
WPE

Provides efficient methods for working
with wreath product elements.

0.8

21 October 2024

Friedrich Rober

Friedrich Rober
Email: friedrich.rober@rwth-aachen.de

mailto://friedrich.rober@rwth-aachen.de

Contents

1 Introduction 3
1.1 Overview . 3
1.2 Intuitive Research . 4
1.3 Efficient Computing . 5

2 Notation 7
2.1 Wreath Products . 7
2.2 Wreath Cycles . 7
2.3 Sparse Wreath Cycles . 8

3 Tutorial 10
3.1 Creating Wreath Product Elements . 10
3.2 Displaying Wreath Product Elements . 11
3.3 Computing in Wreath Products . 13
3.4 Conjugacy Problem . 14
3.5 Conjugacy Classes . 14
3.6 Centralizer . 15
3.7 Cycle Index Polynomial . 16

4 Functions 18
4.1 Generic Wreath Product Representation . 18
4.2 Accessing Components . 19
4.3 Properties of Wreath Product Elements . 19
4.4 Printing, Viewing and Displaying . 20
4.5 Cycle Index of Wreath Products . 21

5 Operations 23
5.1 Operations List . 23

References 25

Index 26

2

Chapter 1

Introduction

This chapter serves as an introduction and showcases some highlights of the package WPE.

1.1 Overview

The package WPE (Wreath Product Elements). provides methods to work with elements of finite
groups which are wreath products. It contributes to intuitive research and efficient computing in wreath
products of groups.

It allows access to a representation of wreath products, which we refer to as the generic represen-
tation, that is more intuitive to the User when working with wreath products of groups. Access is as
straight-forward as using the provided command IsomorphismWreathProduct on a wreath product
created by the native GAP command WreathProduct, see 1.2 for an example.

Additionally, this representation may have computational benefits over other representations.
Note, that just by loading the package WPE and without any additional setup, all optimizations are
applied to computations in wreath products created by the native GAP command WreathProduct,
by exploiting the generic representation under the hood when appropiate. See 1.3 for a highlight
showcase of such computational problems.

In particular, this package provides efficient methods for finding conjugating elements, conjugacy
classes, and centralisers in wreath products. The implementations are based on an accompanying pub-
lication [BNRW22], that generalizes results from [Spe32] and [Ore42] on monomial groups, wreath
products whose top group is the full symmetric group.

For example, the computation of all 886640 conjugacy classses of elements of the wreath product
W = M22 ≀A9 takes about 12 seconds with WPE. With native GAP this computation is not feasible.

Example
gap> LoadPackage("WPE");;
gap> K := MathieuGroup(22);;
gap> H := AlternatingGroup(9);;
gap> G := WreathProduct(K, H);;
gap> C := ConjugacyClasses(G);;
gap> Size(C);
886640

3

WPE 4

1.2 Intuitive Research

One of the two main goals of the package is to provide the User with tools to conduct intuitive research
in wreath products of groups on the computer.

In this section we present an example session which demonstrates how we can access the generic
representation of a wreath product. As noted in the introduction, no additional setup is required if one
wants to benefit from the optimizations for computations in wreath products (see 1.3 for examples on
this).

First we construct the wreath product G = Alt(5) ≀Sym(7) (see 2.1). For this we use the native
GAP command WreathProduct (Reference: WreathProduct). The resulting group is embedded
into a symmetric group on 5 ·7 = 35 points via the imprimitive action of the wreath product. The size
of the group is

|G|= |Alt(5)|7 · |Sym(7)|= 607 ·5040 = 14108774400000000 .
Example

gap> K := AlternatingGroup(5);;
gap> H := SymmetricGroup(7);;
gap> G := WreathProduct(K, H);
<permutation group of size 14108774400000000 with 4 generators>

Now we construct an isomorphism to a wreath product given in generic representation that is provided
in WPE. For this, we need to load the package WPE.

Example
gap> LoadPackage("WPE");;
gap> iso := IsomorphismWreathProduct(G);;
gap> W := Image(iso);
<group of size 14108774400000000 with 4 generators>

Let us compare how GAP displays elements of G and W respectively. Elements of G are represented as
permutations. In this representation it is hard to identify the base and top components of this element
(see 2.1).

Example
gap> g := (1,13,3,14,4,12,2,15,5,11)
> (6,31,21,7,35,25,9,33,23,8,34,24,10,32,22)
> (18,19,20);;
gap> g in G;
true

Elements of W however are represented as generic wreath product elements (see 2.1). This allows
us to read off the base and top component of the element easily by either printing or displaying the
element. Otherwise, by default the element is viewed in compressed form (see 4.4). This printing
behaviour is similar to the behaviour of matrices in GAP.

