Boost.Log v2

Andrey Semashev
Copyright © 2007-2014 Andrey Semashev

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1 0.txt or copy at
http://www.boost.org/LICENSE_1 0.txt).

Table of Contents

Lo 1A= o] o ST OPPTTTSPPPTTR 3
HOW t0 read the QOCUMENTELIONttt ettt ettt ettt ettt e e et ee e r et e e b r et e et r et e et reeeeaaaeeennans 4
Installation and COMPELTDITITYiiiei ettt et e e et r e et e e et et e e et ab e e e e raa s 5
Supported COMPIlErs aNd PLALTFOMMISttt ettt e et e et e e et e e e ere s 5
Configuring and building the TTDrary ..o ettt e e e e e s 6
(D {1 o] (o g SO SPP PP SPPPPTPRPPPIN 10
(D1 gl e Y= AV L= PP PPTTPPPPP 11
LT Lo TSP PP TPPPPTR 14
R L= I Lo e o] oo E TP PTTUTPPPPTTUPPPRIN 14
Trivial [0ggiNG WITN FIIEEIS ..o ettt e ettt e e e et e e e e et e e e eebeaaeeens 14
SEELING U SINKS ettt ettt ettt e ettt oottt oot e e et e ettt a et e e et e e e enaans 15
Creating 10ggers @nd WITING TOOS ... ceeurieeiii et e ettt e et e e e e et e e e eete e e e eebaaaeeees 18
Adding more information t0 10g: ATIDULES i et 19
(o lo [= ololgo [foq 00T 1110 (o PP SPPPTTR 22
L 1o = VS L= o PP TUP PP TPPPTT 27
NV (=X g = = ot (= g oo o [oo IR TP PRSPPI 29
Detailed fEAUNES ESTITPIION ieeit ettt ettt et e ettt e et ettt e e ettt e e et e bt e e et ett e e e ee bt e e e eenbaeeeebbaeeenn 33
1000 (o] o] (= PP PP TUPPPTR 33
(oo o] 0Te IS o 10| (ol PSPPSR 38
S 0 (0012 0T ST PP UPPRTRN 46
SINK DBCKENTS ... e et ettt et ettt e e e enaans 55
LaMBDOa EXPIESSIONS ...t ettt et et e e ettt e e e e et e e eeb e aee 69
L 1 101 ST TSP PRSP 89
L] =SSP 107
EXIENAING TN TIOFAIY ..ot et ettt e et ettt e e et e e e et e e e e 129
WWIITING YOUE OWI SITIKS ...ttt ettt ettt etttk s et e e et b e et e bkt et et e et et e e et et e e e e ebe s 129
WWIITING YOUF OWIN SOUFCES ...ttt ettt ettt ettt ettt e et et e et et e e et ekt ettt b oo et e b e et e et et e bb e e e e bb e e e ebnn e 134
WItiNG YOUP OWN BEEMTULESoeee ettt e et e et et e et et e e e eab e e e eneas 140
Extending [ibrary SEtiNgS SUPPONT ... eeeeti ettt e ettt e ettt e et ettt e e et e e et et e e et et e e et et n e e e et e e e e enanans 142
L 1o = o= g o I A G PSPPSR 151
Why String [iteralS @S SCOPE NAIMES? ... ittt ettt e et e et e e et et e e et et e e et et e e e e ebaaes 151
Why scoped attributes don't override existing @ttribUIES?ooiiiiiiiiiii e 151
Why log records are weakly ordered in a multithreaded appliCation?ccuuiiiiiiiiiiiiii e 152
Why attributes set with stream manipulators do not participate in filtering? ..o 153
Why NOt USING [GZY SEIEAMING? ... eeeee ettt ettt ettt e ettt e et e bt et et r e e e et e e e e et e e e e ebe s 153
Why not using hierarchy of loggers, like in 10g4j? Why not BOOSt.LOGA]? ELC.cccuvuniiiiiiieiiiiie e 153
Does Boost.Log SUPPOIT PrOCESS FOrKING?cceeeieiiiti ettt ettt et e et e e et eeebe s 154
Does Boost.Log support logging at processinitialization and termination?vveeiiiiieiiiiie e 154
Why my application crashes on process termination when file SinkSare Used? ..o 154
Why my application failsto link with Boost.Log? What's the fuss about library namespaces?c.ccevveveviinieieinnnnnn. 155
Why MSVC 2010 fails to link the library with error LNK1123: failure during conversion to COFF: file invalid or cor-
(8o PP PTPPTN 156
RS 1= £ 00 S PP SPP PR 157
TOP TBVE] NEATEIS ...t ettt e ettt e e e e e e et e e e et e e e eer e eaee 157
1

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

(O0e] (=T o0 1010 70] 1 01 K= PR 168
N L1 o101 1= SRR 179
(0155 o P 264
(o0 o110 TR o0 (o 340
S 1S PP 386
LU USRS 448
(@ (oLl o = =0 o] o 0 = Y= 566
(01571010 = o o PP 570
TODO N FULUIE TEIEBSES ...t eeeete ettt e e et e e ettt e e e e et e e e ettt e e e e et e e e e et e e e e e tb e e e e ettn e eeenen s 577
o 0T =" Lo 0=) P 578
2

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

Motivation

Today applications grow rapidly, becoming complicated and difficult to test and debug. Most of the time applications run on aremote
site, leaving the developer little chance to monitor their execution and figure out the reasons for their failure, onceit should happen.
Moreover, even the local debugging may become problematic if the application behavior depends heavily on asynchronous side
events, such as a device feedback or another process activity.

This is where logging can help. The application stores all essential information about its execution to a log, and when something
goes wrong this information can be used to analyze the program behavior and make the necessary corrections. There are other very
useful applications of logging, such as gathering statistical information and highlighting events (i.e. indicating that some situation
has occurred or that the application is experiencing some problems). These tasks have proved to be vital for many real-world indus-
trial applications.

Thislibrary aims to make logging significantly easier for the application devel oper. It provides awide range of out-of-the-box tools
along with public interfaces for extending the library. The main goals of the library are:

» Simplicity. A small example code snippet should be enough to get the feel of the library and be ready to use its basic features.
» Extensibility. A user should be able to extend functionality of the library for collecting and storing information into logs.

» Performance. Thelibrary should have as little performance impact on the user's application as possible.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

How to read the documentation

The documentation is oriented to both new and experienced library users. However, users are expected to be familiar with commonly
used Boost components, such asshar ed_pt r, nake_shar ed (see Boost.SmartPtr), and f unct i on (Boost.Function). Some parts
of the documentation will refer to other Boost libraries, as needed.

If thisisyour first experience with the library, it isrecommended to read the Design overview section for afirst glance at thelibrary's
capabilitiesand architecture. The Installation and Tutorial sectionswill help to get started experimenting with thelibrary. Thetutorial
gives an overview of the library features with sample code snippets. Some tutorial steps are presented in two forms: simple and ad-
vanced. The ssmple form typically describes the most common and easy way to do the task and it is being recommended to be read
by new users. The advanced form usually gives an expanded way to do the same thing but with an in-depth explanation and the
ability to do some extra customization. This form may come in handy for more experienced users and should generally be read if
the easy way does not satisfy your needs.

Besidesthe tutorial there is a Detailed features description chapter. This part describes other tools provided by the library that were
not covered by the tutorial. This chapter is best read on a case by case basis.

Last, but not least, there is a reference which gives the formal description of library components.

To keep the code snippetsin this documentation simple, the following namespace aliases are assumed to be defined:

namespace | oggi ng = boost: : 1 o0g;

namespace sinks = boost::log:: sinks;
nanespace src = boost::log::sources;
namespace expr = boost::|og::expressions;
namespace attrs = boost::log::attributes;
namespace keywords = boost:: | og:: keywords;

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/smart_ptr/smart_ptr.htm
http://www.boost.org/doc/libs/release/doc/html/function.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

Installation and compatibility

Supported compilers and platforms

Thelibrary should build and work with areasonably compliant compiler. Thelibrary was successfully built and tested on the following
platforms:

» Windows XP, Windows Vista, Windows 7. MSVC 8.0 SP1, MSVC 9.0 and newer.

» Linux. GCC 4.5 and newer. Older versions may work too, but it was not tested.

e Linux. Intel C++ 13.1.0.146 Build 20130121.

e Linux. Clang 3.2.

The following compilers/platforms are not supported and will likely fail to compile the library:

e C++11 compilers with non-C++11 standard libraries (like Clang with libstdc++ from GCC 4.2). Please, use a C++11 standard
library in C++11 mode.

* MSVC 8.0 (without SP1) and older.

* GCC 4.2 and older.

* Borland C++ 5.5.1 (free version). Newer versions might or might not work.
» Solaris Studio 12.3 and ol der.

» Windows 9x, ME, NT4 and older are not supported.

Boost.L og should be compatible with all hardware architectures supported by Boost. However, in case of 32 bit x86 architecture the
library requires at least i586 class CPU to run.

Notes for GCC users

GCC versions since 4.5 support link time optimization (LTO), when most of optimizations and binary code generation happens at
linking stage. This alows to perform more advanced optimizations and produce faster code. Unfortunately, it does not play well
with projects containing source files that need to be compiled with different compiler options. Boost.Log is one of such projects,
some parts of its sources contain optimizations for modern CPUs and will not run on older CPUs. Enabling LTO for Boost.Log will
produce binaries incompatible with older CPUs (GCC bug), which will likely result in crashes in run time. For this reason GCC
LTO is not supported in Boost.L og.

ThereisaGCC bug which may cause compilation failureswhen - mar ch=nat i ve command lineargument isused. It isrecommended
to avoid using - mar ch=nat i ve argument (or i nst r uct i on- set =nat i ve bjam property) and instead explicitly specify the target
CPU (e.g.i nstruction-set =sandy- bri dge).

Notes for MinGW, Cygwin and Visual Studio Express Edition users

In order to compile the library with these compilers specia preparations are needed. First, in case of MinGW or Cygwin make sure
you haveinstalled the latest GCC version. The library will most likely fail to compile with GCC 3.x.

Second, at some point the library will require a Message Compiler tool (nt. exe), which is not available in MinGW, Cygwin and
some versions of MSV C Express Edition. Typically the library build scripts will automatically detect if message compiler is present
on the system and disable Event log related portion of the library if it's not. If Event log support is required and it is not found on
the system, you have three options to settle the problem. The recommended solution is to obtain the original nt. exe. Thistool is
available in Windows SDK, which can be downloaded from the Microsoft site freely (for example, here). Also, thistool should be
availablein Visual Studio 2010 Express Edition. During the compilation, nc. exe should be accessible through one of the directories
in your PATH environment variable.

httpo://www.renderx.com/

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=61043
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60607
http://www.microsoft.com/downloads/details.aspx?FamilyID=71deb800-c591-4f97-a900-bea146e4fae1&displaylang=en
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

Another way is to attempt to use thewi ndnt. exe tool distributed with MinGW and Cygwin, which is the analogue of the original
nc. exe. Inorder to do that youwill haveto patch Boost.Build files (in particular, thet ool s/ bui | d/ t ool s/ nt. j amfile) asdescribed
in thisticket. After that you will be able to specify the nc- conpi | er =wi ndnc option to bjam to build the library.

In caseif message compiler detection fails for some reason, you can explicitly disable support for event log backend by defining the
BOOST_LOG W THOUT_EVENT_LOG configuration macro when building the library. This will remove the need for the message
compiler. See this section for more configuration options.

MinGW users on Windows X P may be affected by the bug in msvert.dll that isbundled with the operating system. The bug manifests
itself as crashes while the library formats log records. This problem is not specific to Boost.Log and may aso show in different
contexts related to locale and | O-streams management.

Additional notes for Cygwin users

Cygwin support isvery preliminary. The default GCC version available in Cygwin (4.5.3 as of thiswriting) is unable to compile the
library because of compiler errors. You will have to build a newer GCC from sources. Even then some Boost.Log functiondlity is
not available. In particular, the socket-based syslog backend is not supported, as it is based on Boost.ASIO, which doesn't compile
on this platform. However, the native syslog support is still in place.

Configuring and building the library

Thelibrary has aseparately compiled part which should be built as described in the Getting Started guide. One thing should be noted,
though. If your application consists of more than one module (e.g. an exe and one or several dll's) that use Boost.Log, the library
must be built as a shared object. If you have a single executable or a single module that works with Boost.Log, you may build the
library as a static library.

Thelibrary supports a number of configuration macros:

httpo://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/4111
http://sourceforge.net/p/mingw-w64/bugs/307/
http://www.boost.org/doc/libs/release/doc/html/boost_asio.html
http://www.boost.org/doc/libs/release/more/getting_started/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

Table 1. Configuration macros

Macro name

BOOST_LOG DYN_LI NK

BOOST_ALL_DYN_LI NK

BOOST_LOG NO_THREADS

BOOST_LOG W THOUT _CHAR

BOOST_LOG W THOUT _WCHAR T

BOOST_LOG NO QUERY_PERFORMVANCE COUNTER

BOOST_LOG_USE_NATI VE_SYSLOG

BOOST_LOG W THOUT _DEFAULT_FACTORI ES

BOOST_LOG W THOUT _SETTI NGS_PARSERS

BOOST_LOG_W THOUT _DEBUG_OUTPUT

BOOST_LOG W THOUT_EVENT_LOG

BOOST_LOG W THOUT_SYSLOG

Effect

If defined in user code, thelibrary will assumethe binary isbuilt
as adynamically loaded library ("dll" or "so"). Otherwiseit is
assumed that thelibrary isbuilt in static mode. This macro must
be either defined or not defined for all translation units of user
application that uses logging. This macro can help with auto-
linking on platforms that support it.

Same as BOOST_LOG DYN LI NK but also affects other Boost
libraries the same way.

If defined, disables multithreading support. Affects the compil-
ation of both thelibrary and users' code. The macro is automat-
ically defined if no threading support is detected.

If defined, disables support for narrow character logging. Affects
the compilation of both the library and users' code.

If defined, disables support for wide character logging. Affects
the compilation of both the library and users' code.

Thismacroisonly useful on Windows. It affectsthe compilation
of both the library and users' code. If defined, disables support
for the Quer yPer f or manceCount er APl intheti mer attrib-
ute. Thiswill result in significantly less accurate time readings.
The macro is intended to solve possible problems with earlier
revisions of AMD Athlon CPU, described here and here. There
are also known chipset hardware failures that may prevent this
API from functioning properly (see here).

Affects only compilation of the library. If for some reason sup-
port for the native SysLog API is not detected automaticaly,
define this macro to forcibly enable it

Affects only compilation of the library. If defined, the parsers
for settingswill be built without any default factories for filters
and formatters. The user will have to register all attributes in
the library before parsing any filters or formatters from strings.
This can substantially reduce the binary size.

Affects only compilation of the library. If defined, none of the
facilitiesrelated to the parsersfor settingswill be built. Thiscan
substantially reduce the binary size.

Affects only compilation of the library. If defined, the support
for debugger output on Windows will not be built.

Affects only compilation of the library. If defined, the support
for Windows event log will not be built. Defining the macro
also makes Message Compiler toolset unnecessary.

Affects only compilation of the library. If defined, the support
for syslog backend will not be built.

httpo://www.renderx.com/

http://support.microsoft.com/?scid=kb%3ben-us%3b895980
http://support.microsoft.com/?id=896256
http://support.microsoft.com/kb/274323
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

Macro name Effect

BOOST_LOG _NO SHORTHAND NANMES Affectsonly compilation of users code. If defined, some deprec-
ated shorthand macro names will not be available.

BOOST_LOG USE_W NNT6_API Affects compilation of both the library and users code. This
macro is Windows-specific. If defined, the library makes use
of the Windows NT 6 (Vista, Server 2008) and later APIs to
generate more efficient code. This macro will also enable some
experimental features of the library. Note, however, that the
resulting binary will not run on Windows prior to NT 6. In order
to use this feature Platform SDK 6.0 or later is required.

BOOST_LOG USE_COWPI LER TLS Affects only compilation of the library. This macro enables
support for compiler intrinsicsfor thread-local storage. Defining
it may improve performance of Boost.Log if certain usage lim-
itations are acceptable. See below for more comments.

BOOST _ _LOG_USE_STD_REGE X, Affectsonlycompilationof thelibrary. By defining one of these

BOOST_LOG_USE_BOOST_REGEX or macros the user can instruct Boost.Log to use st d: : r egex,
BOOST_LOG _USE_BOOST_XPRESSI VE Boost.Regex or Boost. X pressive internally for string matching

filters parsed from strings and settings. If none of these macros
is defined then Boost.Log uses Boost.Regex by default. Using
st d: : r egex or Boost.Regex typically produces smaller execut-
ables, Boost.Regex usualy also being the fastest in run time.
Using Boost. X pressive allows to eliminate the dependency on
Boost.Regex compiled binary. Note that these macros do not
affect filtering expressions created by users.

You can define configuration macros in the bj amcommand line, like this:

bjam --with-1o0g variant=rel ease defi ne=BOOST_LOG W THOUT_EVENT_LOG def i ne=BOOST_LOG _USE_W NOI
NT6_API stage

However, it may be more convenient to define configuration macros in the "boost/config/user.hpp” file in order to automatically
define them both for the library and user's projects. If none of the options are specified, the library will try to support the most
comprehensive setup, including support for all character types and features available for the target platform.

The logging library uses several other Boost libraries that require building too. These are Boost.Filesystem, Boost.System,
Boost.DateTime, Boost.Thread and in some configurations Boost.Regex. Refer to their documentation for detailed instructions on
the building procedure.

Onefinal thing should be added. Thelibrary requiresrun-timetypeinformation (RTTI) to be enabled for both thelibrary compilation
and user's code compilation. Normally, this won't need anything from you except to verify that RTTI support is not disabled in your
project.

Notes about compiler-supplied intrinsics for TLS

Many widely used compilers support builtin intrinsics for managing thread-local storage, which isused in several parts of thelibrary.
Thisfeature is also included in the C++11 standard. Generally, these intrinsics allow for amuch more efficient access to the storage
than any surrogate implementation, be that Boost.Thread or even native operating system API. However, this feature has several
caveats:

» Some operating systems don't support the use of theseintrinsicsin caseif the TLSisdefined in ashared library that isdynamically
loaded during the application run time. These systems include Linux and Windows prior to Vista. Windows Vista and later do
not have thisissue.

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/regex/index.html
http://www.boost.org/doc/libs/release/doc/html/xpressive.html
http://www.boost.org/doc/libs/release/libs/regex/index.html
http://www.boost.org/doc/libs/release/libs/regex/index.html
http://www.boost.org/doc/libs/release/libs/regex/index.html
http://www.boost.org/doc/libs/release/doc/html/xpressive.html
http://www.boost.org/doc/libs/release/libs/regex/index.html
http://www.boost.org/doc/libs/release/libs/filesystem/doc/index.htm
http://www.boost.org/doc/libs/release/libs/system/doc/index.html
http://www.boost.org/doc/libs/release/doc/html/date_time.html
http://www.boost.org/doc/libs/release/doc/html/thread.html
http://www.boost.org/doc/libs/release/libs/regex/index.html
http://www.boost.org/doc/libs/release/doc/html/thread.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

e The TLS may not be reliably accessed from global constructors and destructors. At least MSVC 8.0 on Windows is known to
have this problem.

