynchronous operation completes.
In this program we define afunction called pri nt to be called when the asynchronous wait finishes.

voi d print(const boost::system:error_code& /*e*/)

{
std::cout << "Hello, world!'\n";
}
int main()
{

boost::asio::io_service io;

boost::asio::deadline_tiner t(io, boost::posix_tine::seconds(5));

Next, instead of doing a blocking wait asin tutorial Timer.1, we call the deadline_timer::async_wait() function to perform an asyn-
chronous wait. When calling this function we passthe pri nt callback handler that was defined above.

t.async_wait(&print);

50

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Finally, we must call theio_service::run() member function on theio_service object.

Theasiolibrary provides aguaranteethat callback handlerswill only be called from threadsthat are currently callingio_service::run().
Therefore unlesstheio_service::run() function is called the callback for the asynchronous wait completion will never be invoked.

Theio_service::run() function will aso continueto run whilethereisstill "work™ to do. In thisexample, thework isthe asynchronous
wait on the timer, so the call will not return until the timer has expired and the callback has completed.

It isimportant to remember to give theio_service some work to do before calling io_service::run(). For example, if we had omitted
the above call to deadline_timer::async_wait(), theio_service would not have had any work to do, and consequently io_service::run()
would have returned immediately.

io.run();

return O;

}

See the full sourcelisting
Return to the tutorial index
Previous. Timer.1 - Using atimer synchronously

Next: Timer.3 - Binding arguments to a handler

Source listing for Timer.2

I

/1 timer.cpp

[~~~

I

/1 Copyright (c) 2003-2014 Christopher M Kohl hoff (chris at kohl hoff dot com
I

/1 Distributed under the Boost Software License, Version 1.0. (See acconpanying
/1 file LICENSE_1_0.txt or copy at http://ww. boost.org/LICENSE 1 O.txt)

I

#i ncl ude <i ostreanr
#i ncl ude <boost/ asi 0. hpp>
#i ncl ude <boost/date_ti ne/ posi x_tinme/ posix_time. hpp>

voi d print(const boost::system:error_code& /*e*/)

{
std::cout << "Hello, world!'\n";
}
int main()
{

boost::asio::io_service io;

boost::asio::deadline_tiner t(io, boost::posix_tine::seconds(5));
t.async_wait(&print);

io.run();

return O;

Return to Timer.2 - Using atimer asynchronously

51

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

Timer.3 - Binding arguments to a handler

In this tutorial we will modify the program from tutorial Timer.2 so that the timer fires once a second. This will show how to pass
additional parametersto your handler function.

#i ncl ude <i ostreanr

#i ncl ude <boost/ asi 0. hpp>

#i ncl ude <boost/ bi nd. hpp>

#i ncl ude <boost/date_ti ne/ posi x_tinme/ posix_time. hpp>

To implement a repeating timer using asio you need to change the timer's expiry time in your callback function, and to then start a
new asynchronous wait. Obviously this means that the callback function will need to be able to access the timer object. To thisend
we add two new parametersto the pri nt function:

* A pointer to atimer object.

A counter so that we can stop the program when the timer fires for the sixth time.

void print(const boost::system:error_code& /*e*/,
boost::asio::deadline_tinmer* t, int* count)

{

As mentioned above, this tutorial program uses a counter to stop running when the timer fires for the sixth time. However you will
observe that there is no explicit call to ask theio_service to stop. Recall that in tutorial Timer.2 we learnt that the io_service::run()
function completes when there is no more "work" to do. By not starting a new asynchronous wait on the timer when count reaches
5, theio_service will run out of work and stop running.

if (*count < 5)

{
std::cout << *count << "\n";
++(*count) ;

Next we move the expiry time for the timer along by one second from the previous expiry time. By calculating the new expiry time
relative to the old, we can ensure that the timer does not drift away from the whole-second mark due to any delays in processing the
handler.

t->expires_at(t->expires_at() + boost::posix_tine::seconds(1l));

Then we start a new asynchronous wait on the timer. As you can see, the boost::bind() function is used to associate the extra para-
meters with your callback handler. The deadline_timer::async_wait() function expects a handler function (or function object) with
the signature voi d(const boost :: system : error_code&) . Binding the additional parameters converts your pri nt function
into a function object that matches the signature correctly.

See the Boost.Bind documentation for more information on how to use boost::bind().

In this example, the boost::asio::placehol ders::error argument to boost::bind() is a named placeholder for the error object passed to
the handler. When initiating the asynchronous operation, and if using boost::bind(), you must specify only the arguments that match
the handler's parameter list. In tutorial Timer.4 you will see that this placeholder may be elided if the parameter is not needed by the
callback handler.

52

httpo://www.renderx.com/

http://www.boost.org/libs/bind/bind.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

t->async_wait (boost: : bind(print,
boost::asio::placeholders::error, t, count));

}
}

int main()
{

boost::asio::io_service io;
A new count variable is added so that we can stop the program when the timer fires for the sixth time.

int count = O;
boost::asio::deadline_tiner t(io, boost::posix_tine::seconds(1l));

Asin Step 4, when making the call to deadline_timer::async_wait() from mai n we bind the additional parameters needed for the
pri nt function.

t.async_wait (boost: : bind(print,
boost: : asi o:: pl acehol ders::error, &, &count));

io.run();

Finally, just to prove that the count variable was being used in the pri nt handler function, we will print out its new value.

std::cout << "Final count is " << count << "\n";

return O;

}

See the full sourcelisting
Return to the tutorial index
Previous. Timer.2 - Using atimer asynchronously

Next: Timer.4 - Using a member function as a handler

53

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Source listing for Timer.3

I
/1 timer.cpp
[~~~
I

/1 Copyright (c) 2003-2014 Christopher M Kohl hoff (chris at kohl hoff dot com

I

/1 Distributed under the Boost Software License, Version 1.0. (See acconpanying
/1 file LICENSE_1_0.txt or copy at http://ww. boost.org/LICENSE 1 O.txt)

I

#i ncl ude <i ostreanv

#i ncl ude <boost/ asi 0. hpp>

#i ncl ude <boost/ bi nd. hpp>

#i ncl ude <boost/date_ti ne/ posi x_time/ posix_time. hpp>

void print(const boost::system:error_code& /*e*/,
boost::asio::deadline_tiner* t, int* count)

{
if (*count < 5)
{
std::cout << *count << "\n";
++(*count);
t->expires_at(t->expires_at() + boost::posix_tine::seconds(1l));
t->async_wai t (boost: : bind(print,
boost: : asi o:: pl acehol ders::error, t, count));
}
}
int main()
{

boost::asio::io0_service io;

int count = 0;

boost: : asio::deadline_tiner t(io, boost::posix_tine::seconds(1l));

t.async_wait (boost: : bind(print,

boost : : asi o:: pl acehol ders::error, &, &count));

io.run();
std::cout << "Final count is " << count << "\n";

return O;

Return to Timer.3 - Binding arguments to a handler

Timer.4 - Using a member function as a handler

In this tutorial we will see how to use a class member function as a callback handler. The program should execute identically to the

tutorial program from tutorial Timer.3.

#i ncl ude <i ostreanr

#i ncl ude <boost/ asi 0. hpp>

#i ncl ude <boost/ bi nd. hpp>

#i ncl ude <boost/date_tine/ posi x_tinme/ posix_time. hpp>

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

Instead of defining afree function pri nt asthe callback handler, as we did in the earlier tutoria programs, we now define a class
caledprinter.

class printer

{
publi c:

The constructor of this class will take a reference to the io_service object and use it when initialising the t i mer _ member. The
counter used to shut down the program is now also a member of the class.

printer(boost::asio::io_service& io)
timer_(io, boost::posix_tine::seconds(1)),
count _(0)

The boost::bind() function works just as well with class member functions as with free functions. Since all non-static class member
functions have an implicit t hi s parameter, we need to bind t hi s to the function. Asin tutorial Timer.3, boost::bind() converts our
callback handler (now a member function) into a function object that can be invoked as though it has the signature voi d(const
boost::system:error_codeg&).