Example
gap> w := g ^ iso;
< wreath product element with 7 base components >
gap> Print(w);
[(1,3,4,2,5), (2,5)(3,4), (), (3,4,5), (1,2)(4,5), (), (), (1,3)(2,7,5)]
gap> Display(w);

1 2 3 4 5 6 7 top
((1,3,4,2,5), (2,5)(3,4), (), (3,4,5), (1,2)(4,5), (), (); (1,3)(2,7,5))

WPE 5

Furthermore, we can display and access each component easily with the provided commands.
Example

gap> BaseComponentOfWreathProductElement(w, 2);
(2,5)(3,4)
gap> TopComponentOfWreathProductElement(w);
(1,3)(2,7,5)

1.2.1 The Power of Component-wise Representation

This component-wise representation is often exactly the one that we encounter in research on wreath
products. Thus having it available on the computer greatly sharpens our intuition. We can make
very non-trivial statements by looking at the components of such an element, and for the case of the
element w even without a computer.

Let us start off with an easy observation. Just by looking at the top component of w, i.e.
(1,3)(2,7,5), we can see that the smallest power of w that lies in the base group of W has exponent 6,
since it has to be equal to the order of the top component.

Example
gap> m := Order(w);
30
gap> First([1 .. m], k -> IsOne(TopComponentOfWreathProductElement(w ^ k)));
6
gap> Display(w ^ 6);

1 2 3 4 5 6 7 top
((1,2,3,5,4), (1,4,5,2,3), (1,2,3,5,4), (), (1,3,2,5,4), (), (1,3,2,5,4); ())

Now let us be more advanced. Just by looking at the element w, we can deduce structural information
on the conjugacy class wW . All elements conjugate to w in W = K ≀H must have at least one trivial
base component, since the territory of w (see 2.2) contains exactly six elements, whereas the top group
acts on seven points.

Example
gap> Length(Territory(w));
6
gap> NrMovedPoints(H);
7

On the other hand, all such elements must have at least three non-trivial base components, since the
wreath cycle decomposition of w (see 2.2) contains exactly three wreath cycles with non-trivial yades
(see 2.3).

Example
gap> Number(WreathCycleDecomposition(w), c -> not IsOne(Yade(c)));
3

Moreover, for each integer k with 3 ≤ k ≤ 6 there exists at least one conjugate element with exactly k
non-trivial base components.

1.3 Efficient Computing

One of the two main goals of the package is to empower the User to carry out efficient computations
in wreath products of groups on the computer.

WPE 6

In this section we present a highlight showcase of computational problems that benefit from the
generic representation. As noted in the introduction, no additional setup is required if one wants to
benefit from the optimizations for computations in wreath products. We simply create the wreath prod-
ucts via the native GAP command WreathProduct (Reference: WreathProduct), and the generic
representation provided by WPE is used under the hood whenever appropiate.

We only give a summary of some computational problems that now become approachable on
the computer, and include examples for such computations in Chapter 3 containing extensive GAP
sessions that can be followed like a tutorial.

In the following let G = K ≀H be a wreath product of finite groups, where H ≤ Sym(m). Further
let x,y ∈ P = K ≀ Sym(m) be elements of the parent wreath product P which is given in the same
representation as G.

Conjugacy Problem
Solve the conjugacy problem for x and y over G, i.e. decide whether there exists c ∈ G with
xc = y and if it does, explicitly compute such a conjugating element c.

Conjugacy Classes
Enumerate representatives of all conjugacy classes of elements of G, i.e. return elements
g1, . . . ,gℓ such that gG

1 , . . . ,g
G
ℓ are the conjugacy classes of G.

Centralizer
Compute the centralizer of x in G, i.e. compute a generating set of CG(x).

Cycle Index Polynomial
Compute the cycle index polynomial of G either for the imprimitive action or the product action.

Chapter 2

Notation

This chapter explains the notation of the package WPE, mainly influenced by the accompanying
publication [BNRW22].

2.1 Wreath Products

Let G = K ≀H be a wreath product of two groups, where H is a permutation group of degree m. The
wreath product is defined as the semidirect product of the function space Km with H, where π ∈ H
acts on f ∈ Km by setting f π : {1, . . . ,m} → K, i 7→ [(i)π−1] f . Note that G naturally embeds into the
parent wreath product, that is P = K ≀Sym(m)≥ G.

Formally we can write an element of G as a tuple g = (f ,π) ∈ G, where f ∈ Km is a function
f : {1, . . . ,m}→ K and π ∈ H ≤ Sym(m) is a permutation on m points. We call f the base component
and π the top component of g.

We can naturally identify a map f ∈ Km with a tuple (g1, . . . ,gm), where each gi ∈ K is the image
of i ∈ {1, . . . ,m} under f . This yields a second useful notation for elements in G by writing g =
(g1, . . . ,gm;π). Note that we use a semicolon to seperate the base component from the top component.
Further we call the element gi the i-th base component of g.

Analogously, the subgroup B = Km ×⟨1H⟩ ≤ G is called the base group of G and the subgroup
T = ⟨1K⟩m ×H ≤ G is called the top group of G.

With the above notation, the multiplication of two elements

g = (f ,π) = (g1, . . . ,gm;π),h = (d,σ) = (h1, . . . ,hm;σ)

of G = K ≀H, a wreath product of finite groups, can be written as

g ·h = (f ·d(π−1),π ·σ) = (g1 ·h1π , . . . ,gm ·hmπ ;π ·σ) .