Thelibrary providesthe BOOST_LOG _USE_COWPI LER _TLS configuration macro that allows to enable the use of this feature, which
will improve the library performance at the cost of these limitations:

» The application executable must be linked with the Boost.Log library. It should not be loaded dynamically during run time.

» The application must not use logging in global constructors or destructors.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

Definitions

Here are definitions of some terms that will be used widely throughout the documentation:

Log record

Attribute

Attribute value

(Attribute) value visitation

(Attribute) value extraction

Log sink

Log source

Log filter

Log formatter

Logging core

i18n

TLS

RTTI

A single bundle of information, collected from the user's application, that is a candidate to be
put into the log. In asimple case the log record will be represented as aline of text in the log
file after being processed by the logging library.

An "attribute” is a piece of meta-information that can be used to specialize alog record. In
Boost.L og attributes are represented by function objects with a specific interface, which return
the actual attribute value when invoked.

Attribute values are the actual data acquired from attributes. This datais attached to the spe-
cific log record and processed by the library. Values can have different types (integers, strings
and more complex, including user defined types). Some examples of attribute values: current
time stamp value, file name, line number, current scope name, etc.. Attribute values are envel -
oped in atype erasing wrapper, so the actual type of the attributeisnot visiblein theinterface.
The actual (erased) type of the value is sometimes called the stored type.

A way of processing the attribute value. This approach involves a function object (a visitor)
which isapplied to the attribute value. The visitor should know the stored type of the attribute
valuein order to processit.

A way of processing the attribute value when the caller attempts to obtain a reference to the
stored value. The caller should know the stored type of the attribute value in order to be able
to extract it.

A target, towhich al log records are fed after being collected from the user's application. The
sink defines where and how the log records are going to be stored or processed.

An entry point for the user's application to put log recordsto. In asimple case it is an object
(logger) which maintains a set of attributes that will be used to form alog record upon the
user's request. However, one can surely create a source that would emit log records on some
side events (for example, by intercepting and parsing console output of another application).

A predicate that takes alog record and tells whether this record should be passed through or
discarded. The predicate typically forms its decision based on the attribute values attached to
the record.

A function object that generates the final textual output from alog record. Some sinks, e.g. a
binary logging sink, may not need it, although amost any text-based sink would use a
formatter to compose its output.

The global entity that maintains connections between sources and sinks and applies filters to
records. It is mainly used when the logging library isinitialized.

Internationalization. The ability to manipulate wide characters.

Thread-local storage. The concept of having a variable that has independent values for each
thread that attempts to accessiit.

Run-timetypeinformation. Thisisthe C++ language support data structuresrequired for dy-
nani c_cast andt ypei d operators to function properly.

render

10

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

Design overview

Boost.Log was designed to be very modular and extensible. It supports both narrow-character and wide-character logging. Both
narrow and wide-character loggers provide similar capabilities, so through most of the documentation only the narrow-character
interface will be described.

The library consists of three main layers: the layer of log data collection, the layer of processing the collected data and the central
hub that interconnects the former two layers. The design is presented on the figure bel ow.

Source-specific attributes Global and thread-specific Sink-specific filtering

Log message formatting attributes Final formatting
Source-specific features Global filtering Sink-specific processing

I F' ™

Embedded Sink Sink .
loggers frontendbackend

Global Logging sink | sink
loggers core frontendbackend

Sink Sink

Custom Frontendbackend

Statistics
log sources

Attributes

The arrows show the direction of logging information flow - from parts of your application, at the |eft, to the final storage, (if any)
at theright. The storage is optional because the result of 1og processing may include some actionswithout actually storing theinform-
ation anywhere. For example, if your application isin acritical state, it can emit a specia log record that will be processed so that
the user sees an error message as a tool-tip notification over the application icon in the system tray and hears an alarming sound.
Thisisavery important library feature: it is orthogonal to collecting, processing logging dataand, in fact, what data logging records
consist of. This allows for use of the library not only for classic logging, but to indicate some important events to the application
user and accumulate statistical data.

Logging sources

Getting back to thefigure, in theleft side your application emitslog recordswith help of loggers - special objectsthat provide streams
to format messages that will eventually be put to log. Thelibrary provides anumber of different logger types and you can craft many
more yourself, extending the existing ones. Loggers are designed as a mixture of distinct features that can be combined with each
other in any combination. You can simply develop your own feature and add it to the soup. You will be able to use the constructed
logger just like the others - embed it into your application classes or create and use a global instance of the logger. Either approach

11

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

provides its benefits. Embedding a logger into some class provides a way to differentiate logs from different instances of the class.
On the other hand, in functional-style programming it is usually more convenient to have asingle global logger somewhere and have
asimple accessto it.

Generally speaking, the library does not require the use of loggers to write logs. The more generic term "log source" designates the
entity that initiateslogging by constructing alog record. Other |og sources might include captured console output of achild application
or data received from network. However, loggers are the most common kind of log sources.

Attributes and attribute values

In order to initiate logging a log source must pass all data, associated with the log record, to the logging core. This data or, more
precisaly, thelogic of the data acquisition isrepresented with a set of named attributes. Each attributeis, basically, afunction, whose
result is called "attribute value" and is actually processed on further stages. An example of an attribute is a function that returns the
current time. lts result - the particular time point - is the attribute value.

There are three kinds of attribute sets:
» globa

* thread-specific

* source-specific

You can see in the figure that the former two sets are maintained by the logging core and thus need not be passed by the log source
in order to initiate logging. Attributes that participate in the global attribute set are attached to any log record ever made. Obvioudly,
thread-specific attributes are attached only to the records made from the thread in which they were registered in the set. The source-
specific attribute set is maintained by the source that initiates logging, these attributes are attached only to the records being made
through that particular source.

When a source initiates logging, attribute values are acquired from attributes of all three attribute sets. These attribute values then
form a single set of named attribute values, which is processed further. You can add more attribute values to the set; these values
will only be attached to the particular log record and will not be associated with the logging source or logging core. As you may
notice, it is possible for a same-named attribute to appear in several attribute sets. Such conflicts are solved on priority basis: global
attributes have the least priority, source-specific attributes have the highest; the lower priority attributes are discarded from consid-
eration in case of conflicts.

Logging core and filtering

When the set of attribute values is composed, the logging core decides if thislog record is going to be processed in sinks. Thisis
calledfiltering. There aretwo layers of filtering available: the global filtering isapplied first within thelogging core itself and allows
quickly wiping away unneeded log records; the sink-specific filtering is applied second, for each sink separately. The sink-specific
filtering allows directing log records to particular sinks. Note that at this point it is not significant which logging source emitted the
record, the filtering relies solely on the set of attribute values attached to the record.

It must be mentioned that for a given log record filtering is performed only once. Obviously, only those attribute values attached to
the record before filtering starts can participate in filtering. Some attribute values, like log record message, are typically attached to
the record after the filtering is done; such values cannot be used in filters, they can only be used by formatters and sinks themselves.

Sinks and formatting

If alog record passes filtering for at least one sink the record is considered to be consumable. If the sink supports formatted output,
this is the point when log message formatting takes place. The formatted message along with the composed set of attribute values
is passed to the sink that accepted the record. Note that formatting is performed on the per-sink basis so that each sink can output
log records in its own specific format.

Asyou may have noticed on the figure above, sinks consist of two parts: the frontend and the backend. Thisdivisionismadein order
to extract the common functionality of sinks, such asfiltering, formatting and thread synchronization, into separate entities (frontends).
Sink frontends are provided by the library, most likely users won't have to re-implement them. Backends, on the other hand, are one
of the most likely places for extending the library. It is sink backends that do the actual processing of log records. There can be a

12

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

sink that stores log records into afile; there can be asink that sends log records over the network to the remote log processing node;

there can be the aforementioned sink that puts record messages into tool-tip notifications - you name it. The most commonly used
sink backends are already provided by the library.

Along with the primary facilities described above, the library provides a wide variety of auxiliary tools, such as attributes, support
for formatters and filters, represented as lambda expressions, and even basic helpersfor the library initialization. You will find their

description in the Detailed features description section. However, for new usersit is recommended to start discovering the library
from the Tutorial section.

13

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

Tutorial

In this section we shall walk through the essential stepsto get started with the library. After reading it you should be ableto initialize
the library and add logging to your application. The code of this tutorial is also available in examples residing in the
I'i bs/ | og/ exanpl es directory. Feel freeto play with them, compile and see the resuilt.

Trivial logging
For those who don't want to read tons of clever manuals and just need a simpletool for logging, here you go:

#i ncl ude <boost/log/trivial.hpp>

int main(int, char*[])

{
BOOST_LOG TRI VI AL(trace) << "A trace severity nmessage";

BOOST_LOG TRI VI AL(debug) << "A debug severity nessage";
BOOST_LOG TRIVIAL(info) << "An infornational severity nessage";
BOOST_LOG TRI VI AL(war ni ng) << "A warni ng severity nessage";
BOOST_LOG TRI VI AL(error) << "An error severity nessage";
BOOST_LOG TRIVIAL(fatal) << "A fatal severity nessage";

return O;

See the compl ete code.

The BOOST_LOG_TRI VI AL macro accepts a severity level and results in a stream-like object that supports insertion operator. As a
result of this code, the log messages will be printed on the console. As you can see, thislibrary usage pattern is quite similar to what
you would do with st d: : cout . However, the library offers a few advantages:

1. Besidesthe record message, each log record in the output contains a timestamp, the current thread identifier and severity level.
2. Itissafeto writelogs from different threads concurrently, log messages will not be corrupted.
3. Aswill be shown later, filtering can be applied.

It must be said that the macro, along with other similar macros provided by the library, is not the only interface the library offers. It
is possible to issue log records without using any macros at all.

Trivial logging with filters

While severity levels can be used for informative purposes, you will normally want to apply filtersto output only significant records
and ignore therest. It is easy to do so by setting aglobal filter in the library core, like this:

14

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/tutorial_trivial.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

void init()

{
| oggi ng: : core::get()->set_filter
(

logging::trivial::severity >= logging::trivial::info

)

}

int main(int, char*[])

{
init();
BOOST_LOG TRIVIAL(trace) << "A trace severity nessage";
BOOST_LOG TRI VI AL(debug) << "A debug severity nessage";
BOOST_LOG TRIVIAL(info) << "An informational severity nessage";
BOOST_LOG TRI VI AL(warni ng) << "A warning severity nessage";
BOOST_LOG TRIVIAL(error) << "An error severity nessage";
BOOST_LOG TRIVIAL(fatal) << "A fatal severity nessage";
return O;

}

See the compl ete code.

Now, if we run this code sample, the first two log records will be ignored, while the remaining four will pass on to the console.

2 I mportant
Remember that the streaming expression is only executed if the record passed filtering. Don't specify business-
critical callsin the streaming expression, as these calls may not get invoked if the record isfiltered away.

A few words must be said about the filter setup expression. Since we're setting up aglobal filter, we have to acquire the logging core
instance. Thisiswhat | oggi ng: : core: : get () does- it returns a pointer to the core singleton. Theset _fi | t er method of the
logging core sets the global filtering function.

The filter in this example is built as a Boost.Phoenix lambda expression. In our case, this expression consists of a single logical
predicate, whose left argument is a placeholder that describes the attribute to be checked, and the right argument is the value to be
checked against. The severi ty keyword is a placeholder provided by the library. This placeholder identifies the severity attribute
value in the template expressions; this value is expected to have name "Severity" and type severity_| evel . This attribute is
automatically provided by the library in case of trivial logging; the user only has to supply its value in logging statements. The
placeholder along with the ordering operator creates a function object that will be called by the logging coreto filter log records. As
aresult, only log records with severity level not lessthan i nf o will passthe filter and end up on the console.

Itis possible to build more complex filters, combining logical predicates like this with each other, or even define your own function
(including a C++11 lambda function) that would act as afilter. We will return to filtering in the following sections.

Setting up sinks
Sometimestrivial logging doesn't provide enough flexibility. For example, one may want amore sophisticated logic of log processing,

rather than simply printing it on the console. In order to customize this, you have to construct logging sinks and register them with
the logging core. This should normally be done only once somewhere in the startup code of your application.

15

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/tutorial_trivial_flt.cpp
http://www.boost.org/doc/libs/release/libs/phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

S Note
It must be mentioned that in the previous sectionswe did not initialize any sinks, and trivial logging worked somehow
anyway. This is because the library contains a default sink that is used as a fallback when the user did not set up
any sinks. Thissink always prints|og recordsto the consolein afixed format which we saw in our previous examples.
The default sink is mostly provided to allow trivial logging to be used right away, without any library initialization
whatsoever. Once you add any sinks to the logging core, the default sink will no longer be used. You will still be
ableto use trivia logging macros though.

File logging unleashed
Asastarting point, here is how you would initialize logging to afile:
void init()
{
| oggi ng: :add_file_l og("sanple.log");

| oggi ng: : core::get()->set_filter

(
)

logging: :trivial::severity >= logging::trivial::info

The added pieceisthe call totheadd_fi | e_| og function. As the name implies, the function initializes alogging sink that stores
log records into atext file. The function also accepts a number of customization options, such as the file rotation interval and size
limits. For instance:

void init()

{
| oggi ng: : add_file_log
(

keywords::file_nane = "sanple_ %\ | og"

keywords::rotation_size = 10 * 1024 * 1024,

keywords: :time_based_rotation = sinks::file::rotation_at_time_point(0, 0, 0)
keywords: :format = "[% meStanp% : %kssage%

000

)i
| oggi ng: :core: :get()->set_filter

logging: :trivial::severity >= logging::trivial::info

—

O file name pattern

® rotatefilesevery 10 MiB...
©® ..orat midnight

O logrecord format

See the compl ete code.

You can see that the options are passed to the function in the named form. This approach is also taken in many other places of the
library. You'll get used to it. The meaning of the parameters is mostly self-explaining and is documented in this manual (see here
for what regards the text file sink). This and other convenience initialization functions are described in this section.

16

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/tutorial_file.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

S Note
You can register more than one sink. Each sink will receive and process|og records as you emit them independently
from others.

Sinks in depth: More sinks

If you don't want to go into details, you can skip this section and continue reading from the next one. Otherwise, if you need more
comprehensive control over sink configuration or want to use more sinks than those avail able through hel per functions, you can register
sinks manually.

In the ssimplest form, the call totheadd_fi | e_I| og function in the section above is nearly equivalent to this:

void init()
{
/1 Construct the sink

t ypedef sinks::synchronous_sink< sinks::text_ostream backend > text_sink;
boost::shared_ptr< text_sink > sink = boost::make_shared< text_sink >();

/1 Add a streamto wite log to
si nk- >l ocked_backend() - >add_stream
boost: : make_shared< std::ofstream >("sanple.log"));

/1 Register the sink in the |ogging core
| oggi ng: : core: : get()->add_si nk(sink);

See the compl ete code.

Ok, the first thing you may have noticed about sinks is that they are composed of two classes: the frontend and the backend. The
frontend (which is the synchr onous_si nk class template in the snippet above) is responsible for various common tasks for all
sinks, such asthread synchronization model, filtering and, for text-based sinks, formatting. The backend (thet ext _ost r eam backend
class above) implements everything specific to the sink, such as writing to a file in this case. The library provides a number of
frontends and backends that can be used with each other out of the box.

The synchr onous_si nk class template above indicates that the sink is synchronous, that is, it allows for several threads to log
simultaneously and will block in case of contention. This means that the backend t ext _ost r eam backend doesn't have to worry
about multithreading at all. There are other sink frontends available, you can read more about them here.

Thet ext _ost ream backend class writes formatted log records into STL-compatible streams. We have used a file stream above
but we could have used any type of stream. For example, adding output to console could look as follows:

#i ncl ude <boost/core/ null _del eter. hpp>

/1 W have to provide an enpty deleter to avoid destroying the global stream object
boost::shared_ptr< std::ostream > stream &std::clog, boost::null_deleter());
si nk- >l ocked_backend() - >add_streanm(stream ;

Thet ext _ostream backend supports adding severa streams. In that case its output will be duplicated to all added streams. It
can be useful to duplicate the output to console and file since all the filtering, formatting and other overhead of the library happen
only once per record for the sink.

@ Note
Please note the difference between registering several distinct sinks and registering one sink with several target
streams. While the former allows for independently customizing output to each sink, the latter would work consid-
erably faster if such customization is not needed. This feature is specific to this particular backend.

17

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/tutorial_file_manual.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

Thelibrary providesanumber of backendsthat provide different log processing logic. For instance, by specifying the syslog backend
you can send log records over the network to the syslog server, or by setting up the Windows NT event |og backend you can monitor
your application run time with the standard Windows tools.

The last thing worth noting hereisthel ocked_backend member function call to access the sink backend. It is used to get thread-
safe access to the backend and is provided by all sink frontends. This function returns a smart-pointer to the backend and aslong as
it exists the backend islocked (which means even if another thread triesto log and the log record is passed to the sink, it will not be
logged until you release the backend). The only exception isthe unl ocked_si nk frontend which does not synchronize at al and
simply returns an unlocked pointer to the backend.

Creating loggers and writing logs

Dedicated logger objects

Now that we have defined where and how the log is to be stored, it's time to go on and try logging. In order to do this one has to
create alogging source. Thiswould be alogger object in our case and it is as simple as that:

src:: |l ogger |g;

E Note
A curious reader could have noticed that we did not create any loggers for trivial logging. In fact the logger is
provided by the library and is used behind the scenes.

Unlike sinks, sources need not be registered anywhere since they interact directly with the logging core. Also note that there are two
versions of loggers provided by the library: the thread-safe ones and the non-thread-safe ones. For the non-thread-safe loggersit is
safe for different threads to write logs through different instances of loggers and thus there should be a separate logger for each
thread that writeslogs. The thread-safe counterparts can be accessed from different threads concurrently, but thiswill involve locking
and may slow things down in case of intense logging. The thread-safe logger types have the _nt suffix in their name.

Regardless of the thread safety, all loggers provided by the library are default and copy-constructible and support swapping, so there
should be no problem in making alogger amember of your class. Asyou will seelater, such approach can give you additional benefits.

Thelibrary providesanumber of loggerswith different features, such as severity and channel support. These features can be combined
with each other in order to construct more complex loggers. See here for more details.

Global logger objects

In case you cannot put alogger into your class (suppose you don't have one), the library provides away of declaring global loggers
like this:

BOOST_LOG | NLI NE_G.OBAL_LOGGER DEFAULT(my_l ogger, src::|logger_nt)

Hereny_| ogger isauser-defined tag name that will be used later to retrieve the logger instance and | ogger _nt isthelogger type.
Any logger type provided by the library or defined by the user can participate in such declaration. However, since the logger will
have a single instance, you will normally want to use thread-safe loggers in a multithreaded application as global ones.