You will notethat the boost::asio::placeholders::error placeholder is not specified here, asthepri nt member function does not accept
an error object as a parameter.

timer_.async_wait(boost::bind(&printer::print, this));

}
In the class destructor we will print out the final value of the counter.

~printer()
{

std::cout << "Final count is " << count_ << "\n";

}

The pri nt member function is very similar to the pri nt function from tutorial Timer.3, except that it now operates on the class
data members instead of having the timer and counter passed in as parameters.

void print()
{
if (count_ < 5)
{
std::cout << count_ << "\n";
++count _;

timer_.expires_at(timer_.expires_at() + boost::posix_tine::seconds(1l));
timer_.async_wait (boost::bind(&printer::print, this));

}
}
private:
boost::asio::deadline_tiner timer_;
int count_;

};

The mai n function is much simpler than before, asit now declaresalocal pri nt er object beforerunning theio_service asnormal.

55

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

int main()

{
boost::asio::io_service io;
printer p(io);
io.run();

return O

See the full source listing
Return to the tutorial index
Previous: Timer.3 - Binding arguments to a handler

Next: Timer.5 - Synchronising handlers in multithreaded programs

Source listing for Timer.4

I

/1 timer.cpp

/]~

I

/'l Copyright (c) 2003-2014 Christopher M Kohl hoff (chris at kohl hoff dot comn
I

/1 Distributed under the Boost Software License, Version 1.0. (See acconpanying
/1 file LICENSE_1_0.txt or copy at http://ww. boost.org/LICENSE 1 O.txt)

I

#i ncl ude <i ostreanv

#i ncl ude <boost/ asi 0. hpp>

#i ncl ude <boost/ bi nd. hpp>

#i ncl ude <boost/date_ti ne/ posi x_time/ posix_time. hpp>

class printer
{
public:
printer(boost::asio::io_service& io)
timer_(io, boost::posix_tine::seconds(1))

count _(0)
{
timer_.async_wait(boost::bind(&printer::print, this))
}
~printer()
{
std::cout << "Final count is " << count_ << "\n"
}
void print()
{
if (count_ < 5)
{
std::cout << count_ << "\n";
++count _;
timer_.expires_at(timer_.expires_at() + boost::posix_tine::seconds(1))
timer_.async_wait(boost::bind(&printer::print, this))
}
}

56

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

private:
boost::asio::deadline_tiner timer_;
int count_;

b

int main()

{
boost::asio::io_service io;
printer p(io);
io.run();

return O;

Return to Timer.4 - Using amember function as a handler

Timer.5 - Synchronising handlers in multithreaded programs

Thistutorial demonstrates the use of the boost::asio::strand class to synchronise callback handlers in a multithreaded program.

The previous four tutorials avoided the issue of handler synchronisation by calling the io_service::run() function from one thread
only. As you already know, the asio library provides a guarantee that callback handlers will only be called from threads that are
currently callingio_service::run(). Consequently, callingio_service::run() from only onethread ensuresthat callback handlers cannot
run concurrently.

The singlethreaded approach isusually the best place to start when devel oping applications using asio. The downsideisthelimitations
it places on programs, particularly servers, including:

* Poor responsiveness when handlers can take along time to complete.
» Aninability to scale on multiprocessor systems.

If you find yourself running into these limitations, an alternative approach is to have a pool of threads calling io_service::run().
However, as this allows handlers to execute concurrently, we need a method of synchronisation when handlers might be accessing
a shared, thread-unsafe resource.

#i ncl ude <i ostreanv

#i ncl ude <boost/ asi 0. hpp>

#i ncl ude <boost/thread/thread. hpp>

#i ncl ude <boost/ bi nd. hpp>

#i ncl ude <boost/date_ti nme/ posi x_time/ posix_time. hpp>

We start by defining aclasscalled pri nt er, similar to the class in the previous tutorial. This class will extend the previous tutorial
by running two timersin parallel.

class printer

{
public:

In addition to initialising a pair of boost::asio::deadline_timer members, the constructor initialises the st r and_ member, an object
of type boost::asio::strand.

An boost::asio::strand guarantees that, for those handlers that are dispatched through it, an executing handler will be allowed to
complete before the next one is started. This is guaranteed irrespective of the number of threads that are calling io_service::run().
Of course, the handlers may still execute concurrently with other handlers that were not dispatched through an boost::asio::strand,
or were dispatched through a different boost::asio::strand object.

57

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

printer(boost::asio::io_service& io)
. strand_(io),
timerl (io, boost::posix_time::seconds(1)),
timer2_(io, boost::posix_time::seconds(1)),
count _(0)

Wheninitiating the asynchronous operations, each callback handler is"wrapped" using the boost;:asio0::strand object. The strand::wrap()
function returns anew handler that automatically dispatchesits contained handler through the boost::asio::strand object. By wrapping
the handlers using the same boost;:asio::strand, we are ensuring that they cannot execute concurrently.

timerl . async_wait(strand_. wap(boost::bind(&rinter::printl, this)));
timer2_.async_wait(strand_. wap(boost::bind(&rinter::print2, this)));
}
~printer()
{
std::cout << "Final count is " << count_ << "\n";
}

In a multithreaded program, the handlers for asynchronous operations should be synchronised if they access shared resources. In
this tutorial, the shared resources used by the handlers (pri nt 1 and pri nt 2) arest d: : cout and the count _ data member.

void printl()

{
if (count_ < 10)
{
std::cout << "Tiner 1: " << count_ << "\n";
++count _;
timerl .expires_at(timerl_.expires_at() + boost::posix_tinme::seconds(1l));
timerl_.async_wait(strand_. wap(boost::bind(&rinter::printl, this)));
}
}
void print2()
{
if (count_ < 10)
{
std::cout << "Tiner 2: " << count_ << "\n";
++count _;
timer2_.expires_at(timer2_.expires_at() + boost::posix_tinme::seconds(1));
timer2_.async_wait(strand_. wrap(boost::bind(&rinter::print2, this)));
}
}
private:

boost: :asio::strand strand_;

boost: :asio::deadline_timer timerl_;
boost: : asio::deadline_timer timer2_;
int count_;

b

The mai n function now causes io_service::run() to be called from two threads: the main thread and one additional thread. Thisis
accomplished using an boost::thread object.

Just asit would with acall from asingle thread, concurrent callsto io_service::run() will continue to execute while thereis "work"
left to do. The background thread will not exit until all asynchronous operations have completed.

58

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

int main()
{
boost::asio::io_service io;
printer p(io);
boost::thread t(boost:: bind(&boost::asio::io_service::run, & o0));
io.run();
t.join();

return O;

See the full sourcelisting
Return to the tutorial index

Previous: Timer.4 - Using a member function as a handler
Source listing for Timer.5

I

/'l timer.cpp

[~~~

I

/1 Copyright (c) 2003-2014 Christopher M Kohl hoff (chris at kohl hoff dot com
I

/1 Distributed under the Boost Software License, Version 1.0. (See acconpanying
/1 file LICENSE_1_0.txt or copy at http://ww. boost.org/LICENSE 1 O.txt)

I

#i ncl ude <i ostreanr

#i ncl ude <boost/ asi 0. hpp>

#i ncl ude <boost/thread/thread. hpp>

#i ncl ude <boost/ bi nd. hpp>

#i ncl ude <boost/date_ti ne/ posi x_time/ posix_time. hpp>

class printer
{
public:
printer(boost::asio::io_service& io)
. strand_(io),
timerl (io, boost::posix_timne::seconds(1)),
timer2_(io, boost::posix_tine::seconds(1)),
count _(0)
{
timerl . async_wait(strand_. wap(boost::bind(&rinter::printl, this)));
timer2_.async_wait(strand_. wap(boost::bind(&rinter::print2, this)));