2.2 Wreath Cycles

In a permutation group we have the well-known concept of a cycle decomposition. For wreath prod-
ucts we have a similar concept called wreath cycle decomposition that allows us to solve certain
computational tasks more efficiently.

Detailed information on wreath cycle decompositions can be found in Chapter 2 in [BNRW22].
Chapters 3-5 in [BNRW22] describe how these can be exploited for finding conjugating elements,

7

WPE 8

conjugacy classes, and centralisers in wreath products, and Chapter 6 in [BNRW22] contains a table
of timings of sample computations done with WPE vs. native GAP.

We use the notation from Section 2.1 in order to introduce the following concepts.
Definition : We define the territory of an element g = (g1, . . . ,gm;π) ∈ G by terr(g) := supp(π)∪

{i : gi ̸= 1}, where supp(π) denotes the set of moved points of π .
Definition : Two elements g,h ∈ G are said to be disjoint if their territories are disjoint.
Lemma : Disjoint elements in G commute.
Definition : An element g = (g1, . . . ,gm;π) ∈ G is called a wreath cycle if either π is a cycle in

Sym(n) and terr(g) = supp(π), or |terr(g)|= 1.
Example : For example, if we consider the wreath product Sym(4) ≀Sym(5), the element

((), (1,2,3), (), (1,2), (); (1,2,4))

is a wreath cycle as described in the first case and the element

((), (), (1,3), (), (); ())

is a wreath cycle as described in the second case. Moreover, these elements are disjoint and thus
commute.

Theorem : Every element of G can be written as a finite product of disjoint wreath cycles in P.
This decomposition is unique up to ordering of the factors. We call such a decomposition a wreath
cycle decomposition.

2.3 Sparse Wreath Cycles

We use the notation from Section 2.1 in order to introduce the following concepts.
The main motivation for introducing the concept of sparse wreath cycles is the efficient compu-

tation of centralisers of wreath product elements. Simply put, we compute the centraliser CG(g) of
an arbitrary element g ∈ P in G by conjugating it in P to a restricted representative h = gc ∈ P, com-
puting the centraliser of h in G and then conjugating it back. The wreath cycle decomposition of the
representative h consists only of sparse wreath cycles.

More information on sparse wreath cycles and centralisers of wreath product elements can be
found in Chapter 5 in [BNRW22].

Definition : We say that a wreath cycle g = (g1, . . . ,gm;π) ∈ G is a sparse wreath cycle, if there
exists an i0 such that gi = 1 for all i ̸= i0.

Example : For example, if we consider the wreath product Sym(4) ≀Sym(5), the element

((), (1,2,3), (), (), (); (1,2,4))

is a sparse wreath cycle, as well as the element

((), (), (1,3), (), (); ()) .

A very important invariant under conjugation is the yade of a wreath cycle.
Definition : For a wreath cycle g = (f ,π) ∈ G and a point i ∈ terr(g) we define the yade of g in i

as
[(i)π0] f · [(i)π1] f · · · [(i)π |π|−1] f .

WPE 9

Example : Consider the wreath product Sym(4) ≀Sym(5), and the wreath cycle

g = (f ,π) = ((), (1,2,3), (), (1,2), (); (1,2,4)).

The yade evaluated at i = 1 is given by

[(1)π0] f · [(1)π1] f · [(1)π2] f = [1] f · [2] f · [4] f = () · (1,2,3) · (1,2) = (2,3)

and the yade evaluated at j = 4 is given by

[(4)π0] f · [(4)π1] f · [(4)π2] f = [4] f · [1] f · [2] f = (1,2) · () · (1,2,3) = (1,3) .

Up to conjugacy, the yade is independent under the chosen evaluation point i. Moreover, wreath
cycles are conjugate over G if and only if the top components are conjugate over H and the yades are
conjugate over K. More specific, we can conjugate a wreath cycle g to a sparse wreath cycle h such
that the i-th base component of h contains the yade of g in i. This leads to the following result.

Theorem : Every element g ∈ P can be conjugated by some c ∈ Km ×⟨1H⟩ ≤ P to an element
h = gc ∈ P such that the wreath cycle decomposition of h consists only of sparse wreath cycles.

Chapter 3

Tutorial

This chapter is a collection of tutorials that show how to work with wreath products in GAP in con-
junction with the package WPE.

3.1 Creating Wreath Product Elements

In this section we present an example session which demonstrates how we can create wreath products
elements by specifying its components.

In the following we will work with the wreath product G = Alt(5) ≀Sym(4).
Example

gap> LoadPackage("WPE");;
gap> K := AlternatingGroup(5);;
gap> H := SymmetricGroup(4);;
gap> G := WreathProduct(K, H);
<permutation group of size 311040000 with 10 generators>

The resulting group G is embedded into a symmetric group on 5 · 4 = 20 points via the imprimitive
action of the wreath product. The size of the group is

|G|= |Alt(5)|4 · |Sym(4)|= 604 ·24 = 311040000 .