@ Tip

There are other macros for more sophisticated cases available. The detailed description isin this section.

Later on you can acquire the logger like this:

18

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

src::logger_nt& Ig = nmy_l ogger::get();

The g will refer to the one and only instance of the logger throughout the application, even if the application consists of multiple
modules. The get function itself isthread-safe, so thereis no need in additional synchronization around it.

Writing logs

No matter what kind of logger you use (class member or global, thread-safe or not), to write alog record into alogger you can write
something like this:

| ogging::record rec = | g.open_record();
if (rec)
{
| oggi ng: :record_ostream strmrec);
strm<< "Hello, World!'";
strmflush();
| g. push_record(boost::nmove(rec));

Heretheopen_r ecor d function call determinesif the record to be constructed i s going to be consumed by at |east one sink. Filtering
is applied at this stage. If the record is to be consumed, the function returns a valid record object, and one can fill in the record
message string. After that the record processing can be completed with the call to push_r ecor d.

Of course, the above syntax can easily be wrapped in a macro and, in fact, users are encouraged to write their own macros instead
of using the C++ logger interface directly. The log record above can be written like this:

BOOST_LOG(lg) << "Hello, World!'";

Looks a hit shorter, doesn't it? The BOOST_LOG macro, along with other similar ones, is defined by the library. It automatically
providesan STL-like stream in order to format the message with ordinary insertion expressions. Having all that code written, compiled
and executed you should be able to see the "Hello, World!" record in the "sample.log" file. You will find the full code of this section
here.

Adding more information to log: Attributes

In previous sections we mentioned attributes and attribute values several times. Here we will discover how attributes can be used to
add more data to log records.

Each log record can have a number of named attribute values attached. Attributes can represent any essential information about the
conditions in which the log record occurred, such as position in the code, executable module name, current date and time, or any
piece of data relevant to your particular application and execution environment. An attribute may behave as a value generator, in
which case it would return a different value for each log record it'sinvolved in. As soon as the attribute generates the value, the latter
becomes independent from the creator and can be used by filters, formatters and sinks. But in order to use the attribute value one
has to know its name and type, or at least a set of typesit may have. There are a number of commonly used attributes implemented
in the library, you can find the types of their values in the documentation.

Aside from that, as described in the Design overview section, there are three possible scopes of attributes: source-specific, thread-
specific and global. When alog record is made, attribute values from these three sets are joined into a single set and passed to sinks.
Thisimpliesthat the origin of the attribute makes no differencefor sinks. Any attribute can be registered in any scope. When registered,
an attribute is given a unique name in order to make it possible to search for it. If it happens that the same named attribute is found
in several scopes, the attribute from the most specific scope is taken into consideration in any further processing, including filtering
and formatting. Such behavior makesit possible to override global or thread-scoped attributes with the ones registered in your local
logger, thus reducing thread interference.

Below is the description of the attribute registration process.

19

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/tutorial_logging.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

Commonly used attributes

There are attributes that are likely to be used in nearly any application. Log record counter and a time stamp are good candidates.
They can be added with a single function call:

| oggi ng: : add_common_attri butes();

With this call attributes "LinelD", "TimeStamp”, "ProcessID" and "ThreadIlD" are registered globally. The "LinelD" attribute is a
counter that increments for each record being made, the first record gets identifier 1. The "TimeStamp" attribute always yields the
current time (i.e. the time when the log record is created, not the time it was written to a sink). The last two attributes identify the
process and the thread in which every log record is emitted.

S Note
In single-threaded builds the "ThreadI D" attribute is not registered.

@ Tip
By default, when application starts, no attributes are registered in the library. The application has to register all the
necessary attributesin the library before it starts writing logs. This can be done as a part of the library initialization.
A curious reader could have wondered how trivial logging works then. The answer is that the default sink doesn't
really use any attribute values, except for the severity level, to compose its output. This is done to avoid the need
for any initialization for trivial logging. Once you use filters or formatters and non-default sinks you will have to
register the attributes you need.

Theadd_conmon_at t ri but es function is one of the several convenience hel pers described here.

Some attributes are registered automatically on loggers construction. For example, severity_| ogger registers a source-specific
attribute " Severity" which can be used to add alevel of emphasis for different log records. For example:

/1 We define our own severity levels
enum severity_| evel

{
nor mal ,
notification,
war ni ng,
error,
critical
}
voi d | oggi ng_function()
{
/1 The logger inplicitly adds a source-specific attribute 'Severity'
/1 of type 'severity_level' on construction
src::severity_logger< severity_level > slg;
BOOST_LOG SEV(sl g, normal) << "A regul ar nessage";
BOOST_LOG SEV(sl g, warning) << "Sonething bad is going on but | can handle it";
BOOST_LOG SEV(slg, critical) << "Everything crunbles, shoot ne now";
}

You can define your own formatting rules for the severity level by defining oper at or << for thistype. It will be
automatically used by the library formatters. See this section for more details.

20

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

The BOOST_LOG_SEV macro acts pretty much like BOOST _LOG except that it takes an additional argument for the open_r ecord
method of the logger. The BOOST _LOG_SEV macro can be replaced with this equivalent:

voi d manual _| oggi ng()

{
src::severity_l ogger< severity_level > slg;
| oggi ng: :record rec = sl g.open_record(keywords::severity = normal);
if (rec)
{
| oggi ng: : record_ostream strm(rec);
strm << "A regul ar nessage";
strmflush();
sl g. push_record(boost: : nove(rec));
}
}

You can see here that the open_r ecor d can take named arguments. Some logger types provided by the library have support for
such additional parameters and this approach can certainly be used by users when writing their own loggers.

More attributes

Let's see what's under the hood of that add_conmon_at t ri but es function we used in the simple form section. It might look
something like this:

voi d add_comon_attri butes()

{
boost::shared_ptr< | ogging::core > core = | ogging::core::get();
core->add_gl obal _attribute("Linel D', attrs::counter< unsigned int >(1));
core->add_gl obal _attribute("TineStanmp”, attrs::local _clock());
/1 other attributes skipped for brevity

}

Herethecount er andl ocal _cl ock componentsare attribute classes, they derive from the common attributeinterfaceat t ri but e.
The library provides a number of other attribute classes, including the f unct i on attribute that calls some function object on value
acquisition. For example, we can in asimilar way register ananed_scope attribute:

core->add_gl obal _attri bute("Scope", attrs::naned_scope());
Thiswill give usthe ability to store scope namesin log for every log record the application makes. Here is how it's used:

voi d naned_scope_| oggi ng()

{

BOOST_LOG NAMED SCOPE(" naned_scope | oggi ng") ;

src::severity_l ogger< severity_level > slg;

BOOST_LOG SEV(sl g, normal) << "Hello fromthe function naned_scope_| oggi ng!";
}

L ogger-specific attributes are no less useful than global ones. Severity levels and channel names are the most obvious candidates to
be implemented on the source level. Nothing prevents you from adding more attributes to your loggers, like this:

21

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

voi d tagged_Il oggi ng()

{
src::severity_l ogger< severity_level > slg;
slg.add_attribute("Tag", attrs::constant< std::string >("My tag value"));
BOOST_LOG SEV(sl g, normal) << "Here goes the tagged record";

}

Now all log records made through this logger will be tagged with the specific attribute. This attribute value may be used later in fil-
tering and formatting.

Another good use of attributesis the ability to mark log records made by different parts of application in order to highlight activity
related to a single process. One can even implement a rough profiling tool to detect performance bottlenecks. For example:

void tinmed_| ogging()

{ BOOST_LOG SCOPED THREAD ATTR("Tineline", attrs::tiner());
src::severity_l ogger< severity_level > slg;
BOOST_LOG SEV(slg, normal) << "Starting to tinme nested functions";
| oggi ng_function();
BOOST_LOG SEV(sl g, normal) << "Stopping to tinme nested functions";
}

Now every log record madefromthel oggi ng_f unct i on function, or any other functionit calls, will contain the"Timeline" attribute
with a high precision time duration passed since the attribute was registered. Based on these readings, one will be able to detect
which parts of the code require more or less time to execute. The "Timeline" attribute will be unregistered upon leaving the scope
of functiont i med_I oggi ng.

Seethe Attributes section for detailed description of attributes provided by thelibrary. The complete codefor this sectionisavailable
here.

Defining attribute placeholders

Aswe will see in the coming sections, it is useful to define a keyword describing a particular attribute the application uses. This
keyword will be ableto participate in filtering and formatting expressions, liketheseveri t y placeholder we have used in previous
sections. For example, to define placeholders for some of the attributes we used in the previous examples we can write this:

BOOST_LOG _ATTRI BUTE_KEYWORD(| i ne_id, "LinelD', unsigned int)

BOOST_LOG _ATTRI BUTE_KEYWORD(severity, "Severity", severity_|level)

BOOST_LOG ATTRI BUTE_KEYWORD(tag_attr, "Tag", std::string)

BOOST_LOG _ATTRI BUTE_KEYWORD(scope, "Scope", attrs::named_scope::val ue_type)
BOOST_LOG _ATTRI BUTE_KEYWORD(ti nmeline, "Tinmeline", attrs::timer::value_type)

Each macro defines a keyword. The first argument is the placeholder name, the second is the attribute name and the last parameter
isthe attribute value type. Once defined, the placeholder can be used in template expressions and some other contexts of the library.
More details on defining attribute keywords are available here.

Log record formatting

If you tried running examples from the previous sections, you may have noticed that only log record messages are written to the
files. Thisisthe default behavior of the library when no formatter is set. Even if you added attributes to the logging core or alogger,
the attribute values will not reach the output unless you specify a formatter that will use these values.

Returning to one of the examplesin previoustutorial sections:

22

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/tutorial_attributes.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

void init()
{
| oggi ng: : add_file_l og
(
keywords::file_nane = "sanple_ %\ | og"
keywords::rotation_size = 10 * 1024 * 1024,
keywords::tinme_based_rotation = sinks::file::rotation_at_tinme_point(0, 0, 0)
keywords::format = "[% neStanp% : %kessage%
)

| oggi ng: : core::get()->set_filter

(
),

logging::trivial::severity >= logging::trivial::info

In the case of theadd_fi | e_I og function, thef or mat parameter allows to specify format of the log records. If you prefer to set
up sinks manually, sink frontends provide theset _f or mat t er member function for this purpose.

The format can be specified in a number of ways, as described further.

Lambda-style formatters

You can create aformatter with alambda-style expression like this:

void init()
{
| oggi ng: : add_file_l og

keywords: :file_nane = "sanple_%\. | og"

/1 This makes the sink to wite |log records that |ook |ike this:
/1 1. <normal > A normal severity nessage

/1l 2: <error> An error severity nessage

keywords: : format =

(

expr: :stream
<< expr::attr< unsigned int >("LinelD")
<< ": <" << logging::trivial::severity
<< "> " << expr::snessage

See the compl ete code.

Here the st r eamis a placeholder for the stream to format the record in. Other insertion arguments, such asat t r and nessage, are
manipul atorsthat define what should be stored in the stream. We have already seenthesever i t y placeholder infiltering expressions,
and here it is used in a formatter. This is a nice unification: you can use the same placeholders in both filters and formatters. The
att r placeholderissimilar totheseveri t y placeholder asit representsthe attribute value, too. The differenceisthat theseverity
placeholder represents the particular attribute with the name "Severity” and typetri vi al : : severity_l evel andattr canbe
used to represent any attribute. Otherwise the two placeholders are equivalent. For instance, it is possible to replace severi t y with
the following:

expr::attr< logging::trivial::severity_level >("Severity")

23

render
httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/tutorial_fmt_stream.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

I
As shown in the previous section, it is possible to define placeholders like severi ty for user's attributes. As an
additional benefit to the smpler syntax in the template expressions such placeholders allow to concentrate al the
information about the attribute (the name and the value type) in the placeholder definition. This makes coding less
error-prone (you won't misspel| the attribute name or specify incorrect valuetype) and therefore isthe recommended

way of defining new attributes and using them in template expressions.

There are other formatter manipulators that provide advanced support for date, time and other types. Some manipulators accept ad-
ditional arguments that customize their behavior. Most of these arguments are named and can be passed in Boost.Parameter style.

For a change, let's see how it's done when manually initializing sinks:

void init()

{
t ypedef sinks::synchronous_si nk< sinks::text_ostream backend > text_sink;
boost: : shared_ptr< text_sink > sink = boost:: nake_shared< text_sink >();

si nk- >l ocked_backend() - >add_streanm
boost: : nake_shared< std::ofstream >("sanple.log"));

si nk->set _formatter

(
expr::stream
/[l lineid will be witten in hex, 8-digits, zero-filled
<< std::hex << std::setw(8) << std::setfill('0") << expr::attr< unQO
signed int >("LinelD")
<< ": <" << logging::trivial::severity
<< "> " << expr::snessage

)

| oggi ng: : core: : get()->add_si nk(sink);

See the compl ete code.

You can seethat it is possible to bind format changing manipulatorsin the expression; these manipulators will affect the subsequent
attribute value format when log record is formatted, just like with streams. More manipulators are described in the Detailed features
description section.

Boost.Format-style formatters

As an dternative, you can define formatters with a syntax similar to Boost.Format. The same formatter as described above can be
written as follows:

24

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/parameter/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/tutorial_fmt_stream_manual.cpp
http://www.boost.org/doc/libs/release/libs/format/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

void init()

{
t ypedef sinks::synchronous_si nk< sinks::text_ostream backend > text_sink;
boost::shared_ptr< text_sink > sink = boost:: mke_shared< text_sink >();

si nk- >l ocked_backend() - >add_st r ean{
boost: : nake_shared< std::of stream >("sanple.log"))

/1 This makes the sink to wite |log records that |ook |ike this:
/1 1. <normal > A nornmal severity nessage
/1 2: <error> An error severity nessage
sink->set _formatter
(
expr::format ("%4% <%R% 9B%)

% expr::attr< unsigned int >("LinelD")

%1l ogging::trivial::severity

% expr: : snessage

),

| oggi ng: : core: : get()->add_si nk(sink);

See the compl ete code.

The f or mat placeholder accepts the format string with positional specification of all arguments being formatted. Note that only
positional format is currently supported. The same format specification can be used with theadd_fi | e_I og and similar functions.

Specialized formatters

The library provides specialized formatters for a number of types, such as date, time and named scope. These formatters provide
extended control over theformatted values. For example, it is possible to describe date and time format with aformat string compatible
with Boost.DateTime:

void init()
{
| oggi ng: : add_file_l og
(
keywords: :file_nane = "sanple_%\. | og"
/1 This makes the sink to wite log records that |ook |ike this:
[l YYYY-MMDD HH: M : SS: <normal > A normal severity nmessage
1 YYYY-MDD HH: M :SS: <error> An error severity nessage
keywords: : format =

(

expr::stream

<< expr::format_date_tine< boost::posix_tine::ptinme >("TimeStanmp", "% %n % O

9%H: 9t ¥8")
<< ": <" << logging::trivial::severity
<< "> " << expr::snessage

)
)
}
See the compl ete code.

The same formatter can also be used in the context of a Boost.Format-style formatter.
String templates as formatters
In some contexts textual templates are accepted as formatters. In this case library initialization support code is invoked in order to

parse the template and reconstruct the appropriate formatter. There are anumber of caveatsto keep in mind when using this approach,
but here it will suffice to just briefly describe the template format.

25

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/tutorial_fmt_format.cpp
http://www.boost.org/doc/libs/release/doc/html/date_time.html
http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/tutorial_fmt_stream.cpp
http://www.boost.org/doc/libs/release/libs/format/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

void init()
{ | oggi ng: :add_file_log
(keywords::file_nanme = "sanpl e %\. | og",
keywords::format = "[% neStanp% : %kessage%
})
See the compl ete code.

Here, the f or mat parameter accepts such a format template. The template may contain a number of placeholders enclosed with
percent signs (%9. Each placeholder must contain an attribute value name to insert instead of the placeholder. The %vessage%
placeholder will be replaced with the logging record message.

S Note
Textual format templates are not accepted by sink backendsintheset f or mat t er method. In order to parse tex-
tual template into aformatter function one hasto call par se_f or mat t er function. See here for more details.
Custom formatting functions

You can add a custom formatter to asink backend that supports formatting. The formatter is actually a function object that supports
the following signature:

voi d (logging::record_view const& rec, |logging::basic formatting ostreanm< CharT >& strm;

Here Char T isthe target character type. The formatter will be invoked whenever alog record view r ec passes filtering and isto be
stored in log.

Q Tip
Record views are very similar to records. The notable distinction is that the view is immutable and implements
shallow copy. Formatters and sinks only operate on record views, which prevents them from modifying the record

whileit can be still in use by other sinksin other threads.

The formatted record should be composed by insertion into STL-compatible output stream st r m Here's an example of a custom
formatter function usage:

26

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/tutorial_fmt_string.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

void ny_formatter(logging::record_view const& rec, logging::formatting_ostream& strm

{
/1l Get the LinelD attribute value and put it into the stream
strm << | ogging: : extract< unsigned int >("LinelD"', rec) << "
/1 The sane for the severity |evel
/1 The sinplified syntax is possible if attribute keywords are used
strm<< "<" << rec[logging: :trivial::severity] << ">"
/1 Finally, put the record nessage to the stream
strm << rec[expr::snessage]

}

void init()

{
t ypedef sinks::synchronous_si nk< sinks::text_ostream backend > text_sink;
boost::shared_ptr< text_sink > sink = boost:: mke_shared< text_sink >();
si nk- >l ocked_backend() - >add_strean

boost: : nake_shared< std::of stream >("sanple.log"))

sink->set _formatter(&my_formatter);
| oggi ng: : core: : get()->add_si nk(sink);

}

See the compl ete code.

Filtering revisited

We've aready touched filtering in the previous sections but we barely scratched the surface. Now that we are able to add attributes
to log records and set up sinks, we can build however complex filtering we need. Let's consider this example:

27

render

s httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/tutorial_fmt_custom.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

BOOST_LOG ATTRI BUTE_KEYWORD(| i ne_id, "Linel D', unsigned int)
BOOST_LOG _ATTRI BUTE_KEYWORD(severity, "Severity", severity_level)
BOOST_LOG ATTRI BUTE_KEYWORD(tag_attr, "Tag", std::string)

void init()
{
/1 Setup the common formatter for all sinks
logging: :formatter fm = expr::stream
<< std::setw(6) << std::setfill('0") << line_id << std::setfill(" ")
<< " <" << severity << ">\t"
<< expr::if_(expr::has_attr(tag_attr))

[
]

<< expr::snessage;

expr::stream<< "[" << tag_attr << "]

/1 Initialize sinks
t ypedef sinks::synchronous_si nk< sinks::text_ostream backend > text_sink;
boost::shared_ptr< text_sink > sink = boost:: mke_shared< text_sink >();

si nk- >l ocked_backend() - >add_st r ean{
boost: : nake_shared< std::ofstream>("full.log"));

sink->set _formatter(fmt);
| oggi ng: : core: : get()->add_si nk(sink);
sink = boost:: make_shared< text_sink >();

si nk- >l ocked_backend() - >add_st r ean{
boost: : nake_shared< std::ofstream >("inportant.log"));

sink->set _formatter(fmt);

sink->set _filter(severity >= warning || (expr::has_attr(tag_ attr) && tag_attr == "| MPORTO
ANT_MESSAGE")) ;

| oggi ng: : core: : get()->add_si nk(sink);

/1 Add attributes
| oggi ng: : add_common_attri butes();

See the compl ete code.