}
~printer()
{
std::cout << "Final count is " << count_ << "\n";
}

void printl()

if (count_ < 10)
{

std::cout << "Tinmer 1: " << count_ << "\n";
++count _;

timerl .expires_at(timerl_.expires_at() + boost::posix_time::seconds(1l));

59

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

timerl_.async_wait(strand_. wrap(boost::bind(&rinter::printl, this)))

}
}
void print2()
{
if (count_ < 10)
{
std::cout << "Tiner 2: " << count_ << "\n";
++count _;
timer2_.expires_at(tinmer2_.expires_at() + boost::posix_tinme::seconds(1))
timer2_.async_wait(strand_. wrap(boost::bind(&rinter::print2, this)))
}
}
private:

boost::asio::strand strand_;
boost::asio::deadline_tiner tinmerl_;
boost::asio::deadline_tiner tiner2_;
int count_;
b
int main()
{
boost::asio::io_service io;
printer p(io);
boost::thread t(boost:: bind(&boost::asio::io_service::run, & o0));
io.run();
t.join();

return O;

Return to Timer.5 - Synchronising handlers in multithreaded programs

Daytime.l - A synchronous TCP daytime client

Thistutorial program shows how to use asio to implement a client application with TCP,

We start by including the necessary header files.

#i ncl ude <i ostreanr
#i ncl ude <boost/array. hpp>
#i ncl ude <boost/ asi 0. hpp>

The purpose of this application is to access a daytime service, so we need the user to specify the server.

usi ng boost::asio::ip::tcp;

int main(int argc, char* argv[])

{
try
{
if (argc !'= 2)
{
std::cerr << "Usage: client <host>" << std::endl;
return 1;
}

60

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

All programs that use asio need to have at least oneio_service object.
boost::asio::io_service io_service;

We need to turn the server name that was specified as a parameter to the application, into a TCP endpoint. To do this we use an
ip::tcp::resolver object.

tcp::resolver resol ver(io_service);

A resolver takes a query object and turnsit into alist of endpoints. We construct a query using the name of the server, specified in
ar gv[1] , and the name of the service, inthiscase " dayt i ne".

tcp::resolver::query query(argv[1l], "daytinme");

The list of endpoints is returned using an iterator of type ip::tcp::resolver::iterator. (Note that a default constructed ip::tcp::resolv-
er::iterator object can be used as an end iterator.)

tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);

Now we create and connect the socket. The list of endpoints obtained above may contain both 1Pv4 and |Pv6 endpoints, so we heed
to try each of them until we find one that works. This keeps the client program independent of a specific IP version. The
boost::asio::connect() function does this for us automatically.

tcp: : socket socket(io_service);
boost: :asi o0::connect(socket, endpoint_iterator);

The connection is open. All we need to do now is read the response from the daytime service.

Weuseaboost : : arr ay to hold the received data. The boost::asio::buffer() function automatically determines the size of the array
to help prevent buffer overruns. Instead of aboost : : array, we could haveused achar [] orstd::vector.

for (1)

{
boost::array<char, 128> buf;
boost:: system :error_code error;

size_t len = socket.read_sonme(boost::asio::buffer(buf), error);

When the server closesthe connection, theip::tcp::socket::read_some() function will exit with the boost::asio::error::eof error, which
is how we know to exit the loop.

if (error == boost::asio::error::eof)
break; // Connection closed cleanly by peer.
else if (error)
throw boost::system:systemerror(error); // Sone other error.

std::cout.wite(buf.data(), len);

}

Finally, handle any exceptions that may have been thrown.

61

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;
}

See the full source listing
Return to the tutorial index

Next: Daytime.2 - A synchronous TCP daytime server
Source listing for Daytime.1

I
/'l client.cpp
[~~~
I

/'l Copyright (c) 2003-2014 Christopher M Kohl hoff (chris at kohl hoff dot com

I

/1 Distributed under the Boost Software License, Version 1.0. (See acconpanying
/1 file LICENSE_1_0.txt or copy at http://ww. boost.org/LICENSE 1 O.txt)

I

#i ncl ude <i ostreanr

#i ncl ude <boost/array. hpp>
#i ncl ude <boost/ asi 0. hpp>

using boost::asio::ip::tcp;

int main(int argc, char* argv[])

{
try
{
if (argc !'= 2)
{
std::cerr << "Usage: client <host>" << std::endl;
return 1;
}

boost::asio::io_service io_service;

tcp::resol ver resol ver(io_service);
tcp::resolver::query query(argv[1l], "daytinme");

tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);

tcp: : socket socket(io_service);
boost: : asi o0:: connect (socket, endpoint_iterator);

for ()

{
boost::array<char, 128> buf;
boost::system :error_code error;

size t len = socket.read_sonme(boost::asio::buffer(buf), error);

if (error == boost::asio::error::eof)
break; // Connection closed cleanly by peer.
else if (error)

t hrow boost: :system :systemerror(error); // Some other error.

62

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

std::cout.wite(buf.data(), len);

}
}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;
}
return O;

}

Return to Daytime.1 - A synchronous TCP daytime client

Daytime.2 - A synchronous TCP daytime server

Thistutorial program shows how to use asio to implement a server application with TCP.

#i ncl ude <cti me>

#i ncl ude <i ostreanw

#i ncl ude <string>

#i ncl ude <boost/ asi 0. hpp>

usi ng boost::asio::ip::tcp;

We define the function make_dayti me_stri ng() to create the string to be sent back to the client. This function will be reused in
al of our daytime server applications.

std::string nake_daytine_string()

{
usi ng namespace std; // For time_t, tinme and ctine;
time_t now = time(0);
return ctime(&ow ;

}

int main()
{

try

{

boost::asio::io_service io_service;

A ip::tcp::acceptor object needs to be created to listen for new connections. It isinitialised to listen on TCP port 13, for IP version
4.

tcp::acceptor acceptor(io_service, tcp::endpoint(tcp::v4(), 13));

Thisisan iterative server, which meansthat it will handle one connection at atime. Create a socket that will represent the connection
to the client, and then wait for a connection.

for (;7)

{
tcp: : socket socket(io_service);
accept or. accept (socket) ;

A client is accessing our service. Determine the current time and transfer this information to the client.

63

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

std::string nessage = nake_daytine_string();
boost::system :error_code i gnored_error;
boost::asio::wite(socket, boost::asio::buffer(message), ignored_error);

}
}

Finally, handle any exceptions.

catch (std::exception& e)

{

std::cerr << e.what() << std::endl;
}
return O;

}

See the full source listing
Return to the tutorial index
Previous: Daytime.1 - A synchronous TCP daytime client

Next: Daytime.3 - An asynchronous TCP daytime server

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

Source listing for Daytime.2

I

/'l server.cpp

[~~~

I

/1 Copyright (c) 2003-2014 Christopher M Kohl hoff (chris at kohl hoff dot com
I

/1 Distributed under the Boost Software License, Version 1.0. (See acconpanying
/1 file LICENSE_1_0.txt or copy at http://ww. boost.org/LICENSE 1 O.txt)

I

#i ncl ude <cti me>

#i ncl ude <i ostreanr

#i ncl ude <string>

#i ncl ude <boost/ asi 0. hpp>

usi ng boost::asio::ip::tcp;

std::string nake_daytine_string()

{

usi ng namespace std; // For time_t, time and ctine;
time_t now = time(0);
return ctine(&ow);

}

int main()
{

try

{

boost::asio::io0_service io_service;
tcp::acceptor acceptor(io_service, tcp::endpoint(tcp::v4(), 13));

for (57)
{

tcp: : socket socket(io_service);
accept or. accept (socket) ;

std::string nessage = make_daytinme_string();

boost: :system :error_code ignored_error;
boost: :asio::wite(socket, boost::asio::buffer(message), ignored_error);

}

catch (std::exception& e)

{

std::cerr << e.what() << std::endl;

}

return O;