Suppose we would like to input the wreath product element

g = ((1,5,2,4,3), (1,3,5,2,4), (1,5,3,4,2), (1,4,5); (1,3)(2,4))

as an element of G. The method WreathProductElementList is the preferred way to create a wreath
product element by specifying its components. Note that we first specify the four base components
and at the end the top component as the last entry.

Example
gap> gList := [(1,5,2,4,3), (1,3,5,2,4), (1,5,3,4,2), (1,4,5), (1,3)(2,4)];;
gap> g := WreathProductElementList(G, gList);
(1,15,3,11,5,12)(2,14)(4,13)(6,18,8,20)(7,19,10,17)(9,16)
gap> g in G;
true

10

WPE 11

On the other hand, the method ListWreathProductElement can be used to get a list containing the
components of a wreath product element.

Example
gap> ListWreathProductElement(G, g);
[(1,5,2,4,3), (1,3,5,2,4), (1,5,3,4,2), (1,4,5), (1,3)(2,4)]
gap> last = gList;
true

The package author has implemented the methods ListWreathProductElement (Reference:
ListWreathProductElement) and WreathProductElementList (Reference: WreathProductEle-
mentList) in GAP in order to translate between list representations of wreath product elements and
other representations. The naming conventions are the same as for ListPerm and PermList.

Moreover, all functions that work for IsWreathProductElement can also be used on these list
representations. However, it is not checked if the list indeed represents a wreath product element.

Example
gap> Territory(gList);
[1, 2, 3, 4]

If the wreath product element is "sparse", i.e. has only a few non-trivial components, it might be
easier to create it by embedding its non-trivial components into G directly and multiplying them.
Note however, that WreathProductElementList might be faster as it avoids group multiplications.

Example
gap> h := (1,2,3) ^ Embedding(G,2)
> * (1,5,2,4,3) ^ Embedding(G,4)
> * (1,2,4) ^ Embedding(G, 5);
(1,6,17,4,9,19,3,8,16,5,10,20,2,7,18)
gap> hList := ListWreathProductElement(G, h);
[(), (1,2,3), (), (1,5,2,4,3), (1,2,4)]
gap> IsWreathCycle(hList);
true

3.2 Displaying Wreath Product Elements

In this section we present an example session which demonstrates how we can display wreath product
elements in an intuitive way. Wreath product elements are viewed, printed and displayed (see section
(Reference: View and Print) for the distinctions between these operations) as generic wreath product
elements (see section 2.1).

Suppose we are given some element g in the wreath product G = Alt(5) ≀Sym(4), and would like
to view its components in a nice way.

Example
gap> LoadPackage("WPE");;
gap> K := AlternatingGroup(5);;
gap> H := SymmetricGroup(4);;
gap> G := WreathProduct(K, H);;
gap> iso := IsomorphismWreathProduct(G);;
gap> W := Image(iso);;
gap> g := (1,15,8,20)(2,14,7,19,5,12,6,18,3,11,10,17)(4,13,9,16);;
gap> g in G;
true

WPE 12

First we translate the element g into a generic wreath product element w. GAP uses ViewObj to print
w in a compressed form.

Example
gap> w := g ^ iso;
< wreath product element with 4 base components >

If we want to print this element in a "machine-readable" way, we could use one of the following
methods.

Example
gap> Print(w);
[(1,5,2,4,3), (1,3,5,2,4), (1,5,3,4,2), (1,4,5), (1,3,2,4)]
gap> L := ListWreathProductElement(W, w);
[(1,5,2,4,3), (1,3,5,2,4), (1,5,3,4,2), (1,4,5), (1,3,2,4)]
gap> L = ListWreathProductElement(G, g);
true

Usually, we want to display this element in a nice format instead, which is "human-readable" and
allows us to quickly distinguish components.

Example
gap> Display(w);

1 2 3 4 top
((1,5,2,4,3), (1,3,5,2,4), (1,5,3,4,2), (1,4,5); (1,3,2,4))

There are many display options available for adjusting the display behaviour for wreath product ele-
ments to your liking (see 4.4). For example, we might want to display the element vertically. We can
do this for a single call to the ‘Display‘ command without changing the global display options like
this:

Example
gap> Display(w, rec(horizontal := false));

1: (1,5,2,4,3)
2: (1,3,5,2,4)
3: (1,5,3,4,2)
4: (1,4,5)

top: (1,3,2,4)
gap> Display(w);

1 2 3 4 top
((1,5,2,4,3), (1,3,5,2,4), (1,5,3,4,2), (1,4,5); (1,3,2,4))

We can also change the global display options via the following command.
Example

gap> SetDisplayOptionsForWreathProductElements(rec(horizontal := false));
gap> Display(w);

1: (1,5,2,4,3)
2: (1,3,5,2,4)
3: (1,5,3,4,2)
4: (1,4,5)

top: (1,3,2,4)

All changes to the global behaviour can be reverted to the default behaviour via the following com-
mand.

WPE 13

Example
gap> ResetDisplayOptionsForWreathProductElements();
gap> Display(w);

1 2 3 4 top
((1,5,2,4,3), (1,3,5,2,4), (1,5,3,4,2), (1,4,5); (1,3,2,4))

But sometimes, it is sufficient to just look at some components of a wreath product element. We can
directly use the list representation to access the components on a low-level or we can use high-level
functions on wreath product elements instead.