In this sample we initialize two sinks - one for the complete log file and the other for important messages only. Both sinks will be
writing to text files with the same log record format, which we initialize first and save to thef nt variable. Thef or mat t er typeis
atype-erased function object with the formatter calling signature; in many respectsit can be viewed similar to boost : : f uncti on
orstd:: function exceptthat it is never empty. Thereisalsoa sinilar function object for filters.

Notably, the formatter itself contains a filter here. As you can see, the format contains a conditional part that is only present when
log records contain the "Tag" attribute. The has_at t r predicate checks whether the record contains the "Tag" attribute value and
controls whether it is put into the file or not. We used the attribute keyword to specify the name and type of the attribute for the
predicate, but it is also possible to specify theminthehas_at t r call site. Conditional formatters are explained in more details here.

Further goes the initialization of the two sinks. The first sink does not have any filter, which means it will save every log record to
thefile. Wecall set _fil t er onthe second sink to only save log records with severity no less than war ni ng or having a"Tag" at-
tribute with value "IMPORTANT_MESSAGE". As you can see, the filter syntax resembles usual C++ very much, especially when
attribute keywords are used.

Like with formatters, it is also possible to use custom functions as filters. Boost.Phoenix can be very helpful in this case asitsbi nd
implementation is compatible with attribute placehol ders. The previous example can be modified in the following way:

28

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/tutorial_filtering.cpp
http://www.boost.org/doc/libs/release/libs/phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

bool nmy filter(logging::value_ref< severity_ level, tag::severity > const& | evel,
| oggi ng: :value_ref< std::string, tag::tag_attr > const& tag)

{
return level >= warning || tag == "I MPORTANT MESSAGE";
}
void init()
{
I
nanespace phoeni x = boost: : phoeni x;
sink->set _filter(phoenix::bind(&ry _filter, severity.or_none(), tag_attr.or_none()));
I
}

As you can see, the custom formatter receives attribute values wrapped into the val ue_r ef template. This wrapper contains an
optional reference to the attribute value of the specified type; the reference is valid if the log record contains the attribute value of
therequired type. Therelational operatorsusedinny _fi | t er can beapplied unconditionally because they will automatically return
f al se if the referenceis not valid. The rest is done with the bi nd expression which will recognize theseverity andtag_attr
keywords and extract the corresponding values before passing themtony filter.

@ Note
Because of limitations related to the integration with Boost.Phoenix (see #7996), it is required to explicitly specify
the fallback policy in caseif the attribute value is missing, when attribute keywords are used with phoeni x: : bi nd
or phoeni x: : functi on. In the example above, this is done by calling or _none, which results in an empty
val ue_r ef if the value is not found. In other contexts this policy is the default. There are other policies that can
be used instead.

You can try how this works by compiling and running the test.

Wide character logging

Thelibrary supportslogging strings containing national characters. There are basically two ways of doing this. On UNIX-like systems
typically some multibyte character encoding (e.g. UTF-8) is used to represent national characters. In thiscasethelibrary can be used
just theway it is used for plain ASCII logging, no additional setup is required.

On Windows the common practice is to use wide strings to represent national characters. Also, most of the system APl is wide
character oriented, which requires Windows-specific sinks to also support wide strings. On the other hand, generic sinks, like the
text file sink, are byte-oriented (because, well, you store bytes in files, not characters). This forces the library to perform character
code conversion when needed by the sink. To set up the library for this one has to imbue the sink with alocale with the appropriate
codecvt facet. Boost.Locale can be used to generate such alocale. Let's see an example:

29

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/phoenix/doc/html/index.html
https://svn.boost.org/trac/boost/ticket/7996
http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/tutorial_filtering.cpp
http://www.boost.org/doc/libs/release/libs/locale/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

/'l Declare attribute keywords
BOOST_LOG _ATTRI BUTE_KEYWORD(severity, "Severity", severity_level)
BOOST_LOG _ATTRI BUTE_KEYWORD(ti nestanp, "TineStanp", boost::posix_tinme::ptine)

void init_logging()
{

boost: :shared_ptr< sinks::synchronous_sink< sinks::text file_backend > > sink = | ogl
ging::add_file_log
(
"sanpl e. | og"
keywords:: format = expr::stream
<< expr::format_date_tine(timestanp, "%/-%n %, %t %Vt %S. % ")
<< " <" << severity.or_defaul t(normal)
<< "> " << expr::nmessage

),

/1 The sink will performcharacter code conversion as needed, according to the locale set O

wi th inbue()
std::locale loc = boost::locale::generator()("en_US. UTF-8")
si nk- >i mbue(l oc) ;

/1l Let's add sone commonly used attributes, |ike tinestanp and record counter.
| oggi ng: : add_conmmon_attri butes();

First let'stakealook at the formatter we passinthef or mat parameter. Weinitialize the sink with anarrow-character formatter because
the text file sink processes bytes. It is possible to use wide strings in the formatter, but not in format strings, like the one we used
withthef or mat _dat e_t i me function. Also note that we used nessage keyword to denote the log record messages. This place-
holder supports both narrow and wide character messages, so the formatter will work with both. As part of the formatting process,
the library will convert wide character messages to multibyte encoding using the imbued locale, which we set to UTF-8.

Tip

Attribute values can also contain wide strings. Like log record messages, these strings will be converted with the
imbued locale to the target character encoding.

One thing missing here is our severity_| evel type definition. The type is just an enumeration, but if we want to support its
formatting for both narrow and wide character sinks, its streaming operator has to be a template. This may be useful if we create
multiple sinks with different character types.

30

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

enum severity_| evel

{
nor mal ,
notification,
war ni ng,
error,
critical

}s

tenpl ate< typenane CharT, typenane TraitsT >
inline std::basic_ostrean< CharT, TraitsT >& operator<< (
std:: basic_ostrean< CharT, TraitsT >& strm severity_level Ivl)

{
static const char* const str[] =
{
"normal ",
"notification",
"war ni ng",
"error",
"critical"
}s
if (static_cast< std::size_t >(lvl) < (sizeof(str) / sizeof(*str)))
strm<< str[lvl];
el se
strm << static_cast< int >(lvl);
return strm
}

Now we can emit log records. We can use loggers with w prefix in their names to compose wide character messages.

voi d test_narrow_char_Il oggi ng()

{
/1 Narrow character logging still works
src:: |l ogger |g;
BOOST_LOG(lg) << "Hello, Wrld! This is a narrow character nessage.";
}
voi d test_wi de_char_l oggi ng()
{
src::w ogger |g;
BOOST_LOG(lg) << L"Hello, Wrld! This is a wide character nessage.";
/1 National characters are al so supported
const wchar_t national _chars[] = { 0x041f, 0x0440, 0x0438, 0x0432, 0x0435, 0x0442, L',', L' O
', 0x043c, 0x0438, 0x0440, L'!', 0 };
BOOST_LOG(I g) << national _chars;
/1 Now, let's try logging with severity
src::wseverity_ |l ogger< severity_level > slg;
BOOST_LOG SEV(sl g, normal) << L"A normal severity nessage, will not pass to the file";
BOOST_LOG SEV(sl g, warning) << L"A warning severity nessage, will pass to the file";
BOOST_LOG SEV(sl g, error) << L"An error severity nessage, will pass to the file";
}

As you can see, wide character message composition is similar to narrow logging. Note that you can use both narrow and wide
character logging at the same time; all records will be processed by our file sink. The complete code of this example can be found
here.

It must be noted that some sinks (mostly, Windows-specific ones) allow to specify thetarget character type. When national characters
are expected in log records, one should always use wchar _t as the target character type in these cases because the sink will use

31

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/wide_char/main.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

wide character OSAPI to processlog records. In this case all narrow character strings will be widened using the locale imbued into
the sink when formatting is performed.

32

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

Detailed features description

Core facilities
Logging records
#i ncl ude <boost/| og/ core/record. hpp>

All the information that the logging library processes is packed into asingle object of typer ecor d. All attached data, including the
message text, is represented as named attribute values that can be fetched and processed by filters, formatters and sinks. Particular
attribute values can be accessed in different ways, here are afew quick examples:

» Through value visitation and extraction.

enum severity level { ... }
std::ostreamX operator<< (std::ostream% strm severity level |level)

struct print_visitor

{
typedef void result_type
result_type operator() (severity_level |evel) const
{
std::cout << level << std::endl
}
}

/1l Prints severity level through visitation AP
void print_severity visitation(logging::record const& rec)

{
}

| ogging: :visit< severity level >("Severity", rec, print_visitor())

/1l Prints severity level through extraction AP
void print_severity_extraction(logging::record const& rec)

{

| oggi ng: : val ue_ref< severity level > level = logging::extract< severity_ |evel >("Severl
ity", rec)

std::cout << level << std::endl
}

» By searching the set of attribute values accessible with the at t ri but e_val ues method of the record.

/1l Prints severity |level by searching the attribute val ues
voi d print_severity_|l ookup(logging::record consté& rec)

{
| oggi ng: :attri bute_val ue_set const& values = rec.attribute_val ues();
| oggi ng: :attri bute_val ue_set::const_iterator it = values.find("Severity")
if (it !'= values.end())
{
| oggi ng: :attribute_val ue const& value = it->second;
/1 A single attribute value can also be visited or extracted
std::cout << value.extract< severity_level >() << std::endl
}
}

By applying the subscript operator with the attribute keyword. Thisis actually a convenience wrapper around the value extraction
API.

33

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

BOOST_LOG _ATTRI BUTE_KEYWORD(severity, "Severity", severity_level)

/1l Prints severity |level by using the subscript operator
voi d print_severity_subscript(logging::record const& rec)

{
/'l Use the attribute keyword to conmunicate the name and type of the val ue
| oggi ng: : val ue_ref< severity_level, tag::severity > level = rec|[severity];
std::cout << level << std::endl;

}

Log records cannot be copied, only moved. A record can be default-constructed in which case it isin an empty state; such records
are mostly unusable and should not be passed to the library for processing. Non-empty log records can only be created by the logging
core asaresult of successful filtering. The non-empty record contains attribute val ues acquired from attributes. More attribute values
can be added to the non-empty record after filtering. The added values will not affect filtering results but can still be used by
formatters and sinks.

In multithreaded environments, after being constructed a non-empty log record is considered to be tied to the current thread as it
may refer to some thread-specific resources. For example, the record may contain an attribute value which refers to the named scope
list which is stored on the stack. For this reason log records must not be passed between different threads.

Record views
#i ncl ude <boost/ | og/core/record_vi ew hpp>

While records are used for filling the information, the library uses another type to actually processit. Record views provide asimilar
interface to records with a few notable distinctions:

* Record views are immutable. This prevents formatters and sinks from modifying the record while it is being processed.
 Record views are copyable. Since its contents are constant, the copy operation is shallow and therefore cheap.

The library will automatically create a record view from the record by calling the | ock method. The call will also make sure the
resulting view is not attached to the current thread if asink is asynchronous. Thel ock call isaonetime operation; the record isleft
in the empty state afterwards. All APIs for interacting with attribute values described for log records are also applicable to record
views and can be used in custom formatters and sinks.

Logging core
#i ncl ude <boost/ | og/ core/ core. hpp>

Thelogging coreis acentral hub that provides the following facilities:

» Maintains global and thread-specific attribute sets.

» Performs global filtering of log records.

 Dispatcheslog records between sinks by applying sink-specific filters.

* Provides aglobal hook for exception handlers.

» Provides an entry point for log sourcesto put log records to.

» Providesthef | ush method that can be used to enforce the synchronized state for all log sinks.

The logging core is an application-wide singleton, thus every logging source has access to it. The core instance is accessible with
the static method get .

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

voi d foo()

{
boost: :shared_ptr< | ogging::core > core = |ogging::core::get();
I

}

Attribute sets

In order to add or remove global or thread-specific attributesto the core there are corresponding methods: add_gl obal _attri but e,
renmove_gl obal _attribute, add_thread_attribute and renove_t hread_attri bute. Attribute sets provide interface
similar to st d: : map, so theadd_* methods accept an attribute name string (key) and a pointer to the attribute (mapped value) and

return apair of iterator and boolean value, likest d: : map< . ..

previously added attribute.

voi d foo()

{

boost::shared_ptr< | ogging::core > core

/1 Add a global attribute

std::pair< logging::attribute_set::iterator, bool
core->add_gl obal _attribute("LinelD",

11

/! Renpbve the added attribute

core->renove_gl obal _attribute(res.first);

@ Tip

>::insert does. Therenmove_* methods accept an iterator to a

| oggi ng: : core::get();

> res =

attrs::counter< unsigned int >());

It must be said that all methods of logging core are thread-safe in multithreaded environments. However, that may
not be true for other components, such as iterators or attribute sets.

It is possible to acquire a copy of the whole attribute set (global or thread-specific) or install it into the core. Methods get _gl ob-
al _attributes,set_global _attributes,get_thread_attributes andset_thread_attri butes servethispurpose.

Warning

X

After installing a whole attribute set into the core, all iterators that were previously returned by the corresponding

add_* methodsareinvalidated. In particular, it affects scoped attributes, so the user must be careful when to switch

attribute sets.

Global filtering

Global filtering ishandled by thefilter function object, which can be provided withtheset _fi | t er method. Moreon creating filters
appearsin this section. Here it will suffice to say that the filter accepts a set of attribute values and returns a boolean value that tells
whether a log record with these attribute values passed filtering or not. The globa filter is applied to every log record made
throughout the application, so it can be used to wipe out excessive log records quickly.

The global filter can be removed by ther eset _fi | t er method. When thereis no filter set in the coreit is assumed that no records
arefiltered away. Thisisthe default after initial construction of the logging core.

35

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

enum severity_l eve

{
nor mal ,
war ni ng,
error,
critical

b

voi d foo()

{
boost: :shared_ptr< | ogging::core > core = |ogging::core::get();
/1l Set a global filter so that only error nessages are | ogged
core->set _filter(expr::attr< severity_ level >("Severity") >= error)
I

}

The core aso provides another way to disable logging. By calling the set _| oggi ng_enabl ed with a boolean argument one may
completely disable or re-enable logging, including applying filtering. Disabling logging with this method may be more beneficial
in terms of application performance than setting a global filter that always fails.

Sink management

After global filtering is applied, log sinks step into action. In order to add and remove sinks the core provides add_si nk and r e-
move_si nk methods. Both these methods accept a pointer to the sink. The add_si nk will add the sink to the core if it's not added
already. Ther enove_si nk method will seek for the provided sink in an internal list of previously added sinks and remove the sink
if it findsit. The order in which the core processes sinks internally is unspecified.

voi d foo()

{

boost::shared_ptr< | ogging::core > core = | ogging::core::get();

/'l Set a sink that will wite log records to the consol e
boost::shared_ptr< sinks::text_ostream backend > backend =

boost : : nake_shar ed< sinks::text_ostream backend >();
backend- >add_st r eam

boost::shared_ptr< std::ostream >(&std::clog, boost::null_deleter()))

t ypedef sinks::unl ocked_si nk< sinks::text_ostream backend > sink_t;
boost::shared_ptr< sink_t > sink = boost::nmake_shared< sink_t >(backend);
cor e- >add_si nk(si nk) ;

/1

/'l Renove the sink
cor e- >renove_si nk(si nk) ;

You can read more on the design of sinksin the following sections: Sink Frontends and Sink Backends.
Exception handling

The core provides away to set up centralized exception handling. If an exception takes place during filtering or processing in one
of the added sinks, the core will invoke an exception handler if one was installed with the set _except i on_handl er method. An
exception handler is anullary function object that isinvoked from within acat ch clause. The library provides toolsto simplify ex-
ception handlers construction.

36

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

I
The exception handler in the logging coreis global and thusisintended to perform some common actionson errors.

Logging sinks and sources also provide exception handling facilities (see here and here), which can be used to do
afiner grained error processing.

struct my_handl er

{
typedef void result_type;
voi d operator() (std::runtime_error const& e) const
{
std::cout << "std::runtine_ error: " << e.what() << std::endl;
}
voi d operator() (std::logic_error const& e) const
{
std::cout << "std::logic_error: " << e.what() << std::endl;
t hr ow,
}
H
voi d init_exception_handler()
{
/1 Setup a gl obal exception handler that will call ny_handler::operator()
/1 for the specified exception types
| oggi ng: : core: : get()->set_exception_handl er (1 oggi ng: : make_excepti on_handl er <
std::runtime_error,
std::logic_error
>(ny_handler()));
}

Feeding log records

One of the most important functions of the logging core is providing an entry point for all logging sources to feed log records into.
Thisis done with the open_r ecor d and push_r ecor d methods.

Thefirst method is used to initiate the record logging process. It accepts the source-specific set of attributes. The method constructs
acommon set of attribute values of the three sets of attributes (global, thread-specific and source-specific) and applies filtering. If
thefiltering succeeded, i.e. at |east one sink accepts arecord with these attribute val ues, the method returns anon-empty record object,
which can be used to fill in the log record message. If the filtering failed, an empty record object is returned.

When the log source is ready to complete the logging procedure, it has to call the push_r ecor d method with the record returned
by the open_r ecor d method. Note that one should not call push_r ecor d with an empty record. The record should be passed as
rvalue reference. During the call the record view will be constructed from the record. The view will then be passed on to the sinks
that accepted it during filtering. This may involve record formatting and further processing, like storing it into a file or sending it
over the network. After that the record object can be destroyed.

37

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

voi d I oggi ng_function(logging::attribute_set const& attrs)

{
boost: :shared_ptr< | ogging::core > core = |ogging::core::get();
/1 Attenpt to open a |log record
| oggi ng: :record rec = core->open_record(attrs);
if (rec)
{
/1 Ok, the record is accepted. Conpose the nessage now.
| oggi ng: :record_ostreamstrmrec);
strm<< "Hello, Wrld!";
strmflush();
/1 Deliver the record to the sinks.
core->push_record(boost::nove(rec));
}
}

All thislogic is usually hidden in the loggers and macros provided by the library. However, this may be useful for those developing
new log sources.