}

Return to Daytime.2 - A synchronous TCP daytime server

65

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Daytime.3 - An asynchronous TCP daytime server
The main() function

int main()
{

try

{

We need to create a server object to accept incoming client connections. Theio_service object provides /O services, such as sockets,
that the server object will use.

boost::asio::io_service io_service;
tcp_server server(io_service)

Run theio_service object so that it will perform asynchronous operations on your behalf.

i o_service.run()

}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl
}
return O;

}

The tcp_server class

cl ass tcp_server

{
publi c:

The constructor initialises an acceptor to listen on TCP port 13.

tcp_server(boost::asio::io_service& io_service)
acceptor_(io_service, tcp::endpoint(tcp::v4(), 13))
{

start_accept ()

}

private:
Thefunctionst art _accept () createsasocket and initiates an asynchronous accept operation to wait for a new connection.

void start_accept ()
{
tcp_connection: : poi nter new_connection =
tcp_connection::create(acceptor_.get_io_service())

acceptor_. async_accept (new_connecti on- >socket (),
boost:: bi nd(& cp_server:: handl e_accept, this, new_connection
boost::asio:: placeholders::error));

66

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Thefunctionhandl e_accept () iscalled when the asynchronous accept operationinitiated by st art _accept () finishes. It services
the client request, and then callsst art _accept () toinitiate the next accept operation.

voi d handl e_accept (tcp_connecti on:: poi nter new_connecti on,
const boost::system :error_code& error)

{

if (lerror)

{
}

new _connection->start();

start_accept();

}

The tcp_connection class

We will useshared_ptr and enabl e_shared_from t hi s because we want to keep thet cp_connect i on object alive aslong
asthere is an operation that referstoit.

cl ass tcp_connection
public boost::enabl e_shared_fromthis<tcp_connection>

{
publi c:
t ypedef boost::shared_ptr<tcp_connection> pointer;

static pointer create(boost::asio::io_service& io_service)

{

return pointer(new tcp_connection(io_service));

}

tcp: : socket & socket ()
{

return socket _;

}

In the function start(), we cal boost:asio::async write() to serve the data to the client. Note that we are using
boost::asio::async_write(), rather than ip::tcp::socket::async_write_some(), to ensure that the entire block of datais sent.

void start()

{
The data to be sent is stored in the class member message_ as we need to keep the data valid until the asynchronous operation is
complete.
nmessage_ = make_daytine_string();

When initiating the asynchronous operation, and if using boost::bind(), you must specify only the arguments that match the handler's
parameter list. In this program, both of the argument placeholders (boost::asio::placeholders::error and boost::asio::placehold-
ers::bytes transferred) could potentially have been removed, since they are not being used in handl e_wri te().

boost: : asio::async_wite(socket_, boost::asio::buffer(message_),
boost : : bi nd(& cp_connection:: handle_wite, shared_fromthis(),
boost: :asio:: placehol ders::error,
boost: : asio:: placehol ders::bytes_transferred));

Any further actions for this client connection are now the responsibility of handl e_write().

67

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

}
private:
tcp_connection(boost::asio::io_service& io_service)
socket (i o_service)

{
}

voi d handl e_write(const boost::system:error_code& /*error*/,
size_t /*bytes_transferred*/)

{
}

tcp: : socket socket_;
std::string nessage_;

Removing unused handler parameters

You may have noticed that the err or, and byt es_t r ansf er r ed parameters are not used in the body of the handl e_write()
function. If parameters are not needed, it is possible to remove them from the function so that it looks like:

void handle_wite()

{
}

The boost::asio::async_write() call used to initiate the call can then be changed to just:

boost::asio::async_wite(socket_, boost::asio::buffer(nessage_),
boost: : bi nd(& cp_connection:: handle_wite, shared_fromthis()));

See the full sourcelisting
Return to the tutorial index
Previous. Daytime.2 - A synchronous TCP daytime server

Next: Daytime.4 - A synchronous UDP daytime client

68

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Source listing for Daytime.3

I

/'l server.cpp

[~~~

I

/1 Copyright (c) 2003-2014 Christopher M Kohl hoff (chris at kohl hoff dot com
I

/1 Distributed under the Boost Software License, Version 1.0. (See acconpanying
/1 file LICENSE_1_0.txt or copy at http://ww. boost.org/LICENSE 1 O.txt)

I

#i ncl ude <cti me>

#i ncl ude <i ostreanr

#i ncl ude <string>

#i ncl ude <boost/ bi nd. hpp>

#i ncl ude <boost/shared_ptr. hpp>

#i ncl ude <boost/enabl e_shared_fromthis. hpp>
#i ncl ude <boost/ asi 0. hpp>

usi ng boost::asio::ip::tcp;

std::string nake_daytine_string()

{
usi ng namespace std; // For time_t, time and ctine;
time_t now = tinme(0);
return ctime(&ow ;

}

cl ass tcp_connection
publi c boost::enabl e_shared_fromthis<tcp_connection>

{
publi c:
t ypedef boost::shared_ptr<tcp_connection> pointer

static pointer create(boost::asio::io_service& io_service)

{
return pointer(new tcp_connection(io_service))
}
tcp: : socket & socket ()
{
return socket ;
}
void start()
{
nmessage_ = make_daytine_string();
boost: : asi o::async_wite(socket_, boost::asio::buffer(nmessage),
boost : : bi nd(& cp_connection::handle_wite, shared_fromthis()
boost : : asi o: : pl acehol ders: :error
boost : : asi o: : pl acehol ders: : bytes_transferred));
}
private:

tcp_connection(boost::asio::io_service& io_service)
socket (i o_service)

{

}

voi d handl e_wite(const boost::system:error_code& /*error*/,
size_t /*bytes_transferred*/)

69

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

{
}

tcp: : socket socket_;
std::string nessage_;

b

class tcp_server
{
public:
tcp_server(boost::asio::io_service& io_service)
acceptor_(io_service, tcp::endpoint(tcp::v4(), 13))
{

start_accept ()

}

private:
voi d start_accept ()
{
tcp_connection: : poi nter new_connection =
tcp_connection: :create(acceptor_.get_io_service())

acceptor_. async_accept (new_connecti on- >socket ()
boost: : bi nd(& cp_server:: handl e_accept, this, new_connection
boost::asio::placeholders::error));

}

voi d handl e_accept (tcp_connection:: poi nter new_connection
const boost::system:error_code& error)

{
if (lerror)
{
new_connection->start();
}
start_accept ()
}
tcp: :acceptor acceptor_;
b
int main()
{
try
{
boost::asio::io_service io_service;
tcp_server server(io_service)
i o_service.run()
}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;
}
return O
}

Return to Daytime.3 - An asynchronous TCP daytime server

Daytime.4 - A synchronous UDP daytime client

Thistutorial program shows how to use asio to implement a client application with UDP.

70

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

#i ncl ude <i ostreanv
#i ncl ude <boost/array. hpp>
#i ncl ude <boost/ asi 0. hpp>

usi ng boost::asio::ip::udp;
The start of the application is essentially the same as for the TCP daytime client.

int main(int argc, char* argv[])

{
try
{
if (argc !'= 2)
{
std::cerr << "Usage: client <host>" << std::endl
return 1;
}

boost::asio::io_service io_service;

We use an ip::udp::resolver object to find the correct remote endpoint to use based on the host and service names. The query isre-
stricted to return only 1Pv4 endpoints by the ip::udp::v4() argument.

udp: : resol ver resolver(io_service);
udp: : resol ver::query query(udp::v4(), argv[1l], "daytinme")

The ip::udp::resolver::resolve() function is guaranteed to return at least one endpoint in the list if it does not fail. This meansit is
safe to dereference the return value directly.

udp: : endpoi nt receiver_endpoint = *resol ver.resol ve(query);

Since UDP is datagram-oriented, we will not be using a stream socket. Create an ip::udp::socket and initiate contact with the remote
endpoint.

udp: : socket socket (i o_service);
socket . open(udp: :v4());

boost: :array<char, 1> send_buf = {{ O }};
socket . send_t o(boost : : asi o: : buf fer(send_buf), receiver_endpoint);

Now we need to be ready to accept whatever the server sends back to us. The endpoint on our side that receives the server's response
will beinitialised by ip::udp::socket::receive_from().

boost::array<char, 128> recv_buf;

udp: : endpoi nt sender _endpoi nt;

size_t len = socket.receive_from
boost::asio::buffer(recv_buf), sender_endpoint);

std::cout.wite(recv_buf.data(), len);

Finally, handle any exceptions that may have been thrown.