Example
gap> a := BaseComponentOfWreathProductElement(w, 3);
(1,5,3,4,2)
gap> a = L[3];
true
gap> b := TopComponentOfWreathProductElement(w);
(1,3,2,4)
gap> b = L[5];
true

3.3 Computing in Wreath Products

As noted in the introduction, no additional setup is required if one wants to benefit from the opti-
mizations for computations in wreath products. We simply create the wreath products via the native
GAP command WreathProduct (Reference: WreathProduct), and the generic representation is
used under the hood whenever appropiate.

We include in the following sections examples for each computational problem listed in 1.3. For
all such examples we fix the following wreath product.

Example
gap> LoadPackage("WPE");;
gap> K := Group([(1,2,3,4,5), (1,2,4,3)]);; # F(5)
gap> H := Group([(1,2,3,4,5,6), (2,6)(3,5)]);; # D(12)
gap> G := WreathProduct(K, H);
<permutation group of size 768000000 with 4 generators>
gap> P := WreathProduct(K, SymmetricGroup(NrMovedPoints(H)));
<permutation group of size 46080000000 with 4 generators>
gap> IsSubgroup(P, G);
true
gap> iso := IsomorphismWreathProduct(P);;

Moreover, we fix the following elements of the parent wreath product P. We choose them in such a
way, that they do not lie in the smaller wreath product G for demonstration purposes only.

Example
gap> x := (1,23,12,6,4,24,13,9,5,21,15,10,2,25,14,7)(3,22,11,8)(16,30,20,28)(17,27,19,26)(18,29);;
gap> y := (1,12,26,8,3,14,28,7,2,13,27,10,5,11,30,6)(4,15,29,9)(16,23,20,22)(17,24,19,21)(18,25);;
gap> Display(x ^ iso);

1 2 3 4 5 6 top
((1,3,2,5), (1,4,5,2), (1,3,4,2), (1,5,3,4), (1,5,4,3,2), (1,2,4,3); (1,5,3,2)(4,6))
gap> Display(y ^ iso);

1 2 3 4 5 6 top
((1,2,3,4,5), (), (1,5,4,3,2), (1,3,5,2,4), (1,2)(3,5), (1,3,2,5); (1,3,6,2)(4,5))

WPE 14

gap> x in P and y in P;
true
gap> not x in G and not y in G;
true

3.4 Conjugacy Problem

We now demonstrate how to solve the conjugacy problem for x and y over G, i.e. decide whether there
exists c ∈ G with xc = y and if it does, explicitly compute such a conjugating element c.

We continue the GAP session from Section 3.3.
To check in GAP whether two elements are conjugate in a group we use native GAP command

RepresentativeAction (Reference: RepresentativeAction).
Example

gap> RepresentativeAction(G, x, y);
fail

The output fail indicates, that x and y are not conjugate over G. But are x and y conjugate in the
parent wreath product?

Example
gap> c := RepresentativeAction(P, x, y);
(2,5)(3,4)(6,8,9,7)(11,29,25)(12,26,21,13,28,22,15,27,24,14,30,23)
gap> Display(c^iso);

1 2 3 4 5 6 top
((2,5)(3,4), (1,3,4,2), (1,4,5,2), (), (1,3,2,5), (2,4,5,3); (3,6,5))
gap> x ^ c = y;
true

We see, that indeed these elements are conjugate over the larger wreath product P by the conjugating
element c ∈ P.

3.5 Conjugacy Classes

Enumerate representatives of all conjugacy classes of elements of G, i.e. return elements g1, . . . ,gℓ
such that gG

1 , . . . ,g
G
ℓ are the conjugacy classes of G.

We continue the GAP session from Section 3.3. In particular recall the definition of the isomor-
phism iso.

To compute in GAP the conjugacy classes of elements of a group we use ConjugacyClasses
(Reference: ConjugacyClasses attribute).

Example
gap> CC := ConjugacyClasses(G);;
gap> Length(CC);
1960

We see that there are 1960 many conjugacy classes of elements of G. Let us look at a single conjugacy
class.

Example
gap> A := CC[1617];
(2,4,5,3)(6,26)(7,29,9,30,10,28,8,27)(11,21)(12,22)(13,23)(14,24)(15,25)^G

WPE 15

We can compute additional information about a conjugacy class on the go. For example, we can ask
GAP for the number of elements in this class.

Example
gap> Size(A);
60000

To access the representative of this class, we do the following.
Example

gap> a := Representative(A);
(2,4,5,3)(6,26)(7,29,9,30,10,28,8,27)(11,21)(12,22)(13,23)(14,24)(15,25)
gap> Display(a ^ iso);

1 2 3 4 5 6 top
((2,4,5,3), (2,4,5,3), (), (), (), (); (2,6)(3,5))

Representatives are always given in a sparse format, e.g. all cycles in the wreath cycle decomposition
of a are sparse (see 2.3).