Logging sources
Basic loggers
#i ncl ude <boost/| og/ sources/ basi c_| ogger. hpp>

The simplest logging sources provided by the library are loggers | ogger and its thread-safe version, | ogger _nt (w ogger and
w ogger _nt for wide-character logging, accordingly). These loggers only provide the ability to store source-specific attributes
within themselves and, of course, to form log records. Thistype of logger should probably be used when thereis no need for advanced
features like severity level checks. It may well be used as atool to collect application statistics and register application events, such
as notifications and alarms. In such cases the logger is normally used in conjunction with scoped attributes to attach the needed data
to the notification event. Below is an example of usage:

38

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

cl ass network_connection

{
src::logger m.l ogger;
logging::attribute_set::iterator mrenote_addr;
public:
voi d on_connected(std::string const& renote_addr)
{
/1 Put the renpte address into the |logger to automatically attach it
/'l to every log record witten through the | ogger
m renot e_addr = m.| ogger.add_attri bute("Renot eAddr ess”
attrs::constant< std::string >(renote_addr)).first;
/'l The straightforward way of | ogging
if (logging::record rec = m./l ogger.open_record())
{
rec.attribute_values().insert("Mssage"
attrs::make_attribute_val ue(std::string("Connection established")))
m_| ogger . push_record(boost:: nove(rec));
}
}
voi d on_di sconnected()
{
/1 The sinpler way of |ogging: the above "if" condition is wapped into a neat nacro
BOOST_LOG(m | ogger) << "Connection shut down"
/'l Renove the attribute with the renote address
m_| ogger.renove_attri bute(m.renote_addr);
}
voi d on_data_received(std: :size_t size)
{
/1l Put the size as an additional attribute
/1 so it can be collected and accunul ated later if needed
/1 The attribute will be attached only to this log record
BOOST_LOG(m | ogger) << | oggi ng:: add_val ue("Recei vedSi ze", size) << "Sone data received"
}
voi d on_data_sent(std::size_t size)
{
BOOST_LOG(m | ogger) << | oggi ng: : add_val ue("Sent Si ze", size) << "Sone data sent"
}
b

The classnet wor k_connect i on in the code snippet above represents an approach to implementing simple logging and statistical
information gathering in anetwork-rel ated application. Each of the presented methods of the class effectively marks a corresponding
event that can be tracked and collected on the sinks level. Furthermore, other methods of the class, that are not shown here for sim-
plicity, are able to write logs too. Note that every log record ever made in the connected state of the net wor k_connect i on object
will beimplicitly marked up with the address of the remote site.

Loggers with severity level support

#i ncl ude <boost/| og/ sources/severity_feature. hpp>
#i ncl ude <boost/| og/ sources/severity_| ogger. hpp>

The ability to distinguish some log records from others based on some kind of level of severity or importance is one of the most
frequently requested features. Theclasstemplatesseveri ty | ogger andseverity | ogger nt (aongwiththeirwseverity | og-
ger andwseverity_| ogger nt wide-character counterparts) provide this functionality.

Theloggers automatically register a special source-specific attribute " Severity", which can be set for every record in a compact and
efficient manner, withanamed argument sever i t y that can be passed to the constructor and/or theopen_r ecor d method. If passed
to the logger constructor, the severi t y argument sets the default value of the severity level that will be used if noneis provided in

39

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

theopen_r ecor d arguments. Thesever i t y argument passed to theopen_r ecor d method setsthelevel of the particular log record
being made. The type of the severity level can be provided as atemplate argument for the logger class template. The default typeis
int.

The actual values of this attribute and their meaning are entirely user-defined. However, it is recommended to use the level of value
equivalent to zero as a base point for other values. Thisis because the default-constructed logger object setsits default severity level
to zero. It is aso recommended to define the same levels of severity for the entire application in order to avoid confusion in the
written logs later. The following code snippet shows the usage of severity_| ogger.

/1 W define our own severity |evels
enum severity_| evel

{
nor mal ,
notification,
war ni ng,
error,
critical
b
voi d | oggi ng_function()
{
/1 The logger inplicitly adds a source-specific attribute 'Severity’
/1 of type 'severity_level' on construction
src::severity_l ogger< severity_level > slg
BOOST_LOG SEV(sl g, normal) << "A regul ar nmessage"
BOOST_LOG SEV(sl g, warning) << "Sonething bad is going on but | can handle it";
BOOST_LOG SEV(slg, critical) << "Everything crunbles, shoot ne now ";
}

voi d default_severity()

{
/1 The default severity can be specified in constructor.
src::severity_l ogger< severity_level > error_| g(keywords::severity = error)
BOOST_LOG(error_Ig) << "An error level |og record (by default)"
/1 The explicitly specified | evel overrides the default
BOOST_LOG SEV(error_l g, warning) << "A warning |level |og record (overrode the default)";
}

Or, if you prefer logging without macros:

voi d manual _| oggi ng()

{
src::severity_l ogger< severity_level > slg
| oggi ng: :record rec = sl g.open_record(keywords: :severity = normal);
if (rec)
{
| oggi ng: : record_ostream strm(rec)
strm << "A regul ar nessage"
strm flush();
sl g. push_record(boost:: nove(rec));
}
}

And, of course, severity loggers also provide the same functionality the basic loggers do.

40

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

Loggers with channel support

#i ncl ude <boost/| og/ sources/ channel _feature. hpp>
#i ncl ude <boost/| og/ sour ces/ channel _I ogger. hpp>

Sometimesit isimportant to associate log records with some application component, such as the module or class name, the relation
of the logged information to some specific domain of application functionality (e.g. network or file system related messages) or
somearbitrary tag that can be used | ater to route these recordsto aspecific sink. Thisfeatureisfulfilled with loggerschannel _I ogger,
channel _| ogger _nt and their wide-char counterpartswchannel _| ogger ,wchannel _| ogger _nt . Theseloggers automatically
register an attribute named " Channel”. The default channel name can be set in thelogger constructor with anamed argument channel .
The type of the channel attribute value can be specified as atemplate argument for the logger, withst d: : string (std: : wstring

in case of wide character loggers) as a default. Aside from that, the usage is similar to the basic loggers:

cl ass network_connection

{

src::channel _| ogger< > mnet, mstat;
logging::attribute_set::iterator mnet_renote_addr, mstat_renote_addr;

public:

net wor k_connecti on()

{
}

/1 We can dunp network-rel ated nessages through this |ogger

/'l and be able to filter themlater

m net (keywords: : channel = "net"),

/1 We al so can separate statistic records in a different channe
/1 in order to route themto a different sink

m st at (keywor ds: : channel = "stat")

voi d on_connected(std::string const& renote_addr)

{

}

/'l Add the renpte address to both channels

attrs::constant< std::string > addr(renote_addr);

m net_renote_addr = mnet.add_attri bute("RenoteAddress”, addr).first;

m stat_renote_addr = mstat.add_attri bute("RenoteAddress”, addr).first;

/1 Put nessage to the "net" channe
BOOST_LOG m net) << "Connection established"

voi d on_di sconnected()

{

}

/1 Put nessage to the "net" channe
BOOST_LOG m net) << "Connection shut down"

/'l Renove the attribute with the renote address
m net.renove_attri bute(m.net_renote_addr)
m stat.renove_attri bute(mstat_renote_addr)

voi d on_data_received(std::size_t size)

{
}

BOOST_LOG(m stat) << | oggi ng:: add_val ue("Recei vedSi ze", size) << "Sone data received"

voi d on_data_sent(std::size_t size)

{
}

BOOST_LOG(m stat) << | ogging::add_val ue("Sent Si ze", size) << "Sone data sent"

41

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

It is also possible to set the channel name of individual log records. This can be useful when a global logger is used instead of an
object-specific one. The channel name can be set by calling the channel modifier on the logger or by using a special macro for
logging. For example:

/1 Define a global |ogger
BOOST_LOG | NLI NE_GLOBAL_LOGGER_CTOR_ARGS(ny_| ogger, src::channel _| ogger_nt< > (keywords::chanO
nel = "general"))

cl ass networ k_connection

{
std::string mrenote_addr;
publi c:
voi d on_connected(std::string const& renote_addr)
{
m renot e_addr = renote_addr;
/1 Put nessage to the "net" channel
BOOST_LOG CHANNEL(my_I| ogger::get(), "net")
<< | oggi ng: : add_val ue(" Renot eAddr ess", m.renote_addr)
<< "Connection established";
}
voi d on_di sconnect ed()
{
/1 Put nessage to the "net" channel
BOOST_LOG CHANNEL(my_I| ogger::get(), "net")
<< | oggi ng: : add_val ue(" Renot eAddr ess", m.renote_addr)
<< "Connecti on shut down";
m_renot e_addr.clear();
}
voi d on_data_received(std::size_t size)
{
BOOST_LOG CHANNEL(my_| ogger::get(), "stat")
<< | oggi ng: : add_val ue(" Renot eAddr ess", m.renote_addr)
<< | oggi ng: : add_val ue(" Recei vedSi ze", size)
<< "Sone data received";
}
voi d on_data_sent(std::size_t size)
{
BOOST_LOG CHANNEL(my_I| ogger::get(), "stat")
<< | oggi ng: : add_val ue(" Renot eAddr ess", m.renote_addr)
<< | oggi ng: : add_val ue(" Sent Si ze", size)
<< "Sone data sent";
}
H

Note that changing the channel name is persistent, so unless the channel name is reset, the subsegquent records will also belong to
the new channel.

@ Tip
For performance reasonsit is advised to avoid dynamically setting the channel nameindividually for every log record,

when possible. Changing the channel nameinvolves dynamic memory allocation. Using distinct loggersfor different
channels allows to avoid this overhead.

42

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

Loggers with exception handling support

#i ncl ude <boost/| og/ sources/ exception_handl er_feat ure. hpp>

The library provides a logger feature that enables the user to handle and/or suppress exceptions at the logger level. The excep-
ti on_handl er feature adds aset _excepti on_handl er method to the logger that allows setting a function object to be called
if an exception is thrown from the logging core during the filtering or processing of log records. One can use the library-provided
adapters to simplify implementing exception handlers. Usage exampleis as follows:

enum severity_leve

{
nor mal ,
war ni ng
error
}s

/1 A logger class that allows to intercept exceptions and supports severity |eve
cl ass ny_l ogger_nt
public src::basic_conposite_| ogger<
char,
ny_| ogger _nt
src::nmulti_thread_nodel < boost: :shared_nutex >,
src::features<
src::severity< severity_level >
src::exception_handl er

>
>
{
BOOST_LOG _FORWARD _LOGGER_MEMBERS(nmy_| ogger _nt)
b
BOOST_LOG | NLI NE_GLOBAL_LOGCGER I NI T(ny_I| ogger, ny_l ogger_nt)
{
ny_logger_nt |g
/1 Set up exception handler: all exceptions that occur while
/'l 1ogging through this logger, will be suppressed
| g. set _exception_handl er (1 oggi ng: : make_excepti on_suppressor())
return |g;
}

voi d 1 oggi ng_function()

/1 This will not throw
BOOST_LOG SEV(ny_l ogger::get(), normal) << "Hello, world"

Tip

Logging core and sink frontends also support installing exception handlers.

Loggers with mixed features

#i ncl ude <boost/| og/ sources/severity_channel _| ogger. hpp>

43

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

If you wonder whether you can use a mixed set of several logger features in one logger, then yes, you certainly can. The library
providesseverity channel _| ogger andseverity channel _| ogger nt (withtheir wide-char analogueswseverity chan-
nel | ogger and wseverity_channel _| ogger nt) which combine features of the described loggers with severity level and
channels support. The composite loggers are templates, too, which allows you to specify severity level and channel types. You can
also design your own logger features and combine them with the ones provided by the library, as described in the Extending the
library section.

The usage of theloggerswith several features does not conceptually differ from the usage of the single-featured loggers. For instance,
hereishow aseverity_channel _| ogger _nt could be used:

enum severity_| evel

{
nor mal ,
notification,
war ni ng,
error,
critical
b
typedef src::severity_channel _| ogger_nt<
severity_l evel, /1l the type of the severity |evel
std::string /'l the type of the channel nanme

> ny_| ogger _nt;

BOOST_LOG | NLI NE_GLOBAL_LOGGER I NI T(my_I ogger, my_| ogger_nt)

{
/'l Specify the channel nane on construction, simlarly as with the channel _I| ogger
return ny_| ogger_nt (keywords: : channel = "ny_| ogger");
}
voi d | oggi ng_function()
{
/1 Do logging with the severity level. The record will have both
/'l the severity level and the channel nanme attached.
BOOST_LOG SEV(ny_| ogger::get(), normal) << "Hello, world!"
}

Global storage for loggers

#i ncl ude <boost/ | og/ sources/ gl obal _| ogger _storage. hpp>

Sometimesit isinconvenient to have alogger object to be able to write logs. Thisissueis often present in functional-style code with
no obvious places where alogger could be stored. Another domain where the problem persistsis generic libraries that would benefit
fromlogging. In such casesit would be more convenient to have one or several global loggersin order to easily accessthem in every
place when needed. In thisregard st d: : cout isagood example of such alogger.

The library provides away to declare global loggers that can be accessed pretty much like st d: : cout . In fact, this feature can be
used with any logger, including user-defined ones. Having declared a global logger, one can be sure to have a thread-safe access to
thislogger instance from any place of the application code. The library also guarantees that a global logger instance will be unique
even across module boundaries. Thisallows employing logging even in header-only componentsthat may get compiled into different
modules.

One may wonder why there is a need for something special in order to create global loggers. Why not just declare alogger variable
at namespace scope and use it wherever you need? While technically thisis possible, declaring and using global logger variablesis
complicated for the following reasons:

» Order of initialization of namespace scope variablesis not specified by the C++ Standard. This means that generally you cannot
use the logger during this stage of initialization (i.e. before nai n).

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

« Initialization of namespace scope variables is not thread-safe. You may end up initializing the same logger twice or using an un-
initialized logger.

» Using namespace scope variablesin a header-only library is quite complicated. One either has to declare a variable with external
linkage and define it only in a single trandlation unit (that is, in a separate .cpp file, which defeats the "header-only" thesis), or
defineavariable with internal linkage, or asaspecial casein an anonymous namespace (thiswill most likely break ODR and give
unexpected results when the header is used in different translation units). There are other compiler-specific and standard tricks to
tackle the problem, but they are not quitetrivial and portable.

» On most platforms namespace scope variables are local to the module where they were compiled in. That is, if variable a has ex-
ternal linkage and was compiled into modules X and Y, each of these modules has its own copy of variable a. To make things
worse, on other platforms this variable can be shared between the modules.

Global logger storage isintended to eliminate all these problems.

The easiest way to declare a global logger is to use the following macro:

BOOST _LOG | NLI NE_GLOBAL_LOGGER DEFAULT(ny_l ogger, src::severity |logger_nt< >)

Theny_I ogger argument gives the logger a name that may be used to acquire the logger instance. This name acts as atag of the
declared logger. The second parameter denotes the logger type. In multithreaded applications, when the logger can be accessed from
different threads, users will normally want to use the thread-safe versions of loggers.

If passing arguments to the logger constructor is needed, there is another macro:

BOOST_LOG | NLI NE_GLOBAL_LOGGER CTOR ARGS(

ny_| ogger,
src::severity_channel _| ogger< >,
(keywords: :severity = error)(keywords::channel = "ny_channel "))

Thelast macro argument is aBoost.Preprocessor sequence of arguments passed to the logger constructor. Be careful, however, when
using non-constant expressions and references to objects as constructor arguments, since the arguments are evaluated only once and
it is often difficult to tell the exact moment when it is done. The logger is constructed on the first request from whichever part of the
application that has the knowledge of the logger declaration. It is up to user to make sure that all arguments have valid states at that
point.

The third macro of this section provides maximum initialization flexibility, allowing the user to actually define the logic of creating
the logger.

BOOST_LOG | NLI NE_GLOBAL_LOGCGER I NI T(ny_I| ogger, src::severity_l ogger_nt)

{
/1 Do sonething that needs to be done on | ogger initialization,
/1l e.g. add a stop watch attribute.
src::severity_logger_m< > |g;
| g.add_attri bute("StopWatch", boost::make_shared< attrs::timer >());
/1 The initializing routine nust return the |ogger instance
return | g;
}

LiketheBOOST_LOG | NLI NE_GLOBAL_LOGGER CTOR_ARGS macro, theinitialization codeis called only once, on thefirst request
of the logger.

45

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/preprocessor/doc/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

2 Im portant
Beware of One Definition Rule (ODR) issues. Regardless of the way of logger declaration you choose, you should
ensure that the logger is declared in exactly the same way at all occurrences and all symbol names involved in the
declaration resolve to the same entities. The latter includes the names used within the initialization routine of the
BOOST_LOG | NLI NE_GLOBAL_LOGGER | NI T macro, such asreferencesto external variables, functionsand types.
The library tries to protect itself from ODR violations to a certain degree, but in general the behavior is undefined
if theruleisviolated.

In order to aleviate ODR problems, it is possible to separate the logger declaration and itsinitialization routine. Thelibrary provides
the following macros to achieve this:

* BOOST_LOG GLOBAL_LOGGER provides the logger declaration. It can be used in a header, similarly to the BOOST_LOG | N
LI NE_GLOBAL_LOGGER* macros described above.

» BOOST _LOG GLOBAL_LOGGER | NI T,BOOST LOG GLOBAL_LOGGER DEFAULT and BOOST LOG GLOBAL_LOGGER CTOR _ARGS
define the logger initialization routine. Their semantics and usage is similar to the corresponding BOOST_LOG | NLI NE_GLOB-
AL_LOGGER* macros, for one exception: these macros should be used in asingle .cpp file.

For example:

/'l my_l ogger.h
|| ===========

BOOST_LOG GLOBAL_LOGGER(ny_| ogger, src::severity_ |l ogger_nt)
/'l ny_l ogger. cpp

|| ===========

#i ncl ude "ny_| ogger. h"

BOOST_LOG GLOBAL_LOGGER I NI T(mmy_I ogger, src::severity_|logger_nt)

{
src::severity_logger_m< > |g;
I g.add_attribute("StopWatch", boost::nmake_shared< attrs::tiner >());
return |g;

}

Regardless of the macro you used to declare the logger, you can acquire the logger instance with the static get function of thelogger
tag:

src::severity_logger_m< >& lg = ny_|l ogger::get();

Further usage of the logger isthe same asif it was aregular logger object of the corresponding type.

O Warning
It should be noted that it is hot advised to use global loggers during the deinitiali zation stage of the application. Like
any other global object in your application, the global logger may get destroyed before you try to useit. In such
cases it's better to have a dedicated logger object that is guaranteed to be available as long as needed.

Sink frontends

Sink frontends are the part of sinks provided by the library, that implements the common functionality shared between all sinks.
This includes support for filtering, exception handling and thread synchronization. Also, since formatting is typical for text-based

46

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

sinks, it isimplemented by frontends as well. Every sink frontend receives |og records from the logging core and then passes them
along to the associated sink backend. The frontend does not define how to process records but rather in what way the core should
interact with the backend. It is the backend that defines the processing rules of the log records. You probably won't have to write
your own frontend when you need to create a new type of sink, because the library provides a number of frontends that cover most
USE Cases.