71

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

catch (std::exception& e)

{

std::cerr << e.what() << std::endl;
}
return O

}

See the full source listing
Return to the tutorial index
Previous: Daytime.3 - An asynchronous TCP daytime server

Next: Daytime.5 - A synchronous UDP daytime server
Source listing for Daytime.4

I

/1 client.cpp

/]~~~

I

/1l Copyright (c) 2003-2014 Christopher M Kohl hoff (chris at kohl hoff dot con
I

/1 Distributed under the Boost Software License, Version 1.0. (See acconpanying
/1 file LICENSE_1_0.txt or copy at http://ww. boost.org/LICENSE 1 O.txt)

I

#i ncl ude <i ostreanv
#i ncl ude <boost/array. hpp>
#i ncl ude <boost/ asi 0. hpp>

using boost::asio::ip::udp

int main(int argc, char* argv[])

{
try
{
if (argc '= 2)
{
std::cerr << "Usage: client <host>" << std::endl;
return 1;
}

boost::asio::io_service io_service;

udp: : resol ver resolver(io_service)
udp: :resol ver:: query query(udp::v4(), argv[1l], "daytine")
udp: : endpoi nt receiver_endpoi nt = *resol ver.resol ve(query)

udp: : socket socket (i o_service)
socket . open(udp: :v4());

boost::array<char, 1> send_buf = {{ 0 }};
socket . send_t o(boost :: asi o:: buffer(send_buf), receiver_endpoint)

boost::array<char, 128> recv_buf;

udp: : endpoi nt sender _endpoi nt

size_t len = socket.receive_from
boost::asio::buffer(recv_buf), sender_endpoint)

72

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

std::cout.wite(recv_buf.data(), len);

}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;
}
return O;

}

Return to Daytime.4 - A synchronous UDP daytime client

Daytime.5 - A synchronous UDP daytime server

Thistutorial program shows how to use asio to implement a server application with UDP.

int main()
{

try

{

boost::asio::io_service io_service;
Create an ip::udp::socket object to receive requests on UDP port 13.
udp: : socket socket (io_service, udp::endpoint(udp::v4(), 13));
Wait for a client to initiate contact with us. The remote_endpoint object will be populated by ip::udp::socket::receive_from().

for (;7)
{
boost: :array<char, 1> recv_buf;
udp: : endpoi nt renote_endpoi nt;
boost:: system :error_code error;
socket . recei ve_from boost: :asio:: buffer(recv_buf),
renote_endpoint, 0, error);

if (error & error != boost::asio::error::nessage_size)
t hrow boost::system:systemerror(error);

Determine what we are going to send back to the client.
std::string nessage = make_daytinme_string();
Send the response to the remote_endpoint.

boost::system :error_code ignored_error;
socket . send_t o(boost : : asi o: : buf f er (nmessage),
renote_endpoint, 0, ignored_error);

Finally, handle any exceptions.

73

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

catch (std::exception& e)

{

std::cerr << e.what() << std::endl;
}
return O

}

See the full source listing
Return to the tutorial index
Previous: Daytime.4 - A synchronous UDP daytime client

Next: Daytime.6 - An asynchronous UDP daytime server
Source listing for Daytime.5

I

/'l server.cpp

/]~~~

I

/1l Copyright (c) 2003-2014 Christopher M Kohl hoff (chris at kohl hoff dot con
I

/1 Distributed under the Boost Software License, Version 1.0. (See acconpanying
/1 file LICENSE_1_0.txt or copy at http://ww. boost.org/LICENSE 1 O.txt)

I

#i ncl ude <cti me>

#i ncl ude <i ostreanv

#i ncl ude <string>

#i ncl ude <boost/array. hpp>
#i ncl ude <boost/ asi 0. hpp>

usi ng boost::asio::ip::udp;

std::string make_daytime_string()

{
usi ng nanespace std; // For tine_t, tine and ctine;
time_t now = tinme(0);
return ctine(&ow);

}

int main()
{

try

{

boost::asio::io_service io_service;
udp: : socket socket (i o_service, udp::endpoint(udp::v4(), 13));

for (1)
{
boost::array<char, 1> recv_buf;
udp: : endpoi nt renote_endpoi nt;
boost::system :error_code error;
socket . recei ve_from boost::asio::buffer(recv_buf),
renote_endpoint, 0, error);

if (error & error != boost::asio::error::nessage_size)
t hrow boost::system :systemerror(error);

74

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

std::string nessage = nake_daytine_string();

boost::system :error_code i gnored_error;

socket . send_t o(boost : : asi o: : buf f er (nmessage),

renote_endpoint, 0, ignored_error);

}
}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;
}
return O;

}

Return to Daytime.5 - A synchronous UDP daytime server

Daytime.6 - An asynchronous UDP daytime server

The main() function

int main()
{

try

{

Create a server object to accept incoming client requests, and run the io_service object.

boost: :asio::io_service io_service;
udp_server server(io_service);
io_service.run();

catch (std::exception& e)

{

std::cerr << e.what() << std::endl;
}
return O;

}

The udp_server class

cl ass udp_server

{
public:

The constructor initialises a socket to listen on UDP port 13.

udp_server (boost: :asio::io_service& i o_service)

socket _(io_service, udp::endpoint(udp::v4(),

{

start_receive();

}

private:
void start_receive()

{

13))

75

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

The function ip::udp::socket::async _receive from() will cause the application to listen in the background for a new request. When
such arequest is received, theio_service object will invoke the handl e_r ecei ve() function with two arguments: a value of type
boost::system::error_codeindicating whether the operation succeeded or failed, andasi ze_t valuebyt es_t r ansf er r ed specifying
the number of bytesreceived.

socket _. async_receive_from
boost::asio::buffer(recv_buffer_), renote_endpoint_,
boost : : bi nd(&dp_server:: handl e_receive, this
boost: : asio:: placehol ders: :error,
boost: : asio:: placehol ders::bytes_transferred));

The function handl e_r ecei ve() will service the client request.

voi d handl e_recei ve(const boost::system :error_code& error
std::size_t /*bytes_transferred*/)

{

Theer r or parameter containsthe result of the asynchronous operation. Sincewe only providethe 1-byter ecv_buf f er _ tocontain
the client's request, the io_service object would return an error if the client sent anything larger. We can ignore such an error if it
Comes up.

if (lerror || error == boost::asio::error::nessage_size)

{
Determine what we are going to send.

boost::shared_ptr<std::string> nessage(
new std::string(make_daytime_string()));

We now call ip::udp::socket::async_send to() to serve the data to the client.

socket . async_send_t o(boost::asio::buffer(*nmessage), renote_endpoint_,
boost: : bi nd(&dp_server:: handl e_send, this, nessage
boost:: asio:: placehol ders::error
boost: :asio:: placehol ders::bytes_transferred));

When initiating the asynchronous operation, and if using boost::bind(), you must specify only the arguments that match the handler's
parameter list. In this program, both of the argument placeholders (boost::asio::placeholders::error and boost::asio::placehold-
ers::bytes transferred) could potentially have been removed.

Start listening for the next client request.
start_receive();

Any further actions for this client request are now the responsibility of handl e_send() .

The function handl e_send() isinvoked after the service request has been completed.