3.6 Centralizer

Compute the centralizer of x in G, i.e. compute a generating set of CG(x).
We continue the GAP session from 3.3. In particular recall the definition of the isomorphism iso.
To compute in GAP the centralizer of an element in a group we use Centralizer (Reference:

centraliser).
Example

gap> C := Centralizer(G, x);
Group([(16,20)(17,19)(26,27)(28,30), (16,19,20,17)(26,28,27,30),

(1,4,5,2)(6,9,10,7)(12,13,15,14)(21,25,23,24)])

We can compute additional information about the centralizer on the go. For example, we can ask GAP
for the number of elements in G that centralize x.

Example
gap> Size(C);
16

The generators of a centralizer are always given in a sparse format, e.g. all cycles in the wreath cycle
decomposition of a generator g are sparse (see 2.3).

Example
gap> for g in GeneratorsOfGroup(C) do
> Display(g ^ iso);
> od;

1 2 3 4 5 6 top
((), (), (), (1,5)(2,4), (), (1,2)(3,5); ())

1 2 3 4 5 6 top
((), (), (), (1,4,5,2), (), (1,3,2,5); ())

1 2 3 4 5 6 top
((1,4,5,2), (1,4,5,2), (2,3,5,4), (), (1,5,3,4), (); ())

WPE 16

3.7 Cycle Index Polynomial

Compute the cycle index polynomial of G either for the imprimitive action or the product action. We
do not continue the GAP session from 3.3 since the wreath product is too large to make sense of the
cycle index polynomial just by looking at it. Instead we use the following wreath product.

Example
gap> LoadPackage("WPE");;
gap> K := Group([(1,2), (1,2,3)]);; # S(3)
gap> H := Group([(1,2)]);; # C(2)
gap> G_impr := WreathProduct(K, H);;
gap> NrMovedPoints(G_impr);
6
gap> Order(G_impr);
72

To compute in GAP the cycle index of a a group we use CycleIndex (Reference: CycleIndex). Note
that by default, the wreath product is given in imprimitive action.

Example
gap> c_impr := CycleIndex(G_impr);
1/72*x_1^6+1/12*x_1^4*x_2+1/18*x_1^3*x_3+1/8*x_1^2*x_2^2+1/6*x_1*x_2*x_3
+1/12*x_2^3+1/4*x_2*x_4+1/18*x_3^2+1/6*x_6

For example, the second monomial 1/12*x_1^4*x_2 tells us that there are exactly 72
12 = 6 elements

with cycle type (4,1), i.e. elements that have four fixed points and one 2-cycle. If one wants to
access these monomials on the computer, one needs to use ExtRepPolynomialRatFun (Reference:
ExtRepPolynomialRatFun).

Example
gap> Display(ExtRepPolynomialRatFun(c_impr));
[[6, 1], 1/6, [3, 2], 1/18, [2, 1, 4, 1], 1/4, [2, 3], 1/12,

[1, 1, 2, 1, 3, 1], 1/6, [1, 2, 2, 2], 1/8, [1, 3, 3, 1], 1/18,
[1, 4, 2, 1], 1/12, [1, 6], 1/72]

The way how to read this representation is roughly the following. The list consists of alternating
entries, the first one encoding the monomial and the second one the corresponding coefficient, for
example consider [1, 4, 2, 1], 1/12. The coefficient is 1/12 and the monomial is encoded by
[1, 4, 2, 1]. The encoding of the monomial again consists of alternating entries, the first one
encoding the indeterminant and the second one its exponent. For example [1, 4, 2, 1] trans-
lates to x_1^4 * x_2^1. For more details, see (Reference: The Defining Attributes of Rational
Functions).

If we want to consider the wreath product given in product action, we need to use the command
WreathProductProductAction (Reference: WreathProductProductAction)

Example
gap> G_prod := WreathProductProductAction(K, H);;
gap> NrMovedPoints(G_prod);
9
gap> c_prod := CycleIndex(G_prod);
1/72*x_1^9+1/6*x_1^3*x_2^3+1/8*x_1*x_2^4+1/4*x_1*x_4^2+1/9*x_3^3+1/3*x_3*x_6

However, we do not need to create the wreath product in order to compute the cycle index of the
group. Thus the package provides the functions CycleIndexWreathProductImprimitiveAction

WPE 17

(4.5.1) and CycleIndexWreathProductProductAction (4.5.2) to compute the cycle index directly
from the components K and H without writing down a representation of K ≀H.

Example
gap> c1 := CycleIndexWreathProductImprimitiveAction(K, H);;
gap> c_impr = c1;
true
gap> c2 := CycleIndexWreathProductProductAction(K, H);;
gap> c_prod = c2;
true

Chapter 4

Functions

Here we include a list of all functions that are provided to the User.
The following functions are designed to improve the User experience when working or experi-

menting with wreath products of finite groups and their elements. Most functions are about presenting
elements in an intuitive way and giving access to useful information.

4.1 Generic Wreath Product Representation

The main way for the User to look at a wreath product in a "human-readable" way is by using an
isomorphism from a specialised wreath product representation to a generic representation.