Sink frontends derive from the si nk class template, which is used by the logging core to supply log records. Technically speaking,
one can derive his class from the si nk template and have his new-found sink, but using sink frontends saves from quite an amount
of routine work. As every sink frontend is associated with a backend, the corresponding backend will also be constructed by the
frontend upon its construction (unless the user provides the backend instance himself), making the sink complete. Therefore, when
the frontend is constructed it can be registered in the logging core to begin processing records. See the Sink Backends section for
more details on interactions between frontends and backends.

Below isamore detailed overview of the services provided by sink frontends.

Basic sink frontend services

There are anumber of basic functionalities that all sink frontends provide.

Filtering

All sink frontends support filtering. The user can specify a custom filtering function object or afilter constructed with the library-
provided tools. Thefilter can be set withtheset fi |t er method or cleared withther eset _fi | t er method. Thefilter isinvoked

during thecall tothewi | | _consume method that isissued by the logging core. If thefilter isnot set, it is assumed that the sink will
accept any log record.

@ Note
Like the logging core, all sink frontends assume it is safe to call filters from multiple threads concurrently. Thisis
fine with the library-provided filters.

Formatting
For text-based sink backends, frontends implement record formatting. Like with filters, lambda expressions can be used to construct

formatters. The formatter can be set for atext-based sink by callingtheset _f or mat t er method or cleared by callingr eset _f or mat -
ter.

Exception handling

All sink frontends allow setting up exception handlersin order to customize error processing on a per-sink basis. One can install an
exception handling function with the set _except i on_handl er method, this function will be called with no arguments from a
cat ch block if an exception occurs during record processing in the backend or during the sink-specific filtering. The exception

handler is free to rethrow an exception or to suppressit. In the former case the exception is propagated to the core, where another
layer of exception handling can come into action.

Tip

Logging core and loggers also support installing exception handlers.

Thelibrary provides a convenient tool for dispatching exceptionsinto a unary polymorphic function object.

47

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

S Note
An exception handler is not allowed to return a value. This means you are not able to alter the filtering result once
an exception occurs, and thus filtering will aways fail.

@ Note
All sink frontends assume it is safe to call exception handlers from multiple threads concurrently. Thisis fine with
the library-provided exception dispatchers.

Unlocked sink frontend
#i ncl ude <boost/ | og/ si nks/ unl ocked_frontend. hpp>

The unlocked sink frontend isimplemented with the unl ocked_si nk classtemplate. Thisfrontend provides the most basic service
for the backend. The unl ocked_si nk frontend performs no thread synchronization when accessing the backend, assuming that
synchronization either is not needed or is implemented by the backend. Nevertheless, setting up afilter is still thread-safe (that is,
one can safely change thefilter in the unl ocked_si nk frontend while other threads are writing logs through this sink). Thisisthe
only sink frontend available in a single threaded environment. The example of useis asfollows:

48

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

enum severity_| evel

{
nor mal ,
war ni ng,
error

}s

/'l A trivial sink backend that requires no thread synchronization
cl ass ny_backend :
public sinks::basic_sink_backend< sinks::concurrent_feeding >

{
public:
/1 The function is called for every log record to be witten to | og
voi d consune(l oggi ng: : record_vi ew const & rec)
{
/1 We skip the actual synchronization code for brevity
std::cout << rec[expr::snmessage|] << std::endl;
}
b

/1 Conpl ete sink type
t ypedef sinks::unl ocked_si nk< ny_backend > sink_t;

void init_logging()
{

boost: :shared_ptr< | ogging::core > core = |ogging::core::get();

/1 The sinplest way, the backend is default-constructed
boost::shared_ptr< sink_t > sinkl(new sink_t());
cor e->add_si nk(si nkl);

/1 One can construct backend separately and pass it to the frontend
boost: :shared_ptr< my_backend > backend(new my_backend());
boost::shared_ptr< sink_t > sink2(new sink_t(backend));

cor e- >add_si nk(si nk2);

/'l You can manage filtering through the sink interface
sinkl->set _filter(expr::attr< severity_level >("Severity") >= warning);
sink2->set _filter(expr::attr< std::string >("Channel") == "net");

See the compl ete code.

All sink backends provided by the library require thread synchronization on the frontend part. If we tried to instantiate the frontend
on the backend that requires more strict threading guarantees than what the frontend provides, the code wouldn't have compiled.
Therefore this frontend is mostly useful in single-threaded environments and with custom backends.

Synchronous sink frontend
#i ncl ude <boost/1 og/ si nks/sync_frontend. hpp>

The synchronous sink frontend is implemented with the synchr onous_si nk class template. It is similar to the unl ocked_si nk
but additionally provides thread synchronization with a mutex before passing log records to the backend. All sink backends that
support formatting currently require thread synchronization in the frontend.

The synchronous sink also introduces the ability to acquire apointer to thelocked backend. Aslong asthe pointer exists, the backend
is guaranteed not to be accessed from other threads, unless the access is done through another frontend or a direct reference to the
backend. This feature can be useful if there is a need to perform some updates on the sink backend while other threads may be
writing logs. Beware, though, that while the backend islocked any other thread that triesto write alog record to the sink gets blocked
until the backend is released.

49

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/sinks_unlocked.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

The usageis similar to theunl ocked_si nk.

enum severity_| eve

{
nor nal ,
war ni ng,
error

}s

/1l Compl ete sink type
t ypedef sinks::synchronous_sink< sinks::text_ostream backend > sink_t;

void init_logging()

{

boost: : shared_ptr< | ogging::core > core = | ogging::core::get();
/'l Create a backend and initialize it with a stream
boost::shared_ptr< sinks::text_ostream backend > backend =

boost: : nake_shar ed< sinks::text_ostream backend >();
backend- >add_st r eam

boost::shared_ptr< std::ostream >(&std::clog, boost::null_deleter()))
/!l Wap it into the frontend and register in the core
boost: : shared_ptr< sink_t > sink(new sink_t(backend));
cor e- >add_si nk(si nk)
/'l You can manage filtering and formatting through the sink interface
sink->set _filter(expr::attr< severity_|level >("Severity") >= warning)
si nk->set _formatter
(

expr::stream

<< "Level: " << expr::attr< severity_level >("Severity")
<< " Message: " << expr::snmessage

)i
/1 You can al so manage backend in a thread-safe manner
{

sink_t:: | ocked_backend_ptr p = sink->l ocked_backend();

p- >add_st r eam boost : : nake_shared< std: : of stream >("sanple. |l o0g"))
} I/ the backend gets rel eased here

}
See the compl ete code.

Asynchronous sink frontend

#i ncl ude <boost /1 og/ si nks/ async_frontend. hpp>

/'l Rel ated headers

#i ncl ude <boost /1 og/ si nks/ unbounded_fi f o_queue. hpp>

#i ncl ude <boost/ | og/ si nks/ unbounded_or deri ng_queue. hpp>
#i ncl ude <boost/ | og/ si nks/ bounded_fi fo_queue. hpp>

#i ncl ude <boost/ 1 og/ si nks/ bounded_or deri ng_queue. hpp>
#i ncl ude <boost/ | og/sinks/drop_on_overfl ow. hpp>

#i ncl ude <boost/ | og/si nks/ bl ock_on_overfl ow. hpp>

The frontend is implemented in the asynchr onous_si nk class template. Like the synchronous one, asynchronous sink frontend
provides away of synchronizing accessto the backend. All log records are passed to the backend in a dedicated thread, which makes
it suitable for backends that may block for a considerable amount of time (network and other hardware device-related sinks, for ex-
ample). The internal thread of the frontend is spawned on the frontend constructor and joined on its destructor (which implies that

the frontend destruction may block).

50

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/sinks_sync.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

S Note
The current implementation of the asynchronous sink frontend use record queueing. Thisintroduces acertain latency

between the fact of record emission and its actual processing (such aswriting into afile). This behavior may bein-
adequate in some contexts, such as debugging an application that is prone to crashes.

enum severity_ | eve

{

}

nor mal ,
war ni ng
error

/1 Compl ete sink type
t ypedef sinks::asynchronous_si nk< sinks::text_ostream backend > sink_t;

boost::shared_ptr< sink_t > init_|ogging()

{

boost::shared_ptr< | ogging::core > core = | ogging::core::get();

/'l Create a backend and initialize it with a stream
boost::shared_ptr< sinks::text_ostream backend > backend =
boost : : make_shar ed< sinks::text_ostream backend >();
backend- >add_st r eam
boost::shared_ptr< std::ostream >(&std::clog, boost::null_deleter()))

/1 Wap it into the frontend and register in the core
boost::shared_ptr< sink_t > sink(new sink_t(backend));
cor e- >add_si nk(si nk) ;

/1 You can nanage filtering and formatting through the sink interface
sink->set _filter(expr::attr< severity_level >("Severity") >= warning);
sink->set _formatter
(
expr: :stream
<< "Level: " << expr::attr< severity_level >("Severity")
<< " Message: " << expr::message

)

/1 You can al so manage backend in a thread-safe manner

{
sink_t:: 1 ocked_backend_ptr p = sink->l ocked_backend();

p- >add_st ream boost : : make_shar ed< std: : of stream >("sanple. |l o0g"))
} I/ the backend gets rel eased here

return sink;

51

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

2 Im portant

If asynchronouslogging is used in a multi-modul e application, one should decide carefully when to unload dynam-
ically loaded modules that write logs. The library has many places where it may end up using resources that reside
in the dynamically loaded module. Examples of such resources are virtual tables, string literals and functions. If
any of these resources are still used by the library when the module in which they reside gets unloaded, the applic-
ation will most likely crash. Strictly speaking, this problem exists with any sink type (and is not limited to sinksin
the first place), but asynchronous sinks introduce an additional problem. One cannot tell which resources are used
by the asynchronous sink because it worksin a dedicated thread and uses buffered log records. Thereis no general
solution for thisissue. Users are advised to either avoid dynamic module unloading during the application's work
time, or to avoid asynchronous logging. As an additional way to cope with the problem, one may try to shutdown
all asynchronous sinks before unloading any modules, and after unloading re-create them. However, avoiding dy-
namic unloading is the only way to solve the problem compl etely.

In order to stop the dedicated thread feeding log records to the backend one can call the st op method of the frontend. This method
will be called automatically in the frontend destructor. The st op method, unlike thread interruption, will only terminate the feeding
loop when alog record that is being fed is processed by the backend (i.e. it will not interrupt the record processing that has aready
started). However, it may happen that some records are still |eft in the queue after returning from the st op method. In order to flush
them to the backend an additional call to thef eed_r ecor ds method isrequired. Thisis useful in the application termination stage.

voi d stop_| oggi ng(boost::shared_ptr< sink_t >& sink)

{
boost: : shared_ptr< | ogging::core > core = | oggi ng::core::get();
/'l Renmpbve the sink fromthe core, so that no records are passed to it
core- >renove_si nk(si nk) ;
/'l Break the feeding | oop
si nk->stop();
/'l Flush all log records that may have |eft buffered
sink->flush();
sink.reset();

}

See the complete code.

Spawning the dedicated thread for log record feeding can be suppressed with the optional boolean st art _t hr ead hamed parameter
of the frontend. In this case the user can select either way of processing records:

 Cdl ther un method of the frontend. This call will block in the feeding loop. Thisloop can be interrupted with the call to st op.

 Periodically call f eed_r ecor ds. This method will process all the log records that were in the frontend queue when the call was
issued and then return.

E Note
Users should take care not to mix these two approaches concurrently. Also, none of these methods should be called
if the dedicated feeding thread is running (i.e., thest art _t hr ead was not specified in the construction or had the
valueof t r ue.

Customizing record queueing strategy

Theasynchr onous_si nk class template can be customized with the record queueing strategy. Several strategies are provided by
thelibrary:

52

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/sinks_async.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

e unbounded_fifo_queue. Thisstrategy isthe default. Asthe nameimplies, the queueis not limited in depth and does not order
log records.

» unbounded_or deri ng_queue. Like unbounded_fi f o_queue, the queue has unlimited depth but it applies an order on the
gueued records. We will return to ordering queues in a moment.

» bounded_fi f o_queue. The queue has limited depth specified in atemplate parameter aswell asthe overflow handling strategy.
No record ordering is applied.

e bounded_ordering_queue. Likebounded_fifo_queue but aso applieslog record ordering.

O Warning
Be careful with unbounded queueing strategies. Since the queue has unlimited depth, if log records are continuously
generated faster than being processed by the backend the queue grows uncontrollably which manifests itself as a

memory leak.

Bounded queues support the following overflow strategies:
e drop_on_over f | ow. When the queueisfull, silently drop excessive log records.

* bl ock_on_over f | ow. When the queue is full, block the logging thread until the backend feeding thread manages to process
some of the queued records.

For example, thisis how we could modify the previous example to limit the record queue to 100 elements:

/1 Conpl ete sink type
t ypedef sinks::asynchronous_si nk<
sinks: :text_ostream backend,

sinks: : bounded_fifo_queue< o
100, (2}
si nks: :drop_on_overfl ow (3]
>
> sink_t;

boost: : shared_ptr< sink_t > init_|ogging()

{
boost: : shared_ptr< | ogging::core > core = | ogging::core::get();
/'l Create a backend and initialize it with a stream
boost::shared_ptr< sinks::text_ostream backend > backend =
boost: : make_shar ed< sinks::text_ostream backend >();
backend- >add_st r eam
boost::shared_ptr< std::ostream >(&std::clog, boost::null_deleter()));
/1 Wap it into the frontend and register in the core
boost: : shared_ptr< sink_t > sink(new sink_t(backend));
cor e- >add_si nk(si nk) ;
/1
return sink;
}

© log record queueing strategy
® record queue capacity
® overflow handling policy

See the compl ete code.

53

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/sinks_async_bounded.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

Also seethe bounded_async_| og examplein the library distribution.
Ordering log records
Record ordering can be useful to alleviate the weak record ordering issue present in multithreaded applications.

Ordering queueing strategies introduce asmall latency to the record processing. The latency duration and the ordering predicate can
be specified on the frontend construction. It may be useful to employ the log record ordering toolsto implement ordering predicates.

/1 Complete sink type
t ypedef sinks::asynchronous_si nk<
si nks: : text _ostream backend,

si nks: : unbounded_or deri ng_queue< (1]
| oggi ng: : attribute_val ue_ordering< (2}
unsi gned int, (3
std::less< unsigned int > (4]
>
>
> sink_t;

boost::shared_ptr< sink_t > init_logging()

{
boost: :shared_ptr< | ogging::core > core = |ogging::core::get();
/'l Create a backend and initialize it with a stream
boost::shared_ptr< sinks::text_ostream backend > backend =
boost: : nake_shar ed< sinks::text_ostream backend >();
backend- >add_st r eam
boost::shared_ptr< std::ostream >(&std::clog, boost::null_deleter()));
/!l Wap it into the frontend and register in the core
boost::shared_ptr< sink_t > sink(new sink_t(
backend, (5)
keywords: : order =
| oggi ng: : make_attr_ordering("Linel D', std::less< unsigned int >()), O
keywor ds: : orderi ng_w ndow = boost:: posi x_tine::seconds(1) (7}
))s
cor e- >add_si nk(si nk) ;
/'l You can manage filtering and formatting through the sink interface
sink->set _filter(expr::attr< severity_level >("Severity") >= warning);
sink->set _formatter
(
expr::stream
<< "Level: " << expr::attr< severity_level >("Severity")
<< " Message: " << expr::snessage
)
/'l You can al so manage backend in a thread-safe manner
{
sink_t::locked_backend_ptr p = sink->locked_backend();
p- >add_st ream boost : : nake_shar ed< std::of stream >("sanple.log"));
} I/ the backend gets rel eased here
return sink;
}
© log record queueing strategy
® log record ordering predicate type
® attribute value type
O optional, attribute value comparison predicate; st d: : | ess equivalent is used by default

render
httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/bounded_async_log/main.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

® pointer to the pre-initialized backend
@ log record ordering predicate
@ latency of log record processing

In the code sample above the sink frontend will keep log recordsin the internal queue for up to one second and apply ordering based
on thelog record counter of typeunsi gned i nt.Theor deri ng_w ndowparameter isoptional and will default to some reasonably
small system-specific value that will suffice to maintain chronological flow of log records to the backend.

The ordering window is maintained by the frontend even upon stopping the internal feeding loop, so that it would be possible to

reenter the loop without breaking the record ordering. On the other hand, in order to ensure that all log records are flushed to the
backend one has to call thef | ush method at the end of the application.

voi d stop_l oggi ng(boost::shared_ptr< sink_t >& sink)

{
boost: :shared_ptr< |l ogging::core > core = |ogging::core::get();
/1 Renmpbve the sink fromthe core, so that no records are passed to it
core->renove_si nk(si nk);
/1 Break the feeding |oop
si nk->stop();
/1 Flush all log records that may have |eft buffered
sink->flush();
sink.reset();
}

Thistechnique is a'so demonstrated in the async_| og examplein the library distribution.

Sink backends
Text stream backend

#i ncl ude <boost/| og/ sinks/text_ostream backend. hpp>

Thetext output stream sink backend isthe most generic backend provided by thelibrary out of the box. The backend isimplemented
inthebasi c_t ext _ostream backend classtemplate (t ext _ost r eam backend and wt ext _ost r eam backend convenience
typedefs provided for narrow and wide character support). It supports formatting log records into strings and putting into one or
several streams. Each attached stream gets the same result of formatting, so if you need to format log records differently for different
streams, you will need to create several sinks - each with its own formatter.

The backend also provides a feature that may come useful when debugging your application. With the aut o_f | ush method one
cantell the sink to automatically flush the buffers of all attached streams after each log record iswritten. Thiswill, of course, degrade
logging performance, but in case of an application crash there is a good chance that last log records will not be lost.

55

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/async_log/main.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

void init_logging()
{

boost: :shared_ptr< | ogging::core > core = |ogging::core::get();
/1l Create a backend and attach a couple of streans to it
boost::shared_ptr< sinks::text_ostream backend > backend =

boost: : nake_shar ed< sinks::text_ostream backend >();
backend- >add_st r eam

boost::shared_ptr< std::ostream >(&std::clog, boost::null_deleter()));
backend- >add_st r eam

boost::shared_ptr< std::ostream >(new std:: of streanm"sanple.lo0g")));

/'l Enabl e auto-flushing after each log record witten
backend- >aut o_fl ush(true);

/!l Wap it into the frontend and register in the core.
/1 The backend requires synchronization in the frontend.
t ypedef sinks::synchronous_si nk< sinks::text_ostream backend > sink_t;

boost::shared_ptr< sink_t > sink(new sink_t(backend));
cor e- >add_si nk(si nk) ;

Text file backend
#i ncl ude <boost/| og/sinks/text _file_backend. hpp>

Although it is possible to write logsinto files with the text stream backend the library also offers a special sink backend with an ex-
tended set of features suitable for file-based logging. The features include:

 Logfilerotation based on file size and/or time

* Flexiblelog file naming

» Placing the rotated filesinto a special location in the file system
 Deleting the oldest filesin order to free more space on the file system

Thebackendiscalledt ext _fil e_backend.