76

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

voi d handl e_send(boost::shared_ptr<std::string> /*nessage*/,
const boost::system:error_code& /*error*/,
std::size_t /*bytes_transferred*/)

{

}

udp: : socket socket _;
udp: : endpoi nt renote_endpoi nt _;
boost::array<char, 1> recv_buffer_;

See the full sourcelisting
Return to the tutorial index
Previous: Daytime.5 - A synchronous UDP daytime server

Next: Daytime.7 - A combined TCP/UDP asynchronous server

Source listing for Daytime.6

I

/'l server.cpp

/]~~~

I

/1 Copyright (c) 2003-2014 Christopher M Kohl hoff (chris at kohl hoff dot com
I

/1 Distributed under the Boost Software License, Version 1.0. (See acconpanying
/1 file LICENSE_1_0.txt or copy at http://ww. boost.org/LICENSE 1 O.txt)

I

#i ncl ude <cti me>

#i ncl ude <i ostreanv

#incl ude <string>

#i ncl ude <boost/array. hpp>

#i ncl ude <boost/ bi nd. hpp>

#i ncl ude <boost/shared_ptr. hpp>
#i ncl ude <boost/ asi 0. hpp>

using boost::asio::ip::udp

std::string make_daytime_string()

{
usi ng nanespace std; // For tine_t, tine and ctine;
time_t now = time(0);
return ctine(&ow);

}

cl ass udp_server
{
public:
udp_server (boost::asio::io_service& i o_service)
socket (i o_service, udp::endpoint(udp::v4(), 13))
{

start _receive();

}

private:
void start_receive()

{

socket . async_receive_from

77

render

> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

boost::asio::buffer(recv_buffer_), renote_endpoint_,
boost: : bi nd(&dp_server:: handl e_receive, this

boost: :asio:: placehol ders::error

boost: :asio:: placehol ders::bytes_transferred));

}

voi d handl e_recei ve(const boost::system:error_code& error
std::size_t /*bytes_transferred*/)

{
if (lerror || error == boost::asio::error::nessage_size)
{
boost::shared_ptr<std::string> nessage(
new std::string(nmake_daytime_string()));
socket _. async_send_t o(boost::asio::buffer(*nmessage), renote_endpoint_,
boost: : bi nd(&dp_server:: handl e_send, this, nessage
boost: : asio:: placehol ders::error
boost: :asio:: placehol ders::bytes_transferred));
start_receive();
}
}

voi d handl e_send(boost: :shared_ptr<std::string> /*nessage*/,
const boost::system:error_code& /*error*/,
std::size_t /*bytes_transferred*/)

{

}

udp: : socket socket _;
udp: : endpoi nt renote_endpoi nt _;
boost::array<char, 1> recv_buffer_;

b
int main()
{
try
{
boost::asio::io_service io_service;
udp_server server(io_service);
i o_service.run()
}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl
}
return O
}

Return to Daytime.6 - An asynchronous UDP daytime server

Daytime.7 - A combined TCP/UDP asynchronous server

Thistutorial program shows how to combine the two asynchronous serversthat we have just written, into asingle server application.

78

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Asio

The main() function

int main()
{

try

{

boost::asio::io0_service io_service;

We will begin by creating a server object to accept a TCP client connection.

tcp_server serverl1(io_service);
We also need a server object to accept a UDP client request.

udp_server server2(io_service);

We have created two lots of work for the io_service object to do.

io_service.run();

}

catch (std::exception& e)

{

std::cerr << e.what() << std::endl;

}

return O;

}

The tcp_connection and tcp_server classes

The following two classes are taken from Daytime.3 .

79

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

cl ass tcp_connection
public boost::enabl e_shared_fromthis<tcp_connection>

{
public:
t ypedef boost::shared_ptr<tcp_connection> pointer;
static pointer create(boost::asio::io_service& io_service)
{
return pointer(new tcp_connection(io_service))
}
tcp: : socket & socket ()
{
return socket _;
}
void start()
{
nessage_ = make_daytine_string();
boost::asio::async_wite(socket_, boost::asio::buffer(nessage)
boost: : bi nd(& cp_connection::handle_wite, shared _fromthis()))
}
private:

tcp_connection(boost::asio::io_service& io_service)
socket (i o_service)

{

}

void handle_wite()

{
}

tcp: : socket socket_;
std::string nessage_;

I

class tcp_server
{
public:
tcp_server(boost::asio::io_service& io_service)
acceptor_(io_service, tcp::endpoint(tcp::v4(), 13))

{
start_accept ()

}

private:

void start_accept ()

{
tcp_connection: : poi nter new_connection =

tcp_connection: :create(acceptor_.get_io_service())
acceptor_. async_accept (new_connecti on- >socket ()
boost: : bi nd(& cp_server:: handl e_accept, this, new_connection
boost::asio::placeholders::error));
}

voi d handl e_accept (tcp_connection:: poi nter new_connection
const boost::system:error_code& error)

{
if (lerror)

{

80

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

new_connection->start();

}

start_accept ()

}

tcp::acceptor acceptor_;

b

The udp_server class

Similarly, this next classis taken from the previous tutorial step .

cl ass udp_server
{
public:
udp_server (boost::asio::io_service& i o_service)
socket (i o_service, udp::endpoint(udp::v4(), 13))
{

start _receive();

}

private:
void start_receive()
{
socket _. async_receive_from
boost::asio::buffer(recv_buffer_), renote_endpoint_,
boost: : bi nd(&dp_server:: handl e_receive, this
boost::asio::placeholders::error));

}
voi d handl e_recei ve(const boost::system:error_code& error)
{
if (lerror || error == boost::asio::error::nessage_size)
{
boost: :shared_ptr<std::string> nmessage(
new std::string(nmake_daytime_string()));
socket . async_send_t o(boost::asio::buffer(*nmessage), renote_endpoint_,
boost: : bi nd(&dp_server:: handl e_send, this, nessage))
start_receive();
}
}
voi d handl e_send(boost::shared_ptr<std::string> /*nessage*/)
{
}

udp: : socket socket _;
udp: : endpoi nt renote_endpoi nt _;
boost::array<char, 1> recv_buffer_;

See the full source listing
Return to the tutorial index

Previous: Daytime.6 - An asynchronous UDP daytime server

81

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Source listing for Daytime.7

I

/'l server.cpp

[~~~

I

/1 Copyright (c) 2003-2014 Christopher M Kohl hoff (chris at kohl hoff dot com
I

/1 Distributed under the Boost Software License, Version 1.0. (See acconpanying
/1 file LICENSE_1_0.txt or copy at http://ww. boost.org/LICENSE 1 O.txt)

I

#i ncl ude <cti me>

#i ncl ude <i ostreanr

#i ncl ude <string>

#i ncl ude <boost/array. hpp>

#i ncl ude <boost/ bi nd. hpp>

#i ncl ude <boost/shared_ptr. hpp>

#i ncl ude <boost/enabl e_shared_fromthis. hpp>
#i ncl ude <boost/ asi 0. hpp>

usi ng boost::asio::ip::tcp;
usi ng boost::asio::ip::udp;

std::string nake_daytine_string()

{
usi ng namespace std; // For time_t, time and ctine;
time_t now = time(0);
return ctine(&ow);

}

cl ass tcp_connection
publ i c boost::enabl e_shared_fromthis<tcp_connection>

{
public:
t ypedef boost::shared_ptr<tcp_connection> pointer

static pointer create(boost::asio::io_service& io_service)

{
return pointer(new tcp_connection(io_service))
}
tcp: : socket & socket ()
{
return socket ;
}
void start()
{
nmessage_ = make_daytine_string();

boost: : asio::async_wite(socket_, boost::asio::buffer(nmessage),
boost : : bi nd(& cp_connection: :handle_wite, shared_fromthis()))

}

private:
tcp_connection(boost::asio::io_service& io_service)
socket _(io_service)
{
}

void handle_wite()