4.1.1 IsomorphismWreathProduct

▷ IsomorphismWreathProduct(G) (operation)

returns an isomorphism from a specialized wreath product G to a generic wreath product.
Example

gap> K := AlternatingGroup(5);;
gap> H := SymmetricGroup(4);;
gap> G := WreathProduct(K, H);
<permutation group of size 311040000 with 10 generators>
gap> iso := IsomorphismWreathProduct(G);;
gap> W := Image(iso);
<group of size 311040000 with 4 generators>

For an overview on wreath product representations in GAP see 5.1.1.
In the background, it uses the low-level functions ListWreathProductElement

and WreathProductElementList and wraps the IsList representations into
IsWreathProductElement representations.

For performant code, we recommend to use these low-level functions instead of
IsomorphismWreathProduct. All functions for IsWreathProductElement also work on IsList
objects that represent a wreath product element. However, it is not checked that the IsList object
actually represents a wreath product element.

18

WPE 19

4.2 Accessing Components

The following functions give access to components of wreath products and their elements.

4.2.1 ComponentsOfWreathProduct

▷ ComponentsOfWreathProduct(W) (function)

returns a list of two groups [K, H], where W = K wr H . The argument W must be a wreath product
(see 2.1).

4.2.2 TopGroupOfWreathProduct

▷ TopGroupOfWreathProduct(W) (function)

returns a group, namely the top group ⟨1K⟩m ×H of the wreath product W = K ≀H (see 2.1).

4.2.3 BaseGroupOfWreathProduct

▷ BaseGroupOfWreathProduct(W[, i]) (function)

returns a group, namely the base group Km ×⟨1H of the wreath product W = K ≀H. If the optional
argument i is provided, the function returns the i-th factor of the base group of W (see 2.1).

4.2.4 TopComponentOfWreathProductElement

▷ TopComponentOfWreathProductElement(x) (function)

returns a group element, namely the top component of x . The argument x must be a wreath
product element (see 2.1).

4.2.5 BaseComponentOfWreathProductElement

▷ BaseComponentOfWreathProductElement(x[, i]) (function)

returns a group element, namely the base component of x . If the optional argument i is provided,
the function returns the i-th base component of x . The argument x must be a wreath product element
and the optional argument i must be an integer (see 2.1).

4.3 Properties of Wreath Product Elements

The following functions give access to important properties of wreath product elements.

4.3.1 Territory

▷ Territory(x) (attribute)

WPE 20

returns a list, namely the territory of x . The argument x must be a wreath product element
(see 2.2).

4.3.2 IsWreathCycle

▷ IsWreathCycle(x) (attribute)

returns true or false. Tests whether x is a wreath cycle. The argument x must be a wreath product
element (see 2.2).

4.3.3 IsSparseWreathCycle

▷ IsSparseWreathCycle(x) (attribute)

returns true or false. Tests whether x is a sparse wreath cycle. The argument x must be a wreath
product element (see 2.3).

4.3.4 WreathCycleDecomposition

▷ WreathCycleDecomposition(x) (attribute)

returns a list containing wreath cycles, namely the wreath cycle decomposition of x . The argument
x must be a wreath product element (see 2.2).

4.3.5 Yade

▷ Yade(x[, i]) (attribute)

returns a group element, namely the yade of the wreath cycle x evaluated at the smallest territory
point. If the optional argument i is provided, the function returns the yade evaluated at the point i .
The argument x must be a wreath cycle and the optional argument i must be an integer from the
territory of x (see 2.3)

4.4 Printing, Viewing and Displaying

4.4.1 ViewObj (for a wreath product element)

▷ ViewObj(x) (method)

▷ PrintObj(x) (method)

▷ Display(x[, optrec]) (method)

Wreath product elements are viewed, printed and displayed (see Section (Reference: View and
Print) for the distinctions between these operations) as generic wreath product elements (see Section
2.1). For an example of the distinctions and outputs see 3.2.

The method Display allows an optional argument optrec which must be a record and modifies
the display output for the execution of a single instance of the command.

For modifying the display output globally for all subsequent executions of Display see
SetDisplayOptionsForWreathProductElements (4.4.3).

WPE 21

The following components of optrec are supported. Note, that in the following labels refer to the
the printing output “1,/ldots,m” and “top” as seen in the tutorials.

horizontal
true to use the horizontal printer. DEFAULT

false to use the vertical printer.

labels
true to print labels. DEFAULT

false to suppress labels.

labelStyle
"none" for labels in normal intensity. DEFAULT

"bold" for labels in increased intensity.

"faint" for labels in decreased intensity.

labelColor
"default" for labels in the default GAP output color. DEFAULT

"red" for labels in red color.

"blue" for labels in blue color.

4.4.2 DisplayOptionsForWreathProductElements

▷ DisplayOptionsForWreathProductElements() (function)

prints the current global display options for wreath product elements.

4.4.3 SetDisplayOptionsForWreathProductElements

▷ SetDisplayOptionsForWreathProductElements(optrec) (function)

sets the current global display options for wreath product elements.
The argument optrec must be a record with components that are valid display options. (see 4.4)

The components for the current global display options are set to the values specified by the components
in optrec .