O Warning
This sink uses Boost.Filesystem internally, which may cause problems on process termination. See here for more
details.

File rotation

File rotation is implemented by the sink backend itself. The file name pattern and rotation thresholds can be specified when the
text _fil e_backend backend is constructed.

56

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/filesystem/doc/index.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

void init_logging()
{

boost: :shared_ptr< | ogging::core > core = |ogging::core::get();

boost::shared_ptr< sinks::text_file_backend > backend =
boost: : nake_shared< sinks::text_file_backend >(
keywords: : file_nane = "file_9%N.|og", (1
keywords::rotation_size = 5 * 1024 * 1024, (2]
keywords: :tine_based_rotation = sinks::file::rotation_at_tine_point(12, 0, 0) ©
)
/1 Wap it into the frontend and register in the core.
/1 The backend requires synchronization in the frontend.
t ypedef sinks::synchronous_sink< sinks::text_file_backend > sink_t;
boost::shared_ptr< sink_t > sink(new sink_t(backend));

cor e- >add_si nk(si nk) ;

O file name pattern
® rotate thefile upon reaching 5 MiB size...
© ..or every day, a noon, whichever comesfirst

@ Note
The file size at rotation can be imprecise. The implementation counts the number of characters written to the file,
but the underlying API can introduce additional auxiliary data, which would increase the log file's actual size on
disk. For instance, it iswell known that Windows and DOS operating systems have a special treatment with regard
to new-line characters. Each new-line character is written as a two byte sequence 0xOD OxOA instead of a single
OxO0A.. Other platform-specific character translations are also known.

The time-based rotation is not limited by only time points. There are following options available out of the box:

1. Time point rotations: r ot ati on_at _ti me_poi nt class. Thiskind of rotation takes place whenever the specified time point is
reached. The following variants are available:

» Every day rotation, at the specified time. Thisiswhat was presented in the code snippet above:

sinks::file::rotation_at_time_point(12, 0, 0)

» Rotation on the specified day of every week, at the specified time. For instance, this will make file rotation to happen every
Tuesday, at midnight:

sinks::file::rotation_at_tinme_point(date_time:: Tuesday, 0, 0, 0)
in case of midnight, the time can be omitted:

sinks::file::rotation_at_tine_point(date_tine:: Tuesday)

* Rotation on the specified day of each month, at the specified time. For example, thisis how to rotate files on the 1-st of every
month:

sinks::file::rotation_at_tine_point(gregorian::greg_day(1l), 0, 0, 0)

57

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

like with weekdays, midnight isimplied:

sinks::file::rotation_at_tine_point(gregorian::greg_day(1l))

2. Timeinterval rotations: rot ati on_at _ti me_i nterval class. With this predicate the rotation is not bound to any time points
and happens as soon as the specified time interval since the previous rotation elapses. Thisis how to make rotations every hour:

sinks::file::rotation_at_time_interval (posix_time::hours(1))

If none of the above applies, one can specify his own predicate for time-based rotation. The predicate should take no arguments and
return bool (thet r ue value indicates that the rotation should take place). The predicate will be called for every log record being
written to thefile.

bool is it tinme to rotate();

voi d init_Ilogging()

{
/1
boost::shared_ptr< sinks::text_file_backend > backend =
boost : : make_shared< sinks::text file backend >(
keywords::file_nane = "file_%N.lo0g",
keywords: :time_based_rotation = & s_it_time_to_rotate
)
/1
}

E Note
The log file rotation takes place on an attempt to write a new log record to the file. Thus the time-based rotation is
not a strict threshold, either. The rotation will take place as soon as the library detects that the rotation should have
happened.

The file name pattern may contain a number of wildcards, like the one you can see in the example above. Supported placeholders
are:

* Current date and time components. The placeholders conform to the ones specified by Boost.DateTime library.

* File counter (%N) with an optional width specification in the pri nt f -like format. The file counter will always be decimal, zero
filled to the specified width.

» A percent sign (9849.

A few quick examples:

58

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/date_time.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

Template Expandsto

file_ %N.log file_1.log, file 2.log...

file_%3N.log file_001.log, file_002.l0g...

file_%Y %m%d.log file_20080705.l0g, file 20080706.l0g...

file_%Y-%m-%d_%H-%M-%S.%N.log fil e_2|008—07—05_13-44—23.1.| og, file_2008-07-06_16-00-
10.2.log...

c I mpor tant
Although all Boost.DateTime format specifiers will work, there are restrictions on some of them, if you intend to
scan for old log files. This functionality is discussed in the next section.

The sink backend allows hooking into the file rotation process in order to perform pre- and post-rotation actions. This can be useful
to maintain log file validity by writing headers and footers. For example, thisis how we could modify thei ni t _I oggi ng function
in order to write logsinto XML files:

/1 Complete file sink type
t ypedef sinks::synchronous_sink< sinks::text_file_backend > fil e_sink;

void wite_header(sinks::text_file_backend::streamtype& file)

{
file << "<?xm version=\"1.0\"?>\n<l og>\n";
}
void wite_footer(sinks::text_file_backend::streamtype& file)
{
file << "</log>\n";
}
void init_logging()
{
/'l Create a text file sink
boost::shared_ptr< file_sink > sink(new fil e_sink(
keywords: : file_name = "%%Pd_%A00ES %N xm ", @
keywords: :rotation_size = 16384 (2]
)
sink->set _formatter
(
expr::format("\t<record id=\"%%" tinmestanp=\"%R% ">%3%/record>")
% expr::attr< unsigned int >("Recordl D")
% expr::attr< boost::posix_time::ptime >("TinmeStanp")
% expr::xm _decor[expr::stream << expr::snmessage | (3]
)
/1 Set header and footer witing functors
si nk- >l ocked_backend() - >set _open_handl er (&wmite_header);
si nk- >l ocked_backend()->set _cl ose_handl er (&wite_footer);
/'l Add the sink to the core
| oggi ng: : core: : get()->add_si nk(sink);
}

© theresulting file name pattern

59

render
httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/date_time.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

® rotation size, in characters
® thelog message has to be decorated, if it contains special characters

See the complete code.
Finally, the sink backend also supports the auto-flush feature, like the text stream backend does.
Managing rotated files

After being closed, the rotated files can be collected. In order to do so one has to set up afile collector by specifying the target dir-
ectory where to collect the rotated files and, optionally, size thresholds. For example, we can modify thei ni t _| oggi ng function
to place rotated files into a distinct directory and limit total size of the files. Let's assume the following function is called by
i nit_I oggi ng with the constructed sink:

void init_file_collecting(boost::shared_ptr< file_sink > sink)

{
si nk- >l ocked_backend()->set _file_collector(sinks::file::mke_collector(
keywords::target = "l ogs", (1]
keywords: :max_size = 16 * 1024 * 1024, (2]
keywords: :mn_free_space = 100 * 1024 * 1024 (3]
));
}

O thetarget directory
® maximum total size of the stored files, in bytes
® minimum free space on the drive, in bytes

The max_si ze and ni n_f r ee_space parameters are optional, the corresponding threshold will not be taken into account if the
parameter is not specified.

One can create multiple file sink backends that collect files into the same target directory. In this case the most strict thresholds are
combined for this target directory. The files from this directory will be erased without regard for which sink backend wroteit, i.e.
in the strict chronological order.

O Warning
The collector does not resolve log file name clashes between different sink backends, so if the clash occurs the be-
havior is undefined, in general. Depending on the circumstances, the files may overwrite each other or the operation
may fail entirely.

The file collector provides another useful feature. Suppose you ran your application 5 times and you have 5 log files in the "logs"
directory. The file sink backend and file collector provide ascan_f or _fi | es method that searches the target directory for these
files and takes them into account. So, if it comes to deleting files, these files are not forgotten. What's more, if the file name pattern
in the backend involves afile counter, scanning for older files allows updating the counter to the most recent value. Hereisthe final
version of our i ni t _I oggi ng function:

60

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/sinks_xml_file.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

void init_logging()
{
/Il Create a text file sink
boost::shared_ptr< file_sink > sink(new file_sink(
keywords:: file_nane = "%%d_ %0ES YBN. xm ",
keywords::rotation_size = 16384

)

/1 Set up where the rotated files will be stored
init_file_collecting(sink);

/'l Upon restart, scan the directory for files matching the file_nane pattern
si nk- >l ocked_backend()->scan_for_files();

sink->set _formatter

(
expr::format("\t<record id=\"%%" tinestanp=\"%R% ">%8%/record>")
% expr::attr< unsigned int >("Recordl D")
% expr::attr< boost::posix_tinme::ptinme >("TineStanp")
% expr::xm _decor[expr::stream << expr::snmessage |

),

/'l Set header and footer witing functors
nanespace bll = boost::|anbda;

si nk- >l ocked_backend() - >set _open_handl er

(
)
si nk- >l ocked_backend() - >set _cl ose_handl er
(
)

/1 Add the sink to the core
| oggi ng: : core: : get()->add_si nk(sink);

bll::_1 << "<?xm version=\"1.0\"?>\n<|l og>\n"

bll::_1 << "</log>\n"

There are two methods of file scanning: the scan that involves file name matching with the file name pattern (the default) and the
scan that assumes that all files in the target directory are log files. The former applies certain restrictions on the placeholders that
can be used within the file name pattern, in particular only file counter placeholder and these placeholders of Boost.DateTime are
supported: %y, %y, %m %, %4, ¥ %85, % . The latter scanning method, inits turn, hasits own drawback: it does not allow updating
thefile counter in the backend. It isalso considered to be more dangerous as it may result in unintended file deletion, so be cautious.
The all-files scanning method can be enabled by passing it as an additional parameter tothescan_for _fil es cal:

/'l Look for all files in the target directory
backend- >scan_for files(sinks::file::scan_all);

Text multi-file backend

#i ncl ude <boost/|og/sinks/text_nultifile_backend. hpp>

While the text stream and file backends are aimed to store all log records into a single file/stream, this backend serves a different
purpose. Assume we have a banking request processing application and we want logs related to every single request to be placed
into aseparate file. If we can associate some attribute with the request identity thenthet ext _mul ti fi | e_backend backendisthe
way to go.

61

render

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/doc/html/date_time.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

void init_logging()
{

boost: :shared_ptr< | ogging::core > core = |ogging::core::get();

boost::shared_ptr< sinks::text_nultifile_backend > backend =
boost: : nake_shared< sinks::text_nultifile_backend >();

/'l Set up the file naming pattern
backend- >set _fil e_name_conposer

(
sinks::file::as_file_name_conposer(expr::stream<< "logs/" << expr::attr< std::string >("Rel
quest1D') << ".log")
)

/!l Wap it into the frontend and register in the core.

/1 The backend requires synchronization in the frontend.

typedef sinks::synchronous_sink< sinks::text_multifile_backend > sink_t;
boost: :shared_ptr< sink_t > sink(new sink_t(backend));

/1l Set the formatter
sink->set _formatter

(
expr::stream
<< "[Request|ID: " << expr::attr< std::string >("RequestlD")
<< "] " << expr::smessage

),

cor e- >add_si nk(si nk) ;

You can see we used a regular formatter in order to specify file naming pattern. Now, every log record with a distinct value of the
"RequestI D" attribute will be stored in a separate file, no matter how many different requests are being processed by the application
concurrently. You can also find thenul ti pl e_fi | es examplein the library distribution, which shows a similar technique to sep-
arate logs generated by different threads of the application.

If using formatters is not appropriate for some reason, you can provide your own file name composer. The composer is a mere
function object that accepts alog record as asingle argument and returnsavalue of thet ext _nul ti fil e_backend: : pat h_t ype

type.

S Note
The multi-file backend has no knowl edge of whether aparticular fileisgoing to beused or not. That is, if alog record
has been written into file A, the library cannot tell whether there will be more records that fit into the file A or not.
This makes it impossible to implement file rotation and removing unused files to free space on the file system. The
user will have to implement such functionality himself.

Syslog backend
#i ncl ude <boost/| og/ si nks/ sysl og_backend. hpp>

The syslog backend, as comesfrom its name, provides support for the syslog API that isavailable on virtually any UNIX-like platform.
On Windows there exists at least one public implementation of the syslog client API. However, in order to provide maximum flex-
ibility and better portability the library offers built-in support for the syslog protocol described in RFC 3164. Thus on Windows only
the built-in implementation is supported, while on UNIX-like systems both built-in and system APl based implementations are
supported.

The backend is implemented in the sysl og_backend class. The backend supports formatting log records, and therefore requires
thread synchronization in the frontend. The backend also supports severity level transation from the application-specific values to

62

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/multiple_files/main.cpp
http://syslog-win32.sourceforge.net
http://tools.ietf.org/html/rfc3164
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

the syl og-defined values. Thisis achieved with an additional function object, level mapper, that receives a set of attribute values of
each log record and returns the appropriate syslog level value. Thisvalueis used by the backend to construct the final priority value
of the syslog record. The other component of the syslog priority value, the facility, is constant for each backend object and can be
specified in the backend constructor arguments.

Level mappers can be written by library users to trandate the application log levels to the syslog levels in the best way. However,
thelibrary provides two mappersthat would fit thisneed in obviouscases. Thedi r ect _severi ty_nmappi ng classtemplate provides
away todirectly map values of someintegral attributeto syslog levels, without any value conversion. Thecust om severi ty_map-
pi ng class template adds some flexibility and allows to map arbitrary values of some attribute to syslog levels.

Anyway, one example s better than a thousand words.

/1 Conpl ete sink type
t ypedef sinks::synchronous_si nk< sinks::syslog_backend > sink_t;

void init_native_syslog()
{

boost: :shared_ptr< | ogging::core > core = | ogging::core::get();

/'l Create a backend

boost: : shared_ptr< sinks::syslog_backend > backend(new sinks: :sysl og_backend(
keywords: :facility = sinks::syslog::user, o
keywords: :use_i npl = sinks::syslog::native (2]

)

/1l Set the straightforward level translator for the "Severity" attribute of type int
backend- >set _severity_mapper (sinks::syslog::direct_severity mapping< int >("Severity"));

/1 Wap it into the frontend and register in the core.
/1 The backend requires synchronization in the frontend.
core- >add_si nk(boost : : make_shared< sink_t >(backend));

}

void init_builtin_syslog()
{

boost::shared _ptr< |l ogging::core > core = |ogging::core::get();

/1l Create a new backend

boost: :shared_ptr< sinks::syslog _backend > backend(new sinks: :sysl og_backend(
keywords: :facility = sinks::syslog::localO, (3]
keywords: :use_inmpl = sinks::syslog::udp_socket_based (4

)

/'l Setup the target address and port to send syslog nessages to
backend- >set _target _address("192.164. 1. 10", 514);

/1l Create and fill in another |evel translator for "MyLevel" attribute of type string
sinks: :sysl og::custom severity_mappi ng< std::string > mapping("MLevel ");

mappi ng["debug”] = sinks::syslog:: debug;

mappi ng["normal "] = sinks::syslog::info;

mappi ng["war ni ng"] = sinks::sysl og::warning;

mappi ng[“failure"] = sinks::syslog::critical;

backend- >set _severity_mapper (mappi ng) ;

/1 Wap it into the frontend and register in the core.
cor e->add_si nk(boost : : nake_shared< sink_t >(backend));

© thelogging facility
® thenative syslog API should be used
® thelogging facility

63

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

O the built-in socket-based implementation should be used

Please note that all syslog constants, as well as level extractors, are declared within a nested namespace sys! og. The library will
not accept (and does not declare in the backend interface) native syslog constants, which are macros, actualy.

Also note that the backend will default to the built-in implementation and user logging facility, if the corresponding constructor
parameters are not specified.

@ Tip
The set _t ar get _addr ess method will also accept DNS names, which it will resolve to the actual 1P address.
This feature, however, is not available in single threaded builds.

Windows debugger output backend
#i ncl ude <boost /1 og/ si nks/ debug_out put _backend. hpp>

WindowsAPI has an interesting feature: a process, being run under adebugger, is able to emit messages that will be intercepted and
displayed in the debugger window. For example, if an application isrun under theVisual Studio IDE it isableto write debug messages
tothe IDE window. Thebasi ¢c_debug_out put _backend backend providesasimpleway of emitting such messages. Additionally,
in order to optimize application performance, a specia filter is available that checks whether the application is being run under a
debugger. Like many other sink backends, this backend also supports setting a formatter in order to compose the message text.

The usage is quite simple and straightforward:

/'l Conmplete sink type
t ypedef sinks::synchronous_si nk< sinks::debug_out put _backend > sink_t;

void init_logging()
{

boost: :shared_ptr< | ogging::core > core = |ogging::core::get();

/'l Create the sink. The backend requires synchronization in the frontend.
boost: :shared_ptr< sink_t > sink(new sink_t());

/1 Set the special filter to the frontend
/1 in order to skip the sink when no debugger is available
sink->set _filter(expr::is_debugger_present());

cor e- >add_si nk(si nk) ;

Notethat the sink backend istemplated on the character type. Thistype definesthe WindowsAPI version that is used to emit messages.
Also, debug_out put _backend and wdebug_out put _backend convenience typedefs are provided.

Windows event log backends
#i ncl ude <[boost/| og/sinks/event _| og_backend. hpp] >

Windows operating system provides aspecial API for publishing eventsrelated to application execution. A wide range of applications,
including Windows components, use this facility to provide the user with all essential information about computer heath in asingle
place - an event log. There can be more than one event log. However, typically all user-space applications use the common Applic-
ation log. Records from different applications or their parts can be selected from the log by arecord source name. Event logs can be
read with a standard utility, an Event Viewer, that comes with Windows.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

Although it looks very tempting, the API is quite complicated and intrusive, which makes it difficult to support. The application is
required to provide a dynamic library with special resources that describe all events the application supports. This library must be
registered in the Windows registry, which pinsits location in the file system. The Event Viewer uses this registration to find the re-
sources and compose and display messages. The positive feature of this approach is that since event resources can describe events
differently for different languages, it allows the application to support event internationalization in a quite transparent manner: the
application simply provides event identifiers and non-localizable event parameters to the API, and it does the rest of the work.

In order to support both the simplistic approach "it just works" and the more elaborate event composition, including internationaliz-
ation support, the library provides two sink backends that work with event log API.

Simple event log backend

Thebasi c_si npl e_event _| og_backend backend is intended to encapsulate as much of the event log APl as possible, leaving
interface and usage model very similar to other sink backends. It contains all resources that are needed for the Event Viewer to
function properly, and registers the Boost.Log library in the Windows registry in order to populate itself as the container of these
resources.