{

82

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

}

tcp: : socket socket_;
std::string nessage_;

b
cl ass tcp_server
{
public:
tcp_server(boost::asio::io_service& io_service)
acceptor_(io_service, tcp::endpoint(tcp::v4(), 13))
{
start_accept ()
}
private:
void start_accept ()
{
tcp_connection: : poi nter new_connection =
tcp_connection: :create(acceptor_.get_io_service())
acceptor_. async_accept (new_connecti on- >socket ()
boost: : bi nd(& cp_server:: handl e_accept, this, new_connection
boost::asio::placeholders::error));
}
voi d handl e_accept (tcp_connection:: poi nter new_connection
const boost::system:error_code& error)
{
if (lerror)
{
new_connection->start();
}
start_accept ()
}
tcp::acceptor acceptor_;
b
cl ass udp_server
{
public:
udp_server (boost::asio::io_service& i o_service)
socket _(io_service, udp::endpoint(udp::v4(), 13))
{
start _receive();
}
private:
void start_receive()
{
socket _. async_receive_from
boost::asio::buffer(recv_buffer_), renote_endpoint_,
boost: : bi nd(&dp_server:: handl e_receive, this
boost::asio::placeholders::error));
}
voi d handl e_recei ve(const boost::system:error_code& error)
{

if (lerror || error == boost::asio::error::nessage_size)
{

boost::shared_ptr<std::string> nessage(

83

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

new std::string(nmake_daytime_string()));

socket _. async_send_t o(boost::asio::buffer(*nmessage), renote_endpoint_,
boost: : bi nd(&dp_server:: handl e_send, this, nessage));

start _receive();

}
}

voi d handl e_send(boost: :shared_ptr<std::string> /*nmessage*/)
{
}

udp: : socket socket _;
udp: : endpoi nt renote_endpoi nt _;
boost::array<char, 1> recv_buffer_;

s
int main()
{
try
{
boost::asio::io_service io_service;
tcp_server serverl1(io_service);
udp_server server2(io_service);
io_service.run();
}
catch (std::exception& e)
{
std::cerr << e.what() << std::endl;
}
return O;
}

Return to Daytime.7 - A combined TCP/UDP asynchronous server

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Examples

» C++03 Examples: lllustratesthe use of Boost.Asio using only C++03 language and library features. Where necessary, the examples
make use of selected Boost C++ libraries.

e C++11 Examples: Contains a limited set of the C++03 Boost.Asio examples, updated to use only C++11 library and language
facilities. These examples do not make direct use of Boost C++ libraries.

C++03 Examples

Allocation

This example shows how to customise the allocation of memory associated with asynchronous operations.

* boost_asio/example/cpp03/all ocation/server.cpp

Buffers

This example demonstrates how to create reference counted buffers that can be used with socket read and write operations.

* boost_asio/example/cpp03/buffers/reference counted.cpp
Chat

This example implements a chat server and client. The programs use a custom protocol with a fixed length message header and
variable length message body.

* boost_asio/example/cpp03/chat/chat_message.hpp
 boost_asio/example/cpp03/chat/chat_client.cpp
* boost_asio/example/cpp03/chat/chat_server.cpp

The following POSIX-specific chat client demonstrates how to use the posix::stream_descriptor class to perform console input and
output.

* boost_asio/example/cpp03/chat/posix_chat_client.cpp

Echo

A collection of simple clients and servers, showing the use of both synchronous and asynchronous operations.
 boost_asio/example/cpp03/echo/async _tcp_echo_server.cpp

» boost_asio/example/cpp03/echo/async_udp_echo_server.cpp

* boost_asio/example/cpp03/echo/blocking_tcp_echo_client.cpp
 boost_asio/example/cpp03/echo/blocking_tcp echo_server.cpp

* boost_asio/example/cpp03/echo/blocking_udp_echo_client.cpp

* boost_asio/example/cpp03/echo/blocking_udp_echo_server.cpp

Fork

These POSI X -specific examples show how to use Boost.Asio in conjunction with thef or k() system call. Thefirst exampleillustrates
the steps required to start a daemon process:

85

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/allocation/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/buffers/reference_counted.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/chat/chat_message.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/chat/chat_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/chat/chat_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/chat/posix_chat_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/echo/async_tcp_echo_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/echo/async_udp_echo_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/echo/blocking_tcp_echo_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/echo/blocking_tcp_echo_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/echo/blocking_udp_echo_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/echo/blocking_udp_echo_server.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

* boost_asio/exampl e/cpp03/fork/daemon.cpp
The second example demonstrates how it is possible to fork a process from within a completion handler.

* boost_asio/example/cpp03/fork/process_per_connection.cpp
HTTP Client

Example programs implementing simple HTTP 1.0 clients. These examples show how to use the read_until and async _read_until
functions.

* boost_asio/example/cpp03/http/client/sync_client.cpp

* boost_asio/example/cpp03/http/client/async_client.cpp
HTTP Server

Thisexampleillustratesthe use of asio in asimple single-threaded server implementation of HTTP 1.0. It demonstrates how to perform
a clean shutdown by cancelling all outstanding asynchronous operations.

* boost_asio/exampl e/cpp03/http/server/connection.cpp
 boost_asio/exampl e/cpp03/http/server/connection.hpp

* boost_asio/example/cpp03/http/server/connection_manager.cpp
* boost_asio/example/cpp03/http/server/connection_manager.hpp
 boost_asio/example/cpp03/http/server/header.hpp

* boost_asio/example/cpp03/http/server/main.cpp

* boost_asio/exampl e/cpp03/http/server/mime_types.cpp

* boost_asio/example/cpp03/http/server/mime_types.hpp

* boost_asio/example/cpp03/http/server/reply.cpp

* boost_asio/example/cpp03/http/server/reply.hpp

* boost_asio/exampl e/cpp03/http/server/request.hpp

* boost_asio/example/cpp03/http/server/request_handler.cpp

* boost_asio/example/cpp03/http/server/request_handler.hpp

* boost_asio/example/cpp03/http/server/request_parser.cpp

* boost_asio/example/cpp03/http/server/request_parser.hpp
 boost_asio/example/cpp03/http/server/server.cpp

* boost_asio/exampl e/cpp03/http/server/server.hpp

HTTP Server 2

AnHTTP server using an io_service-per-CPU design.

* boost_asio/exampl e/cpp03/http/server2/connection.cpp

* boost_asio/example/cpp03/http/server2/connection.hpp

86

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/fork/daemon.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/fork/process_per_connection.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/client/sync_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/client/async_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/connection.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/connection.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/connection_manager.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/connection_manager.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/header.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/main.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/mime_types.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/mime_types.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/reply.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/reply.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/request.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/request_handler.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/request_handler.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/request_parser.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/request_parser.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server/server.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/connection.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/connection.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

boost_asio/example/cpp03/http/server2/header.hpp
boost_asio/example/cpp03/http/server2/io_service pool.cpp
boost_asio/example/cpp03/http/server2/io_service_pool.hpp
boost_asio/example/cpp03/http/server2/main.cpp
boost_asio/example/cpp03/http/server2/mime_types.cpp
boost_asio/example/cpp03/http/server2/mime_types.hpp
boost_asio/example/cpp03/http/server2/reply.cpp
boost_asio/example/cpp03/http/server2/reply.hpp
boost_asio/example/cpp03/http/server2/request.hpp
boost_asio/example/cpp03/http/server2/request_handler.cpp
boost_asio/example/cpp03/http/server2/request_handler.hpp
boost_asio/example/cpp03/http/server2/request_parser.cpp
boost_asio/example/cpp03/http/server2/request_parser.hpp
boost_asio/example/cpp03/http/server2/server.cpp

boost_asio/example/cpp03/http/server2/server.hpp

HTTP Server 3

AnHTTP server using asingleio_service and athread pool callingi o_servi ce

boost_asio/exampl e/cpp03/http/server3/connection.cpp
boost_asio/example/cpp03/http/server3/connection.hpp
boost_asio/example/cpp03/http/server3/header.hpp
boost_asio/exampl e/cpp03/http/server3/main.cpp
boost_asio/example/cpp03/http/server3/mime_types.cpp
boost_asio/example/cpp03/http/server3/mime_types.hpp
boost_asio/example/cpp03/http/server3/reply.cpp
boost_asio/example/cpp03/http/server3/reply.hpp
boost_asio/example/cpp03/http/server3/request.hpp
boost_asio/example/cpp03/http/server3/request_handler.cpp
boost_asio/example/cpp03/http/server3/request_handler.hpp
boost_asio/example/cpp03/http/server3/request_parser.cpp
boost_asio/example/cpp03/http/server3/request_parser.hpp
boost_asio/example/cpp03/http/server3/server.cpp

boost_asio/example/cpp03/http/server3/server.hpp

orun().