4.4.4 ResetDisplayOptionsForWreathProductElements

▷ ResetDisplayOptionsForWreathProductElements() (function)

resets the current global display options for wreath product elements to default.

4.5 Cycle Index of Wreath Products

The following functions construct the cycle index polynomial of wreath products in certain actions.

WPE 22

4.5.1 CycleIndexWreathProductImprimitiveAction

▷ CycleIndexWreathProductImprimitiveAction(K, H) (function)

For two permutation groups K and H this function constructs the cycle index polynomial of the
wreath product K ≀H in imprimitive action.

The implementation is based on [P3́7].

4.5.2 CycleIndexWreathProductProductAction

▷ CycleIndexWreathProductProductAction(K, H) (function)

For two permutation groups K and H this function constructs the cycle index polynomial of the
wreath product K ≀H in product action.

The implementation is based on [HH68] and [PR73].

Chapter 5

Operations

The generic representation of wreath product elements in wreath products of finite groups and in
particular their (sparse) wreath cycle decompositions can be used to speed up certain computations in
wreath products.

In particular this package provides efficient methods for finding conjugating elements, conjugacy
classes, and centralisers. The implementations are based on [BNRW22] and references therein.

5.1 Operations List

Here we include a list of operations that take advantage of the generic representation of wreath product
elements.

We include python scripts in the dev/ directory that benchmark the WPE and native GAP imple-
mentations of these operations separately. The comparison of the runtimes supports the conclusion
that the WPE implementations are an order of magnitude faster than the native GAP implementa-
tions. We can now solve these computational tasks for large wreath products that were previously not
feasible in GAP

5.1.1 Wreath Product Representations

In the following let G = K ≀H be a wreath product, where H ≤ Sym(m).
In GAP the wreath product G can be given in one of the following representations :

• Generic Representation

• Permutation Representation in Imprimitive Action

• Permutation Representation in Product Action

• Matrix Representation

5.1.2 Operations for all Representations

Further let x,y ∈ P = K ≀Sym(m) be elements of the parent wreath product P which is given in the
same representation as G.

The following operations use implementations that exploit the generic representation and (sparse)
wreath cycle decompositions :

23

WPE 24

• RepresentativeAction(G, x, y)

• Centraliser(G, x)

• ConjugacyClasses(G)

5.1.3 Operations for Permutation Representations

Here we assume that G is given in some permutation representation.
The following operations use implementations that exploit the generic representation and (sparse)

wreath cycle decompositions :

• CycleIndex(G)

5.1.4 Operations for Generic Representation

Here we assume that G is given in generic representation.
The following operations use implementations that exploit the generic representation and (sparse)

wreath cycle decompositions :

• Order(x)

References

[BNRW22] Dominik Bernhardt, Alice C. Niemeyer, Friedrich Rober, and Lucas Wollenhaupt. Con-
jugacy classes and centralisers in wreath products. J. Symbolic Comput., 113:97–125,
2022. 3, 7, 8, 23

[HH68] Michael A. Harrison and Robert G. High. On the cycle index of a product of permutation
groups. J. Combinatorial Theory, 4:277–299, 1968. 22

[Ore42] Oystein Ore. Theory of monomial groups. Trans. Amer. Math. Soc., 51:15–64, 1942. 3

[P3́7] G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische
Verbindungen. Acta Math., 68(1):145–254, 1937. 22

[PR73] E. M. Palmer and R. W. Robinson. Enumeration under two representations of the wreath
product. Acta Math., 131:123–143, 1973. 22

[Spe32] Wilhelm Specht. Eine Verallgemeinerung der symmetrischen Gruppe. PhD thesis,
Humboldt-Universität zu Berlin, 1932. 3

25

Index

BaseComponentOfWreathProductElement, 19
BaseGroupOfWreathProduct, 19

ComponentsOfWreathProduct, 19
CycleIndexWreathProductImprimitive-

Action, 22
CycleIndexWreathProductProductAction,

22

Display
for a wreath product element, 20

DisplayOptionsForWreathProduct-
Elements, 21

IsomorphismWreathProduct, 18
IsSparseWreathCycle, 20
IsWreathCycle, 20

PrintObj
for a wreath product element, 20

ResetDisplayOptionsForWreathProduct-
Elements, 21

SetDisplayOptionsForWreathProduct-
Elements, 21

Territory, 19
TopComponentOfWreathProductElement, 19
TopGroupOfWreathProduct, 19

ViewObj
for a wreath product element, 20

WreathCycleDecomposition, 20

Yade, 20

26

	Introduction
	Overview
	Intuitive Research
	Efficient Computing

	Notation
	Wreath Products
	Wreath Cycles
	Sparse Wreath Cycles

	Tutorial
	Creating Wreath Product Elements
	Displaying Wreath Product Elements
	Computing in Wreath Products
	Conjugacy Problem
	Conjugacy Classes
	Centralizer
	Cycle Index Polynomial

	Functions
	Generic Wreath Product Representation
	Accessing Components
	Properties of Wreath Product Elements
	Printing, Viewing and Displaying
	Cycle Index of Wreath Products

	Operations
	Operations List

	References
	Index