2 I mportant

The library must be built as a dynamic library in order to use this backend flawlessly. Otherwise event description
resources are not linked into the executable, and the Event Viewer is not able to display events properly.

The only thing user has to do to add Windows event log support to his application is to provide event source and log names (which
are optional and can be automatically suggested by the library), set up an appropriate filter, formatter and event severity mapping.

/1 Conpl ete sink type
t ypedef sinks::synchronous_sink< sinks::sinple_event_| og_backend > sink_t;

/'l Define application-specific severity |levels
enum severity_| evel
{

nor mal ,

war ni ng,

error

I

void init_logging()
{
/'l Create an event |og sink
boost: : shared_ptr< sink_t > sink(new sink_t());

si nk->set _formatter
(
expr::format ("%% [%R% - 9%B%W)
% expr::attr< unsigned int >("LinelD")
% expr::attr< boost::posix_time::ptime >("TineStanp")
% expr: : snessage

)

/1 We'll have to map our customlevels to the event |og event types

sinks::event _| 0g: : cust om event _t ype_mappi ng< severity_|l evel > mapping("Severity");
mappi ng[normal | = sinks::event_|og::info;

mappi ng[war ni ng] = sinks::event_| og: : war ni ng;

mappi ng[error] = sinks::event_log::error;

si nk- >l ocked_backend() - >set _event _t ype_mapper (mappi ng) ;

/1 Add the sink to the core
| oggi ng: : core: : get()->add_si nk(sink);

65

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

Having donethat, all logging records that pass to the sink will be formatted the same way they are in the other sinks. The formatted
message will be displayed in the Event Viewer as the event description.

Advanced event log backend

Thebasi c_event _| og_backend alows more detailed control over the logging API, but requires considerably more scaffolding
during initialization and usage.

First, the user hasto build his own library with the event resources (the process is described in MSDN). As apart of this process one
has to create a message file that describes all events. For the sake of example, |et's assume the following contents were used as the

message file:

;/* ..
; HEADER SECTI ON
;o
Severit yNanmes=(Debug=0x0: MyY_SEVERI TY_DEBUG
I nf 0=0x1: MY_SEVERI TY_I NFO
War ni ng=0x2: MY_SEVERI TY_WARNI NG
Err or =0x3: MY_SEVERI TY_ERROR

; o
;. MESSAGE DEFI NI TI ON SECTI ON
yox

Messagel dTypedef =\WORD

Messagel d=0x1

Synbol i cName=MY_CATEGORY_1
Language=Engl i sh

Category 1

Messagel d=0x2

Synbol i cName=MY_CATEGORY_2
Language=Engl i sh

Category 2

Messagel d=0x3

Synbol i cName=MY_CATEGORY_3
Language=Engl i sh

Category 3

Messagel dTypedef =DWORD

Messagel d=0x100

Severit y=War ni ng

Facil i ty=Application

Synbol i cNanme=LOW DI SK_SPACE_MsG

Language=Engl i sh

The drive %4 has | ow free di sk space. At least %2 M of free space is reconmrended

Messagel d=0x101

Severity=Error

Facil i ty=Application

Synbol i cNanme=DEVI CE_| NACCESSI BLE_MsG
Language=Engl i sh

The drive % is not accessible.

66

httpo://www.renderx.com/

http://msdn.microsoft.com/en-us/library/aa363681(VS.85).aspx
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

Messagel d=0x102

Severity=Info

Facility=Application

Synbol i cName=SUCCEEDED MsG

Language=Engl i sh

Qperation finished successfully in % seconds.

After compiling theresource library, the path to thislibrary must be provided to the sink backend constructor, among other parameters
used with the simple backend. The path may contain placeholders that will be expanded with the appropriate environment variables.

/1l Create an event |og sink
boost::shared_ptr< sinks::event_| og_backend > backend(
new si nks: :event _| og_backend((

keywords: : nessage_file = "%systenDir%\ event | og_nessages. dl | ",
keywords::log_name = "My Application",
keywords: : | og_source = "M/ Source"

))

Like the simple backend, basi c_event _| og_backend will register itself in the Windows registry, which will enable the Event
Viewer to display the emitted events.

Next, the user will have to provide the mapping between the application logging attributes and event identifiers. These identifiers
were provided in the message compiler output as aresult of compiling the message file. One can usebasi c_event _conposer and
one of the event ID mappings, like in the following example:

/'l Create an event conposer. It is initialized with the event identifier napping.
sinks::event _| 0og:: event _conposer conposer (
sinks::event _| og: : di rect _event _id_mappi ng< int >("Eventl|D"));

/1 For each event described in the nessage file, set up the insertion string formatters
conposer [LON DI SK_SPACE_MSG

/1 the first placeholder in the nessage

/'l will be replaced with contents of the "Drive" attribute

% expr::attr< std::string >("Drive")

/'l the second pl acehol der in the nessage

/1 will be replaced with contents of the "Size" attribute

% expr::attr< boost::uintmax_t >("Size");

conposer [DEVI CE_| NACCESSI BLE_MsG
% expr::attr< std::string >("Drive");

conposer [SUCCEEDED MsG
% expr::attr< unsigned int >("Duration");

/1 Then put the conposer to the backend
backend- >set _event _conposer (conposer) ;

Asyou can see, one can use regular formatters to specify which attributes will be inserted instead of placeholdersin the final event
message. Aside from that, one can specify mappings of attribute values to event types and categories. Suppose our application has
the following severity levels:

67

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

/1 Define application-specific severity |levels
enum severity_| evel

{
nor mal ,
war ni ng,
error

}s

Then these levels can be mapped onto the values in the message description file:

/1 We'll have to map our customlevels to the event |og event types

sinks::event _| og::custom event _type_mappi ng< severity_level > type_mapping("Severity");
t ype_mappi ng[normal | = sinks::event_| og:: make_event _type(MY_SEVERI TY_I NFO) ;

t ype_nmappi ng[war ni ng] = sinks::event_| og:: make_event _type(MY_SEVERI TY_WARNI NG) ;

t ype_mappi ng[error] = sinks::event_|og:: make_event _type(MY_SEVERI TY_ERRCR);

backend- >set _event _type_napper (type_mappi ng) ;

/1 Same for event categories.

/1 Usually event categories can be restored by the event identifier.

sinks::event _| og::custom event _category_napping< int > cat_mappi ng("EventlD");

cat _mappi ng[LON DI SK_SPACE_MSG = sinks::event | og:: nake_event _cat egory(MY_CATEGORY_1);

cat _mappi ng[DEVI CE_I NACCESSI BLE_MSG = sinks: :event _| og: : make_event _cat egory(MY_CATEGORY_2) ;
cat _mappi ng[SUCCEEDED MSG = sinks::event_| og:: make_event _cat egory(MY_CATEGORY_3) ;

backend- >set _event _cat egory_napper (cat _nappi ng) ;

@ Tip
As of Windows NT 6 (Vista, Server 2008) it is not needed to specify event type mappings. This information is
available in the message definition resources and need not be duplicated in the API call.

Now that initialization is done, the sink can be registered into the core.

/'l Create the frontend for the sink
boost : : shared_ptr< sinks::synchronous_si nk< sinks::event_| og_backend > > sink(
new si nks: : synchronous_si nk< sinks::event_| og_backend >(backend));

/1 Set up filter to pass only records that have the necessary attribute
sink->set _filter(expr::has_attr< int >("EventID"));

| oggi ng: : core: : get()->add_si nk(sink);

In order to emit eventsit is convenient to create a set of functionsthat will accept al needed parameters for the corresponding events
and announce that the event has occurred.

68

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

BOOST_LOG | NLI NE_GLOBAL_LOGGER _DEFAULT(event _| ogger, src::severity_logger_nt< severity_level >)

/1 The function raises an event of the disk space depletion
voi d announce_l ow_di sk_space(std::string const& drive, boost::uintnmax_t size)
{

BOOST_LOG_SCOPED THREAD TAG("Event | D', (int)LOW DI SK_SPACE_MS0) ;

BOOST_LOG _SCOPED THREAD TAG("Drive", drive);

BOOST_LOG _SCOPED THREAD TAG("Si ze", size);

/1 Since this record nay get accepted by other sinks,

/1l this nessage is not conpletely usel ess

BOOST_LOG SEV(event _| ogger::get(), warning) << "Low disk " << drive

<< " space, " << size << " My is recomended";

}

/1 The function raises an event of inaccessible disk drive
voi d announce_devi ce_i naccessi bl e(std::string const& drive)

{
BOOST_LOG _SCOPED THREAD TAG("Event | D', (i nt)DEVI CE_| NACCESSI BLE_MSG) ;
BOOST_LOG _SCOPED THREAD TAG("Drive", drive);
BOOST_LOG SEV(event _| ogger::get(), error) << "Cannot access drive " << drive;
}

/'l The structure is an activity guard that will enit an event upon the activity conpletion
struct activity_guard

{
activity_guard()
{
/1 Add a stop watch attribute to nmeasure the activity duration
mit = event_logger::get().add_attribute("Duration", attrs::tinmer()).first;
}
~activity_guard()
{
BOOST_LOG_SCOPED THREAD TAG("Event| D', (i nt) SUCCEEDED MSG) ;
BOOST_LOG SEV(event | ogger::get(), normal) << "Activity ended";
event _| ogger::get().renove_attribute(mit);
}
private:
logging: :attribute_set::iterator mit;
b

Now you are able to call these helper functions to emit events. The complete code from this section is available in the event _| og
examplein the library distribution.

Lambda expressions

Asit was pointed out in tutorial, filters and formatters can be specified as L ambda expressions with placehol ders for attribute values.
This section will describe the placeholders that can be used to build more complex Lambda expressions.

There is aso away to specify the filter in the form of a string template. This can be useful for initialization from the application
settings. This part of the library is described here.

Generic attribute placeholder

#i ncl ude <boost/| og/ expressions/attr_fwd. hpp>
#i ncl ude <boost/| og/ expressions/attr. hpp>

The at t r placeholder represents an attribute value in template expressions. Given the record view or a set of attribute values, the
placeholder will attempt to extract the specified attribute value from the argument upon invocation. This can be roughly described
with the following pseudo-code:

69

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/event_log/main.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

| ogging: :value_ref< T, TagT > val = expr::attr< T, TagT >(nane)(rec);

where val isthe reference to the extracted value, nane and T are the attribute value name and type, TagT is an optional tag (we'll
return to it in amoment) and r ec isthe log record view or attribute value set. T can be a Boost. MPL type sequence with possible
expected types of the value; the extraction will succeed if the type of the value matches one of the typesin the sequence.

Theat t r placeholder can be used in Boost.Phoenix expressions, including the bi nd expression.

bool nmy_filter(logging::value_ref< severity_level, tag::severity > const& |evel,
| oggi ng: :value_ref< std::string, tag::tag_attr > const& tag)

{
return level >= warning || tag == "I MPORTANT_NESSAGE"
}
void init()
{
I
namespace phoeni x = boost: : phoeni x;
si nk->set _filter(phoenix::bind(&y_filter, severity.or_none(), tag_attr.or_none()));
I
}

The placeholder can be used both in filters and formatters:

sink->set _filter

(
expr::attr< int >("Severity") >=5 &&
expr::attr< std::string >("Channel") == "net"

)

si nk->set _formatter

(
expr: :stream
<< expr::attr< int >("Severity")
<< " [" << expr::attr< std::string >("Channel") << "]
<< expr::smessage

Thecall toset _filter registersacompositefilter that consists of two elementary subfilters: the first one checksthe severity level,
and the second checks the channel name. The call to set _f or mat t er installs a formatter that composes a string containing the
severity level and the channel name a ong with the message text.

Customizing fallback policy
By default, when the requested attribute value is not found in the record, at t r will return an empty reference. In case of filters, this
will resultinf al se inany ordering expressions, and in case of formatters the output from the placeholder will be empty. This beha-

vior can be changed:

» Tothrow anexception (mi ssi ng_val ue ori nval i d_t ype, depending on thereason of thefailure). Add theor _t hr owmodifier:

sink->set _filter

(
expr::attr<int >("Severity").or_throw) >= 5 &&
expr::attr< std::string >("Channel").or_throw) == "net"

» Touse adefault value instead. Add the or _def aul t modifier with the desired default value:

70

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/mpl/doc/index.html
http://www.boost.org/doc/libs/release/libs/phoenix/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

sink->set _filter

(
expr::attr<int >("Severity").or_default(0) >= 5 &&
expr::attr< std::string >("Channel").or_default(std::string("general")) == "net"

Il
You can also use the has_att r predicate to implement filters and formatters conditional on the attribute value
presence.

The default behavior isalso accessiblethrough the or _none modifier. The modified placeholders can be used in filtersand formatters
just the same way as the unmodified ones.

In bi nd expressions, the bound function object will still receive the val ue_r ef -wrapped values in place of the modified at t r
placehol der. Even though both or _t hr owand or _def aul t modifiers guaranteethat the bound function will receive afilled reference,
val ue_r ef isstill needed if the valuetypeis specified as atype sequence. Al so, the reference wrapper may contain atag type which
may be useful for formatting customization.

Attribute tags and custom formatting operators
The TagT type in the abstract description of at t r above is optional and by default isvoi d. Thisis an attribute tag which can be

used to customize the output formatters produce for different attributes. Thistag is forwarded to thet o_| og manipulator when the
extracted attribute value is put to a stream (this behavior is warranted by val ue_r ef implementation). Here's a quick example:

71

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

/1 We define our own severity levels
enum severity_| evel

{
nor mal ,
notification,
war ni ng,
error,
critical

}s

/'l The operator is used for regular streamformatting
std::ostream operator<< (std::ostream& strm severity_level |evel)

{
static const char* strings[] =
{
"normal ",
"notification",
"war ni ng",
"error",
"critical"
}s
if (static_cast< std::size_t >(level) < sizeof(strings) / sizeof(*strings))
strm << strings|[level];
el se
strm << static_cast< int >(level);
return strm
}

/1 Attribute value tag type
struct severity_tag;

/1 The operator is used when putting the severity level to |og
| oggi ng: : formatti ng_ostream& operat or <<

(
| ogging: :formatti ng_ostream& strm
| ogging: :to_l og_mani p< severity_level, severity_tag > const& nmanip
)
{
static const char* strings[] =
{
" NORM',
"NTFY",
"WARN"
"ERRR",
"CRIT"
s
severity_level level = nanip.get();
if (static_cast< std::size_t >(level) < sizeof(strings) / sizeof(*strings))
strm << strings[level];
el se
strm << static_cast< int >(level);
return strm
}
void init()
{

| oggi ng: : add_consol e_I og

(
std:: clog,

72

render

Y httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

/1 This nmakes the sink to wite |log records that |ook |ike this:
/1 1. <NORM> A nornal severity nessage

/1 2: <ERRR> An error severity nessage

keywords: : format =

(

expr::stream
<< expr::attr< unsigned int >("LinelD")
<< ": <" << expr::attr< severity_level, severity_tag >("Severity")
<< "> " << expr::snessage

See the compl ete code.
Here we specify a different formatting operator for the severity level wrapped inthet o_| og_nani p manipulator marked with the

tag severity_t ag. This operator will be called when log records are formatted while the regular oper at or << will be used in
other contexts.

Defining attribute keywords

#i ncl ude <boost/| og/ expressi ons/ keywor d_fwd. hpp>
#i ncl ude <boost/| og/ expressi ons/ keywor d. hpp>

Attribute keywords can be used as replacements for the at t r placeholdersin filters and formatters while providing a more concise
and less error prone syntax. An attribute keyword can be declared with the BOOST_LOG_ATTRI BUTE_KEYWORD macro:

BOOST_LOG ATTRI BUTE_KEYWORD(keywor d, "Keyword", type)

Herethe macro declares akeyword keywor d for an attribute named "Keyword" with the value type of t ype. Additionally, the macro
defines an attribute tag type keywor d within thet ag namespace. We can rewrite the previous example in the following way:

73

httpo://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/log/doc/html/../../../../libs/log/example/doc/expressions_attr_fmt_tag.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Log v2

/1 We define our own severity levels
enum severity_| evel

{
nor mal ,
notification,
war ni ng,
error,
critical

}s

/1 Define the attribute keywords
BOOST_LOG ATTRI BUTE_KEYWORD(| i ne_id, "LinelD', unsigned int)
BOOST_LOG _ATTRI BUTE_KEYWORD(severity, "Severity", severity_level)

/'l The operator is used for regular streamformatting
std::ostream operator<< (std::ostream& strm severity_level |evel)

{
static const char* strings[] =
{
"normal ",
"notification",
"war ni ng",
"error",
"critical"
}s
if (static_cast< std::size_t >(level) < sizeof(strings) / sizeof(*strings))
strm << strings[level];
el se
strm << static_cast< int >(level);
return strm
}

/1 The operator is used when putting the severity level to |og
| oggi ng: : formatti ng_ostreamt operat or <<

(
| ogging: :formatting_ostream& strm
| oggi ng: :to_l og_mani p< severity_ level, tag::severity > const& manip
)
{
static const char* strings[] =
{
" NORM',
"NTFY",
"WARN"
"ERRR",
"CRIT"
s
severity_level level = nanip.get();
if (static_cast< std::size_t >(level) < sizeof(strings) / sizeof(*strings))
strm << strings|[level];
el se
strm << static_cast< int >(level);
return strm
}
void init()
{

| oggi ng: : add_consol e_I og

(

74

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Boost.Log v2

std::clog

/1 This makes the sink to wite log records that |ook |ike this:
/1 1. <NORM> A nornal severity nessage

/1 2: <ERRR> An error severity nessage

keywords: : format =

(
expr: :stream
<< line_id
<< ": <" << severity
<< "> " << expr::snessage

Attribute keywords behave the same way asthe at t r placeholders and can be used both in filters and formatters. The or _t hr ow
and or _def aul t modifiers are also supported.

Keywords can also be used in attribute value lookup expressions in log records and attribute value sets:

voi d print_severity(logging::record_view const& rec)

{

| oggi ng: : value_ref< severity_level, tag::severity > level = rec[severity];
std::cout << level << std::endl

Record placeholder
#i ncl ude <boost/| og/ expressions/record. hpp>
Ther ecor d placeholder can be used in bi nd expressions to pass the whole log record view to the bound function object.

void ny_formatter(logging::fornatting_ostreanm& strm | ogging::record_view const& rec)

{
}

/1

nanespace phoeni x = boost: : phoeni x
sink->set _formatter(phoenix::bind(&ry_formatter, expr::stream expr::record));

S Note
In case of filters, the placeholder will correspond to the set of attribute values rather than the log record itself. This
is because the record is not constructed yet at the point of filtering, and filters only operate on the set of attribute

values.

Message text placeholders
#i ncl ude <boost/| og/ expressi ons/ nessage. hpp>

Log records typically contain a specia attribute "Message" with the value of one of the st