87

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/header.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/io_service_pool.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/io_service_pool.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/main.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/mime_types.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/mime_types.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/reply.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/reply.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/request.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/request_handler.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/request_handler.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/request_parser.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/request_parser.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server2/server.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/connection.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/connection.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/header.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/main.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/mime_types.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/mime_types.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/reply.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/reply.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/request.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/request_handler.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/request_handler.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/request_parser.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/request_parser.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server3/server.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

HTTP Server 4

A single-threaded HT TP server implemented using stackless coroutines.
* boost_asio/example/cpp03/http/serverd/file_handler.cpp
 boost_asio/example/cpp03/http/serverd/file_handler.hpp
 boost_asio/exampl e/cpp03/http/serverd/header.hpp

* boost_asio/example/cpp03/http/serverd/main.cpp

* boost_asio/example/cpp03/http/serverd/mime_types.cpp

* boost_asio/example/cpp03/http/serverd/mime_types.hpp

* boost_asio/example/cpp03/http/serverd/reply.cpp

* boost_asio/exampl e/cpp03/http/serverd/reply.hpp

* boost_asio/exampl e/cpp03/http/serverd/request.hpp

* boost_asio/example/cpp03/http/serverd/request_parser.cpp
* boost_asio/exampl e/cpp03/http/serverd/request_parser.hpp
 boost_asio/example/cpp03/http/serverd/server.cpp

* boost_asio/example/cpp03/http/serverd/server.hpp

ICMP

This example shows how to use raw sockets with ICMP to ping a remote host.
* boost_asio/example/cpp03/icmp/ping.cpp

* boost_asio/example/cpp03/icmp/ipv4_header.hpp

* boost_asio/example/cpp03/icmp/icmp_header.hpp
Invocation

This example shows how to customise handler invocation. Completion handlers are added to a priority queue rather than executed
immediately.

* boost_asio/example/cpp03/invocation/prioritised_handlers.cpp

lostreams

Two examples showing how to use ip::tcp::iostream.
 boost_asio/example/cpp03/iostreams/daytime_client.cpp

* boost_asio/example/cpp03/iostreams/daytime_server.cpp

* boost_asio/example/cpp03/iostreams/http_client.cpp

Multicast

An exampl e showing the use of multicast to transmit packetsto a group of subscribers.

* boost_asio/exampl e/cpp03/multicast/receiver.cpp

88

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/file_handler.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/file_handler.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/header.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/main.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/mime_types.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/mime_types.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/reply.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/reply.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/request.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/request_parser.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/request_parser.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/http/server4/server.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/icmp/ping.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/icmp/ipv4_header.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/icmp/icmp_header.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/invocation/prioritised_handlers.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/iostreams/daytime_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/iostreams/daytime_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/iostreams/http_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/multicast/receiver.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

* boost_asio/example/cpp03/multicast/sender.cpp

Serialization

This example shows how Boost.Serialization can be used with asio to encode and decode structures for transmission over a socket.
* boost_asio/example/cpp03/serialization/client.cpp

 boost_asio/exampl e/cpp03/serialization/connection.hpp

* boost_asio/example/cpp03/serialization/server.cpp

 boost_asio/example/cpp03/serialization/stock.hpp

Services

This example demonstrates how to integrate custom functionality (in this case, for logging) into asio'sio_service, and how to use a
custom service with basic_stream_socket<>.

* boost_asio/example/cpp03/services/basic_|ogger.hpp

 boost_asio/example/cpp03/services/daytime client.cpp

* boost_asio/example/cpp03/services/logger.hpp

 boost_asio/example/cpp03/services/logger_service.cpp
 boost_asio/example/cpp03/services/logger_service.hpp

* boost_asio/example/cpp03/services/stream_socket_service.hpp

SOCKS 4

Example client program implementing the SOCK'S 4 protocol for communication via a proxy.

* boost_asio/example/cpp03/socks4/sync_client.cpp

* boost_asio/example/cpp03/socksa/socks4.hpp

SSL

Example client and server programs showing the use of the sdl::stream<> template with asynchronous operations.
 boost_asio/example/cpp03/ssl/client.cpp

* boost_asio/example/cpp03/ssl/server.cpp

Timeouts

A collection of examples showing how to cancel long running asynchronous operations after a period of time.
 boost_asio/exampl e/cpp03/timeouts/async_tcp_client.cpp

* boost_asio/example/cpp03/timeouts/blocking_tcp_client.cpp

* boost_asio/example/cpp03/timeouts/blocking_udp_client.cpp

 boost_asio/example/cpp03/timeouts/server.cpp

89

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/multicast/sender.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/serialization/client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/serialization/connection.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/serialization/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/serialization/stock.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/services/basic_logger.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/services/daytime_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/services/logger.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/services/logger_service.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/services/logger_service.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/services/stream_socket_service.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/socks4/sync_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/socks4/socks4.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/ssl/client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/ssl/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/timeouts/async_tcp_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/timeouts/blocking_tcp_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/timeouts/blocking_udp_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/timeouts/server.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Asio

Timers

Examples showing how to customise deadline_timer using different time types.

* boost_asio/example/cpp03/timers/tick_count_timer.cpp

* boost_asio/example/cpp03/timers/time_t_timer.cpp

Porthopper

Exampleillustrating mixed synchronous and asynchronous operations, and how to use Boost.Lambda with Boost.Asio.
* boost_asio/example/cpp03/porthopper/protocol .hpp

 boost_asio/example/cpp03/porthopper/client.cpp

* boost_asio/example/cpp03/porthopper/server.cpp

Nonblocking

Example demonstrating reactor-style operations for integrating a third-party library that wants to perform the 1/0O operations itself.
* boost_asio/example/cpp03/nonblocking/third_party_lib.cpp

Spawn

Example of using the boost::asio::spawn() function, a wrapper around the Boost.Coroutine library, to implement a chain of asyn-
chronous operations using stackful coroutines.

* boost_asio/example/cpp03/spawn/echo_server.cpp

UNIX Domain Sockets

Examples showing how to use UNIX domain (local) sockets.

* boost_asio/example/cpp03/local/connect_pair.cpp

* boost_asio/example/cpp03/local/stream_server.cpp

» boost_asio/example/cpp03/local/stream_client.cpp

Windows

An exampl e showing how to use the Windows-specific function Tr ansni t Fi | e with Boost.Asio.

 boost_asio/exampl e/cpp03/windows/transmit_file.cpp

C++11 Examples

Allocation

This example shows how to customise the allocation of memory associated with asynchronous operations.

» boost_asio/example/cppll/allocation/server.cpp

Buffers

This example demonstrates how to create reference counted buffers that can be used with socket read and write operations.

 boost_asio/example/cppll/buffers/reference counted.cpp

90

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/timers/tick_count_timer.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/timers/time_t_timer.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/porthopper/protocol.hpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/porthopper/client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/porthopper/server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/nonblocking/third_party_lib.cpp
http://www.boost.org/doc/libs/release/libs/coroutine/index.html
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/spawn/echo_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/local/connect_pair.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/local/stream_server.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/local/stream_client.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp03/windows/transmit_file.cpp
http://www.boost.org/doc/libs/release/libs/asio/doc/html/boost_asio/example/cpp11/allocation/server.cpp
http://www.boost.org/doc/li